Author Archives: admin


Researchers make progress toward a stem cellbased therapy for blindness – Ophthalmology Times

What if, in people with blinding retinal disorders, one could simply introduce into the retina healthy photoreceptor cells derived in a dish from stem cells, and restore sight?

According to a news release form the University of Pennsylvania, it is a straightforward strategy to curing blindness, yet the approach has been met with a number of scientific roadblocks, including introduced cells dying rapidly or failing to integrate with the retina.

A new study, published in Stem Cell Reports, overcomes these challenges and marks significant progress toward a cell-based therapy. The work, led by a team at the University of Pennsylvania School of Veterinary Medicine, in collaboration with researchers at the University of Wisconsin-Madison, Childrens Hospital of Philadelphia, and the National Institutes of Healths National Eye Institute (NEI), introduced precursors of human photoreceptor cells into the retinas of dogs. A cocktail of immunosuppressive drugs enabled the cells to survive in the recipients retinas for months, where they began forming connections with existing retinal cells.

In this study, we wanted to know if we could, one, improve the surgical delivery of these cells to the subretinal space; two, image the cells in vivo; three, improve their survival; and four, see them migrate to the layer of the retina where they should be and start integrating, said William Beltran, a professor of ophthalmology at Penn Vet and senior author on the study. The answer to all those questions was yes.

Beltran and Gustavo Aguirre at Penn Vet have long been interested in addressing retinal blinding disorders and they have had great successes to date at producing corrective gene therapies for conditions with known causative genes. But for many cases of inherited retinal degeneration, a gene has not been identified. In other patients, the disease has progressed so far that no photoreceptor cells remain intact enough for gene therapy. In either scenario, a regenerative medicine approach, in which photoreceptors could be regrown outright, would be extremely valuable.

To develop a cell therapy, Beltrans team joined with groups led by John Wolfe of CHOP and Penn Vet; David Gamm at the University of Wisconsin-Madison; and Kapil Bharti at the NEI, in a consortium supported by the NEIs Audacious Goals Initiative for Regenerative Medicine. The partnership combined Beltrans teams expertise in canine models of retinal degeneration and vast experience in cell-based therapy approaches from the Wolfe, Gamm, and Bharti labs.

According to the news release, photoreceptor cells, which are made up of rods and cones, constitute a layer of the outer retina critical to initiating the process of vision, whereby the energy of light transforms into an electrical signal. To function properly, they must form a connection, or synapse, with cells of the inner retina to pass along the visual information. Thus, the goal of this cell therapy is to recreate this layer and enable it to integrate with the retinas other cell types in order to relay signals from one layer to the next.

In the current work, the team used stem cellderived precursors of human photoreceptor cells developed in the Gamm lab to serve as the basis of the cell therapy. In collaboration with the Bharti lab, they developed a new surgical approach to inject the cells, which were labeled with fluorescent markers, into the retinas of seven dogs with normal vision and three with a form of inherited retinal degeneration, then used a variety of non-invasive imaging techniques to track the cells over time.

The use of a large animal model that undergoes a naturally occurring form of retinal degeneration and has a human-size eye was instrumental to optimize a safe and efficient surgical procedure to deliver doses of cells that could be used in patients, Gamm said in the news release.

The researchers observed that cell uptake was significantly better in the animals with retinal degeneration compared to those with normal retinas.

What we showed was that, if you inject the cells into a normal retina that has its own photoreceptor cells, the retina is pretty much intact and serves as a physical barrier, so the introduced cells dont connect with the second-order neurons in the retina, the bipolar cells, Beltran noted in the news release. But in three dogs that were at an advanced stage of retinal degeneration, the retinal barrier was more permeable. In that environment, cells had a better ability to start moving into the correct layer of the retina.

Because the transplanted human cells could be interpreted by the dogs immune system as foreign entities, the researchers did what would be done in other tissue transplant procedures: They gave the dogs immunosuppressive drugs. The trio of medications had been tested previously by Oliver Garden, a veterinary immunologist with Penn Vet at the time of the study, who is now dean of Louisiana State University School of Veterinary Medicine.

Indeed, while the injected cell populations declined substantially in dogs that did not receive the immune-suppressing drugs, the cell numbers dipped but then sustained in the dogs that received the cocktail.

The university noted that further characterization of the introduced cells revealed evidence of potential synapses.

We saw that yes, some are appearing to shake hands with those second-order neurons, Beltran added in the release. There appeared to be contact.

The next stage for this project will be to continue optimizing the therapy, and then test whether there is a functional responsein other words, improved visionin its recipients.

Visit link:
Researchers make progress toward a stem cellbased therapy for blindness - Ophthalmology Times

New milestone organoid synthesis will boost disease and drug development research – RegMedNet

The concept of synthesizing small-scale human organs in lab dishes has matured from pure science fiction to legitimate bioscientific reality in recent years. However, the usefulness of organoids as a research tool for studying the digestive system quickly ran into a roadblock, due to the fact that these in-demand tissues remain difficult to create.

Organoids are stem cell-derived three-dimensional tissue cultures that are designed to exhibit detailed characteristics of organs or act as model organs to produce a specific cell type in laboratory conditions. However, when growing organoids, the yield from each batch of starting material can vary massively and can even fail to produce any viable organoids at all. This of course results in severe delays in their production and utilization in pre-clinical experiments that test the efficacy and safety of drugs.

In a recently published paper from Stem Cell Reports, researchers from Cincinnati childrens (OH, USA) have developed a new practice that overcomes the organoid production hurdle. This novel procedure is already being utilized within the medical facility to boost organoid studies. However, because the materials utilized can be frozen and thawed while still producing high-quality organoids, this discovery allows for the shipment of starter materials to other labs anywhere in the world, foreseeably leading to a dramatic increase in the utilization of human gastrointestinal organoids in medical research.

This method can make organoids a more accessible tool, explains the first author Amy Pitstick, manager of the Pluripotent Stem Cell Facility at Cincinnati Childrens. We show that the aggregation approach consistently produces high yields and we have proven that precursor cells can be thawed from cryogenic storage to produce organoids of the small intestine.

Using this approach will make it possible for many research labs to use organoids in their experiments without the time and expense of learning how to grow induced pluripotent stem cells (iPSCs), states corresponding author Chris Mayhew, director of the Pluripotent Stem Cell Facility. The ability to freeze the precursor cells also will allow labs to easily make organoids without having to start each new experiment with complicated and highly variable iPSC differentiation.

Generally, organoid creation begins with the collection of skin or blood cells, which are then transformed in the lab to become induced pluripotent stem cells. To create intestinal organoids, highly skilled lab professionals produce a flat layer of organ precursor cells known as the mid-hindgut endoderm.

Under the correct conditions, early-stage organoids, termed spheroids, autonomously develop into a three-dimensional ball of cells. These are then collected and placed into a growth medium, which supplies the required signals for the cells to develop into the specialized cell types of a human organ.

However, the quantity of spheroids produced in this manner has been unpredictable. The Cincinnati Childrens researchers discovered that they could harvest the unused precursor cell layer and employ a centrifuge to transport cells into hundreds of tiny wells housed on small plastic plates. This causes the creation of 3D cell aggregates, which may then be collected and utilized to produce organoids.

The experiment described in the research paper demonstrates that the spheroids created in this manner had no discernible differences from those that formed naturally. The scientists then stored samples of the progenitor cells in freezers. These cells generated viable spheroids after being frozen and aggregated.

The paper goes on to verify that these spheroids can be consistently grown into mature organoids, which can simulate organ function. In the case of this research, the mature organoids went on to mimic the function of the small intestine, large intestine and the antrum, the portion of the stomach that links to the intestine.

Although this development is a welcome and promising advance in organoid fabrication, years of research will be required to create organoids large enough and complex enough to be utilized as replacement tissue in transplant surgery. However, having access to a large number of readily manufactured organoids offers up numerous possibilities for medical study.

