Author Archives: admin


Alopecia: Are there any new treatments on the horizon? – Pharmaceutical Technology

Last Friday, the US FDA decided to keep the popular anti-baldness drug finasteride on the market, but is now requiring its makers to add suicidal ideation to a list of potential side effects.

Relatedly, on 13 June, the FDA also approved Eli Lillys and Incytes Olumiant (baricitinib), the first treatment for alopecia areata, another form of baldness, which also has a positive Committee for Medicinal Products for Human Use (CHMP) recommendation for an EMA approval. Alopecia areata is an autoimmune disorder when the bodys immune cells attack the hair follicles, while androgenic alopecia is a genetically determined pattern of hair loss.

These recent regulatory actions have brought attention to the hair loss space which has ample demand for treatments, but relatively few unique assets in development.

Though we are seeing new developments in the treatment of androgenetic alopecia (AGA) emerge in recent years, such as low dose oral minoxidil and bicalutamide, effective management remains challenging, writes Dr Dmitri Wall, consultant dermatologist at Hair Restoration Blackrock in Dublin, via email.

Marketed by Organon, a Merck spinoff, finasteride sold as Propecia had global sales of $292 million in 2005, as per GlobalData. The first generic was introduced in 2006. The FDAs most recent action came in response to a petition launched by a non-profit group called the Post-Finasteride Syndrome Foundation.

In 1988, the FDA approved minoxidil, a 2% topical solution then marketed by the company Upjohn under names such as Rogaine, for male use, before receiving approval for women in 1992. Several years later, a stronger 5% formula was approved for men in 1997, with a female version receiving the green light in 2014. Upjohn merged with the Swedish company Pharmacia AB in 1995, before being acquired by Pfizer in 2002.

Almost a decade after the initial approval of minoxidil, the FDA authorized the use of 1mg finasteride tablets in 1997, a dihydrotestosterone (DHT) blocker.

Finasteride is currently not approved for use by women and is contraindicated for pregnancy, as based on Propecias FDA label. However, there are cases of advised off-label use amongst postmenopausal and occasionally premenopausal women, says Eva Proudman, consultant trichologist and chair of the Institute of Trichologists.

Finasteride and minoxidil are used with roughly 80% of patients in Proudmans estimates, seeing a very positive result. While side effects do exist, she says her practice always discusses any safety concerns.

This isnt the first time finasterides potential side effects have received attention. In 2012, the FDA requested an update of the drugs label to include mention of risks of potential sexual dysfunction. According to Mercks label for Propecia, decreased libido and erectile dysfunction were reported in 1.8% and 1.3% of 945 treated subjects respectively. The latest suicidal ideation warning comes after internal records from Merck showed the company was aware of over 200 cases of depression since 2009, as described in a Reuters exclusive last February.

At the same time, it is important to note that hair loss can prove as a very emotional process for some and there are more factors surrounding potential depression or suicidal ideation than just in case of finasteride use, says Proudman. As such, understanding what these treatments can potentially do is needed, she adds.

Moreover, some studies show that the topical treatment minoxidil is also potentially not for everyone. In a Pfizer-sponsored one-year observational study of minoxidils 5% solution from 2004, the treatment shrunk the targeted hair-loss area in 62% of subjects, but it remained unchanged in 35.1%. In the same study, 15.9% of the subjects rated the treatment as very effective, but 20.6% found it only moderately effective and 15.7% found no effects. The topical solution is intended for use in the crown and is not aimed for the treatment of frontal baldness or a receding hairline, as based on Rogaines label.

Dutasteride, another DHT blocker sold by GSK under the name Avodart, has also displayed efficacy in reducing hair loss. But the treatment has not yet been approved by the FDA for the treatment of androgenic alopecia, despite off label use.

Outside of these two established treatments, cosmetic procedures such as scalp micropigmentation, scalp reduction or hair transplantation are becoming increasingly prominent. We continue to await the delivery of safe and effective stem-cell therapy that has promised much, while limited evidence regarding adjuvant therapies such as platelet rich plasma (PRP) and low-level laser therapy (LLLT) is yet to convincingly prove their benefit, says Wall, who is also an assistant professor at the Charles Institute of Dermatology at University College Dublin.

According to GlobalDatas Pharma Intelligence Centre, there are currently 20 assets in development for androgenic alopecia. This ranges from minoxidil that is in pre-registration in Taiwan, to IVL3001, a month-lasting injection of finasteride made by the South Korean company Inventage Lab, and treatments previously unused within the space such as Cosmo Pharmaceuticals topical solution Breezula (clascosterone).

Other approaches include antiandrogens such as GT-20029 or KX-826 (pyrilutamide), developed by the Chinese pharma company Kintor Pharmaceuticals. Pyrilutamide is currently in two Phase II studies, with one for male androgenic alopecia subjects in the US, and the other for female subjects in China.

At the same time, Proudman stresses the need for efficacious products, rather than those with promises. In June 2021, the Swedish company Follicum announced its discontinuing a Phase IIa hair loss treatment FOL-005 after an independent review led to revised data showing no significant improvement.

In this sense, Proudman says it is likely that upcoming treatments will be similar to those in the available armamentarium.

"Even with the emergence of novel therapies, it remains most likely that optimal, sustained responses will require combination therapy that should be chosen after consideration of individual factors," notes Wall.

