Author Archives: admin


New Fund Established to Stimulate Regenerative Medicine Industry

MONTREAL, QUEBEC--(Marketwire -04/30/12)- With a shared goal of supporting development projects that will boost innovation in the growing field of stem cells and biomaterials-based products, Pfizer Canada and the Centre for Commercialization of Regenerative Medicine (CCRM) have established the Pfizer-CCRM Innovation Fund to accelerate regenerative medicine (RM) technologies for drug screening and therapeutic applications. The announcement is being made at the first annual Till & McCulloch Meetings (April 30-May 2), Canada's premier stem cell meeting, jointly hosted by the Stem Cell Network and CCRM.

"CCRM was created on the premise that it would work with academia and industry on projects that will hopefully move RM technologies and innovations from the bench to the bedside," says Michael May, CEO of CCRM. "Canada is already a leader in this field and additional funding to advance novel research through early product development will only make us stronger. We're very pleased to be partnering with Pfizer Canada and appreciate their confidence in joining with us."

"Pfizer Canada is pleased to contribute to this new fund which will support important research here in Canada," explains Dr. Bernard Prigent, Vice-President and Medical Director, Pfizer Canada. "With the novel resources offered through CCRM's development capabilities, we hope to help advance the RM field in this country."

Pfizer Canada has contributed a total of $500,000 to the Pfizer-CCRM Innovation Fund and CCRM will contribute matching dollars to any approved projects undertaken in the duration of this fund.

About Centre for Commercialization of Regenerative Medicine (CCRM)

CCRM, a Canadian not-for-profit organization funded by the Government of Canada's Networks of Centres of Excellence program and six institutional partners, supports the development of technologies that accelerate the commercialization of stem cell- and biomaterials-based technologies and therapies. A network of academics, industry and entrepreneurs, CCRM translates scientific discoveries into marketable products for patients. CCRM launched in Toronto's Discovery District on June 14, 2011.

About Pfizer Canada

Pfizer Canada Inc. is the Canadian operation of Pfizer Inc., the world's leading biopharmaceutical company. Pfizer discovers, develops, manufactures and markets prescription medicines for humans and animals. Pfizer Inc. invests more than US$7 billion annually in R&D to discover and develop innovative life-saving and life-enhancing medicines in a wide range of therapeutic areas. Our diversified health care portfolio includes human and animal biologic and small molecule medicines and vaccines, as well as nutritional products and many of the world's best-known consumer products. For more information, visit http://www.pfizer.ca

Continued here:
New Fund Established to Stimulate Regenerative Medicine Industry

American CryoStem Announces ACS Laboratories Adipose Tissue and Adult Stem Cell Testing Services

RED BANK, NJ--(Marketwire -04/30/12)- American CryoStem Corporation (CRYO.PK - News) announced the launch of its new adipose tissue and adult stem cell testing services to assist physicians involved in tissue engraftment, regenerative medicine procedures and cellular therapies utilizing adult adipose derived stem cells. The new testing services provide physicians an affordable method for self assessment of their procedures and methods to better understand the relationship between tissue quality and engraftment success.

American CryoStem recognizes the need for independent testing services as reinforced by the increasing focus and scrutiny of physician office based tissue laboratories by the US Food and Drug Administration (FDA). The menu of testing services includes full 14 day sterility testing, viability testing, growth assay and additional tests for each selected service. The tests can be ordered individually or in multiples over time and are designed to allow physicians to self evaluate their current methods and performance, or to assess new methods or devices designed to improve procedure and tissue quality. Long term and customized programs are available upon request. Physicians enrolled as a provider of the Company's stem cell storage services can obtain discounts for individual and multi test programs.

"We are very excited about rolling these new services out to our existing providers and all participants in the tissue engraftment, regenerative medicine and cellular therapy markets. We believe that this is the first such program offered commercially and meets a critical need for the advancement of the regenerative and cellular therapy markets," said Anthony Dudzinski, the Company's COO. "Now there is a way for physicians to assess their own performance without the need to overcome the significant costs of purchasing and maintaining their own testing facilities."