More labs will be able to create patient-specific organoids in order to evaluate drugcombination therapiesfor precision treatment of complex or rare disease states that necessitate personalized care. Scientists also conducting basic research to understand more about the genetic factors and molecular pathways at play in digestive tract diseases will be able to incorporate organoids in their experiments by procuring frozen spheroid precursors.

In his current effort to generate transplantable intestinal tissues, Michael Helmrath, Director of Clinical Translation for the Center for Stem Cell & Organoid Medicine (CuSTOM) at Cincinnati Childrens, has already begun employing materials made from this new method.

This is a great step forward for the field on many fronts, Helmrath says. To be able to reduce the complexity of the process and provide higher yields is beneficial to our work. And to be able to translate the methods to other labs will help move regenerative medicine forward.

Source: https://linkinghub.elsevier.com/retrieve/pii/S2213671122003599

Read more:
New milestone organoid synthesis will boost disease and drug development research - RegMedNet

Research discovery may help diagnose and treat cancer and brain disorders – EurekAlert

Researchers at Queens University Belfast have revealed how the pathway of an identified protein could lead to early diagnosis and targeted treatment for several cancers and brain disorders.

The team of researchers discovered how the journey or molecular pathway of an identified protein is both essential for brain development and howan alteration to its pathway could result in the spread of cancer.

The study, published today inNature Cell Biology, has revealed the molecular mechanisms of a timely and spatially controlled movement of cells that is essential for the migration of newborn neurons during brain development and can also cause the spread of cancer, or cancer metastasis throughout the body.

It is expected this discovery will have a huge impact on the fundamental understanding of cancer metastasis and brain development and could lead to earlier diagnosis and better treatments, the research authors said.

During brain development, neural stem cells give birth to neurons, which then migrate to specific locations within the brain where they form connections and mature in function. A defect in this process is known to cause several neurodevelopmental disorders. A better understanding of these events is key to decoding fundamental mechanisms of brain development and revealing novel diagnostics and therapeutic avenues for such disorders.

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six deaths. The majority of tumours are solid, except for a few cancer types of blood origin. Often by the time solid tumours are detected, some cells from the primary tumor have begun to spread to other parts of the body by a process called metastasis, giving rise to secondary tumors whose cells are often resistant to chemotherapy. While surgical removal, chemotherapy and other types of anti-tumour therapy can target the primary tumour, metastasis makes the outcome unpredictable and can lead to more aggressive relapse. It is crucial to understand the features of cancer in order to tackle it.

Epithelial to Mesenchymal Transition (EMT) is a particular molecular pathway that enables cell migration and is vital for early development processes including brain development as well as for wound healing later in life but is also used by cancer cells for metastasis. The research team identified a particular protein, ZNF827, which they identified as a critical regulator of EMT. The study shows how the journey or molecular pathway of the protein is both employed for migration of newborn neurons to proper places during brain development and also exploited by tumour cells to gain migration potential and thereby cause metastasize to different organs.

Lead Author, Dr Vijay Tiwari from the Wellcome-Wolfson Institute for Experimental Medicine at Queens University, said: Our study not only sheds light on the development of one of the most important organs in our body the brain but it also shows how the same protein that is key for brain development can also be the cause or target for the spread of cancer in the body, a real Jekyll and Hyde protein.

The process for migrating newborn neurons to proper places during brain development is the same process exploited by tumour cells to gain migration potential, causing the movement of cancer throughout the body, or cancer metastasis.

By identifying key regulators of these pathways, we open new opportunities for a therapeutic intervention against cancer and a better understanding of neurodevelopmental disorders involving defects in brain development.

The international team includes researchers from Queens University Belfast, Salk Institute for Biological Studies, Altos Labs, University of Montpellier, Karolinska Institutet, University Medical Center of the Johannes Gutenberg University Mainz and Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH (TRON gGmbH).

This study was supported by the Deutsche Forschungsgemeinschaft, Wilhelm Sander Stiftung and Innovation to Commercialisation of University Research programme.

Nature Cell Biology

Experimental study

Animals

'A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development'

9-Aug-2022

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

The rest is here:
Research discovery may help diagnose and treat cancer and brain disorders - EurekAlert

Stem Cell Alopecia Treatment Market Size, Scope, Revenue, Opportunities and Growth by 2028 Shanghaiist – Shanghaiist

New Jersey, United States Stem Cell Alopecia TreatmentMarket analysis is to capture an in-depth examination of an increase in the customer journeys, which have a huge impact on market categories. It does the market classification based on region; product type and end-user to ease the market players jobs. Major industries are able to obtain key data about the whole market scenario, find out market prospects and get huge help for business operations. It further aims at providing customers deeds and their purchasing nature towards particular product or service. This sort of Stem Cell Alopecia Treatment market report provides projected trends and presents industry size for major regions to help business players make the right business plan and obtain huge earnings. It contains measured and theoretical market variable predictions. It reveals the latest industry changes by classifying the market into different sections and sub-sections.

With the help of the latest industry trends, market share, and activities provided in this Stem Cell Alopecia Treatment market analysis helps key organizations in business expansion hugely. It aids to discover the proper visions in the global market by providing insights into customer behavior, current trends, competitor analysis, and market entry strategies for novel players and strategies followed by key players. It works as the beneficial tool for the operations of several businesses. It fulfills the clients requirements and demands to increase the gains in the business.

Get Full PDF Sample Copy of Report: (Including Full TOC, List of Tables & Figures, Chart) @https://www.verifiedmarketresearch.com/download-sample/?rid=15102

Key Players Mentioned in the Stem Cell Alopecia Treatment Market Research Report:

APEX Biologix, Belgravia Center, RepliCel, Riken Research Institute, Kerastem, Sanford Burnham Prebys Medical Discovery Institute.

Stem Cell Alopecia TreatmentMarket Segmentation:

Stem Cell Alopecia Treatment Market, By Indication

Male Pattern Baldness Female Pattern Baldness Others

This Stem Cell Alopecia Treatment market report assists a number of investors, shareholders as well as enterprises in understanding the tough areas of marketing ideas, technical development, key issues, and systematic analysis in order to accomplish long-term competitive gain in the industry. It goes on to talk about basic market facets along with market drivers, restraints, existing problems, forthcoming opportunities, and forecasts. This Stem Cell Alopecia Treatment market survey depicts a few exact customer insights in order to build technology strategies to make investment useful. It makes use of both primary and secondary methods to offer wide-ranging industry data to help out you in making business choices and introducing new items to the market.

Inquire for a Discount on this Premium Report@ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=15102

For Prepare TOC Our Analyst deep Researched the Following Things:

Report Overview:It includes major players of the Stem Cell Alopecia Treatment market covered in the research study, research scope, market segments by type, market segments by application, years considered for the research study, and objectives of the report.

Global Growth Trends:This section focuses on industry trends where market drivers and top market trends are shed light upon. It also provides growth rates of key producers operating in the Stem Cell Alopecia Treatment market. Furthermore, it offers production and capacity analysis where marketing pricing trends, capacity, production, and production value of the Stem Cell Alopecia Treatment market are discussed.

Market Share by Manufacturers:Here, the report provides details about revenue by manufacturers, production and capacity by manufacturers, price by manufacturers, expansion plans, mergers and acquisitions, and products, market entry dates, distribution, and market areas of key manufacturers.

Market Size by Type:This section concentrates on product type segments where production value market share, price, and production market share by product type are discussed.

Market Size by Application:Besides an overview of the Stem Cell Alopecia Treatment market by application, it gives a study on the consumption in the Stem Cell Alopecia Treatment market by application.

Production by Region:Here, the production value growth rate, production growth rate, import and export, and key players of each regional market are provided.

Consumption by Region:This section provides information on the consumption in each regional market studied in the report. The consumption is discussed on the basis of country, application, and product type.

