Author Archives: admin


‘A new Alzheimer’s treatment is on the horizon’: Cell therapy reverses dementia-like syndrome in dogs – BioPharma-Reporter.com

The biotechs all new neurorestorative approach aims to rebuild and replace lost brain cells in Alzheimers that underlies clinical symptoms.

On the back of the trial, the company plans to launch a world-first human trial in 2024.

The veterinary trial, led by Skin2Neuron and published this month in Stem Cell Research and Therapy, reversed the dementia-like syndrome that strikes down many older pet dogs with Alzheimers.

Dementia was reversed in more than half of the canine patients, with a clinically meaningful improvement in 80%. Typically, improvement lasted around two years.

Skin2Neuron champions its new approach as a ray of hope for Alzheimers disease: championing a completely different approach to the amyloid hypothesis of Alzheimers disease.

Our target is the ultimate cause of dementia: lost neurons and synapses. We do this by microinjecting a patients own HFN cells directly into the hippocampus, the brains memory center and first area to be devastated by Alzheimers, explains the company.

While its lead therapeutic target is Alzheimers, it says its technology also has potential to treat neurodegenerative conditions such as Parkinsons disease, Amyotrophic Lateral Sclerosis and more.

A dogs thinking neocortex and hippocampus is similar to the human brain, says the company. Meanwhile, older dogs often develop a dementia syndrome similar to human dementia: becoming forgetful, irritable, lost, wandering around aimlessly, failing to recognize owners and experiencing disrupted sleep.

"Because of deep parallels between the canine brain and human brain, and canine Alzheimer's and human Alzheimer's, I started this trial 10 years ago with the assumption that if it's going to work in humans, then it needs to work in dogs first. And the results exceeded my wildest expectations, said co-founder Professor Michael Valenzuela.

"The hippocampus, the memory center of the brain, was packed with baby neurons and new synapses, precisely where we delivered the cells. Compared to untreated dogs, it was like night and day".

Microscopic analysis confirmed the dogs had classic Alzheimer pathology: meaning the cell therapy worked in the setting of natural disease, a first of its kind, according to the company.

"Given our doggie patients also had many of the same health issues that older people face, it gives me even greater confidence," said Valenzuela.

Study:Valenzuela, M., Duncan, T., Abey, A.et al.Autologous skin-derived neural precursor cell therapy reverses canine Alzheimer dementia-like syndrome in a proof of concept veterinary trial.Stem Cell Res Ther13,261 (2022). https://doi.org/10.1186/s13287-022-02933-w

More here:
'A new Alzheimer's treatment is on the horizon': Cell therapy reverses dementia-like syndrome in dogs - BioPharma-Reporter.com

Satellos Bioscience pursues a revolutionary approach to treat muscle degeneration, give new hope to patients and parents – Financial Post

Skip to Content Advertisement 1

This advertisement has not loaded yet, but your article continues below.

This story was provided by a client for commercial purposes.

The company is developing a pill that causes stem cells to regenerate muscle to battle debilitating Duchenne muscular dystrophy

Publishing date:

By Richard Dal Monte

This advertisement has not loaded yet, but your article continues below.

Raising children is full of surprises like the time your toddler takes their first step, or the day your preschooler starts speaking in rhyme. As pleasant as these moments might be, there are tragic and frightening surprises that parents never see coming.

Duchenne muscular dystrophy (DMD), is one such surprise.

A rare genetic disease afflicting boys its found in about six per 100,000 individuals in North America and Europe, and symptoms usually present between two and three years of age DMD causes progressive muscle degeneration and weakness due to a non-functional protein called dystrophin, which helps keep muscle cells intact.

While existing treatments have helped extend life expectancy for people with DMD from their teens into their 20s and 30s, they are only temporary and dont address a critical issue: the inability of the muscles to regenerate.

Satellos Bioscience Inc. (TSXV: MSCL), a Canadian biotechnology company, is advancing game-changing science in skeletal muscle regeneration to improve the quality and duration of patients lives.

Our notion is that if we can restore muscle repair, well significantly reduce the severity and the progression of the disease

Michael Rudnicki, OC, PhD, co-founder and chief scientific officer, Satellos Bioscience Inc.

