Author Archives: admin


Creating stem cells from minipigs offers promise for improved treatments – University of Wisconsin-Madison

A breed of pigs called Wisconsin Miniature Swine created by a team of UWMadison scientists will help researchers better model and understand human diseases. Photo: Jeff Miller

Cells from miniature pigs are paving the way for improved stem cell therapies.

A team led by University of WisconsinMadison Stem Cell & Regenerative Medicine Center researcher Wan-Ju Li offers an improved way to create a particularly valuable type of stem cell in pigs a cell that could speed the way to treatments that restore damaged tissues for conditions from osteoarthritis to heart disease in human patients.

In a study published in Scientific Reports, Lis team also provides insights into the reprogramming process that turns cells from one part of the body into pluripotent stem cells, a type of building block cell that can transform into any type of tissue. These new insights will help researchers study treatments for a wide range of diseases.

The researchers turned to pigs, a well-established animal model for potential human treatments, because translating research to improve human health is deeply important to Li, a professor of Orthopedics and Rehabilitation and Biomedical Engineering. He has spent much of his career studying cartilage and bone regeneration to develop innovative therapies to help people.

Li and members of his Musculoskeletal Biology and Regenerative Medicine Laboratory obtained skin cells from the ears of three different breeds of miniature pigs Wisconsin miniature swine, Yucatan miniature swine and Gttingen minipigs.

University of WisconsinMadison Stem Cell & Regenerative Medicine Center researcher Wan-Ju Li (left) shows a collagen fiber sample to Gwen Plunkett and Karen Plunkett. Funding from the Plunkett Family Foundation has contributed to research on cartilage repair therapies in UWMadisons Musculoskeletal Research Program.

The researchers reprogrammed the cells to create induced pluripotent stem cells and demonstrated that they have the capacity to become different types of tissue cells. Pluripotent stem cells are the bodys master cells, and they are invaluable to medicine since they can be used for the regeneration or repair of damaged tissues.

Findings of this study suggest that the miniature pig is a promising animal model for pre-clinical research. The team plans to use the established pig model to reproduce their recent findings of cartilage regeneration in rats as reported in Science Advances. Regenerating cartilage in animals even more alike to humans moves science one step closer to helping patients experiencing joint diseases such as osteoarthritis.

In successfully developing induced pluripotent stem cells from three different breeds of minipigs, we learned we can take somatic skin cells from these pigs that we programmed ourselves and then inject them back into the same animal to repair cartilage defects, says Li. Or we can create induced pluripotent stem cells from the skin cell that carried the gene causing cartilage diseases such as chondrodysplasia and put that into the culture dish and use that as a disease model to study disease formation.

Li says the approach can be applied to regenerative therapies targeting any organ or tissue.

The team also found that a particular protein complex involved in managing the way genes are expressed, and tied to cellular growth and survival, could influence how efficiently induced pluripotent stem cells are generated. While we successfully created induced pluripotent stem cells from the three different strains of pig, we noticed that some pigs had a higher reprogramming efficiency, says Li. So, the second part of our findings, which is significant in biology, is understanding how these differences occur and why.

These findings, he says, may directly translate to understanding differences in the effectiveness of induced pluripotent stem cell generation between individual people one study has shown cellular reprogramming efficiency varying by age and ancestry and lead to better tailored therapies.

I want to make sure that our findings in stem cell research can be used to help people, says Li. I just feel this internal drive to study this area and I feel good knowing this model carries significant weight in terms of its potential for translational stem cell research and the development of therapeutic treatments.

Interest in moving these treatments forward has grown, and while the study was funded in part by the National Institutes of Health, Li also received support from the Milwaukee-based Plunkett Family Foundation through their donation to the UW Stem Cell & Regenerative Medicine Center. After hearing of Lis research, Gwen Plunkett and her daughter Karen visited Lis lab in 2019 to learn more. They were inspired to support research into stem cells for cartilage regeneration.

Innovation in medicine sparks critical change, for the world and the survival of our species, and the Plunkett Family mission is to be a catalyst in stem cell and regenerative medicine research, says Karen Plunkett.

The donation was profoundly impactful, says Li, allowed him to further his goal of using stem cells to help patients living with osteoarthritis and other joint diseases many of whom write his lab regularly in hope of finding a clinical trial opportunity.

I have to keep saying, Wait for another two, three years, maybe well be ready for a clinical trial, Li says. But for me, its time to move on and really do our larger animal studies to fulfill our promise. At least that way, I can fill the gap between the lab and clinical trials as the larger animals must be studied before you go into a clinical trial.

This research was supported by grants from the National Institutes of Health (R01 AR064803), the Plunkett Family Foundation and UW Carbon Cancer Center.

See the original post here:
Creating stem cells from minipigs offers promise for improved treatments - University of Wisconsin-Madison

Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets – GlobeNewswire

Chicago, Sept. 14, 2022 (GLOBE NEWSWIRE) -- Stem Cell Therapy Marketis projected to reach USD 558 million by 2027 from USD 257 million in 2022, at a CAGR of 16.8% during the forecast period, according to a new report by MarketsandMarkets. Key drivers of the stem cell therapy market include increase in stem cell research funding, expanding number of clinical trials related to stem cell therapies, and growing number of GMP-certified cell therapy production facilities. However, high costs associated with the development of stem cell therapy along with the ethical concerns related to embryonic stem cells are likely to hamper the market growth to a certain extent.

Download PDF Brochure: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=48

Browse in-depth TOC on "Stem Cell Therapy Market 155 Tables 43 Figures 166 Pages

The adipose tissue-derived MSCs segment dominates the cell source market in the stem cell therapy through 2020-2027.

The global stem cell therapy market is segmented into adipose tissue-derived MSCs (mesenchymal stem cells), bone marrow-derived MSCs, placenta/umbilical cord-derived MSCs, and other cell sources. Adipose-derived stem cell tissues can be obtained easily and also possess a variety of the regenerative properties similar to other mesenchymal stem cells/tissues. These cells are multipotent and are easy to isolate & harvest; these qualities have collectively rendered the adipose tissue-derived MSCs segment highest revenue in 2021.

In 2021, the musculoskeletal disorders ranked first in terms of revenue in the stem cell therapy market.

Based on therapeutic application, the global stem cell therapy market is segmented into musculoskeletal disorders, wounds & injuries, cardiovascular diseases, surgeries, inflammatory & autoimmune diseases, neurological disorders, and other therapeutic applications. In 2021, the musculoskeletal disorders application segment accounted for the largest share of the stem cell therapy market. Increasing market availability of stem cell-based therapeutic products across major markets and the growing patient preference for effective & early treatment strategies are driving the growth of this segment.

Request Sample Pages: https://www.marketsandmarkets.com/requestsampleNew.asp?id=48

The Asia Pacific region is the fastest-growing region of the stem cell therapy market in 2021.

The Asia Pacific region is estimated to grow at the highest CAGR in the stem cell therapy market during the forecast period. Japan and South Korea are the key revenue contributors of the Asia Pacific stem cell therapy market. Favorable government support for product approvals and the presence of major players in these countries are anticipated to drive the regional market growth.

The stem cell therapy market is consolidated in nature with prominent players in the stem cell therapy market include Smith+Nephew (UK), MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), CORESTEM (South Korea), Pharmicell Co., Ltd. (South Korea), NuVasive, Inc. (US), RTI Surgical (US), AlloSource (US), JCR Pharmaceuticals Co., Ltd. (Japan), Takeda Pharmaceutical Company Limited (Japan), Holostem Terapie Avanzate Srl (Italy), Orthofix (US), Regrow Biosciences Pvt Ltd. (India), and STEMPEUTICS RESEARCH PVT LTD. (India).