Company Profiles:Almost all leading players of the Stem Cell Alopecia Treatment market are profiled in this section. The analysts have provided information about their recent developments in the Stem Cell Alopecia Treatment market, products, revenue, production, business, and company.

Market Forecast by Production:The production and production value forecasts included in this section are for the Stem Cell Alopecia Treatment market as well as for key regional markets.

Market Forecast by Consumption:The consumption and consumption value forecasts included in this section are for the Stem Cell Alopecia Treatment market as well as for key regional markets.

Value Chain and Sales Analysis:It deeply analyzes customers, distributors, sales channels, and value chain of the Stem Cell Alopecia Treatment market.

Key Findings:This section gives a quick look at the important findings of the research study.

For More Information or Query or Customization Before Buying, Visit @ https://www.verifiedmarketresearch.com/product/stem-cell-alopecia-treatment-market/

About Us: Verified Market Research

Verified Market Research is a leading Global Research and Consulting firm that has been providing advanced analytical research solutions, custom consulting and in-depth data analysis for 10+ years to individuals and companies alike that are looking for accurate, reliable and up to date research data and technical consulting. We offer insights into strategic and growth analyses, Data necessary to achieve corporate goals and help make critical revenue decisions.

Our research studies help our clients make superior data-driven decisions, understand market forecast, capitalize on future opportunities and optimize efficiency by working as their partner to deliver accurate and valuable information. The industries we cover span over a large spectrum including Technology, Chemicals, Manufacturing, Energy, Food and Beverages, Automotive, Robotics, Packaging, Construction, Mining & Gas. Etc.

We, at Verified Market Research, assist in understanding holistic market indicating factors and most current and future market trends. Our analysts, with their high expertise in data gathering and governance, utilize industry techniques to collate and examine data at all stages. They are trained to combine modern data collection techniques, superior research methodology, subject expertise and years of collective experience to produce informative and accurate research.

Having serviced over 5000+ clients, we have provided reliable market research services to more than 100 Global Fortune 500 companies such as Amazon, Dell, IBM, Shell, Exxon Mobil, General Electric, Siemens, Microsoft, Sony and Hitachi. We have co-consulted with some of the worlds leading consulting firms like McKinsey & Company, Boston Consulting Group, Bain and Company for custom research and consulting projects for businesses worldwide.

Contact us:

Mr. Edwyne Fernandes

Verified Market Research

US: +1 (650)-781-4080 UK: +44 (753)-715-0008 APAC: +61 (488)-85-9400 US Toll-Free: +1 (800)-782-1768

Email: sales@verifiedmarketresearch.com

Website:- https://www.verifiedmarketresearch.com/

Originally posted here:
Stem Cell Alopecia Treatment Market Size, Scope, Revenue, Opportunities and Growth by 2028 Shanghaiist - Shanghaiist

Guardian of the Genome and the WASp team up to repair DNA damage – Newswise

Newswise DNA replication and repair happens thousands of times a day in the human body and most of the time, people dont notice when things go wrong thanks to the work of Replication protein A (RPA), the guardian of the genome. Scientists previously believed this protein hero responsible for repairing damaged DNA in human cells worked alone, but a new study by Penn State College of Medicine researchers showed that RPA works with an ally called the WAS protein (WASp) to save the day and prevent potential cancers from developing.

The researchers discovered these findings after observing that patients with Wiskott-Aldrich syndrome (WAS) a genetic disorder that causes a deficiency of WASp not only had suppressed immune system function, but in some cases, also developed cancer.

Dr. Yatin Vyas, professor and chair of the Department of Pediatrics at Penn State College of Medicine and pediatrician-in-chief at Penn State Health Childrens Hospital, conducted prior research which revealed that WASp functions within an apparatus that is designed to prevent cancer formation. As a result, some cancer patients had tumor cells with a WASp gene mutation. These observations led him to hypothesize that WASp might play a direct role in DNA damage repair.

WAS is very rare less than 10 out of every 1 million boys has the condition, said Vyas, who is also the Childrens Miracle Network and Four Diamonds Endowed Chair. Knowing that children with WAS were developing cancers and also observing WASp mutations in tumor cells of cancer patients, we decided to investigate whether WASp plays a role in DNA replication and repair.

The researchers conducted protein-protein binding experiments with purified human WASp and RPA and discovered that WASp forms a complex with RPA. Further tests revealed that WASp directs RPA to the site where single DNA strands are broken and need to be repaired. According to Vyas, without the complex, DNA repair happens by secondary mechanisms, which can lead to cancer. This novel function of WASp is conserved through evolution, from yeast to humans. The results of the study were published in Nature Communications.

In the future, Vyas and colleagues will continue to study how their observations about this RPA-WASp complex formation can be applied to treating cancer patients. Vyas said it is possible that gene therapy or stem cell therapy could restore WASp function and may prevent further tumor growth and spread. He also mentioned the possibility of using WASp dysfunction as a biomarker for identifying patients at risk for autoimmune diseases and cancers.

This complex weve discovered plays a critical role in preventing the development of cancers during DNA replication, said Vyas. Translating this discovery from bench to bedside could mean that someday we have another tool for predicting and treating cancers and autoimmune diseases.

Seong-Su Han, Kuo-Kuang Wen of Penn State College of Medicine and formerly of the University of Iowa Stead Family Childrens Hospital; Mara Garca-Rubio and Andrs Aguilera of University of Seville-CSIC-University Pablo de Olavide; Marc Wold of University of Iowa Carver College of Medicine; and Wojciech Niedzwiedz of the Institute of Cancer Research also contributed to this research. The authors declare no conflicts of interest.

This research was supported in part by the National Institutes of Health, the ICR Intramural Grant and Cancer Research UK Programme, the European Research Council and the Spanish Ministry of Science and Innovation grant, the University of Iowa Dance Marathon research award, the Research Bridge Award from the Carver College of Medicine University of Iowa and endowments from the Mary Joy & Jerre Stead Foundation and from Four Diamonds and Childrens Miracle Network. The content is solely the responsibility of the authors and does not necessarily represent the official views of the study sponsors.

Read the full manuscript in Nature Communications.

About Penn State College of MedicineLocated on the campus ofPenn State Health Milton S. Hershey Medical Centerin Hershey, Pa.,Penn State College of Medicineboasts a portfolio of more than $150 million in funded research. Projects range from development of artificial organs and advanced diagnostics to groundbreaking cancer treatments and understanding the fundamental causes of disease. Enrolling its first students in 1967, the College of Medicine has more than 1,700 students and trainees in medicine, nursing, the health professions and biomedical research on its two campuses.

Visit link:
Guardian of the Genome and the WASp team up to repair DNA damage - Newswise

COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation -…

Study cohort

In total, 38 individuals receiving SARS-CoV-2 vaccinations were recruited at the Freiburg University Medical Center, Germany. Of those, blood was collected from 31 individuals vaccinated three times with the mRNA vaccines bnt162b/Comirnaty or mRNA-1273/Spikevax and 5 individuals receiving a 4th vaccination. All vaccinees did not have a history of SARS-CoV-2 infection prior to inclusion confirmed by seronegativity for anti-SARS-CoV-2 nucleocapside IgG (anti-SARS-CoV-2 N IgG). Moreover, blood was collected from 13 individuals with SARS-CoV-2 breakthrough infections after a 3rd mRNA vaccination. Breakthrough infections were confirmed by positive PCR-testing from oropharyngeal swab. All 13 individuals with breakthrough infections included in this study had mild symptoms without respiratory insufficiency (according to WHO guidelines26). Characteristics of the participants are summarized in Supplementary Table1, including the results of the HLA-genotyping performed by next-generation sequencing.