Quality Assurance and Research Tools for Pharmaceutical Developers

Global Contract Services for Pre-Clinical Studies

Contract Pharmaceutical Development Services and Commercial Manufacturing in Advanced Softgel Technologies

More:
Alopecia: Are there any new treatments on the horizon? - Pharmaceutical Technology

Cell Therapy Packaging Products and Services Market worth $1.25 Billion by 2030 – Exclusive Report by Ins – Benzinga

JERSEY CITY, N.J., June 15, 2022 /PRNewswire/ --InsightAce Analytic Pvt. Ltd. announces the release of market assessment report on "Global Cell Therapy Packaging Products and Services Market (Therapy (T-cell Therapies, Dendritic Cell Vaccines, Stem Cell Therapies, NK Cell Therapies, and Other ATMPs), Package Engineering Design (Primary Packaging and Secondary Packaging), Scale of Operation (Clinical and Commercial)) By Trends, Industry Competition Analysis, Revenue and Forecast Till 2030"

According to the latest research by InsightAce Analytic, the global cell therapy packaging products and services market is expected to reach US$ 1,252.14 Million in 2030, recording a promising CAGR of 20.32% during the period of 2022-2030.

Request for Sample Pages: https://www.insightaceanalytic.com/request-sample/1265

Cell therapy aims to modify genetic material to treat different chronic diseases. Cell and gene therapy is the most significant medical advance in recent history. The increasing investments by key players in the development of promising therapies and advanced packaging technologies are anticipated to fuel the market growth over the forecast period.

Biopharmaceutical companies are investing in developing and manufacturing new customizable "patient-centered medicine" and modernizing their supply chains. Although biopharmaceutical firms' primary focus is on the drug product (DP) research and production and delivery methods (e.g., syringes), packaging and labelling are crucial to ensuring product quality and efficacy. The packaging of cell and gene therapy products must maintain closure integrity and product stability and allow simple access to the product while remaining functional during heat and mechanical loads experienced. The packaging must be designed to endure cryogenic temperatures without compromising the quality of the biological material or its longevity. For instance, In February 2022, Sharp, a leading provider in contract packaging and clinical supply services, has designed new purpose-built production suites to fulfil the rising demand from producers of gene treatments for dedicated and specialized packaging capacity. The innovative secondary packaging by Sharp aims to give an appropriate environment for tackling the challenges of gene treatments, notably at low temperatures and distribution in cold and ultra-cold supply chains. In summary, packaging technology and engineering, graphics, and labelling design are vital components of the development and marketing of gene and cell therapy programs.

Major driving factors of the cell therapy packaging products and services market are the increasing need for cell therapies, advancements in packaging and labelling, high prevalence of cancer diseases. Furthermore, advanced medical technologies, the rising trend of outsourcing in the healthcare industry, and the ongoing efforts of service providers to further improve their portfolios are enhancing the growth of the cell therapy packaging products and services market. However, the high cost of manufacturing systems, lack of standard therapy protocols, and complex procedures are restraining the growth of this market.

Geographically, the North America region is the primary revenue holder of this market due to rising awareness about cell and gene therapies, increasing government investments in the research and development of cell therapies, stringent regulations and an increasing number of human chronic diseases. On the other hand, Europe will also dominate the market during the forecast period due to advancements in the biopharmaceutical field and stringent regulations. The Asia-Pacific market is expected to grow faster in the future due to the growing cell therapy manufacturing industries and the adoption of new technologies.

Major key players in the cell therapy packaging products and services market areAlmac, Catalent Pharma Solutions, Cryoport Systems, Core Cryolab Inc., Yourway, Lufthansa Cargo, Saint-Gobain Life Sciences, Thermo Fisher Scientific, Sharp, West Pharmaceutical Services, Chart Industries Inc., and Other Prominent Players. Leading manufacturers in this field focus on novel therapy innovations, partnerships, collaborations, mergers, and agreements. These strategies will help to boost their growth opportunities in this market.

Key Developments:

Curious about this latest version of report? Enquire Before Buying @https://www.insightaceanalytic.com/enquiry-before-buying/1265

Market Segments

Market Size (Value US$ Mn) & Forecasts and Trend Analyses, 2022 to 2030 based on Therapy

Market Size (Value US$ Mn) & Forecasts and Trend Analyses, 2022 to 2030 based on Package Engineering Design

Market Size (Value US$ Mn) & Forecasts and Trend Analyses, 2022 to 2030 based on Scale of Operation

Market Size (Value US$ Mn) & Forecasts and Trend Analyses, 2022 to 2030 based on Region

North America cell therapy packaging products and services market revenue (US$ Million) by Country, 2022 to 2030

Europe cell therapy packaging products and services market revenue (US$ Million) by Country, 2022 to 2030

Asia Pacific cell therapy packaging products and services market revenue (US$ Million) by Country,2022 to 2030

Latin Americacell therapy packaging products and services market revenue (US$ Million) by Country, 2022 to 2030

Middle East & Africa cell therapy packaging products and services market revenue (US$ Million) by Country, 2022 to 2030

For Customized Information @ https://www.insightaceanalytic.com/customisation/1265

Other Related Reports Published by InsightAce Analytic:

Global Cell and Gene Therapy Bioassay Services Market

Global Vaccine Cold Chain Logistics Market

Global Cell and Gene Therapy Drug Delivery Devices Market

Why should buy this report:

About Us:

InsightAce Analytic is a market research and consulting firm that enables clients to make strategic decisions. Our qualitative and quantitative market intelligence solutions inform the need for market and competitive intelligence to expand businesses. We help clients gain competitive advantage by identifying untapped markets, exploring new and competing technologies, segmenting potential markets and repositioning products. Our expertise is in providing syndicated and custom market intelligence reports with an in-depth analysis with key market insights in a timely and cost-effective manner.