Get 10% Free Customization on this Report: https://www.marketsandmarkets.com/requestCustomizationNew.asp?id=48

Related Reports:

Stem Cell Manufacturing Market by Product (Consumables, Instrument, HSCs, MSCs, iPSCs, ESCs), Application (Research, Clinical (Autologous, Allogenic), Cell & Tissue Banking), End User (Pharma & Biotech, Hospitals, Tissue Bank) - Global Forecast to 2026

Read more here:
Stem Cell Therapy Market worth $558 million by 2027 Exclusive Report by MarketsandMarkets - GlobeNewswire

Tanya Dorff, MD, Speaks to the Development of CAR T-Cell Therapy in Prostate Cancer – Cancer Network

At 2022 ASCO, Tanya Dorff, MD, reviewed the use of CAR T cells in the treatment of prostate cancer.

CAR T cells are typically used in the treatment of hematologic malignancies, but recent studies have shown they may also be used to combat prostate cancer. A recent panel discussion by Tanya Dorff, MD, from the 2022 American Society of Clinical Oncology (ASCO) Annual Meeting shed light on this potential addition to the prostate cancer treatment paradigm.

Several trials are underway assessing the use CAR T cells targeted to prostate-specific membrane antigen (PSMA), prostate stem cell antigen (PSCA), and KLK2. Dorff emphasized the importance of educating oncologists who treat solid malignancies to identify adverse effects and mechanisms associated with CAR T-cell therapies that those specializing in hematologic malignancies may be more familiar with.

A big part of our education focus was just to help familiarize solid tumor oncologists with things like cytokine release syndrome and macrophage activation and the ways these present and how to manage them. Thats the long-term implementation of making sure the community is educated as a whole so these treatments can be widely accessed, Dorff, an associate professor in the Department of Medical oncology and Therapeutics Research, and section chief of the Genitourinary Disease Program at City of Hope, said in an interview with CancerNetwork.

Dorff also discussed highlights in prostate cancer from the 2022 ASCO Annual Meeting, including the use potential treatment intensification with triplet regimens up front and the efficacy of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer.

Dorff: I was part of an educational session discussing CAR T-cell therapy and bispecific T-cell engaging therapy for advanced prostate cancer. It was a case-based approach helping oncologists get a sense of how these treatments that are traditionally used in hematologic malignancies are being studied in prostate cancer, what to expect from them, how things are going, what kind of results were seeing, and where were going next with the field.

We have a long way to go to get CAR T-cell therapy into practice for prostate cancer, but weve been excited that even within the first handful of patients treated on the various trials, we are seeing responses. At the 2022 ASCO Genitourinary Symposium (ASCO GU), a poster was presented for POSEIDAs PSMA CAR T product by Susan F. Slovin, MD, PhD, of Memorial Sloan Kettering,1 showing this beautiful response in a patient and a fairly robust PSA [prostate specific antigen] response waterfall from that early experience with the CAR T-cell [study. Findings using] our PSCA-targeted CAR T from City of Hope that our scientists have developed and we produce here were also presented a ASCO GU showing, again, a robust response early on. However, the toxicity was considerable.2 Were just learning what the [adverse] effect [AE] profile will look like in [patients with] prostate cancer vs hematologic malignancies. Taking a step back, were still sorting out optimal dosing and whether were going to need adjunctive strategies or multiple doses to get a higher rate of nice, durable remissions with these therapies.

Multiple trials are open and accruing. We have 3 of them open here at City of Hope, 1 with our own PSCA-targeted CAR T-cell product. Were just finishing up phase 1 study and expect to open the phase 1b study later this summer where were going to be testing multiple dosing and radiation prior to CAR T-cell administration, which in the lab seems to augment responsiveness; a good number of patients already have been treated. The PSMA targeted CAR T from POSEIDA is still accruing. Weve treated 7 [patients] here. Its a multi-site study, so there are many other sites that have treated patients as well, and thats still ongoing. Then there's the KLK2 targeted CAR T-cell study [NCT04898634] from Janssen. Thats a little earlier along but theyve treated a fair number of patients at this point; its a multicenter study. This is already a reality in terms of clinical trials, but still far from practice.

There are 2 big topics that came out of ASCO for prostate cancer this year. One was the up-front intensification study using triplet combinations where were not only adding chemotherapy up front or an androgen targeted agent like abiraterone [Yonsa], enzalutamide [Xtandi], apalutamide [Erleda], or darolutamide [Nubeqa], but using all the above. The important message to get out is for community oncologists and urologists to act on this and implement this in their own practices. Newly diagnosed [patients with] metastatic prostate cancer should not get just castration monotherapy. They will benefit tremendously from having up-front intensification with either doublet or in some cases triplet therapy.

The other big story is the 177Lu-PSMA-617 which was recently approved by the FDA based on the [phase 3] VISION trial [NCT03511664].3 Theres a lot of information coming out at some of these meetings about differences between the VISION trial and the [phase 2] TheraP trial [NCT03392428], in which the control arm was cabazitaxel [Jevtana], which helps us benchmark the efficacy and start to think about sequencing. Also, what PSMA PET characteristics might help us optimally select patients for this treatment, because the criteria have been different [across] trials. There has been all kinds of practical and helpful information presented at ASCO and a lot of buzz and talking among attendees about those topics.

More:
Tanya Dorff, MD, Speaks to the Development of CAR T-Cell Therapy in Prostate Cancer - Cancer Network

What may have given modern humans an edge over Neanderthals, according to new research – kuna noticias y kuna radio

By Katie Hunt, CNN

From studying fossilized skulls, scientists know that the size of a Neanderthals brain was the same as, if not slightly bigger than, that of a modern human. However, researchers have known little about Neanderthal brain development because soft tissue doesnt preserve well in the fossil record.

Now, an intriguing study released September 8 has revealed a potential difference that may have given modern humans, or Homo sapiens, a cognitive advantage over the Neanderthals, the Stone Age hominins who lived in Europe and parts of Asia before going extinct about 40,000 years ago.

Scientists at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, said they have identified a genetic mutation that triggered the faster creation of neurons in the Homo sapiens brain. The Neanderthal variant of the gene in question, known as TKTL1, differs from the modern human variant by one amino acid.

Weve identified a gene that contributes to making us human, said study author Wieland Huttner, professor and director emeritus at the institute.

When the two versions of the gene were inserted into mice embryos, the research team found that the modern human variant of the gene resulted in an increase in a specific type of cell that creates neurons in the neocortex region of the brain. The scientists also tested the two gene variants in ferret embryos and lab-grown brain tissue made from human stem cells, called organoids, with similar results.

The team reasoned that this ability to produce more neurons likely gave Homo sapiens a cognitive edge unrelated to overall brain size, suggesting that modern humans have more neocortex to work with than the ancient Neanderthal did, according to the study published in the journal Science.

This shows us that even though we do not know how many neurons the Neanderthal brain had, we can assume that modern humans have more neurons in the frontal lobe of the brain, where TKTL1 activity is highest, than Neanderthals, Huttner explained.

There has been a discussion whether or not the frontal lobe of Neanderthals was as large as that of modern humans, he added.

But we dont need to care because (from this research) we know that modern humans must have had more neurons in the frontal lobe and we think that that is an advantage for cognitive abilities.

Alysson Muotri, professor and director of the Stem Cell Program and Archealization Center at the University of California San Diego, said while the animal experiments revealed quite a dramatic difference in neuron production, the difference was more subtle in the organoids. He was not involved in the research.

