Author Archives: admin


Endometriosis in Teens: Causes, Symptoms, and Treatment – Healthline

Endometriosis is a condition that can occur when tissue that is normally found lining the uterus, known as the endometrium, begins to grow outside of that organ. With this disorder, the tissue can be found growing around other nearby organs the ovaries, intestines, and even tissue that lines your pelvis.

Because endometrial tissue is affected by hormonal changes during the menstrual cycle, its not uncommon for people with endometriosis to experience pain and discomfort just like they would with endometrial tissue in the uterus. And just like that tissue, this tissue breaks down too but isnt expelled.

As a result, endometriosis can lead to the growth of scar tissue, irritation, and even infertility. But while much is known about endometriosis in adult women, the condition isnt as well-researched in children or adolescents.

Officially, there is no known cause of endometriosis regardless of the age at which its discovered. And almost all researchers agree that limited studies in younger age groups, as well as healthcare professionals delaying diagnosis by several years, can contribute to its progression that often leads to infertility and other negative outcomes.

There are a few theories that highlight potential reasons, but no theory has proven to be conclusive yet. Well take a closer look at the best supported theories to-date:

Retrograde menstruation is a condition in which blood that is expelled from the uterus flows back toward the fallopian tubes rather than out of the body through the vagina. This scenario is more common than you may expect, with roughly 90% of women experiencing it at some point during their menstruating lives.

But for some, this backflow can lead to endometrial cells adhering to organs or cavity tissues, or whats known as endometrial lesions. This is why it is currently considered a key factor in developing endometriosis.

A 2013 study conducted in Japan found a link between the incidence of menstrual pain and the need for medical interventions. While the study found that roughly a third of all menstruating Japanese women experienced pain significant enough to require medication, of that group, 6% did not experience any improvement after taking medication.

More importantly, this study found that roughly 25 to 38% of adolescents that complained of chronic pelvic pain were later diagnosed with endometriosis. Meanwhile, the most common solution offered to adolescents is pain medications, which will not treat the cause of the pain.

That same 2013 Japanese study noted that some respondents were diagnosed with endometriosis while having never menstruated (premenarchal). This discovery has encouraged researchers to consider that other underlying mechanisms might contribute to endometriosis rather than retrograde menstruation.

Some researchers further hypothesized that endometriosis diagnoses in premenarchal participants could be caused by stem cells that later develop into endometrial tissue and are later activated when menstruation begins.

While we often think of endometriosis as a condition exclusively impacting women, the reality is that it can also develop in nonbinary or transmasculine (people assigned female at birth that later transition to boys) adolescents as well.

A 2020 study reviewed previous research that focused on 35 trans participants ages 26 and younger that were diagnosed with dysmenorrhea (or menstruation-related pain) and treated for that condition. Of the 35, seven of the patients were evaluated and found to have endometriosis some of which were diagnosed after transitioning and included one participant that had already begun testosterone treatment.

Of the seven patients, treatment varied from oral contraceptives, testosterone treatment, and other drugs such as danazol and progestins. The study found that results were mixed. While some respondents found success with testosterone therapy for resolving symptoms, this wasnt the case for everyone.

Ultimately, the study recommended that trans masculine people experiencing dysmenorrhea symptoms should be screened for endometriosis, and that testosterone therapy alone isnt necessarily a complete solution.

Although less is known about endometriosis in adolescent or teenage populations, symptoms tend to be consistent with those found in adult women. These include:

If you or your child is experiencing symptoms of endometriosis, keep reading to learn about getting diagnosed.

Consistently, the research and medical communities agree that early detection of endometriosis is the best way to prevent acute spread which can lead to infertility. Checking for endometriosis on your own is not possible. But letting your doctor know that youre experiencing chronic pelvic pain, heavy or long periods, or any of the other common symptoms associated with endometriosis is important.

Your physician might start the diagnostic process by performing a pelvic ultrasound to ensure that any other underlying conditions or infections arent causing your symptoms. Usually, endometriosis is diagnosed with laparoscopy. This is a minimally invasive procedure where your physician inserts a thin tube with a light and lens through a small incision into the lower abdomen. With this procedure, they can look for endometrial lesions to determine if endometriosis is present.

Unfortunately, its common for period pain to be dismissed as a regular part of life, and for many people it can take more than a decade to receive a proper diagnosis. If this is the case for you, dont hesitate to advocate for yourself and seek a second opinion if youre unable to find a treatment plan that works for you.

Currently, there is no cure for endometriosis. However, just as in adults, the goal of treating adolescent endometriosis is to control and prevent disease progression, provide symptom relief, and preserve fertility.

Several treatment methods may be recommended depending on the amount of endometrial tissue that is present (disease progression).

Treatment options can center on hormonal therapy to control estrogen levels a key factor that influences endometrial growth. For some patients, this might include taking oral contraception, or a progestin-only agent to prevent or minimize the onset of periods, as well as nonsteroidal anti-inflammatory drugs (NSAIDs) for pain management.

Be aware that you might need to try several different types of hormonal therapies before you find the right option that controls your condition.

Some patients might also be prescribed Gonadotropin-releasing hormone (GnRH) agonist therapy. But this is usually reserved for adults, because research suggests that this treatment can impact bone mineralization in adolescents.

Surgery is often used for both diagnosis and treatment. While some surgeries can remove endometrial lesions, this is not a permanent solution for everyone.

Research has proven that even with surgery, endometrial lesions can return.

Most endometriosis conversations center around female patients. But its important to remember that trans men as well as those born male are also at risk of developing this disease.

Once thought to only be an issue for menstruating females, research suggests that endometriosis can also be detected in premenarchal youth.

Theres no cure for endometriosis. But experts, advocates, and the medical community agree that early interventions for the condition are critical for limiting its spread, controlling symptoms that can impact everyday life, and preserving fertility especially in adolescents.

