Author Archives: admin


Biostem U.S., Corp. Appoints Thomas Prendergast to SAMBA

More Topics: Choose a Sector Accounting Firms Advertising/Media/Communications Capital CEO/Board General Business Health/Biotech Internet/Technology Investment Firms Law Firms Mergers & Acquisitions Money Managers People Private Companies Public Companies Venture Capital

Posted March 12, 2012

Thomas W. Prendergast

Cardiothoracic Surgeon Specializes in Heart Transplantation

CLEARWATER, FL -- Biostem U.S., Corporation (OTCQB: BOSM) (PINKSHEETS: BOSM) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transpla ntation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Read more:
Biostem U.S., Corp. Appoints Thomas Prendergast to SAMBA

BrainStorm Cell Therapeutics Expands Pipeline with the Initiation of a Study for Multiple Sclerosis

NEW YORK & PETACH TIKVAH, ISRAEL--(BUSINESS WIRE)--

BrainStorm Cell Therapeutics Inc. (OTCBB: BCLI.OB - News), a developer of adult stem cell technologies and CNS therapeutics, announces plans to initiate a preclinical study assessing the efficacy of its NurOwn stem cell technology in patients with Multiple Sclerosis (MS). Positive proof-of-concept results for MS have been confirmed in a set of in-vitro and in-vivo experiments, and the Company is working to advance MS into preclinical development in Q2 2012.

Based on initial promising pre-clinical data published by the Company's Chief Scientist, Prof. Daniel Offen of Tel Aviv University, BrainStorm has decided to explore MS as an additional indication for its NurOwn technology. The Company will draw plans to initiate pre-clinical safety trials, after which it will seek a leading medical center specializing in MS for clinical trials.

We have been focused on growing our pipeline of indications using our NurOwn stem-cell technology, commented Dr. Adrian Harel, Acting CEO of BrainStorm Cell Therapeutics. As we continue our ongoing trials to evaluate the safety, tolerability and therapeutic effects of NurOwn in ALS patients, we have determined through positive preliminary animal data that MS will be the next indication to pursue using our technology.

About NurOwn BrainStorms core technology, NurOwn, is based on the scientific achievements of Professor Eldad Melamed, former Head of Neurology, Rabin Medical Center, and Tel-Aviv University, and Professor Daniel Offen, Head of the Neuroscience Laboratory, Felsenstein Medical Research Center at the Tel-Aviv University.

The NurOwn technology processes adult human mesenchymal stem cells that are present in bone marrow and are capable of self-renewal as well as differentiation into many cell types. The research team is among the first to have successfully achieved the in-vitro differentiation of adult bone marrow cells (animal and human) into cells capable of releasing neurotrophic factors, such as glial-derived neurotrophic factor (GDNF), by means of a specific differentiation-inducing culture medium.

About Multiple Sclerosis (MS) Multiple sclerosis (MS) is believed to be an autoimmune disorder that affects the central nervous system (CNS). Autoimmune means that the bodys immune system mistakenly attacks its own tissue, in this case, the tissues of the CNS. With MS, autoimmune damage to neurons disrupts the bodys ability to send and receive signals, thus causing MS-related symptoms. Symptoms may vary due to the location and extent of the damage. Worldwide, MS may affect more than 2 million individuals, including approximately 400,000 people in the United States.

About BrainStorm Cell Therapeutics Inc. BrainStorm Cell Therapeutics Inc. is a biotechnology company engaged in the development of adult stem cell therapeutic products derived from autologous bone marrow cells and intended for the treatment of neurodegenerative diseases. The Company holds the rights to develop and commercialize its NurOwn technology through an exclusive, worldwide licensing agreement with Ramot, the technology transfer company of Tel-Aviv University. For more information, visit the companys website at http://www.brainstorm-cell.com.

Safe Harbor Statement Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. The potential risks and uncertainties include risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect the technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. The Company does not undertake any obligation to update forward-looking statements made by us.

The rest is here:
BrainStorm Cell Therapeutics Expands Pipeline with the Initiation of a Study for Multiple Sclerosis

Insulin, nutrition prevent blood stem cell differentiation

LOS ANGELES UCLA stem cell researchers have shown that insulin and nutrition prevent blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as blood stem cells are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, the Irving and Jean Stone Professor and chairman of molecular, cell and developmental biology in the UCLA Division of Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appeared Sunday (March 11) in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly blood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

In the fruit fly, the only mature blood cells present are myeloid cells, Shim said. Diabetic patients have many activated myeloid cells that could be causing disease symptoms. It may be that abnormal activation of myeloid cells and abnormal metabolism play a major role in diabetes.