This was only done in one cell line, and since we have huge variability with this protocol of brain organoids, it would be ideal to repeat the experiments with a second cell line, he said via email.

It was also possible the archaic version of the TKTL1 gene was not unique to Neanderthals, Muotri noted. Most genomic databases have focused on Western Europeans, and its possible human populations in other parts of the world might share the Neanderthal version of that gene.

I think it is quite premature to suggest differences between Neanderthal and modern human cognition, he said.

Archaeological finds in recent years have suggested that Neanderthals were more sophisticated than pop culture depictions of brutish cavemen might suggest. Our ancient relatives knew how to survive in cold and warm climates and used complex tools. They also made yarn, swam and created art.

Study coauthor and geneticist Svante Pbo, director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, pioneered efforts to extract, sequence and analyze ancient DNA from Neanderthal bones.

His work led to the discovery in 2010 that early humans interbred with Neanderthals. Scientists have subsequently compared the Neanderthal genome with the genetic records of living humans today to see how our genes overlap and differ: TKTL1 is just one of dozens of identified genetic differences, while some shared genes may have implications for human health.

The-CNN-Wire & 2022 Cable News Network, Inc., a Warner Bros. Discovery Company. All rights reserved.

See the original post:
What may have given modern humans an edge over Neanderthals, according to new research - kuna noticias y kuna radio

Comparison of the Efficacy of Platelet-Rich Plasma (PRP) and Local Corticosteroid Injection in Periarthritis Shoulder: A Prospective, Randomized,…

Background

Periarthritis or frozen shoulder, also called adhesive capsulitis, is characterized by stiffness and pain along with gradual loss of active and passive movement in the glenohumeral joint. More than 2-5% of the population suffers from periarthritis with a higher incidence in the age group of 40-60 years. The various treatment modalities used for its management include simple physiotherapy, short-wave therapy, ultrasonic therapy, transcutaneous electrical nerve stimulation, hydrotherapy, analgesics, intra-articular injections, manipulation under general anesthesia (MUA), and surgical management. The application of intra-articular steroid injection has been a common and efficacious option in rapidly diminishing shoulder pain and disability. Some recent studies reported a better outcome using platelet-rich plasma (PRP) injections in frozen shoulder cases. Hence, this randomized controlled trial was conducted to compare the efficacy of intra-articular injections of PRP and triamcinolone in patients of shoulder periarthritis in a population from the eastern region of India

A total of 60 patients with periarthritis shoulder were allocated into two groups after randomization. Group A received 2 mL autologous PRP, and Group B received 2 mL of triamcinolone (40 mg/mL) intra-articular injection. Patients were followed up on the 4thweek, 12thweek, and 24thweek. The assessment of pain and function using the visual analog scale (VAS) score and the Disabilities of Arm, Shoulder, and Hand (DASH) score, respectively, was done at each follow-up. The primary analyses of both primary and secondary outcomes were conducted in the intention-to-treat (ITT) population. SPSS version 24 (IBM Corp., Armonk, NY, USA) was used for data analysis.

The mean VAS score in the PRP and triamcinolone groups was 14.33 3.79 and 31.63 7.62, respectively (p = 0.0001) after 24 weeks. The mean DASH score in the PRP and triamcinolone groups was 18.08 8.08 and 31.76 3.63, respectively (p = 0.0001), which shows significant improvement in both pain and disability scores in the PRP group after 24 weeks.

The triamcinolone group showed better short-term outcomes whereas PRP showed better long-term outcomes in reducing pain and disability scores in terms of VAS and DASH scores.

Periarthritis of the shoulder is characterized by functional loss of passive and active shoulder motion. This condition was termed by Duplay in 1896 and later substituted by the term frozen shoulder by Codman in 1932. Subsequently, Nevaiser introduced the term adhesive capsulitis [1]. This disorder is defined by the American Shoulder and Elbow Surgeons as a condition of significant restriction of both active and passive motion of the shoulder joints because of an unknown etiology that occurs without an intrinsic shoulder disorder [2].

The definite pathophysiology of periarthritis remains unclear. The progressive fibrosis causing the contracture of the glenohumeral joint capsule results in pain and stiffness [3]. Periarthritis can be primary or secondary. The primary (or idiopathic) type occurs without any known trauma or provoking event. The secondary type is often observed after periarticular trauma, fracture, or dislocation of the glenohumeral joint [4].

According to recent studies, the incidence of periarthritis is 2-5% in the general population [5,6]. The affected population includes 70% females. The idiopathic type often involves the non-dominant extremity, while 40-50% of cases have been reported as bilateral involvement. Regardless of the etiology, the condition is more prevalent in the 40-60-year age group [4,7]. The risk factors for developing periarthritis include diabetes. Patients with type I diabetes have a 40% chance of developing periarthritis. Up to 29% of individuals with type II diabetes may develop this condition. Thyroid disease, Parkinsons disease, cardiac disease, autoimmune disease, chronic obstructive pulmonary disorder, and myocardial infarction are also linked with increased incidence of periarthritis or adhesive capsulitis [3,8].

In most cases, periarthritis resolves spontaneously or it can last for up to three years [9]. Various treatment approaches have been used and explored to treat this disorder. Physical therapy individually or in combination with short-wave therapy, ultrasonic therapy, transcutaneous electrical nerve stimulation, and hydrotherapy is used [10]. Pharmacological treatment includes the use of analgesic or non-steroidal anti-inflammatory drugs, oral or intra-articular use of corticosteroids, and sodium hyaluronate injections. Other approaches to treat periarthritis include manipulation under anesthesia (MUA), dilation or distension of the capsule, and arthroscopic or open capsular release (arthroscopic capsulotomy) [3,4,11].

Platelet-rich plasma (PRP) is an emerging entity in the field of tissue engineering and regenerative medicine due to its availability, affordability, and minimally invasive procedure. Its autologous nature prevents an immunological reaction and offers good therapeutic safety. Recently, evidence in immune-mediated disorders and inflammatory processes has garnered attention due to their anti-inflammatory effects through the inhibition of nuclear factor kappa B signaling in target cells and by tissue inhibitor of matrix metalloproteinase. The creation and remodeling of the extracellular matrix also encompass a function of platelet growth factors which further supports this treatment modality [12]. The application of intra-articular steroid injection has been a common and efficacious option in rapidly diminishing shoulder pain and disability [5]. Some recent studies show a better outcome using PRP injections in frozen shoulder cases [13]. A systemic review and meta-analysis by Sun et al. described that patients taking a single steroid injection for a frozen shoulder is effective and safe and improves functional outcomes and pain scores [14].

Corticosteroid injections have been associated with prominent side effects, which have led to the conception of modalities such as PRP. This randomized trial aimed to evaluate and compare the efficacy of intra-articular injections of PRP and steroid (triamcinolone) in periarthritis. We hypothesized that PRP would prove more effective in relieving pain and improving function. Several studies have reported comparative analyses of steroids and PRP. Most of these were conducted outside India. Studies by Upadhyay et al. [15], Kothari et al. [16], and Kumar et al. [17] reported the effect of PRP versus steroids in periarthritis in the Indian population. One study from the eastern part of India with a similar intervention was conducted by Barman et al. [18], but the follow-up period was only 12 weeks. Hence, this study was conducted to analyze the comparative efficacy of PRP versus steroids in periarthritis with a follow-up duration of 24 weeks in a population from the eastern region of India.