Original post:
Endometriosis in Teens: Causes, Symptoms, and Treatment - Healthline

Deconstructing the mechanics of bone marrow disease | Penn Today – Penn Today

Fibrosis is the thickening of various tissues caused by the deposition of fibrillar extracellular matrix (ECM) in tissues and organs as part of the bodys wound healing response to various forms of damage. When accompanied by chronic inflammation, fibrosis can go into overdrive and produce excess scar tissue that can no longer be degraded. This process causes many diseases in multiple organs, including lung fibrosis induced by smoking or asbestos, liver fibrosis induced by alcohol abuse, and heart fibrosis often following heart attacks. Fibrosis can also occur in the bone marrow, the spongy tissue inside some bones that houses blood-producing hematopoietic stem cells (HSCs) and can lead to scarring and the disruption of normal functions.

Chronic blood cancers known as myeloproliferative neoplasms (MPNs) are one example, in which patients can develop fibrotic bone marrow, or myelofibrosis, that disrupts the normal production of blood cells. Monocytes, a type of white blood cell belonging to the group of myeloid cells, are overproduced from HSCs in neoplasms and contribute to the inflammation in the bone marrow environment, or niche. However, how the fibrotic bone marrow niche itself impacts the function of monocytes and inflammation in the bone marrow was unknown.

Now, a collaborative team from Penn, Harvard, the Dana-Farber Cancer Institute (DFCI), and Brigham and Womens Hospital has created a programmable hydrogel-based in vitro model mimicking healthy and fibrotic human bone marrow. Combining this system with mouse in vivo models of myelofibrosis, the researchers demonstrated that monocytes decide whether to enter a pro-inflammatory state and go on to differentiate into inflammatory dendritic cells based on specific mechanical properties of the bone marrow niche with its densely packed ECM molecules. Importantly, the team found a drug that could tone down these pathological mechanical effects on monocytes, reducing their numbers as well as the numbers of inflammatory myeloid cells in mice with myelofibrosis. The findings are published in Nature Materials.

We found that stiff and more elastic slow-relaxing artificial ECMs induced immature monocytes to differentiate into monocytes with a pro-inflammatory program strongly resembling that of monocytes in myelofibrosis patients, and the monocytes to differentiate further into inflammatory dendritic cells, says co-first author Kyle Vining, who recently joined Penn.More viscous fast-relaxing artificial ECMs suppressed this myelofibrosis-like effect on monocytes. This opened up the possibility of a mechanical checkpoint that could be disrupted in myelofibrotic bone marrow and also may be at play in other fibrotic diseases. Vining will be appointedassistant professor of preventive and restorative sciences in theSchool of Dental Medicine and the Department of Materials Sciences in theSchool of Engineering and Applied Science, pending approval by Penn Dental Medicines personnel committees and the Provosts office.

Vining worked on the study as a postdoctoral fellow at Harvard in the lab of David Mooney. Our study shows that the differentiation state of monocytes, which are key players in the immune system, is highly regulated by mechanical changes in the ECM they encounter, says Mooney, who co-led the study with DFCI researcher Kai Wucherpfennig. Specifically, the ECMs viscoelasticity has been a historically under-appreciated aspect of its mechanical properties that we find correlates strongly between our in vitro and the in vivo models and human disease. It turns out that myelofibrosis is a mechano-related disease that could be treated by interfering with the mechanical signaling in bone marrow cells.

Mooney is also the Robert P. Pinkas Family Professor of Bioengineering at Harvard and leads the Wyss Institutes Immuno-Materials Platform. Wucherpfennig is director of DFCIs Center for Cancer Immunotherapy Research, professor of neurobiology at Brigham and Harvard Medical School, and an associate member of the Broad Institute of MIT and Harvard. Mooney, together with co-senior author F. Stephen Hodi, also heads the Immuno-engineering to Improve Immunotherapy (i3) Center, which aims to create new biomaterials-based approaches to enhance immune responses against tumors. The new study follows the Centers road map. Hodi is director of the Melanoma Center and The Center for Immuno-Oncology at DFCI and professor of medicine at Harvard Medical School.

The mechanical properties of most biological materials are determined by their viscoelastic characteristics. Unlike purely elastic substances like a vibrating quartz, which store elastic energy when mechanically stressed and quickly recover to their original state once the stress is removed, slow-relaxing viscoelastic substances also have a viscous component. Like the viscosity of honey, this allows them to dissipate stress under mechanical strain by rapid stress relaxation. Viscous materials are thus fast-relaxing materials in contrast to slow-relaxing purely elastic materials.

The team developed an alginate-based hydrogel system that mimics the viscoelasticity of natural ECM and allowed them to tune the elasticity independent from other physical and biochemical properties. By tweaking the balance between elastic and viscous properties in these artificial ECMs, they could recapitulate the viscoelasticity of healthy and scarred fibrotic bone marrow, whose elasticity is increased by excess ECM fibers. Human monocytes placed into these artificial ECMs constantly push and pull at them and in turn respond to the materials mechanical characteristics.

Next, the team investigated how the mechanical characteristics of stiff and elastic hydrogels compared to those in actual bone marrow affected by myelofibrosis. They took advantage of a mouse model in which an activating mutation in a gene known as Jak2 causes MPN, pro-inflammatory signaling in the bone marrow, and development of myelofibrosis, similar to the disease process in human patients with MPN. When they investigated the mechanical properties of bone marrow in the animals femur bones, using a nanoindentation probe, the researchers measured a higher stiffness than in non-fibrotic bone marrow. Importantly, we found that the pathologic grading of myelofibrosis in the animal model was significantly correlated with changes in viscoelasticity, said co-first author Anna Marneth, who spearheaded the experiments in the mouse model as a postdoctoral fellow working with Ann Mullally, a principal investigator at Brigham and DFCI, and another senior author on the study.

An important question was whether monocytes response to the mechanical impact of the fibrotic bone marrow niche could be therapeutically targeted. The researchers focused on an isoform of the phosphoinositide 3-kinase (PI3K)-gamma protein, which is specifically expressed in monocytes and closely related immune cells. PI3K-gamma is known for regulating the assembly of a cell-stiffening filamentous cytoskeleton below the cell surface that expands in response to mechanical stress, which the team also observed in monocytes encountering a fibrotic ECM. When they added a drug that inhibits PI3K-gamma to stiff elastic artificial ECMs, it toned down their pro-inflammatory response and, when given as an oral treatment to myelofibrosis mice, significantly lowered the number of monocytes and dendritic cells in their bone marrow.