Written informed consent was obtained from all study participants. The study was conducted in accordance to federal guidelines, local ethics committee regulations (Albert-Ludwigs-Universitt, Freiburg, Germany; vote: 322/20, 21-1135 and 315/20) and the Declaration of Helsinki (1975).

PBMCs were isolated from venous blood samples collected in EDTA blood collection tubes by density centrifugation with lymphocyte separation medium (Pancoll separation medium, PAN Biotech GmbH). PBMCs were stored at 80C until further processing. The cells were thawed in prewarmed RPMI cell culture medium supplemented with 10% fetal calf serum, 1% penicillin/streptomycin, 1.5% 1M HEPES (all purchased from Thermo Scientific) and 50U/mL Benzonase (Sigma).

Sequence homology was analyzed in Geneiousversion11.0.5 (https://www.geneious.com/) using Clustal Omega version1.2.2 alignment with default settings27. Reference genome of human ancestral SARS-CoV-2 (MN908947.3) was obtained from NCBI database. Genome sequences of SARS-CoV-2 variants of concern (VOCs) B.1, B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.529 BA.1 and B.1.1.529 BA.2 were identified via CoVariants (https://covariants.org/). Spike epitopes in ancestral strain and all VOCs were aligned according to their homology on an amino acid level.

Peptides were manufactured with an unmodified N-terminus and an amidated C-terminus with standard Fmoc chemistry (Genaxxon Bioscience). All peptides showed a purity of >70%. To generate tetramers, SARS-CoV-2 spike peptides (A*01/S865: LTDEMIAQY, A*02/S269: YLQPRTFLL) were loaded on biotinylated HLA class I (HLA-I) easYmer (immunAware) according to manufacturers instructions. Subsequently, peptide-loaded-HLA class I monomers were tetramerized with phycoerythrin (PE)-conjugated streptavidin according to the manufacturers instructions.

1.5 106 PBMCs were stimulated with the spike protein-derived peptides A*01/S865 or A*02/S269 and anti-CD28 monoclonal antibody (0.5g/mL) for 14 days in RPMI cell culture medium supplemented with rIL-2 (20 IU/ml, StemCell Technologies). At day 4, 7 and 11, 50% of the culture medium was exchanged with freshly prepared medium containing 20 IU/mL rIL-2. After 14 days, PBMCs were stimulated with peptides again, and stained for CD107a for 1h at 37C to analyze degranulation. Subsequently, brefeldin A (GolgiPlug, 0.5l/mL) and monensin (GolgiStop, 0.5l/mL) (all BD Biosciences) were added and incubation continued for four more hours, followed by surface and intracellular staining with anti-IFNy, anti-TNF and anti-IL-2-specific antibodies. For calculation of the expansion capacity and to assess the cytotoxic capacity of the expanded cells, peptide-loaded HLA class I tetramer staining was performed together with intracellular staining of Granzyme B, Granzyme K, Perforin and Granulysin.

CD8+ T cells targeting spike epitopes were enriched as described previously28. In brief, 5 106 to 20 106 PBMCs were stained with PE-coupled peptide-loaded HLA class I tetramers for 30min at room temperature followed by incubation with magnetic anti-PE microbeads. Subsequent positive selection of magnetically labelled cells was achieved by using MACS technology (Miltenyi Biotec) according to the manufacturers protocol. The enriched spike-specific CD8+ T cells were analyzed using multicolor flow cytometry. Cell frequencies were calculated as previously described28. Of note, only samples with 5 non-nave spike-specific CD8+ T cells were included in subsequent analyses. Accordingly, the detection limit of spike-specific CD8+ T cells in this study was 0.25 1 106, depending on the initial cell input. This cut-off number has been applied and validated in different studies on antigen-specific T cells and has shown to generate reproducible results3,11,29,30.

Antibodies used for multiparametric flow cytometry are listed in Supplementary Table2. To facilitate staining of intranuclear and cytoplasmic targets, FoxP3/Transcription Factor Staining Buffer Set (Thermo Fisher) and Fixation/Permeabilization Solution Kit (BD Biosciences) were used, respectively. Finally, cells were fixed in 2% paraformaldehyde (Sigma) and samples were analyzed on FACSCanto II or LSRFortessa with FACSDiva software version 10.6.2 (BD), or CytoFLEX (Beckman Coulter) with CytExpert Software version 2.3.0.84. Further analyses of the data were performed using FlowJo version 10.6.2 (Treestar). Phenotypical analyses were based on 5 106 to 20 106 PBMCs that were used as an input number for the magnetic bead-based enrichment of spike-specific CD8+ T cells.

For dimensionality reduction, flow cytometry data were analyzed with R version 4.1.1 and the Bioconductor CATALYST package (release 3.13)31. Initially, viable and tetramer-positive CD8+ T cells (or subsets of those) were identified using FlowJo 10 in two separate multiparametric flow cytometry panels (activation panel: HLA-DR, BCL-2, PD-1, CD137, Ki67, TCF-1, EOMES, T-BET, TOX, CD38, CD45RA, CCR7; differentiation panel: CD45RA, CCR7, CD27, CD28, CD127, CD11a, CD57, CXCR3, CD95, CD57, CD39, KLRG1, PD-1). To facilitate visualization of the dimensionality reduction by t-SNE and diffusion map analysis, cell counts were sampled down to at least 20 cells per sample, and marker expression intensities were transformed by arcsinh-transformation with a cofactor of 150.

Determination of SARS-CoV-2-specific antibodies was performed by using the Euroimmun assay Anti-SARS-CoV-2-QuantiVac-ELISA (IgG) for detecting anti-SARS-CoV-2 spike IgG (anti-SARS-CoV-2 S IgG; <35.2 BAU/mL: negative, 35.2 BAU/mL: positive) and the Mikrogen assay recomWell SARS-CoV-2 (IgG) for detecting anti-SARS-CoV-2 N IgG (detection limit, 24a.u.ml1) according to the manufacturers instructions. Data were collected with the SparkControl Magellan software version2.2.

Samples of vaccinated individuals and those with breakthrough infections were tested in a plaque reduction neutralization assay as previously described3. In brief, VeroE6 cells were seeded in 12-well plates at a density of 4 105 cells per well. Serum samples were diluted at ratios of 1:16, 1:32, 1:64, 1:128, 1:256, 1:512 and 1:1024 in a total volume of 50l PBS. For each sample, a serum-free negative control was included. Diluted sera and negative controls were subsequently mixed with 90 plaque-forming units (PFU) of authentic SARS-CoV-2 (either B.1, B.1.617.2 (delta) and B.1.1.529 BA.1 (omicron)) in 50l PBS (1,600 PFU/mL) resulting in final sera dilution ratios of 1:32, 1:64, 1:128, 1:256, 1:512, 1:1024 and 1:2048. After incubation at room temperature for 1h, 400l PBS was added to each sample and the mixture was subsequently used to infect VeroE6 cells 24h after seeding. After 1.5h of incubation at room temperature, inoculum was removed and the cells were overlaid with 0.6% Oxoid-agar in DMEM, 20mM HEPES (pH 7.4), 0.1% NaHCO3, 1% BSA and 0.01% DEAE-Dextran. Cells were fixed 72h after infection using 4% formaldehyde for 30min and stained with 1% crystal violet upon removal of the agar overlay. PFU were counted manually. Plaques counted for serum-treated wells were compared to the average number of plaques in the untreated negative controls, which were set to 100%. Calculation of PRNT50 values was performed using a linear regression model in GraphPad Prism 9 (GraphPad Prism Software).