This study was a parallel-group, prospective, randomized, open, blinded end-point (PROBE), single-center clinical study. Randomization was done in permuted blocks of varying sizes (2, 4, 6) using a sealed envelope website (computer-generated)[19]. There was central randomization, and the person doing randomization was not part of the study. The investigator assigning intervention telephonically contacted the randomizer on the recruitment of every new patient regarding the group to which the patient was assigned. Another investigator (other than the one assigning intervention) assessed the outcomes of the patients without any knowledge of the study group to which the patient belonged to. Patients were recruited to different treatment regimens following proper randomization. Unlike double-blind studies, the treatment regimens were recognizable to both physicians and patients. The trial was conducted according to the principles of the Consolidated Standards of Reporting Trials (CONSORT).

The study was conducted from December 2020 to December 2021 at the Department of Orthopaedics, Rajendra Institute of Medical Sciences (RIMS), Ranchi Jharkhand, India. Ethical approval was obtained (vide reference number: 123, dated November 23, 2020) from the Institutional Ethical Committee of RIMS, Ranchi.

A total of 60 patients from the outpatient department (OPD), Department of Orthopedics, RIMS who were clinically diagnosed to have periarthritis shoulder and willing to participate were randomized into two groups. A written informed consent regarding participation was obtained before recruitment. The complete procedure of the study was explained to all participants in their language by the investigator before recruitment. The inclusion and exclusion criteria are presented in Table1and Table2, respectively.

The sample size was calculated by OpenEpi, Version 3, an open-source calculator based on the findings of the study by Kothari et al., in which the mean VAS score for PRP and steroid group were reported [16]. The calculated sample size was 29 for each group (Table 3). Rounding off to the nearest, the total sample size was finally set as 60 (30 per group).

All information about the history, clinical features, examination findings, and treatment (if any were taken before) were recorded in a predesigned proforma. All patients were subjected to routine blood investigation and radiographic examinations of the cervical spine and ipsilateral shoulder under study.

Before administrating the injection, povidone-iodine and ethyl alcohol were applied to the skin. One milliliter of 2% lignocaine with adrenaline was injected at the injection site after administering the test dose. After 10 minutes, the proposed injection was injected. If any resistance was felt during the injection, the needle was withdrawn slightly and again injected.

The first group of patients was administered 2 mL of triamcinolone (40 mg/mL). The second group was given 2 mL autologous PRP. To prepare PRP, about 15 mL of the patients blood was drawn through a scalp vein catheter. The PRP was prepared using a differential centrifugation technique with two spins. The blood was collected in three citrate tubes having 0.9% sodium citrate as an anticoagulant. The first spin was performed at 1,500 rpm for 15 minutes using a laboratory centrifuge. This spin separated the red blood cells from the rest of the components. The upper half of the supernatant was discarded. The lower halves of the supernatant from all three tubes were transferred into another plain tube for the second spin. The second spin was performed at 2,500 rpm for 10 minutes. The upper half of the supernatant was discarded. Three milliliters of the lower half was taken into a syringe having 0.1 mL of calcium chloride. At the end of the preparation of PRP, 1 mL of obtained PRP (as a sample) was sent for platelet count, and the count was compared with the patients platelet count. Another 2 mL was used for intra-articular injection. The platelet count in the PRP preparation was 860,000 74,500 platelets per mm3which were 4.2 1.37 times higher than whole blood values. In our study, we injected freshly prepared PRP (within 30 minutes of preparation), as a study by Blajchman [20] reported that platelets may alter the shape and reduce the functional properties, including the degranulation of -granules due to prolonged storage.

All patients were advised regarding post-injection care. The possibility of pain increasing during the initial two weeks was explained to the patient. Post-injection, patients were prescribed paracetamol (650 mg BD orally for five days) for pain relief in both groups. Patients were advised to rest during the initial two weeks and avoid strenuous activities by the extremity under study after the injection. Physiotherapy was advised for both groups. Bilateral cases were injected simultaneously, and the post-injection protocol was the same.

After inclusion in the study, demographic data, baseline clinical findings, duration of pain, dominancy of the affected side, and associated comorbidities were recorded. Any relevant X-ray findings were noted. Special investigations were performed as per comorbidity present in a case. The follow-ups were done in the 4th week, 12th week, and 24th week for all patients of both groups. The assessment of pain and function through the VAS and the Disabilities of Arm, Shoulder, and Hand (DASH) score, respectively, was done at each follow-up. Any adverse effects were noted and reported. All data were documented in case report form (CRF) designed for the project and in Excel sheets for analysis.

The primary outcome of the study was the pain reduction assessed using the VAS after the injections. The DASH scores were assessed as a secondary outcome.

The primary analyses of both primary and secondary outcomes were conducted in the intention-to-treat (ITT) population (i.e., all randomized participants for whom consent was given to use data). SPSS version 24 (IBM Corp., Armonk, NY, USA) was used for data analysis. The data with categorical variables were expressed as numbers and percentages, while the continuous variables were expressed as the mean standard deviation (SD). An unpaired t-test was used for analyzing continuous variables inthe intergroup analysis. The Fishers exact test and Pearsons chi-square test were used for analyzing categorical variables. P-values of <0.05 were considered to be significant.

A total of 60 patients were recruited for the study and randomized equally into two groups. One patient from the PRP group and two patients from the triamcinolone group did not come for the last follow-up (24 weeks). However, analyses were done for a total of 60 patients as per the ITT analysis protocol (See Figure 1).

The demographic data presented in Table4 reveals that both groups were similar in characteristics.There was no significant difference between both groups in the baseline characteristics, e.g., age, gender, the dominance of the affected side, duration of symptoms, and presence of diabetes mellitus. This revealed that patient variability was not present between both groups. Moreover, the inclusion and exclusion criteria were followed strictly during patient recruitment and randomization. Therefore, the possibility of patient variability in the study groups was negligible.

The patients with frozen shoulders were aged from 33 to 67 years. The incidence of the disease was higher in the fifth decade of life (46.67%). The mean age of the patients was 47.25 8.38 years (in triamcinolone and PRP treatment groups). The incidence of the disease was higher in females (58.33%) compared to males (41.67%). In the triamcinolone group, there were 56.67% females, while in the PRP group, there were 60% females.

Among 60 patients, 30 received prolotherapy (PRP injection) and 30 received triamcinolone injection for frozen shoulder. Table 5 represents the outcome analysis of both groups. In the first follow-up (four weeks), the mean VAS score in the triamcinolone group was 46.27 8.17 while it was in 51.70 6.02 in the PRP group. This significantly shows better improvement of pain with triamcinolone injection (p = 0.0048).

In the second follow-up (12 weeks), the mean VAS score in the PRP group was 43.23 4.01 while it was 31.83 10.31 in the triamcinolone group. This significantly showed better improvement of pain with triamcinolone injection (p = 0.0001) after 12 weeks. However, in the third follow-up (24 weeks), the mean VAS score in the PRP and triamcinolone groups was 14.33 3.79 and 31.63 7.62, respectively, which showed a significantly better improvement in the VAS score in the PRP group (p = 0.0001).

For DASH scores (see Table 5), after four weeks of injection, the triamcinolone group shows somewhat better improvement, although there was no significant difference in both groups (p = 0.069). After 12 weeks of injection, the PRP group showed somewhat better improvement, although no significant difference was found between the groups (p = 0.075). At the third follow-up (24 weeks), the mean DASH score in the PRP and triamcinolone groups was 18.08 8.08 and 31.76 3.63, respectively, which showed significant improvement in the DASH score in the PRP group (p = 0.0001).

Frozen shoulder or shoulder periarthritis is the most common cause of the gradual onset of pain and stiffness with loss of active and passive movement of the glenohumeral joint[16]. Various treatment modalities are used for the management of periarthritis, e.g., physiotherapy, intra-articular injections, oral and injectable corticosteroids, MUA, hydrodilation, and surgery[1,21]. Triamcinolone is a long-acting steroid with anti-fibrotic and anti-inflammatory properties[17]. This study compares the effect of intra-articular injections of triamcinolone versus PRP.