The key to slowing the progression of DMD is muscle regeneration

Founded in 2018 by biotech entrepreneurs Frank Gleeson and Michael Rudnicki, Satellos work is based on the research of Rudnicki, a senior scientist and the director of the Regenerative Medicine Program and the Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute as well as a professor in the Department of Medicine at the University of Ottawa and CEO and scientific director of the Canadian Stem Cell Network.

The companys vision is to invent and develop medicines that reset the bodys innate ability for self-repair, aiming to create a treatment to solve muscle disorders, starting with Duchenne muscular dystrophy.

Our notion is that if we can restore muscle repair, well significantly reduce the severity and the progression of the disease, Rudnicki says.

He explains that Satellos discovered that the loss of function in those who have DMD is the result of problems with how muscle stem cells divide, wherein a process known as cell polarity is defective.

This advertisement has not loaded yet, but your article continues below.

Satellos main program, then, is focused on developing a drug that would correct muscle stem cell polarity and restore the bodys innate muscle repair and regeneration process by sending a signal to the muscle stem cell.

Gleeson says, In our bodies, we have biochemical pathways of different kinds and these are essentially like communication towers or satellites that enable mobile phone users to talk to one another. Similarly, signals are relayed through proteins interacting with each other, sometimes through biochemical stimulation, sometimes through physical interaction and sometimes through a combination of the two. Weve identified communication pathways that signal to muscle stem cells to act in certain ways, and were identified errors in these signals that inhibit proper muscle stem cell function.

Were intervening in those biochemical pathways to correct the signalling and restore stem cell function. It is space-age stuff and at the same time, its grounded in elegant science and a deep understanding of the mechanisms in play.

End of 2023 could see human safety trials

Satellos identified these pathways using MyoReGenXTM, a proprietary discovery platform grounded in decades of pioneering muscle stem cell knowledge established by Rudnickis research lab. That platform allows Satellos to conduct research by removing muscle fibre from the body, preserved intact, and studying it for biochemical cues.

So far, researchers have done preclinical work on proof of concept by studying genetically engineered mice and have found no serious side effects from drug candidates. While they continue on that path, Satellos aims to proceed with human safety trials by the end of 2023 and, once its through the safety phase, Gleeson says its possible the company could approach the U.S. Food and Drug Administration for accelerated approval in 2025.

While this is early science, we dont believe were that far away from being able to offer something helpful to patients, he says. To the patients, of course, it seems another lifetime of waiting and were very sensitive to that. But, from where we are in the context of typical drug development of 10 years and a billion dollars, were not that far away. And were working every day to find safe ways to go there sooner.

We strongly believe that we offer to the community of DMD patients and their families the chance for a disease-modifying treatment, something that could meaningfully alter an individuals life.

Broad palette of potential treatments

Frank and I had a meeting of minds very early about the aim to develop small molecules that mobilize stem cells to stimulate regeneration in tissue as a way forward to treat diseases, as a way forward for regenerative medicine, Rudnicki says. Weve incubated that idea through many, many conversations over the years.

Thus, DMD isnt the only target for Satellos leading-edge science. Considering the possibilities for its treatments to address muscle regeneration opens up a spectrum of conditions that could be addressed.

Not only do we see this as a relevant to multiple wasting disorders, he says, we think that other stem cells in other parts of the body can be targeted in the retina, in the brain, in the gut, the blood systems.

Gleeson notes that there are about 30 different types of dystrophies alone, in addition to sports injuries, surgical recovery and aging concerns.

The palette is very, very broad, he says.

A smart investment while doing good

Because that palette is broad, so is the potential good Satellos research can do, and thats a key part of the companys attraction to investors.

As well, in addition to executing a reverse takeover with iCo Therapeutics Inc. as one step in a strategy to raise capital and build value for shareholders, Satellos was able to do a concurrent financing of $7.25 million, which allowed the company to ramp up its team and amplify its drug discovery and development efforts.

This advertisement has not loaded yet, but your article continues below.

David Bautz, a senior biotechnology analyst with Zacks Small Cap Research, says Satellos is way undervalued compared to other companies doing DMD research.