This research opens new avenues for modifying immune cell function in fibrotic diseases that are currently difficult to treat. The results are also highly relevant to human cancers with a highly fibrotic microenvironment, such as pancreatic cancer, says Wucherpfennig.

Adapted from a press release written by Benjamin Boettner of the Wyss Institute for Biologically Inspired Engineering at Harvard University.

Other authors on the study are Harvards Kwasi Adu-Berchie, Joshua M. Grolman, Christina M. Tringides, Yutong Liu, Waihay J. Wong, Olga Pozdnyakova, Mariano Severgnini, Alexander Stafford, and Georg N. Duda.

The study was funded by the National Cancer Institute of the National Institutes of Health (Grant CA214369), National Institute of Dental & Craniofacial Research of the National Institutes of Health (grants DE025292 and DE030084), Food and Drug Administration (Grant FD006589), and Harvard University Materials Research Science and Engineering Center (Grant DMR 1420570).

See the original post:
Deconstructing the mechanics of bone marrow disease | Penn Today - Penn Today

Stem Cell Therapy Global Market Opportunities And Strategies To 2031 – Yahoo Finance

ReportLinker

provides the strategists; marketers and senior management with the critical information they need to assess the global stem cell therapy market as it emerges from the COVID 19 shut down. Description:

New York, July 11, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Stem Cell Therapy Global Market Opportunities And Strategies To 2031" - https://www.reportlinker.com/p06291564/?utm_source=GNW Where is the largest and fastest growing market for stem cell therapy? How does the market relate to the overall economy; demography and other similar markets? What forces will shape the market going forward? The stem cell therapy market global report answers all these questions and many more. The report covers market characteristics; size and growth; segmentation; regional and country breakdowns; competitive landscape; market shares; trends and strategies for this market.It traces the markets historic and forecast market growth by geography.

It places the market within the context of the wider stem cell therapy market; and compares it with other markets.

The report covers the following chapters Executive Summary The executive summary section of the report gives a brief overview and summary of the report. Report Structure This section gives the structure of the report and the information covered in the various sections. Introduction The introduction section of the report gives brief introduction about segmentation by geography, by type, by cell source, by end-user, and by application. Market Characteristics The market characteristics section of the report defines and explains the stem cell therapy market. This section also defines and describes goods and related services covered in the report. Trends And Strategies This section describes the major trends shaping the global stem cell therapy market. This section highlights likely future developments in the market and suggests approaches companies can take to exploit these opportunities. Impact of COVID-19 This section describes the impact of COVID-19 on the stem cell therapy market. Global Market Size And Growth This section contains the global historic (2016-2021) and forecast (2021-2026), and (2026-2031) market values, and drivers and restraints that support and control the growth of the market in the historic and forecast periods. Regional Analysis This section contains the historic (2016-2021) and forecast (2021-2026, and 2026-2031) market values and growth and market share comparison by region. Segmentation This section contains the market values (2016-2031) and analysis for different segments. Regional Market Size and Growth This section contains the regions market size (2021), historic (2016-2021) and forecast (2021-2026, and 2026-2031) market values, and growth and market share comparison of countries within the region.This report includes information on all the regions Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East and Africa and major countries within each region.

The market overview sections of the report describe the current size of the market, background information, government initiatives, regulations, regulatory bodies, associations, corporate tax structure, investments, and major companies. Competitive Landscape This section covers details on the competitive landscape of the global stem cell therapy market, estimated market shares and company profiles for the leading players. Key Mergers And Acquisitions This section gives the information on recent mergers and acquisitions in the market covered in the report. This section gives key financial details of mergers and acquisitions which have shaped the market in recent years. Market Opportunities And Strategies This section includes market opportunities and strategies based on findings of the research.This section also gives information on growth opportunities across countries, segments and strategies to be followed in those markets.

It gives an understanding of where there is significant business to be gained by competitors in the next five years. Conclusions And Recommendations This section includes conclusions and recommendations based on findings of the research. This section also gives recommendations for stem cell therapy providers in terms of product/service offerings, geographic expansion, marketing strategies and target groups. Appendix This section includes details on the NAICS codes covered, abbreviations and currencies codes used in this report.

Scope Markets Covered: 1) By Type: Allogeneic Stem Cell Therapy; Autologous Stem Cell Therapy 2) By Cell Source: Adult Stem Cells; Induced Pluripotent Stem Cells; Embryonic Stem Cells 3) By Application: Musculoskeletal Disorders and Wounds & Injuries; Cancer; Autoimmune Disorders; Others 4) By End-Users: Hospitals And Clinics; Research Centers; Others

Companies Mentioned: Smith & Nephew Plc; Fujifilm Holding Corporation; Thermo Fisher Scientific Inc.; Takara Bio Inc; MEDIPOST Co., Ltd.

Countries: China; Australia; India; Indonesia; Japan; South Korea; USA; Brazil; France; Germany; UK; Russia

Regions: Asia-Pacific; Western Europe; Eastern Europe; North America; South America; Middle East; Africa

Time series: Five years historic and ten years forecast.

Data: Ratios of market size and growth to related markets; GDP proportions; expenditure per capita; stem cell therapy indicators comparison.

Data segmentations: country and regional historic and forecast data; market share of competitors; market segments.

Sourcing and Referencing: Data and analysis throughout the report is sourced using end notes.

Reasons to Purchase Gain a truly global perspective with the most comprehensive report available on this market covering 12 geographies. Understand how the market is being affected by the coronavirus and how it is likely to emerge and grow as the impact of the virus abates. Create regional and country strategies on the basis of local data and analysis. Identify growth segments for investment. Outperform competitors using forecast data and the drivers and trends shaping the market. Understand customers based on the latest market research findings. Benchmark performance against key competitors. Utilize the relationships between key data sets for superior strategizing. Suitable for supporting your internal and external presentations with reliable high-quality data and analysis. Read the full report: https://www.reportlinker.com/p06291564/?utm_source=GNW

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Story continues

Read the rest here:
Stem Cell Therapy Global Market Opportunities And Strategies To 2031 - Yahoo Finance

Confocal Microscope Market 2022 Analysis Trend, Applications, Growth, and Forecast to 2030 | Save 30% on this report – Taiwan News

Global Confocal Microscope Market is valued at approximately USD $million in 2021 and is anticipated to grow with a healthy growth rate of more than 4.5% over the forecast period 2022-2028.

