Targeting p53 pathways: mechanisms, structures, and advances in … – Nature.com
Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 10621078 (2017).
Article CAS PubMed PubMed Central Google Scholar
Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471480 (2020).
Article CAS PubMed Google Scholar
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 578, 8293 (2020).
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495501 (2014).
Article CAS PubMed PubMed Central Google Scholar
Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer. 18, 89102 (2018).
Article CAS PubMed Google Scholar
Sullivan, K. D., Galbraith, M. D., Andrysik, Z. & Espinosa, J. M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133143 (2018).
Article CAS PubMed Google Scholar
Sager, R. Tumor suppressor genes: the puzzle and the promise. Science 246, 14061412 (1989).
Article CAS PubMed Google Scholar
Muller, P. A. J. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 28 (2013).
Article CAS PubMed Google Scholar
Meek, D. W. Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9, 714723 (2009).
Article CAS PubMed Google Scholar
Wong, K. B. et al. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 84388442 (1999).
Article CAS PubMed PubMed Central Google Scholar
Kitayner, M. et al. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22, 741753 (2006).
Article CAS PubMed Google Scholar
Joerger, A. C. & Fersht, A. R. Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv. Cancer Res. 97, 123 (2007).
Article CAS PubMed Google Scholar
Loh, S. N. Arsenic and an old place: rescuing p53 mutants in cancer. Cancer Cell 39, 140142 (2021).
Article CAS PubMed Google Scholar
Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 4352 (1979).
Article CAS PubMed Google Scholar
Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261263 (1979).
Article CAS PubMed Google Scholar
Parada, L. F. et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312, 649651 (1984).
Article CAS PubMed Google Scholar
Eliyahu, D., Michalovitz, D. & Oren, M. Overproduction of p53 antigen makes established cells highly tumorigenic. Nature 316, 158160 (1985).
Article CAS PubMed Google Scholar
Lane, D. P. & Benchimol, S. p53: oncogene or anti-oncogene? Genes Dev. 4, 18 (1990).
Article CAS PubMed Google Scholar
Nigro, J. M. et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705708 (1989).
Article CAS PubMed Google Scholar
Cunningham, J. et al. Expression of p53 and 17p allelic loss in colorectal carcinoma. Cancer Res 52, 19741980 (1992).
CAS PubMed Google Scholar
Hinds, P., Finlay, C. & Levine, A. J. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63, 739746 (1989).
Article CAS PubMed PubMed Central Google Scholar
Eliyahu, D. et al. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3, 313321 (1988).
CAS PubMed Google Scholar
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215221 (1992).
Article CAS PubMed Google Scholar
Olivero, C. E. et al. p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol. Cell. 77, 761774 (2020).
Article CAS PubMed PubMed Central Google Scholar
Yonish-Rouach, E. et al. The role of p53 as a transcription factor in the induction of apoptosis. Behring Inst. Mitt. 97, 6071 (1996).
CAS Google Scholar
Wei, C.-L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207219 (2006).
Article CAS PubMed Google Scholar
Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359370 (2014).
Article CAS PubMed PubMed Central Google Scholar
Lakin, N. & Jackson, S. Regulation of p53 in response to DNA damage. Oncogene 18, 76447655 (1999).
Article CAS PubMed Google Scholar
Gu, B. & Zhu, W. Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8, 672684 (2012).
Article PubMed PubMed Central Google Scholar
DeHart, C., Chahal, J., Flint, S. & Perlman, D. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol. Cell Proteom. 13, 117 (2014).
Article CAS Google Scholar
Chen, L., Liu, S. & Tao, Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct. Target Ther. 5, 90 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kruse, J.-P. & Gu, W. SnapShot: p53 posttranslational modifications. Cell 133, 93030 (2008).
Article CAS PubMed PubMed Central Google Scholar
Aubrey, B. et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25, 104113 (2018).
Article CAS PubMed Google Scholar
Vaddavalli, P. & Schumacher, B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 38, 598612 (2022).
Article CAS PubMed Google Scholar
Ma, M. et al. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct. Target Ther. 7, 290 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell. 11, 577590 (2003).
Article CAS PubMed Google Scholar
Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 10101014 (2004).
Article CAS PubMed Google Scholar
Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293299 (1995).
Article CAS PubMed Google Scholar
Seoane, J., Le, H.-V. & Massagu, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729734 (2002).
Article CAS PubMed Google Scholar
Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29, 946960 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hafner, A., Bulyk, M., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199210 (2019).
Article CAS PubMed Google Scholar
Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103112 (2002).
Article CAS PubMed Google Scholar
Sancar, A. DNA repair in humans. Annu. Rev. Genet. 29, 69105 (1995).
Article CAS PubMed Google Scholar
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kamaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 3985 (2004).
Article CAS PubMed Google Scholar
Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 5762 (2015).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y. & Gu, W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin. Cancer Biol. 85, 432 (2021).
Article PubMed Google Scholar
Blagih, J., Buck, M. D. & Vousden, K. H. p53, cancer and the immune response. J. Cell Sci. 133, jcs237453 (2020).
Article CAS PubMed Google Scholar
Spike, B. T. & Wahl, G. M. p53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer 2, 404419 (2011).
Article CAS PubMed PubMed Central Google Scholar
White, E. Autophagy and p53. Cold Spring Harb. Perspect. Med. 6, a026120 (2016).
Article PubMed PubMed Central Google Scholar
Mrakovcic, M. & Frhlich, L. p53-mediated molecular control of autophagy in tumor cells. Biomolecules 8, 14 (2018).
Article PubMed PubMed Central Google Scholar
Williams, A. B. & Schumacher, B. p53 in the DNA-damage-repair process. Cold Spring Harb. Perspect. Med. 6, a026070 (2016).
Original post:
Targeting p53 pathways: mechanisms, structures, and advances in ... - Nature.com