The gene therapy approach [of some other companies] is not working, so Satellos is trying something thats completely different, says Bautz, who has a PhD in biochemistry. The theory behind it is very exciting, in my opinion. Theyre seeing exciting things in preclinical models, which is a good start.

From that perspective, while still risky, I think a lot of that risk is taken away by the fact Satellos valuation currently is so low, he says. And clearly the market values companies that are doing DMD treatment.

Indeed, Gleeson says the companys strong leadership team has established relationships with advocacy groups such as Parent Project Muscular Dystrophy, which made a US$1 million investment in its research.

Adds Rudnicki, These patients really have a significant demand for help. If they can use their hands or limbs to be more self-sufficient, even for a couple more years, thats a huge improvement in quality of life And we are very hopeful we can do more.

This is about changing the lives of these children who are unable to walk and are going to die at a young age.

And the potential for Satellos and its MyoReGenX platform doesnt stop with DMD because there are dozens of other degenerative conditions in muscle tissues as well as other parts of the body that could prove good targets for Satellos technology, among them complications associated with aging.

Says Rudnicki: Not only do we see this as relevant to multiple wasting disorders, we think that other stem cells in other parts of the body can be targeted in the retina, for example, possibly even in the brain.

For more information on Satellos Bioscience, visit its website.

Make sure to follow Satellos on social media for the latest updates:

Facebook

Twitter

LinkedIn

There can be no guarantee that the Company will obtain the required regulatory authorization/s to commence clinical trials in humans on a timely basis, or at all. The Company may not be able to translate its novel discoveries into viable therapeutic treatments suitable for clinical development.

This story was provided by Market One Media Group for commercial purposes.

This advertisement has not loaded yet, but your article continues below.

Sign up to receive the daily top stories from the Financial Post, a division of Postmedia Network Inc.

A welcome email is on its way. If you don't see it, please check your junk folder.

The next issue of Financial Post Top Stories will soon be in your inbox.

We encountered an issue signing you up. Please try again

365 Bloor Street East, Toronto, Ontario, M4W 3L4

2022 Financial Post, a division of Postmedia Network Inc. All rights reserved. Unauthorized distribution, transmission or republication strictly prohibited.

This website uses cookies to personalize your content (including ads), and allows us to analyze our traffic. Read more about cookies here. By continuing to use our site, you agree to our Terms of Service and Privacy Policy.

OK

See the article here:
Satellos Bioscience pursues a revolutionary approach to treat muscle degeneration, give new hope to patients and parents - Financial Post

Amendment added to PA budget bill would make Pitt, other universities stop fetal tissue research – WPXI Pittsburgh

Amendment added to Pennsylvania budget bill would make Pitt, other universities stop fetal tissue research

An amendment just added to the state budget bill would make the University of Pittsburgh promise that they would stop fetal tissue research.

Some politicians and doctors are differing on the topic.

On the heels of Roe v. Wade being overturned, State Representative Jerry Knowles is calling for several universities to stop doing fetal cell research.

Pitt is one of those universities, plus Temple, Lincoln and Penn State.

Pitt is expected to receive $155 million in the next year from grant money, and is known for their fetal cell research and work.

Rep. Knowles told Channel 11, I respect doctors. I dont claim to be a doctor, or a scientist. I dont think you need to be a doctor or a scientist to determine what is unethical, what is evil, and what is barbaric.

Its something local infectious disease physician Dr. Amesh Adalja disagrees with.

We have already seen benefits from stem cell research, and research that derives from fetus cells. Even some of the covid vaccines were developed. This is a life saving technology.

Pitt spokesperson Chuck Finder sent us a statement:

The University of Pittsburgh devotes every dollar of the general support appropriation it receives from the state to help support a tuition discount for Pennsylvania students and families. Were optimistic the legislature will preserve this investment in our students.

Download the FREE WPXI News app for breaking news alerts.