The confocal microscope is a type of widefield fluorescence+ microscopy that produces high-resolution pictures of materials stained with fluorescent probes. Due to their tremendous benefits in image resolution, commercially made laser scanning confocal microscopes have achieved enormous popularity across the world. Because it allows photographs to be free of out-of-focus information, the method has acquired significant adoption in molecular imaging.

Download Free Sample of This Strategic Report :-https://reportocean.com/industry-verticals/sample-request?report_id=bw5794

Rising incidences of Microbial Keratitis and rising demand for Confocal Microscopy in the diagnosis of ophthalmic conditions have led to the adoption of Confocal Microscopes across the forecast period. In 2017, the Indian Department of Biotechnology published a guideline for stem cell and regenerative medicine that includes fundamental biology of all adult stem cells, early and late translational research, and the development of gene editing technologies for therapeutic applications.

Furthermore, growing number of collaborations among several prominent players to develop new and high-end products, propel the market opportunities for upcoming years. A partnership between India and Japan has been developed to assist stem cell and regenerative medicine research. Indian researchers will receive training at Kyoto Universitys Center for iPS Cell Research and Applications (CiRA). However, high price of Microscopes and lack of skilled professionals impede the growth of the market over the forecast period of 2022-2028.

The key regions considered for the global Confocal Microscope Market study include Asia Pacific, North America, Europe, Latin America, and Rest of the World. North America is leading the market share globally owing to factors such as huge investment in the research and development activities and rising prevalence of eye diseases. However, Asia Pacific is expected to be the fastest growing region due to rising demand for diagnostic centers and increasing number of healthcare facilities.

SPECIAL OFFER (Avail an Up-to 30% discount on this report :-https://reportocean.com/industry-verticals/sample-request?report_id=bw5794

Major market players included in this report are:

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming eight years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within each of the regions and countries involved in the study. Furthermore, the report also caters the detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, the report shall also incorporate available opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and Application offerings of key players. The detailed segments and sub-segment of the market are explained below:

Access full Report Description, TOC, Table of Figure, Chart, etc :-https://reportocean.com/industry-verticals/sample-request?report_id=bw5794

By Type:

Multi-Photon Microscopy

Confocal Disk Spinning

By End-user:

Hospitals

Diagnostic Laboratories

Academics & Research Institute

By Region:

North America

U.S.

Canada

Europe

UK

Germany

France

Spain

Italy

ROE

Asia Pacific

China

India

Japan

Australia

South Korea

RoAPAC

Latin America

Brazil

Mexico

Rest of the World

Access Full Report, here:-https://reportocean.com/industry-verticals/sample-request?report_id=bw5794

About Report Ocean: We are the best market research reports provider in the industry. Report Ocean believes in providing quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is a one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us: Report Ocean: Email:sales@reportocean.com Address: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 UNITED STATES Tel: +1 888 212 3539 (US TOLL FREE) Website:https://www.reportocean.com/

Read more here:
Confocal Microscope Market 2022 Analysis Trend, Applications, Growth, and Forecast to 2030 | Save 30% on this report - Taiwan News

BreakPoint: Is aging a ‘disease’ and other bioethical questions for Christians – Chattanooga Times Free Press

According to the writer of Proverbs, "death and life are in the power of the tongue." So is cultural change, which most often comes with efforts to change language use and the definitions of words. For example, Harvard Medical molecular biologist David Sinclair is combining innovation in the lab with innovation in language. In a recent CNN article, one of Sinclair's financial backers described the goal of his research as changing the definition of the word "aging." He wants to "make aging a disease."

Sinclair claims to have successfully interrupted the aging process in mice by turning adult cells back into stem cells. Some animals are designed with a similar capability, albeit in a more limited way think, for example, of an octopus regrowing a leg that has been cut off. Using that same idea, what Sinclair calls an "ancient regeneration system," he hopes to regenerate cells that deteriorate with age. Already, he has been able to repair ocular cells in older mice, allowing them to recover their "youthful" eyesight.

His ultimate aim, of course, is to develop anti-aging therapies for humans. Though some concern has been directed toward the safety of Sinclair's process, what goes largely unquestioned in media coverage is Sinclair's chief aim. In other words, as so much medical ethics goes these days, if we can do it, then we should.

Medical ethics from a Christian worldview perspective is not that simple.

Whenever Christians can affirm aspects of work like David Sinclair's, which attempts to overcome the consequences of the fall, we should. The Bible teaches that death is an enemy, and that humans were not made to die. And humans should recognize that the ingenuity and passion for exploration that often inspires medical progress are God-given.

To accuse people like Sinclair of "playing God," as if that were an insult, is not helpful. After all, according to Genesis 1 and 2, human beings were created by God to, in a sense, "play God." We are not to pretend that we are God, of course, but he did gift us with the ability to work alongside him to accomplish his purposes for the world he made. After the fall, he promises to eventually restore his creation, so our work alongside him continues. The mandate to build and create, tending the garden of his world, is to be done within the moral limits that reflect his character and how he created the world.

Within this framework, causing or hastening death is a great evil, but so can be attempts to avoid death "at all costs." Jesus' own death was an act of unprecedented evil but also only fully understood in the context of his obedience to the Father's will. Jesus lay down his life, and many Christians have followed in his footsteps. Thus, there are certain moral goods such as the will of God that are higher than avoiding death.

Keeping these sorts of things straight is essential to ethically pursuing and employing technologies, like those that promise to "reverse aging." In his book "Bioethics: A Primer for Christians," bioethicist and theologian Gilbert Meilaender counsels Christians to view the freedom to pursue medical progress not as freedom from restraints, such as death. Instead, we should consider ourselves free to work alongside God imitating him on the path he set out for human flourishing. This will mean, very often in fact, not doing (as God described the men who built the tower of Babel) "whatever comes into our minds to do."