"Metabolic regulation and immune response are highly integrated in order to function properly dependent on each other. Type II diabetes and obesity, both metabolic diseases, are closely associated with chronic inflammation, which is induced by abnormal activation of blood cells," Shim said. "However, no systemic study on a connection between blood stem cells and metabolic alterations had been done. Our study highlights the potential linkage between myeloid-lineage blood stem cells and metabolic disruptions."

Originally posted here:
Insulin, nutrition prevent blood stem cell differentiation

UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Public release date: 11-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

More here:
UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Newswise UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their stemness, said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells, Banerjee said. Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders.

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjees lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone, Shim said. All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there.

In the fruit fly, the only mature blood cells present are myeloid cells, Shim said. Diabetic patients have many activated myeloid cells that could be causing disease symptoms. It may be that abnormal activation of myeloid cells and abnormal metabolism play a major role in diabetes.

Metabolic regulation and immune response are highly integrated in order to function properly dependent on each other. Type II diabetes and obesity, both metabolic diseases, are closely associated with chronic inflammation, which is induced by abnormal activation of blood cells, Shim said. However, no systemic study on a connection between blood stem cells and metabolic alterations had been done. Our study highlights the potential linkage between myeloid-lineage blood stem cells and metabolic disruptions.

See the article here:
Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

International Stem Cell Corporation Completes $5 Million Financing and Elects Jim Berglund to the Board of Directors

CARLSBAD, Calif.--(BUSINESS WIRE)--

International Stem Cell Corporation (OTCBB:ISCO.OB - News) http://www.internationalstemcell.com, a California-based biotechnology company focused on therapeutic, cosmetic and research products, announced today that it had obtained new capital financing and made important changes in the composition of its Board of Directors to ensure that Independent Directors hold the majority of Board seats.

The financing consists of $5 million in newly issued Series G Convertible Preferred Stock (without warrants), convertible into Common Stock at a conversion price of $0.40/share, the market price of the Companys Common Stock on the date the offer to purchase was made. This financing was made by AR Partners LLC, a healthcare investment firm owned by Dr. Andrey Semechkin, ISCOs CEO and Co-Chairman of the Board of Directors.

Concurrently with the closing of this financing, the Company elected to its Board of Directors Dr. James Berglund, co-founder of Enterprise Partners Venture Capital - one of the premier venture capital firms in the field of healthcare technology founded in 1985. Dr. Berglund, with his extensive professional experience, continues as an active participant in the biotech and healthcare industries. Dr. Berglund will replace Kenneth C. Aldrich, co-founder and former CEO of the Company during the period 2008-2009, who is stepping down as ISCO Board of Directors Co-Chairman. Although Mr. Aldrich is retiring from our Board, he will remain as one of ISCOs largest shareholders and an active consultant to the Board and executive management and will continue to represent the Company as Chairman Emeritus in a variety of public and private venues.

According to Mr. Aldrich, In my view, Dr. Semechkins willingness to commit such a significant amount of capital to ISCO at the market price of the Companys stock on the date of his offer represents a major vote of confidence in ISCOs future by its most senior executive. We are thankful to Dr. Semechkin for his support that will further advance ISCOs parthenogenetic stem cell-based therapeutic programs and income generating businesses.

Having a majority of independent directors on our companys Board represents an important step in ISCOs development and in transforming ISCO into a leading public company in the field of regenerative medicine.

I want to thank Mr. Aldrich for his long-standing dedication and continued involvement in guiding the Company, said Dr. Semechkin. This long-term investment, along with the new executive management team recruited over the previous twelve months, will provide ISCO with the necessary economic stability and resources to pursue its goals of consolidating our leadership position and accelerating our therapeutic programs, continued Dr. Semechkin.

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). HpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing genders, ages and racial backgrounds. This offers the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology, and cell-based skin care products through its subsidiary Lifeline Skin Care. More information is available at http://www.internationalstemcell.com.

To subscribe to receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

Read more:
International Stem Cell Corporation Completes $5 Million Financing and Elects Jim Berglund to the Board of Directors

Repairing mutations in human mitochondria

LOS ANGELES Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears today in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad stem cell research center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

The study in Cell outlined a new role for a protein called polynucleotide phosphorylase (PNPASE) in regulating the import of RNA into mitochondria. Reducing the expression or output of PNPASE decreased RNA import, which impaired the processing of mitochondrial genome-encoded RNAs. Reduced RNA processing inhibited the translation of proteins required to maintain the mitochondrial electron transport chain that consumes oxygen during cell respiration to produce energy. With reduced PNPASE, unprocessed mitochondrial-encoded RNAs accumulated, protein translation was inhibited and energy production was compromised, leading to stalled cell growth.