GraphPad Prism software version 9.3.1 was used for statistical analysis. Statistical significance was assessed by Kruskal-Wallis test, one-way ANOVA with mixed-effects model, two-way ANOVA with full model and main model. Statistical analysis was performed for A*01/S865 (n=7) and A*02/S269 (n=8) longitudinally analyzed CD8+ T cell responses in Figs.1a, b, 3c, 4a, b and Supplementary Figs.2a, 5ac, 7ce for n=28 subjects longitudinally followed in Fig.2a, for A*01/S865 (n=2) and A*02/S269 (n=3) T cell responses longitudinally followed in Fig.2c, for n=26 subjects in Fig.2b, for n=6 prepandemic samples Supplementary Fig.1c, for n=2 subjects in Supplementary Fig.3c, for n=7 at 3 months after 2nd vaccination, n=11 at 9 months after 2nd vaccination and n=11 at 3 months after 3rd vaccination in Fig.3a and Supplementary Fig.4b, for n=4 at 3 months after 2nd vaccination, n=8 at 9 months after 2nd vaccination and n=10 at 3 months after 3rd vaccination in Supplementary Fig.4b, for A*01/S865 (n=7) and A*02/S269 (n=6) longitudinally analyzed CD8+ T cell responses in Fig.3d, for n=8 at 3 months after 2nd vaccination, n=12 at 9 months after 2nd vaccination and n=11 at 3 months after 3rd vaccination in Fig.3b, for n=4 in Supplementary Fig.6a, for A*01/S865 (n=2) and A*02/S269 (n=2) longitudinally analyzed CD8+ T cell responses in Supplementary Fig.6b, for n=10 at 3 months after 2nd vaccination, n=12 at 9 months after 2nd vaccination and n=11 at 3 months after 3rd vaccination in Fig.4c, for n=10 at 3 months after 2nd vaccination, n=11 at 9 months after 2nd vaccination and n=11 at 3 months after 3rd vaccination in Fig.4d, for n=6 at 3 months after 2nd vaccination, n=12 at 9 months after 2nd vaccination and n=10 at 3 months after 3rd vaccination in Fig.4e, for n=6 at 3 months after 2nd vaccination, n=12 at 9 months after 2nd vaccination and n=11 at 3 months after 3rd vaccination in Fig.4f, for Omicron infection n=12, Delta infection n=2 and 4th vaccination n=5 longitudinally analyzed T-cell responses in Fig.5a, for Omicron infection n=11, Delta infection n=2 and 4th vaccination n=4 analyzed T cell responses in Fig.5b and in peak response in Supplementary Fig.8a, for Omicron infection n=12, Delta infection n=2 and 4th vaccination n=3 longitudinally analyzed T cell responses in Fig.6c, for Omicron infection n=11, Delta infection n=1 and 4th vaccination n=3 in Fig.6d, for Omicron infection n=6, Delta infection n=2 and 4th vaccination n=4 analyzed T cell responses after 1 month in Supplementary Fig.8a and Supplementary Fig.9b, for Omicron infection n=6, Delta infection n=2 and 4th vaccination n=4 analyzed T cell responses in Supplementary Fig.9a.

Further information on research design is available in theNature Research Reporting Summary linked to this article.

See the original post here:
COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation -...

‘Amazing’ teenager needs stem cell donation to survive leukaemia – Sky News

The family of a teenager with leukaemia have urged people to sign up to the stem cell register, as a transplant is his only chance of survival.

The call for help from 16 to 30-year-old males is being made by the family of 14-year-old Daniel Greer, of Newry, County Down, who was diagnosed with acute myeloid leukaemia two months ago.

Doctors have said his only chance of survival is with a stem cell donation which would help rebuild his immune system.

Daniel has been staying at the Royal Belfast Hospital for Sick Children since his diagnosis and is being treated with aggressive chemotherapy.

Young men make up more than half of all stem cell transplants for blood cancer and blood disorder patients, but they make up just 18% of the register, according to the Anthony Nolan blood cancer charity, which is helping with the international appeal - dubbed the DoItForDaniel campaign.

His mother, Anne Greer, said: "Daniel is an amazing, bright young man who lights up any room he walks into.

"His wicked sense of humour keeps our spirits up, even now while he's in hospital receiving chemotherapy.

Households already owe 1.3bn to energy suppliers - even before winter bill hikes set in

UK weather latest updates: Fears number of deliberate fires will rocket in heatwave - while charity warns of damage to important landscapes and wildlife

Majority of babies born in England and Wales in 2021 were out of wedlock, new statistics reveal

"I know he's really proud that his story is inspiring people to sign up to the stem cell register.

"Those people will potentially help him, as well as many other people around the world who desperately need a stem cell transplant like Daniel."

Daniel complained of back and neck pain before a series of blood tests confirmed his illness.

Aggressive chemotherapy is being used to place him into remission, so he may be able to receive a transplant.

Only one in four people will find a match within their family. However, Daniel's older brother, James, is not a match and so he needs a stem cell transplant from an unrelated donor.

Home town support has so far included encouragement from pharmacies in Newry for people to sign up to the register.

There has also been an awareness-raising drive about stem cell donation at Belfast International Airport.

Anthony Nolan chief executive Henny Braund said: "Finding his matching donor would mean everything to Daniel and his family. We are committed to supporting Daniel as he waits for news of the donor who could save his life.

"Last year over 1,300 people around the world with blood cancer or a blood disorder were given a second chance of life because of the wonderful people that are signed up to the Anthony Nolan register.

"But too many people, like Daniel, are told there is no matching donor for them.

"Signing up to the register is quick and simple, and we urge anyone who is in good general health, especially young men aged 16-30, to come forward and potentially save the life of someone like Daniel."

People aged 16-30 can go online to join the Anthony Nolan register.

Read the original here:
'Amazing' teenager needs stem cell donation to survive leukaemia - Sky News

Factors that affect haemoglobin levels and how to detect when it’s low – Jamaica Gleaner

HAEMOGLOBIN IS a protein in your red blood cells. Your red blood cells carry oxygen throughout your body. If you have a condition that affects your bodys ability to make red blood cells, your haemoglobin levels may drop. Low haemoglobin levels may be a symptom of several conditions, including different kinds of anaemia and cancer.

If a disease or condition affects your bodys ability to produce red blood cells, your haemoglobin levels may drop. When your haemoglobin level is low, it means your body is not getting enough oxygen, making you feel very tired and weak.

Normal haemoglobin levels are different for men and women. For men, a normal level ranges between 14.0 grams per decilitre (gm/dL) and 17.5 gm/dL. For women, a normal level ranges between 12.3 gm/dL and 15.3 gm/dL. A severe low-haemoglobin level for men is 13.5 gm/dL or lower. For women, a severe low haemoglobin level is 12 gm/dL.

Your doctor diagnoses low haemoglobin by taking samples of your blood and measuring the amount of haemoglobin in it. This is a haemoglobin test. They may also analyse different types of haemoglobin in your red blood cells, or haemoglobin electrophoresis.

Several factors affect haemoglobin levels and the following situations may be among them:

Your body produces red blood cells and white blood cells in your bone marrow. Sometimes, conditions and diseases affect your bone marrows ability to produce or support enough red blood cells.

Your body produces enough red blood cells, but the cells are dying faster than your body can replace them.

You are losing blood from injury or illness. You lose iron any time you lose blood. Sometimes, women have low haemoglobin levels when they have their periods. You may also lose blood if you have internal bleeding, such as a bleeding ulcer.

Your body cannot absorb iron, which affects your bodys ability to develop red blood cells.

You are not getting enough essential nutrients like iron and vitamins B12 and B9.

Your bone marrow produces red blood cells. Diseases, conditions and other factors that affect red blood cell production include:

Lymphoma: This is a term for cancers in your lymphatic system. If you have lymphoma cells in your bone marrow, those cells can crowd out red blood cells, reducing the number of red blood cells.

Leukaemia: This is cancer of your blood and bone marrow. Leukaemia cells in your bone marrow can limit the number of red blood cells your bone marrow produces.