Meilaender counsels Christians to fight the temptation to use medicine not merely as a way to care for our bodies but from the desire to control them. If the chief end of medical research and practice is to live on our own terms, we will inevitably make moral compromises along the way. It was the serpent who promised Eve that she could live as she wished but evade death, which was not only a lie but not sufficient justification for attempting to usurp the authority that only belongs to God.

The goal of medical research and practice should be to help people flourish in the bodies, times, places and limits that God has given us. From this beginning, Meilaender suggests that the "principle" which should "govern Christian compassion" is not to "minimize suffering," but to "maximize care."

Our purpose is not to avoid suffering or even death at all costs despite that they are effects of the fall we are called to oppose. Rather, we take into account that in God's mercy, even our suffering can be redeemed for good. We lament the hard realities of our fallen world, and we seek to understand them within the larger context of creation and resurrection. Thus, we know that death is not the end of life, nor is life only a prerequisite to death.

From BreakPoint, July 8, 2022; reprinted by permission of the Colson Center, breakpoint.org.

Visit link:
BreakPoint: Is aging a 'disease' and other bioethical questions for Christians - Chattanooga Times Free Press

Global Induced Pluripotent Stem Cell (iPSC) Market Report 2022: Rising Applications of iPSCs Fueling Industry Growth – ResearchAndMarkets.com -…

DUBLIN--(BUSINESS WIRE)--The "Global Induced Pluripotent Stem Cell (iPSC) Industry Report, 2022" report has been added to ResearchAndMarkets.com's offering.

Since the discovery of induced pluripotent stem cell (iPSC) technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and the first clinical trials employing human iPSC-derived cell types have been initiated.

iPSCs can be used to explore the causes of disease onset and progression, create and test new drugs and therapies, and treat previously incurable diseases.

Other applications of iPSCs include their use as research products, as well as their integration into 3D bioprinting, tissue engineering, and clean meat production. Technology allowing for the mass-production and differentiation of iPSCs in industrial-scale bioreactors is also advancing at breakneck speed.

iPSC Derived Clinical Trials

The first clinical trial using iPSCs started in 2008, and today, that number has surged worldwide. Most of the current clinical trials do not involve the transplant of iPSCs into humans, but rather, the creation and evaluation of iPSC lines for clinical purposes. Within these trials, iPSC lines are created from specific patient populations to determine if these cell lines could be a good model for a disease of interest.

The therapeutic applications of induced pluripotent stem cells (iPSCs) have also surged in recent years. Since the discovery of iPSCs in 2006, it took only seven years for the first iPSC-derived cell product to be transplanted into a human patient in 2013. Since then, iPSC-derived cells have been used within a rapidly growing number of preclinical studies, physician-led studies, and formal clinical trials worldwide.

Key Topics Covered:

1. Report Overview

2. Introduction

3. Current Status of iPSC Industry

3.1 Progress Made in Autologous Cell Therapy Using iPSCs

3.2 Manufacturing Timeline for Autologous iPSC-Derived Cell Products

3.3 Cost of iPSC Production

3.4 Automation in iPSC Production

3.5 Allogeneic iPSCs Gaining Momentum

3.6 Share of iPSC-Based Research Within the Overall Stem Cell Industry

3.7 Major Focus Areas of iPSC Companies

3.8 Commercially Available iPSC-Derived Cell Types

3.9 Relative Use of iPSC-Derived Cell Types in Toxicology Testing Assays

3.10 Currently Available iPSC Technologies

4. History of Induced Pluripotent Stem Cells (iPSCs)

5. Research Publications on iPSCs

6. iPSC: Patent Landscape Analysis

6.1 Legal Status of iPSC Patents

6.2 Patents by Assignee Organization Type

6.3 Ownership of Patent Families by Assignee Type

6.4 Top Inventors of iPSC Patents

6.5 Top Ten iPSC Inventors

6.6 Most Cited Five iPSC Patents

6.7 Leading Patent Filing Jurisdictions

6.8 Number of Patent Families by Year of Filing

6.9 Patents Representing Different Disorders

6.10 iPSC Patents on Preparation Technologies

6.11 Patents on Cell Types Differentiated from iPSCs

6.12 Patent Application Trends Disease-Specific Technologies

7. iPSC: Clinical Trial Landscape

7.1 Literature and Database Search

7.2 Number of iPSC Clinical Trials by Year

7.3 iPSC Study Designs

7.4 iPSC-Based Clinical Trials With Commercialization Potential

8. Research Funding for iPSCs

8.1 Value of NIH Funding for iPSC Research

8.2 Partial List of NIH Funded iPSC Research Projects in 2022

9. M&A, Collaborations & Funding Activities in iPSC Sector

10. Generation of Induced Pluripotent Stem Cells: An Overview

10.1 Reprogramming Factors

10.2 Integrating iPSC Delivery Methods

10.3 Non-Integrative Delivery Systems

10.4 Comparison of Delivery Methods for Generating iPSCs

10.5 Genome Editing Technologies in iPSC Generation

11. Human iPSC Banking

11.1 Cell Sources for iPSC Banking

11.2 Reprogramming Methods Used in iPSC Banking

11.3 Factors Used in Reprogramming in Different Banks

11.4 Workflow in iPSC Banks

11.5 Existing iPSC Banks

12. Biomedical Applications of iPSCs

12.1 iPSCs in Basic Research

12.2 iPSCs in Drug Discovery

12.3 iPSCs in Toxicology Studies

12.4 iPSCs in Disease Modeling

12.5 iPSCs in Cell-Based Therapies

12.6 Other Novel Applications of iPSCs

12.7 iPSCs in Animal Conservation

13. Market Overview

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/mg6l5h

Go here to read the rest:
Global Induced Pluripotent Stem Cell (iPSC) Market Report 2022: Rising Applications of iPSCs Fueling Industry Growth - ResearchAndMarkets.com -...

Gut bacteria nurture the immune system for cancer patients, a diverse microbiome can protect against dangerous treatment complications – The…

One promising treatment for patients with blood cancers is stem cell transplantation. Doctors completely eliminate the patients immune system by aiming chemotherapy, radiation or both at their bone marrow before replacing it with a donors immune system. Because the bone marrow produces blood and immune cells, completely substituting cancerous bone marrow with healthy cells could help the body reestablish a functioning immune system and replace cancerous blood cells.