Contact US:

InsightAce Analytic Pvt. Ltd. Tel.: +1 718 593 4405 Email:info@insightaceanalytic.com Site Visit:www.insightaceanalytic.com Follow Us on LinkedIn @bit.ly/2tBXsgS Follow Us OnFacebook@bit.ly/2H9jnDZ

Logo: https://mma.prnewswire.com/media/1729637/InsightAce_Analytic_Logo.jpg

SOURCE InsightAce Analytic Pvt. Ltd.

See the article here:
Cell Therapy Packaging Products and Services Market worth $1.25 Billion by 2030 - Exclusive Report by Ins - Benzinga

Scientists harness light therapy to target and kill cancer cells in world first – The Guardian

Scientists have successfully developed a revolutionary cancer treatment that lights up and wipes out microscopic cancer cells, in a breakthrough that could enable surgeons to more effectively target and destroy the disease in patients.

A European team of engineers, physicists, neurosurgeons, biologists and immunologists from the UK, Poland and Sweden joined forces to design the new form of photoimmunotherapy.

Experts believe it is destined to become the worlds fifth major cancer treatment after surgery, chemotherapy, radiotherapy and immunotherapy.

The light-activated therapy forces cancer cells to glow in the dark, helping surgeons remove more of the tumours compared with existing techniques and then kills off remaining cells within minutes once the surgery is complete. In a world-first trial in mice with glioblastoma, one of the most common and aggressive types of brain cancer, scans revealed the novel treatment lit up even the tiniest cancer cells to help surgeons remove them and then wiped out those left over.

Trials of the new form of photoimmunotherapy, led by the Institute of Cancer Research, London, also showed the treatment triggered an immune response that could prime the immune system to target cancer cells in future, suggesting it could prevent glioblastoma coming back after surgery. Researchers are now also studying the new treatment for the childhood cancer neuroblastoma.

Brain cancers like glioblastoma can be hard to treat and, sadly, there are too few treatment options for patients, the study leader, Dr Gabriela Kramer-Marek, told the Guardian. Surgery is challenging due to the location of the tumours, and so new ways to see tumour cells to be removed during surgery, and to treat residual cancer cells that remain afterwards, could be of great benefit.

The ICRs team leader in preclinical molecular imaging added: Our study shows that a novel photoimmunotherapy treatment using a combination of a fluorescent marker, affibody protein and near-infrared light can both identify and treat leftover glioblastoma cells in mice. In the future, we hope this approach can be used to treat human glioblastoma and potentially other cancers, too.

The therapy combines a special fluorescent dye with a cancer-targeting compound. In the trial in mice, the combination was shown to dramatically improve the visibility of cancer cells during surgery and, when later activated by near-infrared light, to trigger an anti-tumour effect.

Scientists from the ICR, Imperial College London, the Medical University of Silesia, Poland, and the Swedish company AffibodyAB believe the novel treatment could help surgeons more easily and effectively remove particularly challenging tumours, such as those in the head and neck.

The joint effort was largely funded by the Cancer Research UK Convergence Science Centre at the ICR and Imperial College London a partnership that brings together international scientists from engineering, physical and life sciences specialisms to find innovative ways to tackle cancer.

Multidisciplinary working is critical to finding innovative solutions to address the challenges we face in cancer research, diagnosis and treatment and this study is a great example, said Prof Axel Behrens, the leader of the cancer stem cell team at the ICR and scientific director of the Cancer Research UK Convergence Science Centre.

This research demonstrates a novel approach to identifying and treating glioblastoma cells in the brain using light to turn an immunosuppressive environment into an immune-vulnerable one, and which has exciting potential as a therapy against this aggressive type of brain tumour.

Sign up to First Edition, our free daily newsletter every weekday morning at 7am BST

After decades of progress in treating cancer, the four main forms in existence today surgery, chemotherapy, radiotherapy and immunotherapy mean more people who are diagnosed with the disease can be treated effectively, and large numbers can live healthily for many years.

However, the close proximity of some tumours to vital organs in the body means it is vital new ways to treat cancer are developed so doctors can overcome the risk of harming healthy parts of the body. Experts believe that photoimmunotherapy could be the answer.

When tumours grow in sensitive areas of the brain such as the motor cortex, which is involved in the planning and control of voluntary movements, glioblastoma surgery can leave behind tumour cells that can be very hard to treat and which mean the disease can come back more aggressively later.

The new treatment uses synthetic molecules called affibodies. These are tiny proteins engineered in the lab to bind with a specific target with high precision, in this case a protein called EGFR which is mutated in many cases of glioblastoma.

The affibodies were then combined with a fluorescent molecule called IR700, and administered to the mice before surgery. Shining light on the compounds caused the dye to glow, highlighting microscopic regions of tumours in the brain for surgeons to remove. The laser then switched to near-infrared light, which triggered anti-tumour activity, killing the remaining cells after surgery.

Photoimmunotherapies could help us to target the cancer cells that cant be removed during surgery, which may help people live longer after their treatment, said Dr Charles Evans, the research information manager at Cancer Research UK. He cautioned that there were still technical challenges to overcome, such as reaching all parts of a tumour with near-infrared light, but added that he was excited to see how this research will develop.

Read the original:
Scientists harness light therapy to target and kill cancer cells in world first - The Guardian

Sernova to Participate in the Truist Securities Cell Therapy Symposium, Symposia-cel in June – StreetInsider.com

Get inside Wall Street with StreetInsider Premium. Claim your 1-week free trial here.

LONDON, Ontario, June 15, 2022 (GLOBE NEWSWIRE) -- Sernova Corp. (TSX: SVA) (OTCQB: SEOVF) (FSE/XETRA: PSH), a clinical-stage company and leader in regenerative medicine cell therapeutics, today announced that Dr. Philip Toleikis, President & CEO of Sernova Corp, will be participating in the Truist Securities Cell Therapy Symposium, Symposia-cel being held in person at the Lotte New York Palace on Tuesday, June 28, 2022. Company management will also be participating in 1x1 meetings during the event.