Anaemia: There are many kinds of anaemias involving low-haemoglobin levels. For example, if you have aplastic anaemia, the stem cells in your bone marrow dont create enough blood cells. In pernicious anaemia, an autoimmune disorder keeps your body from absorbing vitamin B12. Without enough B12, your body produces fewer red blood cells.

Multiple Myeloma: This causes your body to develop abnormal plasma cells that may displace red blood cells.

Chronic Kidney Disease: Your kidneys dont produce the hormone that signals to your bone marrow to make red blood cells. Chronic kidney disease affects this process.

Antiretroviral medications: These medications treat certain viruses. Sometimes these medications damage your bone marrow, affecting its ability to make enough red blood cells.

Chemotherapy: Chemotherapy may affect bone marrow cells, reducing the number of red blood cells your bone marrow produces.

Doctors treat low haemoglobin by diagnosing the underlying cause. For example, if your haemoglobin levels are low, your healthcare provider may do tests that reveal you have iron-deficiency anaemia. If that is your situation, they will treat your anaemia with supplements. They may recommend that you try to follow an iron-rich diet. In most cases, treating the underlying cause of anaemia will bring the haemoglobin level up.

Many things can cause low haemoglobin, and most of the time you cannot manage low haemoglobin on your own. But eating a vitamin-rich diet can help maintain your red blood cells. Generally, a balanced diet with a focus on important nutrients is the best way to maintain healthy red blood cells and haemoglobin.

keisha.hill@gleanerjm.comSOURCE: Centres for Disease Control and Prevention

Here is the original post:
Factors that affect haemoglobin levels and how to detect when it's low - Jamaica Gleaner

Why Glucose Restrictions Are Essential in Treating Cancer – The Epoch Times

The procedure recommended by most doctors might not always be a good option, as it could turn a potentially benign situation into a malignant one.

Thomas Seyfried, Ph.D., professor in the biology department at Boston College, is a leading expert and researcher in the field of cancer metabolism and nutritional ketosis. His book, Cancer as a Metabolic Disease: On the Origin, Management and Prevention of Cancer is a foundational textbook on this topic, and in August 2016, he received the Mercola.com Game Changer Award for his work.

Here, we discuss the mechanisms of cancer and the influence of mitochondrial function, which plays a crucial role in the development and treatment of this disease. Hislandmark cancer theory is available as a free PDF.

Many of his views are now encapsulated in his most paper,1Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis, published online December 27, 2018. Hes also published a number of other papers2,3,4on the metabolic underpinnings of cancer.

The paper is a review and hypothesis paper identifying the missing link in Otto Warburgs central theory,Seyfried explains. [Warburg] defined the origin of cancer very accurately back in the 1920s, 30s, 40s and 50s in his work in Germany. Basically, he argued and provided data showing that all cancer cells, regardless of tissue origin, were fermenters. They fermented lactic acid from glucose as a substrate.

Even in the presence of oxygen, these cells were fermenting. This is clearly a defect in oxidative phosphorylation. The problem is that for decades, people said Warburg was wrong mainly because we see a lot of cancer cells take up oxygen and make adenosine triphosphate (ATP) from within the mitochondria People began to question, If cancer cells have normal respiration, why would they want to use glucose as a fermentable fuel?

The whole concept became distorted The cancer cells simply choose to ferment rather than respire. Now, of course, if you look under the electron microscope at majority of cancers, youll see that the mitochondria are defective in a number of different ways. Their structures are abnormal. The numbers are abnormal. There are many abnormalities of mitochondria seen directly under electron microscopy. Clearly, Warburg was not wrong.

Before we delve into the meat of how cancer actually occurs it would be good to review a diagnostic strategy that nearly all of us are offered when confronted with a cancer diagnosis. It is vital to understand that this may not be your best strategy and that for many it would be wise to avoid the biopsy.

Seyfried warns against doing biopsies, as this procedure may actually cause the cancer to spread. A tumor is basically a group of proliferating cells in a particular part of your body. For purposes of diagnosis, a small biopsy sample will often be taken to ascertain whether the tumor is benign or malignant.

The problem is that when you stab into the cancer microenvironment to remove a part of the tissue, it creates a wound in that microenvironment that in turn elicits the invasion by macrophages and other immune cells.

If you already have an acidic microenvironment, you run the risk of causing a fusion hybridization event in that microenvironment between your macrophages and cancer stem cells (as discussed below). This could turn a potentially benign situation into a malignant one, and if the tumor is malignant, stabbing into it could make a bad situation worse.

The question is, what is the value of doing a biopsy in the first place? We take biopsies of breast tissue to get a genomic readout of the different kinds of mutations that might be in the cells. Now, if cancer is not a genetic disease and the mutations are largely irrelevant, then it makes no sense to do that in the first place. If the tumor is benign, why would you want to stab it? If the tumor is malignant, why would you ever want to stab it?

I came to this view by reading so many articles in the literature based on brain cancer, breast cancer, colon cancer, liver cancer showing how needle biopsies have led to the dissemination of these tumor cells, putting these people at risk for metastatic cancer and death,Seyfried says.

In metabolic therapy you would not touch the tumor; you would not disturb the microenvironment. By leaving it alone, you allow the tumor to shrink and go away.

When you start to look at this as a biological problem, many of the things that we do in cancer make no sense. We have, in brain cancer, people say, You have a very low-grade tumor. Lets go in and get it out. What happens is you go in and get it out, and then the following year it turns into a glioblastoma.

How did that happen? Well, you disturbed the microenvironment. You allowed these cells that are marginally aggressive to become highly aggressive. Then you lead to the demise of the patient,Seyfried says.

That happens significantly because its called secondary glioblastoma arising from therapeutic attempt to manage a low-grade tumor. The same thing can happen with all these different organs. You stab breast tumors, you stab colon tumors, you run the risk of spreading the cells

My argument is the following: If the patient has a lump, whether its in the breast, in the colon, lung or wherever or a lesion of some sort, that should be the cue to do metabolic therapy.

Do metabolic therapy first. In all likelihood, it will shrink down and become less aggressive. Then the option becomes, Should we debulk completely rather than doing some sort of a biopsy? We want to reduce the risk, because if we can catch the whole tumor completely, then we dont run the risk of spreading it

In our procedure, you bring the body back into a very high state of metabolic balance, and then you strategically go and degrade the tumors slowly without harming the rest of the body.

Radiation, chemo and the strategies that were using today dont do this. Theyre based on the gene theory of cancer that genetic mutations are causing the cell cycle to grow out of control. Well, this is not the case. Again, a lot of these toxic procedures need to be rethought, reanalyzed in my mind.

In biology, structure determines function. This is an evolutionarily conserved concept. So, how can mitochondria be structurally abnormal in tissue, yet have normal respiration? As Seyfried notes, this doesnt make sense. Confusion has arisen in part because many study cancer in culture, and make profound statements and comments regarding what happens in culture, Seyfried says.

If you look at cancer cells in culture, many of them do take in oxygen and make ATP, but at the same time, theyre fermenting. This was the conundrum. They called it the Warburg Effect. Theyre fermenting, but many people at the same time thought their respiration was normal.

This was the main problem with Warburgs theory. But Warburg clearly said in his papers [that] its not the fact that they take in oxygen; its how much ATP they can generate from oxidative phosphorylation, which is the normal respiratory capacity of the mitochondria.

As explained by Seyfried, if you measure ATP and look at oxygen consumption in tumor cells, it appears theyre making ATP and taking in oxygen, therefore, their respiration is assumed to be normal. However, when you look at the tissues in cancer patients, the mitochondria are abnormal.

What I and Dr. Christos Chinopoulos from Semmelweis University in Budapest, Hungary, who is the world-leading expert on mitochondrial physiology and biochemistry realized [was] that the mitochondria of tumor cells are actually fermenting amino acids, glutamine in particular. Theyre not respiring. Theyre fermenting an alternative fuel, which is glutamine,Seyfried says.