Follow Channel 11 News on Facebook and Twitter. | Watch WPXI NOW

Allegheny County council see standstill in forming independent police review board

TOP STORIES FROM CHANNEL 11 NEWS

2022 Cox Media Group

See more here:
Amendment added to PA budget bill would make Pitt, other universities stop fetal tissue research - WPXI Pittsburgh

Cell Expansion Market Projection By Top Key Players, Regional Analysis Revenue Forecast Till 2030 Designer Women – Designer Women

New York(United States):- According to Report Ocean research report Global Cell Expansion Market: Analysis By Product Type (Instruments, Consumables, Disposables), By Cell Type (Human Cell and Animal Cell), By Application (Regenerative Medicine & Stem Cell Research and Cancer & Cell Based Research), By Region (North America, Europe, Asia Pacific, South America, and Middle East & Africa), (U.S, Canada, Germany, France, U.K., Japan, China, India): Opportunities and Forecast (2019 Edition): Forecast to 2024-, the cell expansion market is projected to display a robust growth represented by a CAGR of 17.33% during 2019 2024.

A comprehensive research report created through extensive primary research (inputs from industry experts, companies, stakeholders) and secondary research, the report aims to present the analysis of cell expansion market. The report analyses the Global Cell Expansion Market: Analysis By Product Type (Instruments, Consumables, Disposables), By Cell Type (Human Cell and Animal Cell), By Application (Regenerative Medicine & Stem Cell Research and Cancer & Cell Based Research), By Region (North America, Europe, Asia Pacific, South America, and Middle East & Africa), (U.S, Canada, Germany, France, U.K., Japan, China, India): Opportunities and Forecast (2019 Edition): Forecast to 2024, for the historical period of 2018-2019 and the forecast period of 2019-2024.

Download Free Sample of This Strategic Report:https://reportocean.com/industry-verticals/sample-request?report_id=aa1309

Over the recent years, cell expansion market has been witnessing considerable growth directly on the back of increasing prevalence of chronic diseases such as cancer, diabetes, osteoarthritis, etc. Moreover, factors such as increasing investment in healthcare research, growing government initiatives, increasing adoption rate of new and technically instruments, rapidly evolving applicable segment market has been providing momentum to the overall market growth of cell expansion.

In addition, increasing demand for technically advanced products such as automated cell expansion systems and increasing number of cell GMP-certified cell expansion facilities are anticipated to fuel the market growth in forecasted period. However, recalls due to product failures have been hindering the market growth.

The report titled Global Cell Expansion Market: Analysis By Product Type (Instruments, Consumables, Disposables), By Cell Type (Human Cell and Animal Cell), By Application (Regenerative Medicine & Stem Cell Research and Cancer & Cell Based Research), By Region (North America, Europe, Asia Pacific, South America, and Middle East & Africa), (U.S, Canada, Germany, France, U.K., Japan, China, India): Opportunities and Forecast (2019 Edition): Forecast to 2024:-has covered and analysed the potential of cell expansion market and provides statistics and information on market size, shares and growth factors. The report intends to provide cutting-edge market intelligence and help decision makers take sound investment evaluation. Besides, the report also identifies and analyses the emerging trends along with major drivers, challenges and opportunities. Additionally, the report also highlights market entry strategies for various companies.

Scope of the Report

Global Cell Expansion Market (Actual Period: 2014-2018, Forecast Period: 2019-2024)

Cell Expansion Market Size, Growth, Forecast Analysis By Product Type:Instruments, Consumables, Disposables. Analysis By Cell Type:Human Cells and Animal Cells. Analysis By Application Type:Regenerative Medicine & Stem Cell Research and Cancer & Cell Based Research. Regional Cell Expansion Market North America, Europe, Asia Pacific, South America, and Middle East & Africa (Actual Period: 2014-2018, Forecast Period: 2019-2024)

Cell Expansion Market Size, Growth, Forecast Analysis By Product Type: Instruments, Consumables, Disposables. Analysis By Cell Type:Human Cells and Animal Cells. Analysis By Application Type:Regenerative Medicine & Stem Cell Research and Cancer & Cell Based Research. Country Cell Expansion Market U.S., Canada, Germany, U.K, France, China, Japan, India (Actual Period: 2014-2018, Forecast Period: 2019-2024)

SPECIAL OFFER (Avail an Up-to 30% discount on this report-https://reportocean.com/industry-verticals/sample-request?report_id=aa1309

Cell Expansion Market Size, Growth, ForecastAnalysis By Product Type: Instruments, Consumables, Disposables. Analysis By Cell Type:Human Cells and Animal Cells. Analysis By Application Type:Regenerative Medicine & Stem Cell Research and Cancer & Cell Based Research.