This procedure is not without risks. A key complication hematologists like me worry about is graft-versus-host disease, where the donors immune system recognizes the patients body as foreign and launches an attack. Up to 50% of patients who receive a stem cell transplant develop graft-versus-host disease.

One unexpected part of the body that may play a key role in protecting transplant patients from complications, however, is their gut bacteria.

Alongside my colleagues Hana Andrlova and Marcel van den Brink, I study how the composition of your microbiome, or the microorganisms living in your body, can affect how well cancer treatments work. While previous studies have shown that disruptions to the diversity of organisms in the gut microbiome is linked to a higher risk of death after transplantation, the precise reasons for this are not clear.

In our recently published study, we found that gut bacteria help the immune system recover from stem cell transplants by nurturing two special types of immune cells that protect against complications.

To explore the relationship between gut bacteria and the immune system, we first needed to identify the types of bacteria present in a given microbiome. So we sequenced all the bacterial genes in the stool samples of 174 stem cell transplant patients. We then took blood samples from the same patients to identify which types of immune cells were circulating and how they were functioning.

We learned that a diverse intestinal microbiome after transplantation is associated with expansion of a particular type of cell called MAIT, or mucosal-associated invariant T cells. MAIT cells are linked to improved transplant outcomes like a lower risk of graft-versus-host disease and longer survival in both mice and people. We found that the more MAIT cells patients had in their blood after transplant, the longer they survived and the fewer their complications. Patients with the highest levels of MAIT cells had the lowest incidence of graft-versus-host disease.

The precise mechanism behind the protective effects of MAIT cells is unclear. But researchers do know that these cells require molecules that come from the process of producing riboflavin, or vitamin B2, in the body to develop and multiply. Turns out, these riboflavin derivatives are produced by the microbes in the gut.

We also found that high MAIT cell numbers were linked to the presence of another special population of T cells, V-delta-2, that are also stimulated by bacterial byproducts. Above-average levels of these cells were also associated with better survival and less graft-versus-host disease in transplant patients.

These findings suggest that one of the reasons why a healthy, diverse microbiome is linked to good results for stem cell transplant recipients could be that gut bacteria support the development of immune cells that protect against transplant complications like graft-versus-host disease.

Our next step was to figure out how these special T cells protect against transplant complications. We took blood samples from five patients who had high numbers of MAIT and V-delta-2 cells. We then used a technique called single-cell RNA sequencing to analyze thousands of individual cells and explore all the potential functions any particular cell type may have in the body.

When we compared the MAIT and V-delta-2 cells of transplant patients and healthy people, our findings were very surprising. We had originally hypothesized that genes linked with tissue repair would be active in these T cells that would explain why patients with high numbers of these cells do better after such intense treatment thats so tough on the body. Instead, we found that these cells had highly expressed genes involved in inflammatory processes with the capacity to induce cell damage sometimes necessary to fight off infections when the patients immune system is still recovering. This suggests that MAIT and V-delta-2 cells may be protecting patients from transplant complications in ways that we havent previously been aware of or understood.

Its possible that T cells that are activated by the microbiome like MAIT and V-delta-2 help reduce transplant complications by killing infected cells or cells involved in graft-versus-host disease. While we arent able to confirm this hypothesis with our study, future work may help scientists better understand the important links between the microbiome, the immune system and successful stem cell transplants for cancer patients.

Here is the original post:
Gut bacteria nurture the immune system for cancer patients, a diverse microbiome can protect against dangerous treatment complications - The...

Krabbe disease, which mostly affects newborns causes, symptoms, and treatment – CNBCTV18

Krabbe disease is one of many hundreds of inherited metabolic disorders. Named after the Danish neurologist Knud Krabbe, the disease causes progressive damage to the nervous system, eventually resulting in the death of the individual. The disease is common in newborns before they reach six months of age and treatment must start at the earliest. Most newborns affected by Krabbe disease do not reach the age of two.

Krabbe disease is caused due to genetic mutation on the 14th chromosome in an infant. A child needs to inherit two copies of the abnormal genome from both its parents, after which it has a 25 percent chance of inheriting both the recessive genes and developing the disease.

On inheriting the defective genome, the body doesnt produce enough of the enzyme galactosylceramidase (GALC). Galactosylceramidase is essential for breaking down unmetabolised lipids like glycosphingolipid and psychosine in the brain. These unmetabolised lipids are toxic to some of the non-neuron cells present in the brain.

Late-onset Krabbe disease, however, can be caused by a different genetic mutation which leads to a lack of a different enzyme, known as active saposin A.

Symptoms between early-onset and late-onset Krabbe disease differ slightly. Infants suffering from early-onset Krabbe disease suffer from symptoms like excessive irritability, difficulty swallowing, vomiting, unexplained fevers, and partial unconsciousness. Other common neuropathic symptoms include hypersensitivity to sound, muscle weakness, slowing of mental and motor development, spasticity, deafness, optic atrophy, optic nerve enlargement, blindness, and paralysis.

Late-onset Krabbe disease emerges with symptoms like the development of cross-eyes, slurred speech, slow development, and loss of motor functions.

The disease is diagnosed after a physician conducts a primary physical exam. A blood or skin tissue biopsy can test for GALC levels in the body and low levels can indicate the presence of Krabbe disease. Further testing through imaging scans (MRI), nerve conduction studies, eye examination, genetic testing and amniocentesis can also help diagnose the disease.

There is no cure for Krabbe disease. Treatment is mostly palliative in nature with a focus towards dealing with symptoms and providing supportive care. Experimental trials using hematopoietic stem cell transplant (HSCT), bone marrow transplantation, stem cell therapy, and gene therapy have seen some results in the small number of patients that they have been used on.