In this study, 60 patients with shoulder periarthritis with ages ranging from 33 to 67 years were included. The incidence of the disease was higher in the fifth decade of life (46.67%). The result was similar to previous studies[16,22]. The mean ageof the patients included in the study was 47.25 8.38 years. The prevalence rate of frozen shoulder is expected to be 2-5% of the population, with the peak occurrence in persons aged 40-60 years [11,23]. Our study reported a higher incidence(46.67%) of the diseasein the fifth decade of life.

Our study reported that periarthritis mostly occurred in female patients than males, which is similar to a previous study[7]. The side of the joint affected by periarthritis was higher on the non-dominant side. A total of 38 (63.33%) patients had affected joints by periarthritis on the non-dominant side. Moreover, the majority of the studies showed a higher prevalence rate on the non-dominant side[24]. About 45% of patients with periarthritis had diabetes mellitus as comorbidity, while 8.33% of patients had hypertension.

In our study, we assessed the VAS and DASH scores at baseline, 4th,12th, and 24th weeks. We found that the VAS score showed significant improvement in the triamcinolone group (p = 0.0048 and p = 0.0001, respectively) than in the PRP group at four and 12 weeks. The DASH score was reduced in both groups in the 4th week (p = 0.0699)and 12th week (p = 0.0752), but the improvement was statistically not significant. However, in a study by Barman et al., there was no significant difference at the end of three weeks after a single dose of PRP injection or steroid injection. However, PRP was found to be more effective than corticosteroid injection at 12 weeks in pain and disability score improvement[18].

At 24 weeks, both the VAS and DASH scores showed significant improvement in the PRP group to the triamcinolone group (p = 0.0001). Our result was similar to previous studies by Kothari et al. and Kumar et al. that assessed triamcinolone and PRP[16,17]. A case study by Aslani et al. in 2016 also reported good results with PRP in the frozen shoulder[25]. Evidence of PRP administration in periarthritis is continuously emerging[26,27]. In their systematic review, Griesser et al. reported that the use of steroidssignificantly improved theforward elevation and abductiontemporarily, as well as short-term and long-term pain reduction assessed through the Shoulder Pain and Disability Index (SPADI) and VAS scores[23]. Our study has added support to this growing technique.

The study showed that at the 12th week, both the steroid and PRP groups improved the VAS and DASH scores. However, the steroid group had a better outcome in the 12th week, while in the 24th week, the PRP group showed better outcomes.

Various studies have reported that the effect of steroids gradually decreases over a long-term follow-up. Blanchard et al. [28] compared the steroid injections and physiotherapeutic interventions for adhesive capsulitis and reported a good efficacy of corticosteroid injections in the short term (six weeks) and, to a lower magnitude, in the longer term (one year). Another study by Shah and Lewis [6] found that corticosteroid injections in adhesive capsulitis improved pain and range of motion for 6-16 weeks after the first injection. A systematic review that included 12 randomized controlled trials on using corticosteroids in adhesive capsulitis reported that the intervention was beneficial, although its effect was small and not well maintained [29]. It has been suggested that the efficacy of corticosteroids on periarthritis is exerted through anti-inflammatory properties and suppressing the granulomatous response in affected tissue which leads to clinical improvement.

In contrast, a study reported that PRP releases a pool of several growth factors (transforming growth factor-, platelet-derived growth factor, vascular and epidermal endothelial growth factor) which helps in tissue repair[18]. PRP also releases hepatocyte growth factor and tumor necrosis factor-alpha, which possess potent anti-inflammatory effects [30] In this study, long-term improvements in the PRP group could be explained by the fact that PRP might have effects on improving all phases of tissue repair, e.g., inflammatory, proliferative, and remodeling phases of capsular healing in periarthritis [18]. Based on the above discussion, it can be concluded that the effect of steroid injections lasts for a shorter period, while PRP injections might have a longer effect.

In this study, the standardized techniquefor PRP preparation was used and comparisons were done with the conventionally used treatment. The actual platelet count in obtained PRP was compared to the whole blood or baseline platelet count. All intra-articular injections were administered by a single experienced clinician.Evaluation of pain and disability outcomes was done at several time points over up to 24 weeks for high-quality evidence of the effect of PRP and corticosteroid injections. Despite the carefully designed protocol for the study, there are some limitations to this study. The study did not explore cost analysis. All stages of periarthritis were included in our study; therefore, further studies are needed to compare the effect of these interventions in different stages of periarthritis. This study was conducted on single injections of steroids and PRP as most of the studies on periarthritis were based on single intra-articular injections [29]. Moreover, this is a standard protocol followed in the institution and approved by the ethical committee. Studies exploring the effect of multiple injections need to be conducted in the future.

Intra-articular injections of PRP and triamcinolone for periarthritis are effective in reducing pain and disability scores in terms of VAS and DASH scores. The triamcinolone group showed a better effect in short-term outcomes (12th-week analysis) whereas PRP showed better results in long-term outcomes (24th-week analysis). A large sample size study to enhance the power of the study with robust design must be conducted in the future that compares single versus multiple injections as well as both steroid and PRP injections simultaneously.

Go here to see the original:
Comparison of the Efficacy of Platelet-Rich Plasma (PRP) and Local Corticosteroid Injection in Periarthritis Shoulder: A Prospective, Randomized,...

Implanting a Patient’s Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD – Everyday Health

Specially treated stem cells derived from a single individual have been successfully implanted into that same individuals eyes in a first-of-its-kind clinical trial testing ways to treat advanced dry age-related macular degeneration (AMD).

The therapy, currently in its first phase of testing to ensure that its safe for humans, involves harvesting and processing a persons blood cells and using them to replace the persons retinal cells that had succumbed to AMD, a leading cause of vision loss globally.

The procedure was performed by researchers from the National Eye Institute (NEI), a branch of the National Institutes of Health in Bethesda, Maryland, and from the Wilmer Eye Institute at Johns Hopkins School of Medicine in Baltimore. The NIH researchers have been working on the new treatment for a decade.

The scientists, who previously demonstrated the safety and effectiveness of the therapy in rats and pigs, took blood cells from the patient and, in the laboratory, converted them into patient-derived induced pluripotent stem (iPS) cells. These immature, undifferentiated cells have no assigned function in the body, which means they can assume many forms. The researchers programmed these particular iPS cells to become retinal pigment epithelial (RPE) cells, the type that die in AMD and lead to late-stage dry AMD.

In healthy eyes, RPE cells supply oxygen to photoreceptors, the light-sensing cells in the retina at the back of the eyeball. The death of RPE cells virtually dooms the photoreceptors, resulting in vision loss. The idea behind the new therapy is to replace dying RPE cells with patient-derived induced iPS ones, strengthening the health of the remaining photoreceptors.

Before being transplanted, the iPS-derived cells were grown in sheets one cell thick on a biodegradable scaffold designed to promote their integration into the retina. The researchers positioned the resulting patch between atrophied host RPE cells and the photoreceptors using a specially created surgical tool.

The patient received the transplanted cells during the summer and will be followed for a year as researchers monitor overall eye health, including retina stability, and whether any inflammation or bleeding develop, says Kapil Bharti, PhD, a senior investigator at the NEI and for the clinical trial.

Safety data are critical for any new drug, says Gareth Lema, MD, PhD, a vitreoretinal surgeon at New York Eye & Ear Infirmary, a division of the Mount Sinai Health System. Stem cells have added complexity in that they are living tissue, Dr. Lema says. Precise differentiation is necessary for them to fulfill their intended therapeutic effect and not cause harm."