With this understanding, Warburgs theory can be proven correct cancer arises from damage to the mitochondrias ability to produce energy through respiration in their electron transport chain.

The compensatory fermentation involves not only lactic acid fermentation, but also succinic acid fermentation using glutamine as a fermentable fuel. Its been known for decades that glutamine is a main fuel for many different kinds of cancers, but most people thought it was being respired, not fermented.

Seyfried and Chinopoulos discovery confirms that cancer cells in fact have damaged respiration, and to survive, the cancer cells must use fermentation. The two most available fermentable fuels in the cancer microenvironment are glucose and glutamine. Hence, targeting glucose and glutamine is a crucial component of cancer treatment.

Without glucose and glutamine, the cancer cells will starve, as they cannot use ketones. The simplest approach to cancer then is to bring patients into therapeutic ketosis, and then strategically target the availability of glucose and glutamine.

Basically, what were saying [is] that mitochondrial substrate-level phosphorylation is a non-oxidative metabolism mechanism inside the mitochondria that would generate significant amounts of energy without oxidative phosphorylation,Seyfried says.

According to Seyfried, mitochondrial dysfunction is at the heart of nearly every type of cancer. Unfortunately, few oncologists have this understanding and many still believe cancer is the result of genetic defects. However, nuclear transfer experiments clearly show cancer cannot be a genetic disease.

Theres been no rational scientific argument that I have seen, to discredit the multitude of evidence showing that the [genetic] mutations are not the drivers but the effects [of mitochondrial dysfunction],Seyfried says.

As a matter of fact, theres new information now where people are finding so-called genetic drivers of cancer expressed and present in normal cells, normal skin and also esophagus This is another [issue] how you get these so-called driver mutations in normal tissues. Were also finding some cancers that have no mutations, yet, theyre fermenting and growing out of control.

There are a number of new observations coming out that challenge the concept that cancer is a genetic disease. And once you realize that its not a genetic disease, then you have to seriously question the majority of therapies being used to manage the disease. This [helps] explain [why] we have 1,600 people a day dying from cancer in the United States.

Why do we have such an epidemic of suffering and death when we have been studying this disease for decades? Well, if you look at the massive amounts of scientific papers being written on cancer, youll often find that theyre structured around gene defects.

What Im saying is that if cancer is not a genetic disease and the mutations are downstream epiphenomena, why would the field continue to focus on things that are mostly irrelevant to the nature of the disease? What Im saying is very devastating, because Im telling the majority of the people in the field that theyre basically wasting their time

I think we can drop the death rate of this disease by about 50% in 10 years if cancer is treated as a mitochondrial metabolic disease, targeting fermentable fuels rather than using toxic therapies that are focused on downstream effects.

Radiation is designed to stop DNA replication. DNA replication requires energy. If you pull the plug on their fermentable fuels, theyre not going to be able to replicate anyway All of the things that were doing to treat cancer is basically approaching the disease from a misunderstanding of the biology

We know viruses can cause cancer. We know radiation causes cancer. We know carcinogens cause cancer. We know intermittent hypoxia causes cancer. We know systemic inflammation causes cancer. We know just getting older puts you at risk for more cancer.

We know there are inherited mutations in the genome that can cause cancer. But how are all these things linked through a common pathophysiological mechanism? The common pathophysiological mechanism is damaged through the structure and function of the mitochondria.

Every one of the issues including inherited mutations, damage the respiration of a particular population of cells in a tissue. You look at the breast cancer gene (BRCA 1), for example. People will say, Cancer must be a genetic disease because you inherit a mutation that causes the disease.

You only get the disease if that mutation disrupts the function of the mitochondria. Fifty percent of women who carry the mutation never get cancer or breast cancer because the mutation, for some reason, did not damage the mitochondria in that person.

So, to summarize, the true origin of cancer is damage to the respiratory function of the mitochondria, triggering compensatory fermentation, which is run by oncogenes. Oncogenes play a role by facilitating the entry of glucose and glutamine into the cell to replace oxidative phosphorylation.

Seyfried also has a very different view on the biology of metastasis (the spread of cancer). He explains:

Weve looked at cancer stem cells in a number of our preclinical models These guys grow like crazy in place. The tumor just keeps expanding, but it doesnt spread. It doesnt spread into the bloodstream or metastasize to various organs.

We discovered a very unusual cancer 20 years ago. It took us 10 to 15 years to figure out what it was. You can put a few of these cells anywhere in the mouses body and within three to four weeks, this mouse is full of metastatic cancer. It made the cover of the International Journal of Cancer, when we published this back in 2008, but we had worked on the problem for years.

We couldnt figure out what it was that made these cells so incredibly metastatic. We found out that once we identified the biology of the cell, it turned out [it has] many characteristics in common with the macrophage, which is one of the most powerful immune cells in our body.

We said, Wow. Is this unique only to this kind of cell or do metastatic cancers in humans also express characteristics of macrophages? We looked and we found that almost every major cancer that metastasizes has characteristics of macrophages. Then we said, Well, how could this possibly happen? Is it coming from the macrophage?

A number of scientists have all clearly shown that there is some fusion hybridization character going on. In other words, macrophages, our wound-healing cells, they come into a microenvironment where you might find many proliferating neoplastic stem cells, but they dont have the capacity to metastasize.

Its only when the macrophages fuse with these stem cells that you have a dysregulated energy metabolism coming in this hybrid cell. This hybrid cell now has characteristics of both stem cells and macrophages.

The stem cell is not genetically equipped to enter and exit tissue. The macrophage, as a normal cell of your body, is genetically equipped to enter and exit tissue and live in the bloodstream. Theyre very strongly immunosuppressive. These are all characteristics of metastatic cancer.

According to Seyfried, metastatic cancer cells are essentially a hybrid, a mix of an immune system cell and a dysregulated stem cell, the latter of which could originate from a disorganized epithelial cell or something similar. In short, its a hybrid cell with macrophage characteristics.

Macrophages are essential for wound healing and part of our primary defense system against bacterial infections. They live both in the bloodstream and in tissues, and can go anywhere in the body. When an injury or infection occurs, they immediately move in to protect the tissue.

The metastatic cancer cell has many of those same properties,Seyfried explains,But the energy and the function of the cell is completely dysregulated, so it proliferates like crazy but has the capacity to move and spread through the body, so its a corrupted macrophage. We call it a rogue macrophage.

Like macrophages, metastatic cancer cells can also survive in hypoxic environments, which is why most angiogenic therapies are ineffective against metastatic cancer.

So, what do these metastatic hybrid cells need to survive? Both macrophages and immune cells are major glutamine consumers, and according to Seyfried, you can effectively kill metastatic cells by targeting glutamine.

However, it must be done in such a way so as to not harm the normal macrophages and the normal immune cells. In other words, it must be strategic. For this reason, Seyfried developed a press-pulse therapy for cancer, which allows the patient to maintain normal immune system function, while at the same time targeting the corrupted immune cells the macrophage fusion hybrid metastatic cells as well as inflammation.

The therapies we are using to attempt to kill these [metastatic] cells put us at risk for having the cells survive and kill us. You can control these cells for a short period of time, but they can hunker down and enter into some sort of a slightly dormant state, but they reappear.

People say, Oh, these tumor cells are so nifty and smart they can come back at you. The problem is youve never really challenged them on their very existence, which is they depend on fermentation to survive. If you dont target their fermentation, theyre going to continue to survive and come back at you.

Many of the therapies that we use radiation, chemo and some of these other procedures are not really going after the heart of the problem. That oftentimes puts you at risk for the recurrence of the disease. Your body is already seriously weakened by the toxic treatments. And in the battle, you lose. If you are fortunate enough to survive your body is still beat up.

You have now put your [body] at risk for other kinds of maladies Why are we using such toxic therapies to kill a cell when we know what its weaknesses are? These are the paradigm changes that will have to occur as we move into the new era of managing cancer in a logical way.