The new testing services are offered by ACS Laboratories reflects the Company's increasing branding and commercialization of products and services developed around its proprietary clinical tissue processing and storage methodologies. ACS Laboratory incorporates its proprietary cGMP/cGTP aseptic methods and FDA guidance's into these services to ensure the highest quality and most useful information for physicians.

About American CryoStem: American CryoStem Corporation (CRYO.PK - News) markets clinical processing services and patented products for Adipose (fat) Tissue and Adipose Derived Adult Stem Cells. The Company's clinical processing, patented cell culture media products and cellular preservation platform supports the science and regenerative medicine applications being developed globally. The Company provides the highest quality, clinically processed cells assuring their purity, viability and growth capabilities, while at the same time developing cutting edge applications, therapies and patented laboratory products and services for consumer and commercial applications.

Continue reading here:
American CryoStem Announces ACS Laboratories Adipose Tissue and Adult Stem Cell Testing Services

Stem cell therapy for WCMS student has remarkable results

When Tyler was born, the umbilical cord was wrapped around his neck, causing a lack of oxygen to his brain that led to Tyler suffering a stroke during delivery. The stroke caused damage to the back of Tylers brain. Tyler was diagnosed with cerebral palsy and his mother, Lisa Biermann, was told to expect the worst: a child who would never walk, talk, or have any chance at a normal life.

Lisa refused to give up hope. She tried everything she could to help Tyler. Tyler could not walk because his feet would not sit flat on the floor. She tried botox injections every three months, braces, casts and even ankle cord surgery. Nothing worked.

Lisa said Tyler could not communicate with her at all. She never knew when he was in pain because he was unable to tell her.

Tyler was considered to be blind, with a prescription that was over nine units nearsighted, and his eyes jumped around. Even with glasses, he could not focus his vision, and doctors did not believe he could see, or ever would see.

Until he was 8 years old, Lisa would carry Tyler from his classes at Woodland Park Elementary.

When Tyler was 8, he had a seizure. Dr. David Steenblock, who is based in California, heard about Tyler and offered to help him with umbilical cord stem cell therapy. Lisa said she thought hard about it, and because she had tried everything else and nothing had worked, she decided to try the stem cell therapy, which Dr. Steenblock told her had no side effects.

In December 2007, Lisa, Dr. Steenblock and his team took Tyler for the treatment, which had to be done in Tijuana, Mexico, because stem cells injection is currently not legal in the United States. Three months later, they went for a second injection.

The stem cells were given to Tyler intravenously for a period of approximately 45 minutes.

Lisa said within weeks, she saw monumental changes in Tyler. All the milestones he never reached as a baby, he began reaching.

Within three months Tyler could put his feet flat on the floor and could walk independently. At six months post-treatment, he no longer needed the painful braces that gave him bunions.

See the article here:
Stem cell therapy for WCMS student has remarkable results

How stem cell therapy can keep the immune system under control

A new study, appearing in Cell Stem Cell and led by researchers at the University of Southern California, outlines the specifics of how autoimmune disorders can be controlled by infusions of mesenchymal stem cells.

Mesenchymal stem cells (MSC) are highly versatile stem cells that originate from the mesoderm, or middle layer of tissue, in a developing embryo. MSC can be isolated from many different kinds of human tissue, including bone marrow and the umbilical cord.

Principal investigator Songtao Shi, professor at the Ostrow School of Dentistry of USC Center for Craniofacial Molecular Biology, said that recent studies have shown the benefits of administering MSC to patients with immune-related disorders such as graft versus host disease, systemic lupus erythematosus, rheumatoid arthritis, and more.

These studies showed that infusions of MSC appeared to quell the production and function of overactive immune cells, including T- and B-lymphocytes. However, the specific mechanism behind how MSC get the immune cells under control hasn't been fully understood.

"Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis" shines light on how infused MSCs target and defeat overactive immune cells.

Examining the effects of MSC infusion in mice with systemic sclerosis (SS)-like immune disorders, Shi and his colleagues discovered that a specific cellular mechanism known as the FAS/FAS-ligand pathway was the key to the remarkable immune system benefits.

Specifically, in mice with SS-like disorders, infusions of MSC caused T-lymphocyte death with FASL/FAS signaling and lessened symptoms of the immune disorder. However, MSC deficient in FAS-ligand failed to treat immune disorders in SS-afflicted mice.

With the hopeful results of the animal model study in mind, Shi's colleagues in China performed a pilot study with patients suffering from systemic sclerosis. Infusions of MSCs provided similar clinical benefits to patients, and experimental analysis revealed that the FASL/FAS pathway was also at work in humans with SS.

The identification of the cellular workings responsible for the stem cell treatments' success may eventually help doctors find optimal cell-based treatment for some immune diseases, Shi said.

Basic research portions of this study were supported by the National Institute of Dental and Craniofacial Research and the California Institute for Regenerative Medicine. Clinical studies were supported by a grant from the China Major International (Regional) Joint Research Project.

Here is the original post:
How stem cell therapy can keep the immune system under control

VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used To Test Drug Candidates For Liver Toxicity

South San Francisco, CA (Marketwire) - VistaGen Therapeutics, Inc. (OTCBB: VSTA) (OTCQB: VSTA), a biotechnology company applying stem cell technology for drug rescue, has secured a new United States patent covering the company's proprietary methods used to measure and type the toxic effects produced by drug compounds in liver stem cells.

Test methods included in this new patent, (U.S. Patent 11/445,733), titled "Toxicity Typing Using Liver Stem Cells," cover all mammalian liver stem cells -- rat and mouse cells, for example, in addition to human cells. Liver stem cells used in drug testing can be derived from in vivo tissue or produced from embryonic stem cells (ES) or induced pluripotent stem cells (iPS).

H. Ralph Snodgrass, Ph.D., VistaGen's President and Chief Scientific Officer, said, "This patent covers the monitoring of changes in gene expression as an assay for predicting drug toxicities. It is well known that drugs activate and suppress specific genes, and that the changes in gene expression reflect the mechanism of drug toxicities. The specific sets of genes that are affected become a profile of that drug."

VistaGen's new patent also covers techniques used to develop a database of gene expression profiles of drugs that have the same type of liver toxicity. Using sophisticated "pattern matching" database tools, drug developers can analyze these related profiles to determine "gene expression signatures" that are common and predictive of drugs that produce specific types of toxicity.

"Without this database capability, a drug's single gene expression profile could not be interpreted," Dr. Snodgrass added. "The ability to use liver stem cells to differentiate drug-dependent gene expression profiles, and to compare those profiles of drugs known to induce toxic liver effects, provides a powerful tool for predicting liver toxicity of new drug candidates, including drug rescue variants."

Shawn K. Singh, VistaGen's Chief Executive Officer, stated, "Strong and enforceable intellectual property rights are critical components of our plan to optimize the commercial potential of our Human Clinical Trials in a Test Tube platform. This new liver toxicity typing patent further solidifies our growing IP portfolio, and supports the continuing development of LiverSafe 3D, our human liver cell-based bioassay system, which complements our CardioSafe 3D human heart cell-based bioassay system for heart toxicity."

About VistaGen Therapeutics VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101. Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen

Cautionary Statement Regarding Forward Looking Statements The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to regulatory approvals, the issuance and protection of patents and other intellectual property, the success of VistaGen's ongoing clinical studies, including the safety and efficacy of its drug candidate, AV-101, the failure of future drug rescue and pilot preclinical cell therapy programs related to VistaGen's stem cell technology-based Human Clinical Trial in a Test Tube platform, its ability to enter into drug rescue collaborations, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, development and commercialization activities, and the success of its research, development, regulatory approval, marketing and distribution plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variants identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

SOURCE: VistaGen Therapeutics, Inc.