* Further details available on the Truist event website

If you are interested in arranging a 1x1 meeting request, please contact your Truist representative.

ABOUT SERNOVA CORP. AND THE CELL POUCH SYSTEM PLATFORM FOR CELL THERAPY

Sernova Corp is a clinical-stage biotechnology company that is developing regenerative medicine therapeutic technologies for chronic diseases, including insulin-dependent diabetes, thyroid disease, and blood disorders like hemophilia A. Sernova is currently focused on finding a functional cure for insulin-dependent diabetes with its lead asset, the Cell-Pouch SystemTM, a novel implantable and scalable medical device which forms a natural environment in the body for long-term survival and function of therapeutic cells that release necessary proteins or factors missing from the body to treat chronic diseases. Sernovas Cell Pouch System has already shown it can potentially provide a functional cure to people with type 1 diabetes in an ongoing Phase I/II study at the University of Chicago. Sernova is also working on technology with the University of Miami to cloak the implant from the immune system, to eliminate the need for immunosuppressives to protect the cells from immune system attack. In May 2022, Sernova and Evotec entered into a global strategic partnership to develop an implantable off-the-shelf iPSC-based (induced pluripotent stem cells) beta cell replacement therapy. This partnership provides Sernova an unlimited supply of insulin-producing cells to treat millions of patients with insulin-dependent diabetes (type 1 and type 2). Sernova is also gearing up to be in the clinic in two additional programs that utilize its Cell Pouch System an implantable cell therapy for benign thyroid disease resulting from thyroid gland removal and an ex-vivo lentiviral factor 8 gene therapy for hemophilia A.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Corporate: Christopher Barnes VP, Investor Relations Sernova Corp. [emailprotected] 519-902-7923 http://www.sernova.com

Investors: Corey Davis, Ph.D. LifeSci Advisors, LLC [emailprotected] 212-915-2577

Media: Elizabeth Miller, M.D. LifeSci Communications [emailprotected]

Read more:
Sernova to Participate in the Truist Securities Cell Therapy Symposium, Symposia-cel in June - StreetInsider.com

Novartis five-year Kymriah data show durable remission and long-term survival maintained in children and young adults with advanced B-cell ALL -…

Basel, June 12, 2022 Novartis today announced long-term results from the ELIANA pivotal clinical trial of Kymriah (tisagenlecleucel), the first-ever approved CAR-T cell therapy, in children and young adult patients with relapsed or refractory (r/r) B-cell acute lymphoblastic leukemia (ALL), with a maximum survival follow-up of 5.9 years. For the 79 patients treated with Kymriah in this study, the five-year overall survival (OS) rate was 55% (95% CI, 43-66), while the median event-free survival (EFS) for patients in remission within three months of infusion (n=65) was 43.8 months. These findings demonstrate the curative potential of Kymriah, the only CAR-T cell therapy available for these patients who previously had limited treatment options. These data were presented as an oral presentation during the 2022 European Hematology Association (EHA) Hybrid Congress (Abstract #S112)1.

These data mark a moment of profound hope for children, young adults and their families with relapsed or refractory B-cell ALL, as relapse after five years is rare, said Stephan Grupp, MD, PhD, Section Chief of the Cellular Therapy and Transplant Section, and Inaugural Director of the Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy at Children's Hospital of Philadelphia (CHOP). Since the approval of Kymriah nearly five years ago, we have been able to offer a truly game-changing option to patients who previously faced a five-year survival rate of less than 10 percent.

This long-term follow up of ELIANA demonstrated the potential for Kymriah to transform cancer treatment in pediatric and young adult patients with r/r B-cell ALL, significantly improving outcomes with durable responses and a consistent safety profile in this patient population1:

At Novartis, we strive for cures. With nearly six-year follow-up data in these pediatric and young adults treated for B-cell ALL, we have our strongest evidence yet that one-time treatment with Kymriah has curative potential, said Jeff Legos, Executive Vice President, Global Head of Oncology & Hematology Development. These results strengthen our confidence in CAR-T cell therapies as a truly transformative and paradigm-shifting advance in cancer care, as well as our commitment to continue developing this technology with next-generation platforms.

Additional updates on the Novartis CAR-T program presented at the 2022 EHA Congress include new data from more patients and longer follow-up from the first-in-human dose-escalation trials with YTB323 in adults with r/r diffuse large B-cell lymphoma and PHE885 in adults with r/r multiple myeloma, the first Novartis CAR-T cell therapies developed using the Novartis T-Charge platform2,3,4. Visit https://www.hcp.novartis.com/virtual-congress/eha-2022/ to learn more about these data and our ongoing commitment to reimagining cancer care with CAR-T cell therapies.

About Kymriah Kymriah is the first-ever FDA-approved CAR-T cell therapy. It is a one-time treatment designed to empower patients immune systems to fight their cancer. Kymriah is currently approved for the treatment of r/r pediatric and young adult (up to and including 25 years of age) acute lymphoblastic leukemia (ALL), r/r adult diffuse large B-cell lymphoma (DLBCL) and r/r adult follicular lymphoma1.