This therapy also requires a surgical procedure to implant the cells, Lema says, adding that its an exquisitely elegant surgery, but introduces further risk of harm. For those reasons, he says, Patients must know that ocular stem cell therapies should only be attempted within the regulated environment of a nationally registered clinical trial.

The rules of a clinical trial dont generally allow specifics to be discussed this early in the process, says Dr. Bharti. Announcing that we were able to successfully transplant the cells now hopefully allows us to recruit more patients, since we can take up to 12 in this phase, he says. We also hope that it will give some optimism to patients with dry AMD and to researchers studying it.

It took seven months to develop the implanted cells, says Bharti, and although the federal Food and Drug Administration (FDA) approved the clinical trial in 2019, the onset of the COVID-19 pandemic delayed the start by two years, he says.

Macular degeneration comprises several stages of disease within the macula, the critical portion of the retina responsible for straight-ahead vision. Aging causes retinal cells to deteriorate, generating debris, or drusen, within the macula, setting the stage for early (aka dry) AMD. Geographic atrophy represents a more advanced stage. If the disease progresses to the relatively rare wet AMD, so named for the leaking of blood into the macula, central vision can be snuffed out.

Risk of AMD increases with age, particularly among people who are white, have a history of smoking, or have a family history of the disease.

Treatment to slow wet AMDs progression includes eye injections with anti-VEGF (or VEGF-A for vascular endothelial growth factor antagonists), a medication that halts the growth of unstable, leaky blood vessels in the eye. Some people may undergo photodynamic therapy, which combines injections and laser treatments.

Currently, there is no cure for dry AMD; it cant be reversed. Nor are there treatments to reliably stop its onset or progression for everyone at every stage of the disease. (Research has confirmed that a specialized blend of vitamins and minerals, available over the counter as AREDS, or Age-Related Eye Disease Studies supplements, reduces the risk of AMDs progression from intermediate to advanced stages.)

There are other, ongoing clinical trials for the treatment of dry AMD. Regenerative Patch Technologies, in Menlo Park, California, for example, is a little further along in testing a different stem cell treatment. Patients have been followed for three years, and 27 percent have shown vision improvement, says Jane Lebkowski, PhD, the companys president. There are a number of AMD clinical trials ongoing in the U.S., and patients should ask their ophthalmologists about trials that might be appropriate.

ClinicalTrials.gov, the NIHs clinical trials database, lists close to 300 AMD clinical trials at various stages in the United States.

Ferhina Ali, MD, MPH, a retinal specialist at the Westchester Medical Center in Valhalla, New York, who isnt involved in the trial, describes the newest stem cell therapy as elegant and pioneering. These are early stages but there is tremendous potential as a first-in-kind surgically implanted stem cell therapy and as a way to achieve vision gains in dry macular degeneration, Dr. Ali says.

Bharti says that in laboratory animals the implanted cells behaved as retinal cells should maintaining the retinas integrity. Over the next few years, he and his colleagues will determine whether they function effectively in humans.

Does that mean, however, that the same AMD disease process that destroyed the original retinal cells could destroy the transplanted ones? It takes 40 to 60 years to damage human cells, Bharti says, and if we get that long with the transplanted cells, well take it.

See original here:
Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health

BrainStorm Cell Therapeutics Announces Peer Reviewed Publication of Results from the NurOwn Phase 2 Progressive MS Trial in Multiple Sclerosis Journal…

NEW YORK, Sept. 15, 2022 /PRNewswire/ -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of cellular therapies for neurodegenerative diseases, today announced the peer reviewed publication of data from the Phase 2 trial of NurOwn in progressive multiple sclerosis (MS) in Multiple Sclerosis Journal. The publication, entitled "Evaluation of neurotrophic factor secreting mesenchymal stem cells in progressive multiple sclerosis", can be found here.

Results from the Phase 2, single-arm, open-label study demonstrated NurOwn's safety and provided preliminary evidence of its efficacy in people with progressive MS. Additionally, biomarker analyses confirmed NurOwn's proposed mechanism of action by showing consistent treatment effects in neuroinflammation and neuroprotection pathways.

Twenty participants were enrolled into the Phase 2 trial, with seventeen receiving all three scheduled NurOwn treatments. The mean age of study participants was 47 years with a mean expanded disability status scale (EDSS) score of 5.4 at screening. Results from the trial were compared to 48 matched control patients who were selected from the from the Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB) registry (Brigham and Women's Hospital and the Ann Romney Center for Neurologic Diseases) at the beginning of the trial.

Treatment with NurOwn resulted in large, clinically meaningful improvements in some patients, as defined by response criteria, across all endpoints measured. These endpoints included timed 25-foot walk speed (T25FW), 9-hole peg test (9HPT), multiple sclerosis walking scale (MSWS), symbol digit modality test (SDMT), and low contrast letter acuity (LCLA). These observed improvements diverged from what was seen in matched patients with progressive MS from the CLIMB registry. Key data from the trial, as well as relevant comparisons to the matched CLIMB registry patients, are shown below.

Across all participants, improvements in function as measured by LCLA, SDMT and MS Functional Composite (MSFC) were observed. Mean improvements from baseline of 3.3 points in the LCLA binocular (2.5% contrast), 3.8 points on the SDMT, and 0.18 points in MSFC were observed in treated trial participants. The corresponding changes in matched CLIMB registry patients estimated at 28 weeks showed declines in function on the LCLA and MSFC. The average change in function decline as measured by T25FW, 9HPT, and EDSS across all treated trial participants demonstrated stabilization of functional decline, with similar or slightly worse findings observed in the matched CLIMB registry patients for the same endpoints.

There were no adverse events related to worsening of MS disease and no clinically significant changes in safety lab results/vital signs, confirming NurOwn's favorable safety profile. Two patients developed symptoms of low back and leg pain, consistent with arachnoiditis, occurring in one of three treatments in both participants.

Treatment also consistently resulted in increases in cerebrospinal fluid neuroprotective factors (VEGFA, HGF, NCAM-1, Follistatin, LIF and FetuinA) and reductions in inflammatory biomarkers (MCP-1, sCD27, SDF-1, and Osteopontin), confirming NurOwn's proposed mechanism of action in progressive MS.

"We were pleased that the study's initial results showed efficacy in patients with progressive MS," said Jeffrey Cohen, M.D., Hazel Prior Hostetler Endowed Chair Professor, Cleveland Clinic Lerner College of Medicine, Director, Experimental Therapeutics, Mellen Center for MS Treatment and Research, and the paper's lead author. "There are both promising biological and preliminary clinical signals of a treatment effect that will require confirmation in a randomized trial."

"There is a high unmet need for better treatments for progressive forms of MS and we congratulate the Brainstorm Cell Therapeutics team for the successful completion and publication of this important study. We look forward to future studies that will help to fully understand the potential of NurOwn and other cell-based therapies for this hard-to-treat form of disease" said Bruce Bebo, EVP Research National MS Society.

Chaim Lebovits, Chief Executive Officer, BrainStorm Cell Therapeutics stated, "Having these data peer reviewed and published in the prestigious Multiple Sclerosis Journal is an important step in the evaluation of NurOwn in progressive MS. We appreciate the expertise and commitment of the study investigators and contributions of study participants to advance our understanding of NurOwn's cellular technology platform. Thanks to their efforts and those of the BrainStorm team, we believe we are closer to providing a meaningful treatment option for those with progressive MS".