Link:
VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used To Test Drug Candidates For Liver Toxicity

Pharmaceutical Company Merck Serono Signs an Agreement to Use Kadimastem's Platform for Drug Screening

NES ZIONA, Israel--(BUSINESS WIRE)--

Kadimastem, an Israeli Biotechnology company that develops human pluripotent stem cell-related products, today announced the signing of a five year framework agreement with Merck Serono, a division of Merck KGaA, Darmstadt, Germany. The agreement concerns the use of Kadimastem's drug-screening platform to discover new oral drugs for the treatment of the neurological disease Multiple Sclerosis (MS).

The system developed by Kadimastem allows using human functional tissues produced industrially from pluripotent stem cells as a means to search for potential new drugs, a direct approach that has advantages over the use of animals. In Multiple Sclerosis, the insulating myelin sheaths which cover many nerves in the brain and spinal cord are destroyed due to loss of the myelin-forming cells resulting in the impairment of nerve function and severe neurological disabilities. It is estimated that 2.5 million patients suffer from this disease around the globe. While the existing treatments act by slowing down the loss of myelin-forming cells, there is great interest in finding new medications that could repair the myelin by stimulating the regeneration of myelin-forming cells. The drug-screening project, to be carried out through the Kadimastem-Merck Serono agreement, aims precisely at the discovery of potential oral drugs that act by stimulating myelin repair.

We are pleased to announce this agreement with Merck-Serono, a company with robust experience in drug discovery, development and marketing in the Multiple Sclerosis area, said Mr. Yossi Ben-Yossef, CEO of Kadimastem. The undisclosed compensation for this agreement will provide financial support for Kadimastem's own in-house drug discovery initiatives, in the field of neurodegenerative diseases as well as in the field of Diabetes. Kadimastem also produces pancreatic islet cells from pluripotent stem cells, for screening of drugs enhancing insulin secretion and eventually for cellular therapy of Diabetes.

Prof. Michel Revel, Chief Scientist of Kadimastem, further commented: We are very proud that after a thorough evaluation, Merck Serono decided to sign an agreement with us. We see it as a proof of our excellence in developing human myelin-forming cells and our capabilities in drug screening. We believe that this agreement is a first step towards further collaboration with Merck Serono and other Pharmaceutical companies, in which our capabilities in drug screening on human functional cell systems will synergize with their capabilities in medicinal chemistry and clinical development, to make drugs available more rapidly and more efficiently.

Prof. Revel from the Weizmann Institute of Science was the Chief Scientist of InterPharm, an Israeli biotech company part of the Merck Serono group that developed Prof. Revel's groundbreaking research which lead to Rebif (mammalian cell-produced recombinant Interferon beta-1a), today a leading drug for the treatment of Multiple Sclerosis with annual sales by Merck Serono of over US$ 2.3 billion.

Mr. Amir Naiberg, CEO of Yeda, the commercial arm of the Weizmann Institiute of Science, said: We are excited that Kadimastem, that was established around one of our technologies, is collaborating with Merck Serono. Merck Serono has a long and successful tradition of developing products that emerged from the Weizmann Institute labs,and we hope that Kadimastem will be another link in this chain.

About Kadimastem

Kadimastem (www.kadimastem.com) is a biotechnology company focused on the industrial development and commercialization of human pluripotent stem cell-based products. At Kadimastem, the pluripotent stem cell technology is used to produce specialized human cells and tissues for two major types of medical applications: 1) Drug-screening platforms using human functional cells and tissues as in vitro assays for discovering novel therapeutic drugs for neurological diseases and diabetes, and 2) Cell therapy for regenerative medicine, to repair tissues and organs affected by diseases, such as implanting insulin-secreting pancreatic islet cells as a treatment for insulin-dependent diabetes. Kadimastem is developing these technologies in its state of the art 1,000 m2 facilities in the Weizmann Science Park (Ness Ziona, Israel), for industrial research and production, with a staff of PhD-level and MSc-level scientists. Kadimastem uses pluripotent human stem cells made available through licensing agreements with the Embryonic Stem Cell Center of the Hadassah Medical center in Jerusalem (Prof. Benjamin Reubinoff) and the Shaarei Zedek Medical Center, Jerusalem, Israel.