About the ELIANA Trial ELIANA was the first pediatric global CAR-T cell therapy registration trial, examining patients in 25 centers in 11 countries across the US, Canada, Australia, Japan and the EU, including: Austria, Belgium, France, Germany, Italy, Norway and Spain. The trial was an open-label, multicenter, single-arm, global Phase II trial investigating the efficacy and safety of Kymriah in pediatric and young adult patients in r/r B-cell ALL who were primary refractory, chemorefractory, relapsed after, or were not eligible for allogeneic stem cell transplantation (SCT). The primary endpoint was overall remission rate (ORR), defined as best overall response of CR or CR with incomplete blood count recovery (CRi) within 3 months and maintained for 28 day. The secondary endpoints include CR/CRi with undetectable minimal residual disease (MRD), duration of remission, event-free survival, overall survival, cellular kinetics and safety5.

About T-Charge T-Charge is a next-generation CAR-T platform, innovated at the Novartis Institutes for BioMedical Research (NIBR), that will serve as the foundation for various new investigational CAR-T cell therapies in the Novartis pipeline. By implementing the T-Charge platform, we aim to revolutionize CAR-T cell therapy with new products that have the potential to offer patients a higher likelihood of better and more durable responses, improved long-term outcomes and a reduced risk of severe adverse events. The T-Charge platform preserves T cell stemness (T cell ability to self-renew and mature), an important T cell characteristic closely tied to its therapeutic potential, which results in a product containing greater proliferative potential and fewer exhausted T cells. With T-Charge, CAR-T cell expansion occurs primarily within the patients body (in-vivo), eliminating the need for an extended culture time outside of the body (ex-vivo). The T-Charge platform, which implements important process efficiencies, will be rapid, compared with traditional CAR-T, and reliable, through simplified processes and streamlined quality control. Multiple CAR-T therapies, including YTB323 and PHE885, are being developed using the Novartis T-Charge platform.

About Novartis commitment to Oncology Cell Therapy As part of the unique Novartis strategy to pursue four cancer treatment platforms radioligand therapy, targeted therapy, immunotherapy and cell and gene therapy we strive for cures through cell therapies in order to enable more patients to live cancer-free. We will continue to pioneer the science and invest in our manufacturing and supply chain process to further advance transformative innovation.

Novartis was the first pharmaceutical company to significantly invest in pioneering CAR-T research and initiate global CAR-T trials. Kymriah, the first approved CAR-T cell therapy, developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, is the foundation of the Novartis commitment to CAR-T cell therapy.

We have made strong progress in broadening our delivery of Kymriah, which is currently available for use in at least one indication in 30 countries and at more than 370 certified treatment centers, with clinical and real-world experience from administration to more than6,900 patients. We continue to pioneer in cell therapy, leveraging our vast experience to develop next-generation CAR-T cell therapies. These therapies will utilize our new T-Charge platform being evaluated to expand across hematological malignancies and bring hope for a cure to patients with other cancer types.

Disclaimer This press release contains forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements can generally be identified by words such as potential, can, will, plan, may, could, would, expect, anticipate, seek, look forward, believe, committed, investigational, pipeline, launch, or similar terms, or by express or implied discussions regarding potential marketing approvals, new indications or labeling for the investigational or approved products described in this press release, or regarding potential future revenues from such products. You should not place undue reliance on these statements. Such forward-looking statements are based on our current beliefs and expectations regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that the investigational or approved products described in this press release will be submitted or approved for sale or for any additional indications or labeling in any market, or at any particular time. Nor can there be any guarantee that such products will be commercially successful in the future. In particular, our expectations regarding such products could be affected by, among other things, the uncertainties inherent in research and development, including clinical trial results and additional analysis of existing clinical data; regulatory actions or delays or government regulation generally; global trends toward health care cost containment, including government, payor and general public pricing and reimbursement pressures and requirements for increased pricing transparency; our ability to obtain or maintain proprietary intellectual property protection; the particular prescribing preferences of physicians and patients; general political, economic and business conditions, including the effects of and efforts to mitigate pandemic diseases such as COVID-19; safety, quality, data integrity or manufacturing issues; potential or actual data security and data privacy breaches, or disruptions of our information technology systems, and other risks and factors referred to in Novartis AGs current Form 20-F on file with the US Securities and Exchange Commission. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.

About Novartis Novartis is reimagining medicine to improve and extend peoples lives. As a leading global medicines company, we use innovative science and digital technologies to create transformative treatments in areas of great medical need. In our quest to find new medicines, we consistently rank among the worlds top companies investing in research and development. Novartis products reach nearly 800 million people globally and we are finding innovative ways to expand access to our latest treatments. About 108,000 people of more than 140 nationalities work at Novartis around the world. Find out more athttps://www.novartis.com.

Novartis is on Twitter. Sign up to follow @Novartis at https://twitter.com/novartisnews For Novartis multimedia content, please visit https://www.novartis.com/news/media-library For questions about the site or required registration, please contact [emailprotected]

References

# # #

Novartis Media Relations E-mail: [emailprotected]

Novartis Investor Relations Central investor relations line: +41 61 324 7944 E-mail: [emailprotected]

Here is the original post:
Novartis five-year Kymriah data show durable remission and long-term survival maintained in children and young adults with advanced B-cell ALL -...

These are the non-surgical facelift treatments to consider for glowing skin – VOGUE India

As eerily relevant as 1992s Death Becomes Her is in 2022, there is an unexpected difference. Unlike Madeline (Meryl Streep) and Helen (Goldie Hawn), we arent hiding our facelifts. Instead, some of us are live streaming the whole experience. Dermal fillers and Botox are getting as common as getting a facial in your local salon.

"There has been a shift of mindset and increased acceptability of these procedures, says Dr Madhuri Agarwal of Yavana Aesthetics, Mumbai. In the next few years, the trend is going to be more innovations and better delivery mechanisms of these minimally invasive procedures that deliver long term, healthy skin.