Other Report HighlightsMarket Dynamics Drivers and Restraints. Market Trends. Porter Five Forces Analysis. SWOT Analysis.

Company Analysis Merck Millipore, Eppendorf, ThermoFisher Scientific, Becton Dickinson, Danaher Corporation, Corning Inc., Terumo Medical Corporation, CellGenix Technologie Transfer GmbH, Synthecon Inc., Stem Cell Technologies Inc.

Table of Content:

Key Questions Answered in the Market Report

Request full Report-https://reportocean.com/industry-verticals/sample-request?report_id=aa1309

About Report Ocean: We are the best market research reports provider in the industry. Report Ocean believes in providing quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is a one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us: Report Ocean: Email:sales@reportocean.com Address: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 UNITED STATES Tel:+1 888 212 3539 (US TOLL FREE) Website:https://www.reportocean.com

Read the rest here:
Cell Expansion Market Projection By Top Key Players, Regional Analysis Revenue Forecast Till 2030 Designer Women - Designer Women

Hematopoietic Stem Cell Transplantation Market Research by Size, Share, Trends, Business Opportunities and Top Manufacture and Forecast by 2029 …

Data Bridge Market Research analyses that the Hematopoietic stem cell transplantation market was valued at USD 2,337.43 million in 2021 and is expected to reach USD 5,664.54 million by 2029, registering a CAGR of 11.70% during the forecast period of 2022 to 2029. The market report curated by the Data Bridge Market Research team includes in-depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework.

While designing a reliable Global Hematopoietic Stem Cell Transplantation Market market report, absolute industry insight, talent solutions, practical solutions and use of technology are merged together very well to advance user experience. Companies can accomplish an effectual business growth if they adopt market research report like this market report which seems to be very vital in this rapidly changing marketplace. The report brings to notice many aspects regarding HEALTHCARE industry and market. These are mainly covered with market definition, market segmentation, competitive analysis and research methodology as major topics of the winningGlobal Hematopoietic Stem Cell Transplantation Marketreport. It explains market drivers and market restraints in detail which aids businesses in guessing about reducing or increasing the production of specific product.

Download Sample Report @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-hematopoietic-stem-cell-transplantation-market&kb

The significantGlobal Hematopoietic Stem Cell Transplantation Marketmarket research report looks at the key aspects of the market including its market improvement, development, position and others. It highlights the global key manufacturers and analyzes the market competition landscape. The industry inquiries in this report provide an examination and data as specified by classes. What is more, this report conducts analysis on the sales (consumption) of market, focuses on the top players to assess their sales, price, revenue and market share with volume and value for each region.Global Hematopoietic Stem Cell Transplantation Marketreport also comprises of a bottomless knowledge on market definition, market drivers and market restraints, classifications, applications, and engagements.

TopCompaniesin Global Hematopoietic Stem Cell Transplantation Market Report:

Otsuka America Pharmaceutical, Inc. (US), Akari Therapeutics, Plc (US), Merck KGaA (Germany), Takeda Pharmaceutical Company Limited (Japan), Lonza (Switzerland), GlaxoSmithKline plc (UK), Novartis AG (Switzerland), Merck & Co., Inc. (US), Pfizer Inc. (US), Sanofi (France), FUJIFILM Holdings Corporation (Japan), bluebird bio, Inc. (US), Pluristem Therapeutics Inc. (Israel), Regen Biopharma Inc. (US), Kiadis Pharma (Netherlands), Taiga Biotechnologies, Inc. (US), CellGenix GmbH (Germany), Escape Therapeutics, Inc. (US), Marker Therapeutics, Inc. (US), Talaris Therapeutics (US)

Feel Free To Ask Question Before Purchasing The Report @ https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-hematopoietic-stem-cell-transplantation-market&kb

Regional Analysis

U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

The persuasive Global Hematopoietic Stem Cell Transplantation Market marketing report provides top to bottom examination of the market as far as income and developing business sector is concerned. This business report displays systemic company profiles which illustrate how the moves of several key players and brands are driving the market. It also covers predictions regarding reasonable arrangement of uncertainties and latest techniques. The report also performs study on the market drivers and market restraints which are derived from SWOT analysis. The large scaleGlobal Hematopoietic Stem Cell Transplantation Marketmarket report considers wide scope that takes into account market scenarios, comparative pricing between major players, expenditure and profit of the specified market regions.