About Merck Serono

Link:
Pharmaceutical Company Merck Serono Signs an Agreement to Use Kadimastem's Platform for Drug Screening

Dr. Aaron Schimmer Receives the Till and McCulloch Award – Award Lecture to be Presented Today on Drug Screening with …

MONTRAL, April 30, 2012 /CNW/ - Canada's most coveted stem cell prize will be awarded to a Stem Cell Network researcher who has used drug screening to find a potential new treatment for a deadly form of cancer.

Dr. Aaron Schimmer, associate professor in the University of Toronto's Department of Medical Biophysics and a clinician-scientist in the Princess Margaret Cancer Program/Ontario Cancer Institute at University Health Network, has received the 2012 Till & McCulloch Award, presented each year by the Stem Cell Network in recognition of the year's most influential peer-reviewed article by a researcher in Canada. Dr. Schimmer will accept the award and present a lecture entitled "Novel therapeutic strategies to target leukemia stem cells" as part of the Till and McCulloch Meetings in Montral at 2 p.m. this afternoon.

In an advance interview, Dr. Schimmer described his findings and their potential as a new drug therapy in the treatment of leukemia.

"When you treat patients with leukemia, you can kill off 99 per cent of their leukemic cells with just about anything, and yet, 80 per cent or more of patients relapse," Schimmer explained. "When we examined this in a really objective way, the question was not how to kill off those bulk cells - we already knew how to do that - but are we really missing a critical component of what we should be targeting?"

Dr. Schimmer and his team eventually found that cutting off the energy production capacity of bulk leukemia cells and leukemia stem cells was a way of treating the disease, and that the compound tigecyclinean FDA-approved antibiotic sometimes used to treat skin and abdominal infectionswas up to the task.

"Tigecycline appeared to work by essentially shutting down the energy supply of the leukemia cells and stem cells," said Dr. Schimmer. "Essentially it is like producing a selective power outage in leukemia cells but not normal cells."

By focusing on FDA-approved drugs, Dr. Schimmer was able to produce results that were quickly translated into clinical trials. Less than two years passed between his initial findings and the commencement of a phase-one clinical triala process that can otherwise take three or four times that long.

"It is incredibly impressive how much progress Dr. Schimmer has made in such a short period of time by using these stem cell screening techniques," said Stem Cell Network Scientific Director Michael Rudnicki. "By identifying drugs which are already approved for human therapies and testing their efficacy in treating diseases such as leukemia, Dr. Schimmer has shaved years off of the clinical trial process. It is likely that his discovery will improve the outcomes for many patients in the near future."

In 2005, the Stem Cell Network established the Till & McCulloch Award in honour of Canadians Drs. James Till and Ernest McCulloch, whose pioneering work established the field of stem cell research. The Award had been granted at the Stem Cell Network's Annual Scientific Meeting, but became part of the Till & McCulloch Meetings this year.

The previous winner was Timothy Caulfield, who was recognized for his global leadership in the field of stem cell ethics.

Read this article:
Dr. Aaron Schimmer Receives the Till and McCulloch Award - Award Lecture to be Presented Today on Drug Screening with ...

Bellevue doctor tests stem-cell cream as anti-aging therapy

by JEAN ENERSEN / KING 5 News

KING5.com

Posted on April 27, 2012 at 11:01 PM

A Bellevue doctor is one of only two researchers in the country testing stem cells as an anti-aging treatment.

Working with volunteer patients, Dr. Fredric Stern extracts stem cells with a liposuction-like procedure. The cells are then mixed with a special medium.