The findings from the current study provide a form of gene therapy for mitochondria by compensating for mutations that cause a wide range of diseases, said study co-senior author Koehler.

See the original post here:
Repairing mutations in human mitochondria

Correcting human mitochondrial mutations

Public release date: 12-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears March 12, 2012 in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad Stem Cell Research Center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

Read more:
Correcting human mitochondrial mutations

Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

CLEARWATER, FL--(Marketwire -03/12/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transplantation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Follow this link:
Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of ...

New transplant method may allow kidney recipients to live life free of anti-rejection medication

ScienceDaily (Mar. 11, 2012) New ongoing research published March 7 in the journal Science Translational Medicine suggests organ transplant recipients may not require anti-rejection medication in the future thanks to the power of stem cells, which may prove to be able to be manipulated in mismatched kidney donor and recipient pairs to allow for successful transplantation without immunosuppressive drugs. Northwestern Medicine and University of Louisville researchers are partnering on a clinical trial to study the use of donor stem cell infusions that have been specially engineered to "trick" the recipients' immune system into thinking the donated organ is part of the patient's natural self, thus gradually eliminating or reducing the need for anti-rejection medication.

"The preliminary results from this ongoing study are exciting and may have a major impact on organ transplantation in the future," said Joseph Leventhal, MD, PhD, transplant surgeon at Northwestern Memorial Hospital and associate professor of surgery and director of kidney and pancreas transplantation at Northwestern University Feinberg School of Medicine. "With refinement, this approach may prove to be applicable to the majority of patients receiving the full spectrum of solid organ transplants."

Leventhal authored the study along with Suzanne Ildstad, MD, director of the Institute of Cellular Therapeutics at the University of Louisville. It is the first study of its kind where the donor and recipient do not have to be related and do not have to be immunologically matched. Previous studies involving stem cell transplants for organ recipients have included donors and recipients who are siblings and are immunologically identical, something that only occurs in about 25 percent of sibling pairs.

"Being a transplant recipient is not easy. In order to prevent rejection, current transplant recipients must take multiple pills a day for the rest of their lives. These immunosuppressive medications come with serious side effects with prolonged use including high blood pressure, diabetes, infection, heart disease and cancer, as well as direct damaging effects to the organ transplant," said Ildstad. "This new approach would potentially offer a better quality of life and fewer health risks for transplant recipients."

In a standard kidney transplant, the donor agrees to donate their kidney. In the approach being studied, the individual is asked to donate part of their immune system as well. The process begins about one month before the kidney transplant, when bone marrow stem cells are collected from the blood of the kidney donor using a process called apheresis. The donor cells are then sent to the University of Louisville to be processed, where researchers enrich for "facilitating cells" believed to help transplants succeed. During the same time period, the recipient undergoes pre-transplant "conditioning," which includes radiation and chemotherapy to suppress the bone marrow so the donor's stem cells have more space to grow in the recipient's body.

Once the facilitating cell-enriched stem cell product has been prepared, it is transported back to Northwestern, where the recipient undergoes a kidney transplant. The donor stem cells are then transplanted one day later and prompt stem cells to form in the marrow from which other specialized blood cells, like immune cells, develop. The goal is to create an environment where two bone marrow systems exist and function in one person. Following transplantation, the recipient takes anti-rejection drugs which are decreased over time with the goal to stop a year after the transplant.

"This is something I have worked for my entire life," said Ildstad, who pioneered the approach and is known for her discovery of the "facilitating" cell.

Less than two years after her successful kidney transplant, 47-year-old mother and actress Lindsay Porter of Chicago, is living a life that most transplant recipients dream of -- she is currently free of anti-rejection medications and says at times, she has to remind herself that she had a kidney transplant. "I hear about the challenges recipients have to face with their medications and it is significant. It's almost surreal when I think about it because I feel so healthy and normal." Doctors are hopeful that Porter will not need immunosuppressive drugs long-term, given her progress thus far.

In order to qualify for this type of experimental kidney transplant, the donor and recipient pairs must be blood-type compatible and have a negative cross-match, which means that testing has been done to confirm the recipient does not have antibodies in the blood that would cause rejection of the kidney.

The clinical trial is ongoing. Researchers are also planning a second clinical trial, which would offer similar treatment for subjects who have already undergone a living donor kidney transplant.

Read the original post:
New transplant method may allow kidney recipients to live life free of anti-rejection medication