To properly address cancer, then, you need to clean up the microenvironment, because the microenvironment will strategically kill cells that are dependent on fermentation while enhancing cells that arent. At the same time, the microenvironment will also reduce inflammation.

You also have to be very careful not to kill your normal and healthy immune cells, because they need glutamine too,Seyfried says. What we find is that when we strategically attack the tumor this way, it turns out that our immune cells are paralyzed.

The cancer cells are killed, but the normal immune cells are paralyzed. Theyre not dying, theyre just not doing their job. What we do is we back off the therapy a little; allow the normal immune cells to regain their biological capacity, pick up dead corpses, heal the microenvironment, and then we go after the cancer cells again.

Its a graded response, knowing the biology of the normal cells and the abnormal biology of the tumor cells. This is a beautiful strategy. Once people know how you can play one group of cells off another, and how you can strategically kill one group of cells without harming the other cells, it really becomes a precision mechanism for eliminating tumor cells without harming the rest of the body.

You dont need to be poisoned and irradiated. You just have to know how to use these procedures to strategically kill the cells. Protecting normal macrophages is part of the strategic process. Killing the corrupted ones is part of the strategic process. Again, you have to put all of these together in a very logical path. Otherwise, youre not going to get the level of success that we should be getting.

This strategy is what Seyfried calls press-pulse treatment, and essentially involves restricting the fermentable fuels glucose and glutamine in a cyclical fashion to avoid causing damage to normal cells and tissues. Glucose is effectively restricted through a ketogenic diet. Restricting glutamine is slightly trickier.

The press-pulse strategy was developed from the concept of press-pulse in the field of the paleobiology. A press was some chronic stress on populations, killing off large numbers, but not everything, because some organisms can adapt to stress. The pulse refers to some catastrophic event.

The simultaneous occurrence of these two unlikely events led to the mass extinction of almost all organisms that existed on the planet. This was a cyclic event over many hundreds of millions of years. The geological records show evidence for this press-pulse extinction phenomenon.

What we simply did was take that concept and say, Lets chronically stress the tumor cells. They need glucose. You can probably kill a significant number of tumor cells by just stressing their glucose. Thats the press. The press is different ways to lower blood sugar. You put that chronic stress on top of the population either by restricted ketogenic diets [or] therapeutic fasting. There are a lot of ways that you can do this.

Also, emotional stress reduction. People are freaked out because they have cancer, therefore their corticoid steroids are elevated, which elevates blood sugar. Using various forms of stress management, moderate exercise all of these will lower blood sugar and contribute to a chronic press and stress on the cancer cells.

However, youre not going to kill all cancer cells if you just take away glucose. Because the other fuel thats keeping the beast alive is the glutamine. We have to pulse, because we cant use a press for glutamine targeting, because then youre going to kill your normal immune cells or impair them, and they are needed for the eventual resolution of the disease.

What were going to do is were going to pulse various drugs. We dont have a diet system that will target glutamine. Glutamine is everywhere. Its the most abundant amino acid in your body But you have to use [the drugs] very strategically; otherwise they can harm our normal immune system and then be counterproductive

I think that once we understand how we can target effectively glutamine without harming our normal immune cells this is the strategy that will make most of these other therapies obsolete Its cost-effective and non-toxic and it will work very well.

But were still at the very beginning of this. We need to continue to develop the doses, timing and scheduling of those drugs that are most effective in targeting glutamine that can be done without harming the rest of the cells in our body.

If you would like to support Dr. Seyfrieds research, please consider making a donation to the Foundation For Metabolic Cancer Therapies. The donation tag is on the top row of the of the foundationsite. This Foundation is dedicated to supporting Dr. Seyfrieds studies using metabolic therapy for cancer management with 100% of the donated funds going directly to research on metabolic therapy for cancer.

Originally published July 31, 2022 on Mercola.com

Views expressed in this article are the opinions of the author and do not necessarily reflect the views of The Epoch Times. Epoch Health welcomes professional discussion and friendly debate. To submit an opinion piece, please follow these guidelines and submit through our form here.

Go here to see the original:
Why Glucose Restrictions Are Essential in Treating Cancer - The Epoch Times

Prominent Stanford University scientist and cellular reprogramming innovator will oversee all research for Turn Bio – Yahoo Finance

Vittorio Sebastiano, globally recognized for pioneering science, expands his role at company he co-founded as it moves closer to clinical research

MOUNTAIN VIEW, Calif., Aug. 8, 2022 /PRNewswire/ -- Turn Biotechnologies, a cell rejuvenation company developing novel mRNA medicines to cure untreatable, age-related conditions, today announced that co-founder Vittorio Sebastiano, PhD, will become its head of research.

Stanford University Professor Vittorio Sebastiano, PhD, a leader in the emerging field of cellular reprogramming, will oversee research at Turn Biotechnologies, the company he co-founded in 2018.

Sebastiano led development of the unique mRNA-based ERA (Epigenetic Reprogramming of Aging) platform Turn Bio uses to produce tailored protein cocktails to rejuvenate targeted cells. He assumes his role as head of research this month. Sebastiano has served as chairman of Turn Bio's Scientific Advisory Board since he co-founded the company in 2018.

A Stanford School of Medicine faculty member, author of more than 50 scientific articles and frequent speaker at research conferences around the world, Sebastiano is prominent in the emerging field of cellular reprogramming. His Stanford University lab pioneered the development of a new paradigm for treating aging and age-related diseases. He also led the team that first confirmed human cells can be reprogrammed using Turn Bio's ERA platform.

"Vittorio's vision and leadership will propel Turn Bio's innovation and speed our efforts to develop new therapies," said Anja Krammer, the company's CEO. "He keenly understands the potential our science has to redefine the way doctors treat age-related conditions, and shares our commitment to delivering a steady stream of new solutions to the clinic."

Sebastiano, who has conducted research at prominent universities in Europe and the United States, looks forward to bringing his academic research to life by guiding the development of Turn Bio's therapies

"The next months will be incredibly exciting, as we bridge the gap between academic science and the life-changing therapies so desperately needed by millions of people around the world," said Sebastiano. "We have the potential to cure diseases that are currently untreatable, improve the quality of life for millions and truly transform and democratize medical care."

Story continues

Sebastiano received his bachelor's and doctoral degrees from Universit di Pavia in Italy and completed post-doctoral work at the Max Planck Institute for Molecular Biomedicine in Germany and Stanford. Since 2014, he has been an associate professor of OBGyN at Stanford in the Stanford Institute for Stem Cell Biology. He is the Woods Family Scholar in Pediatric Medicine, has served as co-director of the Stanford Stem Cell PhD Program and has received prestigious awards for his pioneering and revolutionizing approach to induce cellular rejuvenation, including the 2017 American Federation for Aging Research (AFAR) Junior Investigator Award and the 2019 Breakthrough in Gerontology Award by AFAR and the Glenn Foundation.

ABOUT TURN BIOTECHNOLOGIES

Turn Bio is a pre-clinical-stage company focused on repairing tissue at the cellular level. The company's proprietary mRNA platform technology, ERA, restores optimal gene expression by combatting the effects of aging in the epigenome. This restores the cells' ability to prevent or treat disease, heal or regenerate tissue and fight incurable chronic diseases.

The company is currently completing pre-clinical research on tailored therapies targeting indications in dermatology and immunology, as well as developing therapies for ophthalmology, osteo-arthritis and the muscular system. For more information, see http://www.turn.bio.

FOR MORE INFORMATION, CONTACT:

Jim Martinez, rightstorygroup jim@rightstorygroup.comor (312) 543-9026

SOURCE Turn Biotechnologies

Here is the original post:
Prominent Stanford University scientist and cellular reprogramming innovator will oversee all research for Turn Bio - Yahoo Finance