"Half is saved cyrogenically for future use and the other half is shipped to the laboratory in Arizona where on that end the stem cells are grown further," Stern said.

The end product goes into a cream called tropoelastin. The hope is that high concentrations of a patient's own stem cells in the cream will boost the skink's ability to repair itself.

If the eye cream proves successful in the eight-week study, the company will also offer a facial cream. Both could be available within a few months.

Stern said he expects the price to be comparable to high-end cosmetic products that typically cost hundreds of dollars.

Stern said the skin treatment is just the beginning. He said wound care is another possible use.

Read this article:
Bellevue doctor tests stem-cell cream as anti-aging therapy

Division of Labor in Neural Stem Cell Maintenance

Newswise NEWARK, N.J. -- Sibling growth factors cooperate to maintain a pool of neuron-generating stem cells in the brain, according to a study published in the journal Stem Cells by researchers at the University of Medicine and Dentistry of New Jersey (UMDNJ).

Numerous soluble proteins and receptors help to maintain neural stem cells (NSCs) supportive environment in central nervous system (CNS). NSCs access some of these nurturing factors by sending cellular extensions into the cerebral spinal fluid (CSF), which is rich in stem cell-promoting proteins.

Insulin-like growth factors (IGF-I and IGF-II) are essential for the growth and development of the CNS. But although they are abundant in the brain and CSF, it was not clear whether they are required by NSCs. Steven Levison, PhD, and Teresa Wood, PhD, of UMDNJ-New Jersey Medical School and colleagues now show that IGF-I and II cooperate to maintain NSC numbers and the NSCs ability to self-renew. IGF-I maintains NSC numbers by promoting cell division (via the IGF-I receptor), whereas IGF-II drives the expression of proteins essential for NSC self-renewal and stemness (via the insulin receptor).

The role of IGF-I and -II in maintaining NSC numbers and function might help to explain the cognitive impairments associated with aging, as the abundance of both proteins declines with age.

Disclosure: This study was funded by a Deans grant from UMDNJ-New Jersey Medical School, NIH grants (R21HL094905, F31NS065607 and T32-HL069752) and a grant from the LeDucq Foundation.

The University of Medicine and Dentistry of New Jersey (UMDNJ) is New Jerseys only health sciences university with more than 6,000 students on five campuses attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jerseys only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the state.

Go here to see the original:
Division of Labor in Neural Stem Cell Maintenance

Hadassah centenary honored May 6 by Chicago chapter

By Natasha Wasinski Contributor April 23, 2012 11:10AM

Miriam Schencker Goldberger (right) sits with two of her four grandchildren, Ari Schencker, 7, and his sister Sadie, 9, as 4-year-old Noah Schencker approaches to have his photo taken. Miriam, a member to Hadassah for past 50 years, purchased life members

storyidforme: 29352286 tmspicid: 10613889 fileheaderid: 4867083

Updated: April 23, 2012 8:47PM

With this year marking its centennial anniversary, the largest Jewish membership and womens organization in the U.S. has much to celebrate.

The Chicago chapter of Hadassah, the Womens Zionist Organization of America, hosts a benefit dinner May 6 at the Bryn Mawr Country Club in Lincolnwood to support trailblazing stem cell research efforts of a Jerusalem medical center.

Special guest Ehud Kokia, director general of Hadassah University Medical Center, is visiting from Israel to give a keynote address.

He oversees the Hadassah organizations flagship cause, which includes two hospitals with 1,000 beds, 31 operating theaters, nine intensive care units and five medical-profession schools, owned and operated in collaboration with the Hebrew University.

Supporting health work is a core component of Hadassahs service-oriented mission.

The national volunteer-led organization provides funding for programs and projects in Israel related to the Hadassah Medical Organization, education and youth institutions, and reforestation and parks.

Here is the original post:
Hadassah centenary honored May 6 by Chicago chapter