Ralph Kern, M.D., MHSc, President and Chief Medical Officer of BrainStorm Cell Therapeutics and co-author of the paper commented, "This publication provides preliminary evidence of NurOwn's potential to modify functional outcomes in progressive MS, which we believe warrants further study. In addition, consistent changes in cerebrospinal fluid neuroinflammation and neuroprotection biomarkers reveal how NurOwn may impact disease mechanisms in progressive MS and are complementary to biomarker results observed in our Phase 3 ALS trial. These observations provide further support for NurOwn as a platform technology with potential broad applications and will bolster BrainStorm's efforts to bring much needed solutions to patients with progressive MS, ALS, and other neurodegenerative diseases."

Study Design

The Phase 2 study (BCT-101) was designed to evaluate the safety, efficacy, and biomarker effects of three intrathecal administrations of NurOwn (MSC-NTF cells), given at two-month intervals, to adults with progressive MS. The trial was conducted at four MS centers of excellence: Cleveland Clinic Mellen Center for MS, Icahn School of Medicine at Mount Sinai, Keck School of Medicine of the University of Southern California, and Stanford University School of Medicine. Twenty participants ages 18-65 with progressive MS were enrolled and 17 received all three treatments and were followed for up to 28 weeks. Participants had baseline EDSS scores of between 3.0 and 6.5, were able to walk 25 feet in 60 seconds or less and had not experienced an MS relapse in the 6 months prior to study enrollment.

The primary efficacy outcome was pre-specified improvement (25%) in T25FW or 9-HPT. Additional efficacy endpoints included pre-specified improvements in EDSS, SDMT, LCLA, and MSWS-12. The efficacy outcomes were compared to a pre-specified matched group of progressive MS patients from CLIMB registry (n=48) (Tanuja Chitnis, M.D. Brigham and Women's Hospital and the Ann Romney Center for Neurologic Diseases). The study was sponsored by Brainstorm Cell Therapeutics with additional financial support for biomarker analyses received from the National Multiple Sclerosis Society, Fast-Forward Commercial Research Funding Program. For more information on the trial, visit https://clinicaltrials.gov/ct2/show/NCT03799718.

About NurOwn

The NurOwn technology platform (autologous MSC-NTF cells) represents a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors (NTFs). Autologous MSC-NTF cells are designed to effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression.

About BrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug designation status from the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has completed a Phase 3 pivotal trial in ALS (NCT03280056); this trial investigated the safety and efficacy of repeat-administration of autologous MSC-NTF cells and was supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). BrainStorm completed under an investigational new drug application a Phase 2 open-label multicenter trial (NCT03799718) of autologous MSC-NTF cells in progressive MS and was supported by a grant from the National MS Society (NMSS).

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may," "should," "would," "could," "will," "expect," "likely," "believe," "plan," "estimate," "predict," "potential," and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, prospects for future regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our products and services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation; the impacts of the COVID-19 pandemic on our clinical trials, supply chain, and operations; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations, and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance, or achievements.

CONTACTS

Investor Relations: John Mullaly LifeSci Advisors, LLC Phone: +1 617-429-3548 jmullaly@lifesciadvisors.com

Media: Lisa Guiterman lisa.guiterman@gmail.com

Logo - https://mma.prnewswire.com/media/1166536/BrainStorm_Logo.jpg

View original content:https://www.prnewswire.com/news-releases/brainstorm-cell-therapeutics-announces-peer-reviewed-publication-of-results-from-the-nurown-phase-2-progressive-ms-trial-in-multiple-sclerosis-journal-301625167.html

SOURCE BrainStorm Cell Therapeutics Inc.

Company Codes: NASDAQ-SMALL:BCLI

Read the original:
BrainStorm Cell Therapeutics Announces Peer Reviewed Publication of Results from the NurOwn Phase 2 Progressive MS Trial in Multiple Sclerosis Journal...

Health care workers appeal dismissal of lawsuit over Maine’s vaccine mandate – Kennebec Journal and Morning Sentinel

Attorneys for a group of former Maine health care workers who sued the state over its vaccine requirements last summer are asking a panel of judges in Boston to revive their case.

Last month, U.S. District Judge Jon Levy dismissed the groups lawsuit, which argued they have a religious right to refuse the vaccine overtheir belief that fetal stem cells from abortions were used to develop it. They also argued that the state mandate was discriminatory by allowing for medical exemptions, but not religious ones.

Levy ultimately disagreed.

Exempting individuals whose health will be threatened if they receive a COVID-19 vaccine is an essential, constituent part of a reasoned public health response to the COVID-19 pandemic. It does not express or suggest a discriminatory bias against religion, Levy wrote in his order on Aug. 18.

Attorneys have a month to file a brief to the 1st Circuit Court of Appeals in Boston, outlining their reasons for an appeal.

The plaintiffs worked for MaineHealth, Genesis Healthcare, Northern Light Eastern Maine Medical Center and MaineGeneral Health. All are named as defendants in the complaint, along with Gov. Janet Mills, Maine CDC Director Nirav Shah and Commissioner Jeanne Lambrew of the Maine Department of Health and Human Services.

Nine plaintiffs originally sued in August 2021, all anonymously.

The Portland Press Herald, Kennebec Journal, Morning Sentinel and Sun Journal filed a motion last November challenging the groups right to anonymity. The newspapers argued that the plaintiffs alleged fear of harm no longer outweighs the publics interest in open legal proceedings.

Both Levy and the 1st Circuit Court of Appeals agreed, ordering the group to file a new complaint that included their names in July.

Plaintiffs named in the dismissal document are Alicia Lowe, formerly an employee of MaineHealth; Debra Chalmers and Garth Berenyi, formerly of Genesis Health; Jennifer Barbalias, Natalie Salavarria and Adam Jones, formerly of Northern Light Eastern Maine Medical Center; and Nicole Giroux, formerly of MaineGeneral Health.

They are represented by Maine attorney Steve Whiting, and lawyers from Liberty Counsel, a conservative, religious law firm based in Florida that has participated in several lawsuits against Maine and other states over COVID-19 vaccine mandates and restrictions. Theyve also opposed safe and legal access to abortions and same-sex marriage, leading the Southern Poverty Law Center to identify the firm as a hate group.

Federal judges at every level the U.S. District Court,the 1st U.S. Circuit Court of Appeals in Boston andthe U.S. Supreme Court refused to block Maines COVID-19 vaccine mandate from taking effect while the courts considered the merits of the lawsuit.

The mandate took effect in October, and major health care providers reported that most workers decided to get their shots.

Invalid username/password.

Please check your email to confirm and complete your registration.

Use the form below to reset your password. When you've submitted your account email, we will send an email with a reset code.

Previous

Next

Continue reading here:
Health care workers appeal dismissal of lawsuit over Maine's vaccine mandate - Kennebec Journal and Morning Sentinel

I took an international trip with my frozen eggs to learn about the fertility industry – MIT Technology Review

Depending on whats being carried and how much they can pay, the patient or patients involved will choose either a hand-carry service, a commercial carrier such as DHL or FedEx, or something in between, such as the combination of commercial flights and local couriers that Loewen relied on during the pandemic. The cost of transporting my eggs with FlyVet Europa was 1,300 euros, or about $1,400 at the time. That includes the price of two one-way tickets for Paolo and the egg suitcase, and a few incidental expenses. (When I told Monaco how many eggs were traveling, he quipped, Uno squadro di calcio!a soccer team.)

CryoStork, the division of Cryoport devoted to the fertility sector, offers all three tiers of servicecommercial carriers for something that can be easily replaced (sperm, in other words), a middle-tier service using local couriers and air freight, and a door-to-door hand-carry servicefor prices ranging from a few hundred dollars to as much as $7,000 or $8,000 for an international hand-carry trip.

