Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:32944.
Article CAS PubMed PubMed Central Google Scholar
Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat Rev Cancer. 2018;18:187201.
Article CAS PubMed Google Scholar
Koren E, Fuchs Y. Modes of regulated cell death in cancer. Cancer Discov. 2021;11:24565.
Article CAS PubMed Google Scholar
Morata G. Cell competition: a historical perspective. Dev Biol. 2021;476:3340.
Article CAS PubMed Google Scholar
Levayer R, Moreno E. Mechanisms of cell competition: themes and variations. J Cell Biol. 2013;200:68998.
Article CAS PubMed PubMed Central Google Scholar
Cosentino K, Garca-Sez AJ. Bax and Bak pores: are we closing the circle? Trends Cell Biol. 2017;27:26675.
Article CAS PubMed Google Scholar
Walczak H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 2013;5:a008698.
Article PubMed PubMed Central Google Scholar
Morata G, Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975;42:21121.
Article CAS PubMed Google Scholar
Simpson P, Morata G. Differential mitotic rates and patterns of growth in compartments in the Drosophila wing. Dev Biol. 1981;85:299308.
Article CAS PubMed Google Scholar
Cohen B, Simcox AA, Cohen SM. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development. 1993;117:597608.
Article CAS PubMed Google Scholar
Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 2007;8:R216.
Article PubMed PubMed Central Google Scholar
Lindsley DL, Grell EH. Genetic variations of Drosophila melanogaster. Science 1968;162:993993.
Google Scholar
Moreno E, Basler K, Morata G. Cells compete for Decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature. 2002;416:7559.
Article CAS PubMed Google Scholar
Moreno E, Basler K. DMyc transforms cells into super-competitors. Cell. 2004;117:11729.
Article CAS PubMed Google Scholar
de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila Myc regulates organ size by inducing cell competition. Cell 2004;117:10716.
Article PubMed Google Scholar
Tolwinski NS. Introduction: Drosophila-a model system for developmental biology. J Dev Biol. 2017;5:9.
Article PubMed PubMed Central Google Scholar
Baker NE. Emerging mechanisms of cell competition. Nat Rev Genet. 2020;21:68397.
Article CAS PubMed PubMed Central Google Scholar
Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010;143:50825.
Article CAS PubMed PubMed Central Google Scholar
Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:1546.
Article CAS PubMed Google Scholar
Sionov RV, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999;18:614557.
Article CAS PubMed Google Scholar
Vousden KH, Lu X. Live or let die: the cells response to p53. Nat Rev Cancer. 2002;2:594604.
Article CAS PubMed Google Scholar
Tarkowski AK, Witkowska A, Opas J. Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J Embryol Exp Morphol. 1977;41:4764.
CAS PubMed Google Scholar
Nagy A, Gocza E, Merentes Diaz E, Prideaux VR, Ivanyi E, Markkl M, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110:81521.
Article CAS PubMed Google Scholar
Horii T, Yamamoto M, Morita S, Kimura M, Nagao Y, Hatada I. P53 suppresses tetraploid development in mice. Sci Rep. 2015;5:8907.
Article CAS PubMed PubMed Central Google Scholar
Bowling S, di Gregorio A, Sancho M, Pozzi S, Aarts M, Signore M, et al. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun. 2018;9:1763.
Article PubMed PubMed Central Google Scholar
Zhang G, Xiea Y, Zhou Y, Xiang C, Chen L, Zhang C, et al. P53 pathway is involved in cell competition during mouse embryogenesis. Proc Natl Acad Sci USA. 2017;114:498503.
Article CAS PubMed PubMed Central Google Scholar
Dejosez M, Ura H, Brandt VL, Zwaka TP. Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen. Science. 2013;341:15114.
Article CAS PubMed Google Scholar
Sancho M, Di-Gregorio A, George N, Pozzi S, Snchez JM, Pernaute B, et al. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation. Dev Cell. 2013;26:1930.
Article CAS PubMed PubMed Central Google Scholar
Clavera C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature. 2013;500:3944.
Article PubMed Google Scholar
Hashimoto M, Sasaki H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. Dev Cell. 2019;50:13954.