Under the topic of market segmentation, research and analysis is carried out based on application, vertical, deployment model, end user, and geography. Besides, competitive analysis assists to get ideas about the strategies of key players in the market via theGlobal Hematopoietic Stem Cell Transplantation Marketmarket document. Few of these strategies can be listed as; new product launches, expansions, agreements, partnerships, joint ventures, acquisitions, and others that help to broaden their footprints in the HEALTHCARE industry. The market share of key competitors on worldwide level is studied where main regions such as Europe, North America, Asia Pacific and South America are tackled in the universalGlobal Hematopoietic Stem Cell Transplantation Marketmarket survey report.

Highlights of TOC: Global Global Hematopoietic Stem Cell Transplantation Market Market

1 Global Global Hematopoietic Stem Cell Transplantation Market Market Overview

2 Global Global Hematopoietic Stem Cell Transplantation Market Market Competitions by Manufacturers

3 Global Global Hematopoietic Stem Cell Transplantation Market Capacity, Production, Revenue (Value) by Region (2022-2029

4 Global Global Hematopoietic Stem Cell Transplantation Market Supply (Production), Consumption, Export, Import by Region (2022-2029)

5 Global Global Hematopoietic Stem Cell Transplantation Market Production, Revenue (Value), Price Trend by Type

6 Global Global Hematopoietic Stem Cell Transplantation Market Market Analysis by Application

7 Global Global Hematopoietic Stem Cell Transplantation Market Manufacturers Profiles/Analysis

8 Global Hematopoietic Stem Cell Transplantation Market Manufacturing Cost Analysis

9 Industrial Chain, Sourcing Strategy and Downstream Buyers

10 Marketing Strategy Analysis, Distributors/Traders

11 Market Effect Factors Analysis

12 Global Global Hematopoietic Stem Cell Transplantation Market Market Forecast (2022-2029)

13 Research Findings and Conclusion

14 Appendix

Request for TOC @ https://www.databridgemarketresearch.com/toc/?dbmr=global-hematopoietic-stem-cell-transplantation-market&kb

Goals and objectives of the Global Hematopoietic Stem Cell Transplantation Market Market Study

This Global Hematopoietic Stem Cell Transplantation Market Market Research/analysis Report Focus on following important aspects:

Key questions answered in the report:

Access Full Report @ https://www.databridgemarketresearch.com/reports/global-hematopoietic-stem-cell-transplantation-market?kb

Related Reports:

Remote Patient Monitoring Software Market Size, Top Leading Countries, Companies, Consumption, Drivers, Trends, Revenue, Regional Analysis, Challenges

Smart Medical Devices Market | Industry Analysis, Size, Growth, Key Players, Segmentation And Scope of the Market

Advanced Wound Care Market is Growing Rapidly with Recent Demand, Size, Share, Trends, Development, Revenue Analysis

Aesthetic Devices Market Report: Exponential Growth by Market Size, Share, Future Growth, Trends and Analysis

C-Arms Market Size, Demand, Development Factors, Competitors Analysis, Challenges and Overview

About Data Bridge Market Research:

Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Corporatesales@databridgemarketresearch.com

Originally posted here:
Hematopoietic Stem Cell Transplantation Market Research by Size, Share, Trends, Business Opportunities and Top Manufacture and Forecast by 2029 ...