(Edited by : Shoma Bhattacharjee)

First Published:Jul 15, 2022, 06:32 AM IST

Original post:
Krabbe disease, which mostly affects newborns causes, symptoms, and treatment - CNBCTV18

Ola Landgren, MD, PhD, Highlights How DETERMINATION Trial Results Inform Use of RVd/Transplant in Newly Diagnosed Myeloma – Cancer Network

C. Ola Landgren, MD, PhD, a professor and leader of Experimental Therapeutics and Myeloma Service at the Sylvester Comprehensive Cancer Center, University of Miami Health System, in an interview with CancerNetwork highlighted key efficacy findings from the phase 3 DETERMINATION trial (NCT01208662) assessing the use of lenalidomide (Revlimid), bortezomib (Velcade), and dexamethasone (RVd) plus autologous stem cell transplant vs RVd alone, both with continuous lenalidomide maintenance, in patients with newly diagnosed multiple myeloma.1 Moreover, he highlights how the findings compare with similar research such as the phase 3 IFM/DFCI2009 trial (NCT01191060) which previously assessed RVd alone or with high-dose transplant followed by 1 year of lenalidomide maintenance in newly diagnosed multiple myeloma.2

Patients treated on DETERMINATION who received RVd alone had a median progression-free survival (PFS) of 46.2 months compared with 67.5 months in the transplant group (HR, 1.53; 95% CI, 1.23-1.91; P <.0001). The rates of partial response or better were 95.0% and 97.5% in each respective group. No overall survival benefit was noted in either arm (HR, 1.10; 95% CI, 0.73-1.65; P = .99).

Transcript:

The DETERMINATION study showed very similar [findings to the phase 3 IFM/DFCI2009 trial in] that there is a progression-free survival benefit following bone marrow transplant; it was found to be around 21 months. Thats a quite long time. But also, they showed that there is no survival difference [between the 2 treatment arms]. The follow-up time is only around 5 years in the DETERMINATION trial, which is slightly shorter [than IFM/DFCI2009] but confirms very similar results.

Another very important difference between the 2 studies was that in the DETERMINATION study, of the patients on the non-transplant arm [who progressed], a much lower proportion of those patients went to transplant [vs IFM/DFCI2009]. In the DETERMINATION study, it was in the range of 20% to 25% while in the IFM/DFCI2009 study it was 70% to 80%. Despite the fact that there were fewer patients who went to transplant at the time of relapse in the non-transplant up-front arm, you still see no survival difference. Of course, this raises the question [as to whether] you need to do a transplant upfront, do you need to delay it, or do you never need to do the transplant?

This is exactly what Joseph Mikhael, MD, [of the Translational Genomics Research Institute], talked about as the discussant at ASCO. He made a very good, balanced, and fair evaluation when he said that you can make a case for transplant. If you want to extend PFS, you can make a case against the transplant not showing survival difference. There were a lot of other nuances, [such as] the onset of second malignancies. There were 10 cases of [acute myeloid leukemia and myelodysplastic syndrome] in the transplant arm and none in the non-transplant arm. There were quality-of-life differences in favor of no transplant; patients had several months of worsening as expected of their quality of life [following] transplant. Mikhael summarize saying, Welcome to the future of myelomathe era of choice. It is no longer mandatory for patients to do transplant. And I agree with that.

See the article here:
Ola Landgren, MD, PhD, Highlights How DETERMINATION Trial Results Inform Use of RVd/Transplant in Newly Diagnosed Myeloma - Cancer Network

New cancer treatment changing outlook for those with blood cancers – WBAL TV Baltimore

Ten percent of all diagnosed cancers in the United States are blood cancers and they can be deadly. There are exciting new treatments and research happening in Baltimore that are giving patients hope."These therapies cure the patients that have no other treatment options. It's been a remarkable breakthrough," Dr. Aaron Rapoport, of the University of Maryland School of Medicine, said.Cutting-edge technology in cancer treatment will treat many types of cancers such as leukemia, lymphoma, and myeloma. Traditional treatments include chemotherapy, radiation, and stem cell therapy, but what if those treatments don't work? Now there is an immunotherapy for aggressive blood cancers that is seeing remarkable results.Chip Baldwin has a big laugh and immense love for his grandchildren."This is Kyle, he's about 3 1/2 years old and he lives in Florida. (My) granddaughter Maple. She and her family live in Fells Point. And this is (my) granddaughter Rosemary and she's a doll, and they call me Pop-pop," Baldwin said.Baldwin almost never met two of his grandchildren. In January 2018, he was told chemotherapy was no longer working to treat his lymphoma. He thought it was the end."Leaving (my wife) Angela and leaving the family, trying to figure out how they're going to get by," Baldwin said. He was out of options, or so he thought. Not willing to give up, his wife, Angela Baldwin, began researching and came across a promising new treatment."Probably the last treatment that I could have received. Had I not received it and had it not been positive to put me in remission, I probably wouldn't be talking to you today," Baldwin said.The treatment he received had just been approved by the U.S. Food and Drug Administration (FDA) months earlier. It's called "CAR T-cell Therapy." It uses the patient's own, re-engineered, immune cells to kill cancer. Rapoport helped pioneer the development of CAR T-cell at the University of Maryland Greenebaum Comprehensive Cancer Center. Baldwin was just the second patient here to receive it."The notion that one could perhaps harness the immune system, or educate the immune system, to better protect us from cancer, but also to recognize and fight against cancer, has been a goal for decades - centuries really," Rapoport said.It appears that goal has been reached. Here's how it works: The medical team extracts immune cells, called T-cells, out of the patient's blood. The cells are sent to a special lab in California, where scientists change the cells' DNA to put receptors on them called "CAR" - Chimeric Antigen Receptors. They enable the immune cells to recognize, hunt down and kill the cancer cells. The California lab then sends the now-re-engineered immune cells back to the Greenebaum Comprehensive Cancer Center."These are CAR T-cells growing in the flask here. These are CAR T-cells that were made in the lab," Dr. Djordje Atanackovic of the University of Maryland Medical Center, said. Under a microscope you can see spots on a cancer cell - those spots are the killer CAR T-cells. "You could use these right now to treat a patient, actually," Atanackovic said.For the final step, patients are admitted to the hospital and the medical team puts the T-cells back into the patient, where they multiply by the millions and destroy the cancer. For Baldwin, that was the day after Easter 2018."And, then about four months later, they determined that all the cancer cells had died, " Baldwin said."Being told that their scans are negative is a really overwhelming experience, not just for the patients, but for the families and also the nurses and physicians. The team members that are involved in their care," Rapoport said.When looking at CT scan images of two other lymphoma patients, you see black areas in the images on one is extensive cancer. The other image shows the same patient after CAR T-cell therapy and the cancer is gone. Right now, CAR T-cell Therapy is approved to treat aggressive blood cancers Lymphoma, B-cell Leukemia and Myeloma. But Atanackovic believes that's just the beginning."I'm pretty optimistic that in 10 years from now we'll have novel immunotherapies that we can't even imagine at this point for everyone, or at least most of our patients with cancer," Atanackovic said.Four years after his treatment and Baldwin is still in remission. He doesn't like the word "cure" because he's afraid it's bad luck. The word he keeps coming back to is: "Unbelievable. And even to this day, I kind of can't believe I'm in remission and I'm able to live my life. Since then, I've had two grandchildren and it's been wonderful. Had it not been for the University and the treatment, I would never have seen the two kids," Baldwin saidSo far, 250 patients have been treated with CAR T-cell Therapy at the University of Maryland, but it's not perfect and researchers are still working to improve it. The success rate for patients with aggressive lymphoma for example is 50% and some patients have side effects like flu-like symptoms, so they typically stay in the hospital for days or even weeks.Many may be wondering is this covered by insurance? The answer is yes. Keep in mind, right now it is approved by FDA as a second-line therapy, so you do have to try a different treatment first. But, immunotherapy like CAR-T is the future of cancer treatment and you're going to see more of it.