What you want to do to look and feel good is not up for discussion. While lasers and acids are wonderful for skin texture and even tightening, a non-surgical facelift involving needles can be more effective for the latter. For example, filler that is more natural looking, because a laser isnt doing anything to make up for the lost volume.

Our bodies are dynamic and need maintenance as we age. Even, and especially, our facial skin. But with so many options of non-surgical face lifts available, it can be overwhelming to make a choice. We spoke to a few dermatologists to help break down the details of the best non-surgical facelift treatments involving needles.

Botox involves injecting a very safe neurotoxin called Botulinum to freeze muscles, and relax them, ironing out wrinkles. Wary but curious first timers can choose to start with very minute unitsthey wont erase all wrinkles but will smoothen them out enough to look a little more natural. I suggest this only when fine lines form, says Dr Kiran Sethi, a dermatologist based in Delhi and author of Skin Sense. It lasts 3-6 months, and there isnt much downtime. Its great when combined with fillers or skin boosters. Theres also been a focus on preventive Botox. If you get it done before the lines set in, you will have fewer lines as you age, explains Dr Geetika Mittal Gupta of ISAAC Luxe Clinic in Mumbai and Delhi. You will need less and less Botox as you age, because those muscles are not contracting as much. And by early I mean, when you see certain lines of ageing.

Fillers are usually injections of hyaluronic acid that add back lost volume to parts of your face. The Indian bone structure is such that our cheekbone is a little flat on the centre part of the face, explains Dr. Chytra V Anand, founder, Kosmoderma located in Chennai and Bengaluru. So most Indians, even teenagers, get dark circles and hollows. Its a loss of volume. So you have to put a filler in there. And people are accepting of that. Its not because they want to look like someone else, or they want to look younger. They just want to maintain their body and skin. The down time for fillers is usually 2-7 days, depending on how easily you bruise. And a good treatment can last anywhere between 1 and 2 years.

The vampire facial might have shocked people a few years ago, but today its one of the most popular treatments in India. Platelet-rich plasma is extracted from your blood, rich in growth hormones that renews blood flow and tissue regeneration wherever it is injected back, including your scalp. Its usually a course of 3-4 sessions, monthly, says Dr Sethi. It treats melasma, dehydration, has a mild filler effect too. And when used on the scalp, new hair growth can show in 6 months.

Theres also stem cell therapy for hair and skin rejuvenation. We take a small biopsy of the skin, splice the cells, and use the extract for regenerative therapy, says Dr Anand. It takes less time and commitment than PRP and is great for scar healing.

Its good to remember that these treatments are addictive too, says Dr Akber Aimer, Director of Aesthetic Medicine, Maya Medi Spa. You need to understand your limit. Always look for a good doctor who is experienced and talk about your problems and ask their opinions. Understand everything clearly. Your decision-making is a multi-step procedure. You need to have done proper research on the materials used and the treatment. Understand the technology. Trust your gut. And dont forget to ask for before and after pictures!

LED light therapy can help you achieve your skincare goals

In-clinic skincare treatments: How theyve evolved with the lockdowns

Here's how to get glowing skin for the summer, according to experts

Go here to read the rest:
These are the non-surgical facelift treatments to consider for glowing skin - VOGUE India

Ambys Medicines to Present Data from Universal Human Hepatocyte Program at the 2022 ISSCR Annual Meeting – Galveston County Daily News