Article CAS PubMed Google Scholar
Daz-Daz C, Fernandez de Manuel L, Jimenez-Carretero D, Montoya MC, Clavera C, Torres M. Pluripotency surveillance by Myc-driven competitive elimination of differentiating cells. Dev Cell. 2017;4:58599.
Article Google Scholar
Ellis SJ, Gomez NC, Levorse J, Mertz AF, Ge Y, Fuchs E. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature. 2019;569:497502.
Article CAS PubMed PubMed Central Google Scholar
Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S, et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature. 2015;522:9497.
Article CAS PubMed PubMed Central Google Scholar
Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, di Gregorio A, et al. Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab. 2021;3:1091108.
Article CAS PubMed PubMed Central Google Scholar
Telang S, Lane AN, Nelson KK, Arumugam S, Chesney J. The oncoprotein H-RasV12 increases mitochondrial metabolism. Mol Cancer. 2007;6:77.
Article PubMed PubMed Central Google Scholar
Jam FA, Morimune T, Tsukamura A, Tano A, Tanaka Y, Mori Y, et al. Neuroepithelial cell competition triggers loss of cellular juvenescence. Sci Rep. 2020;10:18044.
Article CAS PubMed PubMed Central Google Scholar
Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun. 2017;8:136.
Article PubMed PubMed Central Google Scholar
Nagata R, Nakamura M, Sanaki Y, Igaki T. Cell competition is driven by autophagy. Dev Cell. 2019;51:99112.
Article CAS PubMed Google Scholar
Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. Proteotoxic stress is a driver of the loser status and cell competition. Nat Cell Biol. 2021;23:13646.
Article CAS PubMed PubMed Central Google Scholar
Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, et al. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat Cell Biol. 2021;23:12735.
Article CAS PubMed PubMed Central Google Scholar
Langton PF, Baumgartner ME, Logeay R, Piddini E. Xrp1 and Irbp18 trigger a feed-forward loop of proteotoxic stress to induce the loser status. PLoS Genet. 2021;17:e1009946.
Article CAS PubMed PubMed Central Google Scholar
Lee CH, Kiparaki M, Blanco J, Folgado V, Ji Z, Kumar A, et al. A regulatory response to ribosomal protein mutations controls translation, growth, and cell competition. Dev Cell. 2018;46:45669.
Article CAS PubMed PubMed Central Google Scholar
Baillon L, Germani F, Rockel C, Hilchenbach J, Basler K. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells. Sci Rep. 2018;8:17712.
Article CAS PubMed PubMed Central Google Scholar
Ochi N, Nakamura M, Nagata R, Wakasa N, Nakano R, Igaki T. Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2. PLoS Genet. 2021;17:e1009958.
Article CAS PubMed PubMed Central Google Scholar
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. Elife 2022;11:e71705.
Article CAS PubMed PubMed Central Google Scholar
Ji Z, Chuen J, Kiparaki M, Baker N. Cell competition removes segmental aneuploid cells from drosophila imaginal disc-derived tissues based on ribosomal protein gene dose. Elife. 2021;10:e61172.
Article CAS PubMed PubMed Central Google Scholar
Tseng CY, Burel M, Cammer M, Harsh S, Flaherty MS, Baumgartner S, et al. chinmo-mutant spermatogonial stem cells cause mitotic drive by evicting non-mutant neighbors from the niche. Dev Cell. 2022;57:8094.
Article CAS PubMed Google Scholar
Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 2010;8:e1000324.
Article PubMed PubMed Central Google Scholar
Bondar T, Medzhitov R. p53-Mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell. 2010;6:30922.
Article CAS PubMed PubMed Central Google Scholar
Watanabe H, Ishibashi K, Mano H, Kitamoto S, Sato N, Hoshiba K, et al. Mutant p53-expressing cells undergo necroptosis via cell competition with the neighboring normal epithelial cells. Cell Rep. 2018;23:37219.
Article CAS PubMed Google Scholar
Read the original:
To not love thy neighbor: mechanisms of cell competition in stem ... - Nature.com