Ten percent of all diagnosed cancers in the United States are blood cancers and they can be deadly. There are exciting new treatments and research happening in Baltimore that are giving patients hope.

"These therapies cure the patients that have no other treatment options. It's been a remarkable breakthrough," Dr. Aaron Rapoport, of the University of Maryland School of Medicine, said.

Cutting-edge technology in cancer treatment will treat many types of cancers such as leukemia, lymphoma, and myeloma. Traditional treatments include chemotherapy, radiation, and stem cell therapy, but what if those treatments don't work? Now there is an immunotherapy for aggressive blood cancers that is seeing remarkable results.

Chip Baldwin has a big laugh and immense love for his grandchildren.

"This is Kyle, he's about 3 1/2 years old and he lives in Florida. (My) granddaughter Maple. She and her family live in Fells Point. And this is (my) granddaughter Rosemary and she's a doll, and they call me Pop-pop," Baldwin said.

Baldwin almost never met two of his grandchildren. In January 2018, he was told chemotherapy was no longer working to treat his lymphoma. He thought it was the end.

"Leaving (my wife) Angela and leaving the family, trying to figure out how they're going to get by," Baldwin said.

He was out of options, or so he thought. Not willing to give up, his wife, Angela Baldwin, began researching and came across a promising new treatment.

"Probably the last treatment that I could have received. Had I not received it and had it not been positive to put me in remission, I probably wouldn't be talking to you today," Baldwin said.

The treatment he received had just been approved by the U.S. Food and Drug Administration (FDA) months earlier. It's called "CAR T-cell Therapy." It uses the patient's own, re-engineered, immune cells to kill cancer.

Rapoport helped pioneer the development of CAR T-cell at the University of Maryland Greenebaum Comprehensive Cancer Center. Baldwin was just the second patient here to receive it.

"The notion that one could perhaps harness the immune system, or educate the immune system, to better protect us from cancer, but also to recognize and fight against cancer, has been a goal for decades - centuries really," Rapoport said.

It appears that goal has been reached. Here's how it works:

The medical team extracts immune cells, called T-cells, out of the patient's blood. The cells are sent to a special lab in California, where scientists change the cells' DNA to put receptors on them called "CAR" - Chimeric Antigen Receptors. They enable the immune cells to recognize, hunt down and kill the cancer cells. The California lab then sends the now-re-engineered immune cells back to the Greenebaum Comprehensive Cancer Center.

"These are CAR T-cells growing in the flask here. These are CAR T-cells that were made in the lab," Dr. Djordje Atanackovic of the University of Maryland Medical Center, said.

Under a microscope you can see spots on a cancer cell - those spots are the killer CAR T-cells.

"You could use these right now to treat a patient, actually," Atanackovic said.

For the final step, patients are admitted to the hospital and the medical team puts the T-cells back into the patient, where they multiply by the millions and destroy the cancer. For Baldwin, that was the day after Easter 2018.

"And, then about four months later, they determined that all the cancer cells had died, " Baldwin said.

"Being told that their scans are negative is a really overwhelming experience, not just for the patients, but for the families and also the nurses and physicians. The team members that are involved in their care," Rapoport said.

When looking at CT scan images of two other lymphoma patients, you see black areas in the images on one is extensive cancer. The other image shows the same patient after CAR T-cell therapy and the cancer is gone.

Right now, CAR T-cell Therapy is approved to treat aggressive blood cancers Lymphoma, B-cell Leukemia and Myeloma. But Atanackovic believes that's just the beginning.

"I'm pretty optimistic that in 10 years from now we'll have novel immunotherapies that we can't even imagine at this point for everyone, or at least most of our patients with cancer," Atanackovic said.

Four years after his treatment and Baldwin is still in remission. He doesn't like the word "cure" because he's afraid it's bad luck.

The word he keeps coming back to is: "Unbelievable. And even to this day, I kind of can't believe I'm in remission and I'm able to live my life. Since then, I've had two grandchildren and it's been wonderful. Had it not been for the University and the treatment, I would never have seen the two kids," Baldwin said

So far, 250 patients have been treated with CAR T-cell Therapy at the University of Maryland, but it's not perfect and researchers are still working to improve it.

The success rate for patients with aggressive lymphoma for example is 50% and some patients have side effects like flu-like symptoms, so they typically stay in the hospital for days or even weeks.

Many may be wondering is this covered by insurance? The answer is yes. Keep in mind, right now it is approved by FDA as a second-line therapy, so you do have to try a different treatment first. But, immunotherapy like CAR-T is the future of cancer treatment and you're going to see more of it.

Excerpt from:
New cancer treatment changing outlook for those with blood cancers - WBAL TV Baltimore