Country

United States of America US Virgin Islands United States Minor Outlying Islands Canada Mexico, United Mexican States Bahamas, Commonwealth of the Cuba, Republic of Dominican Republic Haiti, Republic of Jamaica Afghanistan Albania, People's Socialist Republic of Algeria, People's Democratic Republic of American Samoa Andorra, Principality of Angola, Republic of Anguilla Antarctica (the territory South of 60 deg S) Antigua and Barbuda Argentina, Argentine Republic Armenia Aruba Australia, Commonwealth of Austria, Republic of Azerbaijan, Republic of Bahrain, Kingdom of Bangladesh, People's Republic of Barbados Belarus Belgium, Kingdom of Belize Benin, People's Republic of Bermuda Bhutan, Kingdom of Bolivia, Republic of Bosnia and Herzegovina Botswana, Republic of Bouvet Island (Bouvetoya) Brazil, Federative Republic of British Indian Ocean Territory (Chagos Archipelago) British Virgin Islands Brunei Darussalam Bulgaria, People's Republic of Burkina Faso Burundi, Republic of Cambodia, Kingdom of Cameroon, United Republic of Cape Verde, Republic of Cayman Islands Central African Republic Chad, Republic of Chile, Republic of China, People's Republic of Christmas Island Cocos (Keeling) Islands Colombia, Republic of Comoros, Union of the Congo, Democratic Republic of Congo, People's Republic of Cook Islands Costa Rica, Republic of Cote D'Ivoire, Ivory Coast, Republic of the Cyprus, Republic of Czech Republic Denmark, Kingdom of Djibouti, Republic of Dominica, Commonwealth of Ecuador, Republic of Egypt, Arab Republic of El Salvador, Republic of Equatorial Guinea, Republic of Eritrea Estonia Ethiopia Faeroe Islands Falkland Islands (Malvinas) Fiji, Republic of the Fiji Islands Finland, Republic of France, French Republic French Guiana French Polynesia French Southern Territories Gabon, Gabonese Republic Gambia, Republic of the Georgia Germany Ghana, Republic of Gibraltar Greece, Hellenic Republic Greenland Grenada Guadaloupe Guam Guatemala, Republic of Guinea, Revolutionary People's Rep'c of Guinea-Bissau, Republic of Guyana, Republic of Heard and McDonald Islands Holy See (Vatican City State) Honduras, Republic of Hong Kong, Special Administrative Region of China Hrvatska (Croatia) Hungary, Hungarian People's Republic Iceland, Republic of India, Republic of Indonesia, Republic of Iran, Islamic Republic of Iraq, Republic of Ireland Israel, State of Italy, Italian Republic Japan Jordan, Hashemite Kingdom of Kazakhstan, Republic of Kenya, Republic of Kiribati, Republic of Korea, Democratic People's Republic of Korea, Republic of Kuwait, State of Kyrgyz Republic Lao People's Democratic Republic Latvia Lebanon, Lebanese Republic Lesotho, Kingdom of Liberia, Republic of Libyan Arab Jamahiriya Liechtenstein, Principality of Lithuania Luxembourg, Grand Duchy of Macao, Special Administrative Region of China Macedonia, the former Yugoslav Republic of Madagascar, Republic of Malawi, Republic of Malaysia Maldives, Republic of Mali, Republic of Malta, Republic of Marshall Islands Martinique Mauritania, Islamic Republic of Mauritius Mayotte Micronesia, Federated States of Moldova, Republic of Monaco, Principality of Mongolia, Mongolian People's Republic Montserrat Morocco, Kingdom of Mozambique, People's Republic of Myanmar Namibia Nauru, Republic of Nepal, Kingdom of Netherlands Antilles Netherlands, Kingdom of the New Caledonia New Zealand Nicaragua, Republic of Niger, Republic of the Nigeria, Federal Republic of Niue, Republic of Norfolk Island Northern Mariana Islands Norway, Kingdom of Oman, Sultanate of Pakistan, Islamic Republic of Palau Palestinian Territory, Occupied Panama, Republic of Papua New Guinea Paraguay, Republic of Peru, Republic of Philippines, Republic of the Pitcairn Island Poland, Polish People's Republic Portugal, Portuguese Republic Puerto Rico Qatar, State of Reunion Romania, Socialist Republic of Russian Federation Rwanda, Rwandese Republic Samoa, Independent State of San Marino, Republic of Sao Tome and Principe, Democratic Republic of Saudi Arabia, Kingdom of Senegal, Republic of Serbia and Montenegro Seychelles, Republic of Sierra Leone, Republic of Singapore, Republic of Slovakia (Slovak Republic) Slovenia Solomon Islands Somalia, Somali Republic South Africa, Republic of South Georgia and the South Sandwich Islands Spain, Spanish State Sri Lanka, Democratic Socialist Republic of St. Helena St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Sudan, Democratic Republic of the Suriname, Republic of Svalbard & Jan Mayen Islands Swaziland, Kingdom of Sweden, Kingdom of Switzerland, Swiss Confederation Syrian Arab Republic Taiwan, Province of China Tajikistan Tanzania, United Republic of Thailand, Kingdom of Timor-Leste, Democratic Republic of Togo, Togolese Republic Tokelau (Tokelau Islands) Tonga, Kingdom of Trinidad and Tobago, Republic of Tunisia, Republic of Turkey, Republic of Turkmenistan Turks and Caicos Islands Tuvalu Uganda, Republic of Ukraine United Arab Emirates United Kingdom of Great Britain & N. Ireland Uruguay, Eastern Republic of Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Viet Nam, Socialist Republic of Wallis and Futuna Islands Western Sahara Yemen Zambia, Republic of Zimbabwe

Read this article:
Ambys Medicines to Present Data from Universal Human Hepatocyte Program at the 2022 ISSCR Annual Meeting - Galveston County Daily News

Local Father Battling Cancer to Host Blood Stem Cell Drive at SH Sprint Triathlon – The Hudson Indy Westchester’s Rivertowns News – – The Hudson…

Eugene Doherty is a local fire captain and father of a nine-year-old daughter.

June 9, 2022

By Rick Pezzullo

A local fire department captain is on a mission to register potential stem cell donors to help others like himself who have been stricken with cancer.

Eugene Doherty, 46, is battling acute lymphoblastic leukemia (ALL) but was fortunate enough to find a matching donor in his family, which is not often the case for 70 percent of people suffering from blood-related illnesses who must seek a match from a stranger to save their life.

Originally from Ireland, Doherty resides in Sleepy Hollow and has volunteered for 12 years with the Sleepy Hollow Sprint Triathlon. Prior to his diagnosis, he was an active triathlete.

This weekend, Doherty is teaming up with DKMS, the worlds largest blood stem cell donor center, at Kingsland Point Park at 299 Palmer Ave. in Sleepy Hollow to try to register potential donors.

Anyone in good health between the ages of 18 and 55 is encouraged to attend. Potential registrants will review medical eligibility, fill out a registration form, swab the insides of their cheeks, and return their completed packet before leaving the drive. Anyone who cannot attend the registration drives can register by ordering a free swab kit viahttps://www.dkms.org/get-involved/virtual-drives/sleepy-hollow-sprint-triathlon-donor-drive.

The registration drive will take place Saturday, June 11 from 9 to 11 a.m. and Sunday, June 12 from 7 a.m. to noon.

Advertisement

June 9, 2022

By Rick Pezzullo--- A local fire department captain is on a mission to register potential stem cell donors to help...

June 8, 2022

Westchester Power - the energy supplier set up by Sustainable Westchester that supplies electricity at a fixed, negotiated rate to...

June 6, 2022

June Events @ Your Library Tuesday, June 7 at 7 pm/Join landscape curator,Kate Kerinfor a virtual tour ofInnisfree Gardenand a...