Ultimately, the pandemic boosted business for Loewen. Today, he and a team of eight colleagues, half employees and half working on a per-shipment basis, handle around 30 to 40 IVF-related shipments each month. Similarly, when the war in Ukraine began, Loewen and other colleagues received frantic requests from clients desperate to move their biomaterials out of the capital, Kiev, where most of the countrys IVF clinics and surrogacy agencies are based, and business shifted to nearby Georgia. But by September, Loewen was planning to once again deliver biomaterials to Ukraine. People want to have babiesconflict or not, he says.

What does it take to be a tissue courier, and how does one get into the field? Everyone I spoke to said that to succeed, you must love traveling, have a calm personality (in case, as happened to Loewen, youre ever surrounded by a knot of armed Belarusian soldiers at the airport and accused of trafficking human organs), and be adept at problem-solving.

Loewen looks for people with experience in the travel sector, who can navigate new cities and wont be rattled by a flight cancellation or a grumpy customs official. Mark Sawicki of Cryoport has several former pilots now working as couriers; their security clearances enable them to move through airports more easily than civilians.

Nicole Dorman, 43, has always loved children; she jokes that her current job as a courier is babysitting. She has three kids, aged 14 to 22, and has been a teachers aide and a school crossing guard, following four years in the US Army. When shes home for a week or two at a time with her kids in between gigs, she also makes deliveries for DoorDash in Clarksville, Tennessee.

WENN RIGHTS LTD / ALAMY STOCK PHOTO

Dorman had begun by transporting stem cells for a Frankfurt-based courier service. When she was looking for work in November of 2020, she emailed a half-dozen IVF courier companies and heard back from Loewen within 15 minutes. She has been working for him ever since, and also does US shipments for the Ukrainian company ARK Cryo, as well as EmbryoPort, a UK-based firm.

Dorman is on the road roughly 70% of each month; when we spoke in mid-May, she was preparing for a weeklong trip beginning with a pickup in Indianapolis, a drop-off in Bratislava, a train ride from there to Prague for another pickup, and then a flight to Greece. Like all couriers whove been working for any length of time, she has frequent flier status. In the 18 months since she started, she has transported more than 90 shipments. Now I can pretty much do it in my sleep, she says.

See the original post:
I took an international trip with my frozen eggs to learn about the fertility industry - MIT Technology Review

External Beam Radiation Therapy Market: Growing Awareness about Early Detection and Diagnosis of various Cancer Types to Drive the Market – BioSpace

Wilmington, Delaware, United States, Transparency Market Research Inc. The accelerating rate of cancer cases worldwide is considered the chief factor augmenting the growth of the global external beam radiation therapy market. The rapid advancements in medical technology and the growing awareness about early detection and diagnosis of various cancer types will also boost this markets growth in the coming years.

External beam radiotherapy or EBRT is considered very common among radiotherapy types. Rather than brachytherapy (fixed source radiotherapy) and unlocked source radiotherapy, in which the radiation source is inside the body, external beam radiotherapy coordinates the radiation at the tumor from outside the body.

Request Brochure of Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=64928

Malignancy or in simpler terms, cancer is a genuine medical issue influencing a huge populace across the globe. Analysis at a beginning phase and therapy for malignant growth, as it influences the insusceptible framework, is a test for medical services suppliers. External radiation is normally done during outpatient visits to an emergency clinic or therapy focus. The vast majority get external radiation therapy over numerous weeks.

In any case, a few groups may have to go to the treatment community two times every day for a less number of weeks. Radiation innovation permits cautious conveyance of external beam radiation therapy. These machines center the radiation around the specific area on the body with the goal that ordinary tissues are influenced as little as could really be expected.

Request for ToC https://www.transparencymarketresearch.com/sample/sample.php?flag=T&rep_id=64928

Global External Beam Radiation Therapy Market: Overview

External radiation (or external beam radiation) is the most common type of radiation therapy used for cancer treatment. A machine is used to aim high-energy rays (or beams) from outside the body into the tumor.

Radiation technology allows very careful delivery of external beam radiation therapy. These machines focus the radiation on the exact location on the body so that normal tissues are affected as little as possible.

External radiation is usually done during outpatient visits to a hospital or treatment center. Most people undergo external radiation therapy over many weeks. Usually, patients visit the treatment center every weekday for a certain number of weeks. However, some people may need to go to the treatment center twice a day for a fewer number of weeks.

Key Driver of Global External Beam Radiation Therapy Market

The global external beam radiation therapy market is growing at a rapid pace owing to increase in incidence of cancer

Cancer is a serious health problem affecting a large population across the globe. Diagnosis at an early stage and treatment for cancer, as it affects the immune system, is a challenge for health care providers. According to the WHO, 18 million new cancer cases were reported in 2018 across the world, and cancer causes around 8.2 million deaths annually. Moreover, the number of cancer cases is likely to rise by 70% across the globe, with 60% of cases in Africa, Asia, and Latin America.

Request for Report Methodology https://www.transparencymarketresearch.com/sample/sample.php?flag=RRM&rep_id=64928

Key Restraint of Global External Beam Radiation Therapy Market

According to WHO report, an estimated two-thirds of the planet does not have access to basic radiology services. Kenya has only 200 radiologists for 43 million people. People in Nepal travel more than two days to find a facility with an X-ray and spend a months income for that. Increase in gap between radiologists and people restrains the global radiation therapy management market.

North America to Account for Major Share of Global External Beam Radiation Therapy Market

In terms of region, the global external beam radiation therapy market can be segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa

North America is projected to dominate the global market during the forecast period. This is attributed to an increase in number of patients. Moreover, well-established health care infrastructure, presence of key players, and favorable reimbursement policies are anticipated to drive the market in the region.

Make an Enquiry Before Buying https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=64928

Key Players Operating in Global External Beam Radiation Therapy Market

Major players operating in the global external beam radiation therapy market include:

More Trending Reports by Transparency Market Research

Erectile Dysfunction Drugs Market: The global erectile dysfunction (ED) drugs market is expected to reach the value of US$ 2.5 Bn by the end of 2028.

Regulatory Affairs Outsourcing Market: The global regulatory affairs outsourcing market is expected to reach the value of US$ 17.3 Bn by the end of 2028.

Digital Health Market: The global digital health market is expected to cross the value of US$ 1.2 Trn by the end of 2028.

Equine Healthcare Market: The global equine healthcare market is expected to cross the value of US$ 972.8 Mn by the end of 2028.

Stem Cells Market: The global stem cells market is expected to reach the value of US$ 25.68 Bn by the end of 2028.

Medical Imaging Equipment Market: The global medical imaging equipment market is expected to reach the value of US$ 50.3 Bn by the end of 2028.

Home Healthcare Market: The global home healthcare market is expected to reach the value of US$ 499.6 Bn by the end of 2028.

Triclabendazole Market: The global triclabendazole market is expected to reach the value of US$ 632.1 Mn by the end of 2031.

About Us

Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, providescustom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update -https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ

Contact

Rohit Bhisey Transparency Market Research Inc. CORPORATE HEADQUARTER DOWNTOWN, 1000 N. West Street, Suite 1200, Wilmington, Delaware 19801 USA Tel: +1-518-618-1030 USA Canada Toll Free: 866-552-3453 Website: https://www.transparencymarketresearch.com

Blog: https://tmrblog.com

Email: sales@transparencymarketresearch.com

See original here:
External Beam Radiation Therapy Market: Growing Awareness about Early Detection and Diagnosis of various Cancer Types to Drive the Market - BioSpace