June 4, 2022

By Barrett Seaman-- It was three-and-a-half years ago when entrepreneur Richelieu Dennis strolled through a packed Irvington trustee meeting room...

June 2, 2022

A brain cancer diagnosis last year finally forced Detective Dave Walsh to retire in February after two decades with the...

June 2, 2022

by Brad Ogden The Main Street School Lawn in Irvington will transform into a fun-filled, open air concert venue as...

May 31, 2022

The County Executive has announced that the Countys free rides program will begin on June 1, 2022 and run through...

May 31, 2022

By Barrett Seaman-- A cloudless sky and temperatures near ninety made it just a touch more difficult to focus on...

May 29, 2022

By Robert Kimmel-- Contributions from the Rotary Club of the Tarytowns can come in big packages or small ones. Atop...

May 27, 2022

By Shana Liebman-- One of the years most illuminating documentaries opens today: Feed the People profiles superhero-chef Jos Andrs and...

Read the original here:
Local Father Battling Cancer to Host Blood Stem Cell Drive at SH Sprint Triathlon - The Hudson Indy Westchester's Rivertowns News - - The Hudson...

Bridge Therapy For Neuroblastoma: A Game-Changing Paediatric Cancer Treatment | TheHealthSite.com – TheHealthSite

Patients Suffering From Neuroblastoma May Benefit From Bridge Therapy

Written by Kinkini Gupta | Updated : June 9, 2022 12:31 PM IST

Neuroblastoma, a pediatric cancer that arises from immature nerve cells has a very high risk of recurrence among approximately half of the children who are already suffering from cancer. With ever-advancing medicine and technology, researchers however have discovered a new therapy called the 'bridge therapy.' A study conducted and published the journal Cancer states that patients suffering from neuroblastoma may benefit from this therapy between induction and consolidation treatments. Neuroblastoma can often be cured by surgical removal of tumors followed by chemotherapy. These patients often receive induction therapy composed of various drugs used to carry out chemotherapy and surgery. This is followed by consolidation therapy, which involves a high-dose chemotherapy and stem cell transplants. Unfortunately, these treatments, which are currently in use, have not been successful in many children.

This newly discovered therapy will include immunotherapy drugs that have demonstrated anti-neuroblastoma activity in combination with chemotherapy, radiolabeled MBIG or combinations of chemotherapeutic agents. Research suggests that this therapy could offer some benefit to cancer patients. To examine the effectiveness of this therapy, a study including the data from 201 patients diagnosed with neuroblastoma at various hospitals from 2008-2018 were taken into consideration. Some patients were treated in three groups with different approaches based on physician, institutional or family preferences. The three steps were:

This study was especially done to find out if patients are responding well to bridge therapy prior to consolidation with stem cell transplant. They found out that the following results with patients who directly underwent consolidation:

Response to induction therapy is known to increase survival rate, and the study suggests that bridge therapy prior to consolidation therapy benefits patients with high-risk neuroblastoma with a poor response to induction. Also, response to bridge therapy prior to consolidation therapy is associated with outcome, and patients with less than a partial response may benefit from alternative treatment approaches. An accompanying editorial discusses the findings and agrees that future studies of bridge therapy for patients who do not experience a favorable response following standard induction therapy are needed.

Follow us on

Link:
Bridge Therapy For Neuroblastoma: A Game-Changing Paediatric Cancer Treatment | TheHealthSite.com - TheHealthSite

Expression of stem cell biomarkers Bmi1 and KLF4 in osteosarcoma and its clinical significance – Newswise

Abstract:

Objective To observe the expression of osteosarcoma stem cell biomarkers Bmi1 and KLF4 in osteosarcoma tissues and explore their value in the diagnosis, treatment and prognosis of osteosarcoma.

Methods Using retrospective research methods, 51 patients (28 males and 23 females) with osteosarcoma who were surgically resected and diagnosed by pathology in the Second Hospital of Shanxi Medical University from October 2009 to July 2019 were used as the experimental group. The age of cases varies from 10 to 67 (average 27.04) years old, and bone tissues adjacent to the tumor were taken from 10 samples as the normal control group. Immunohistochemical method was used to assess the expression levels of Bmi1 and KLF4 in 51 patients with osteosarcoma and 10 cases of paraneoplastic bone tissue specimens. Chi-square test was applied to analyze the relationship between the expression of Bmi1 and KLF4 and the clinical pathological data of patients. Correlation analysis was analyzed by the number of connections. The survival rate of patients was calculated by the Kaplan-Meier method. The log rank univariate analysis and Cox regression multivariate analysis were carried out to evaluate the prognostic value.

Results The positive expression rates of Bmi1 and KLF4 in the osteosarcoma group were 78.43% (40/51) and 80.39% (41/51), respectively, and in the bone tissue group were both 3/10. The difference of the positive expression rates of Bmi1 and KLF4 in the osteosarcoma group and bone tissue group was statistically significant (P < 0.05). In osteosarcoma group, the expression levels of Bmi1 and KLF4 were positively correlated (R = 0.399, P < 0.01). Bmi1 protein-positive, KLF4 protein-positive, and Bmi1 and KLF4 protein double-positive expression were statistically significant in Enneking surgical staging, lung metastasis, and pathological typing (all P < 0.05), but there was no statistically significant difference between different ages, genders, local recurrences, and tumor sizes (all P > 0.05).

Conclusion The expression of Bmi1 and KLF4 in osteosarcoma tissue was significantly higher than that in surrounding bone tissues, and their positive expression is a risk factor for the prognosis of patients with osteosarcoma.

Read this article:
Expression of stem cell biomarkers Bmi1 and KLF4 in osteosarcoma and its clinical significance - Newswise