Beam Therapeutics to Present First Research Highlighting Approach to Develop Non-Genotoxic Conditioning Regimens for Patients with Sickle Cell Disease…

CAMBRIDGE, Mass., June 27, 2022 (GLOBE NEWSWIRE) -- Beam Therapeutics Inc. (Nasdaq: BEAM), a biotechnology company developing precision genetic medicines through base editing, today announced that new research highlighting the companys internal efforts to develop improved transplant conditioning regimens for patients with sickle cell disease (SCD) undergoing hematopoietic stem cell transplantation (HSCT) will be presented today, June 27, 2022, at 4:00 p.m. CEST at the Federation of American Societies for Experimental Biology (FASEB) Genome Engineering Conference by Nicole Gaudelli, Ph.D., director, head of gene editing at Beam. The conference is being held from June 26-30, 2022, in Lisbon, Portugal.

Beam is advancing two ex vivo base editing programs for SCD: BEAM-101, which incorporates base edits that are designed to mimic single nucleotide polymorphisms seen in individuals with hereditary persistence of fetal hemoglobin, and BEAM-102, which directly edits the causative HbS point mutation to recreate a naturally occurring normal human hemoglobin variant, HbG-Makassar. In the second half of 2022, Beam plans to initiate patient enrollment in its clinical trial with BEAM-101 and to submit an investigational new drug application for BEAM-102.

Beam has laid out a long-term strategy to support broad accessibility of base editing treatments for patients with SCD and other hematologic diseases. A key component of this strategy is focused on improving the safety of conditioning regimens, a required pretreatment for patients receiving ex vivo gene editing treatment via autologous transplant. Todays conditioning regimens rely on nonspecific chemotherapy or radiation, which are associated with significant toxicities, including genotoxicity, primary or secondary malignancy, and organ toxicities including infertility. With a goal of overcoming this, Beam has leveraged its base editing capabilities to develop a potentially non-genotoxic approach that combines antibody-based conditioning with multiplex gene edited hematopoietic stem cells (HSCs) called ESCAPE, or Engineered Stem Cell Antibody Paired Evasion.

As we execute on our long-term strategy to develop base editing treatments for SCD, we are excited to share new findings around our pre-clinical research to identify improved conditioning regimens for patients ahead of autologous transplant, said Giuseppe Ciaramella, Ph.D., president and chief scientific officer of Beam. The findings being presented today showcase the first data from our efforts to advance an improved non-genotoxic conditioning approach, coupling a monoclonal antibody with multiplex base edited HSCs that both ESCAPE antibody binding and contain disease-corrective edits to potentially ameliorate the clinical manifestations of SCD. By exploiting the unique multiplex capabilities of base editing in these next-generation conditioning and cell-engineering approaches, we aim to develop a curative treatment for patients with SCD that avoids the safety and fertility concerns associated with current conditioning regimens. These findings are a major step forward in our efforts to enable potentially highly efficacious conditioning options for patients with SCD and could significantly increase the probability of success of non-genotoxic conditioning, which is a key priority in the field. We look forward to rapidly advancing this work as part of our long-term strategy to bring safer and more effective options forward for patients with SCD.

New antibody-based conditioning agents have shown promise in targeting CD117, an optimal conditioning target for eliminating HSCs, but such antibodies generally cannot discriminate between host (disease-carrying) and transplanted (disease-corrected) cells, and therefore are designed with short half-life or dosed at low concentrations well before transplant. To potentially solve for this and other safety concerns associated with current conditioning regimens, Beam scientists developed ESCAPE, whereby an edit-antibody pair targeting CD117 was designed to enable edited HSCs to function normally but escape the binding of the conditioning antibody. This strategy is intended to allow the conditioning antibody to continue clearing older unedited host cells while selectively allowing new edited cells to proliferate in the body during engraftment.

The findings show that in vitro the ESCAPE antibodies bound to wild-type CD117, blocked binding of its ligand and led to depletion of unedited cells, while enriching for edited cells which were generally not bound by the antibody. High levels of editing efficiency were demonstrated with both a single CD117 edit and simultaneous CD117 and BEAM-101 edits (~85% multiplex editing). Beam has also developed a CD117 editing strategy with greater than 75% editing efficiency that is also compatible with an edit to correct the sickle mutation and generate HbG-Makassar, Beams strategy with its BEAM-102 program. Relative to a control, ESCAPE reduced cell viability of unedited cells while maintaining CD117 edited cellsin vitro,suggesting utility as a conditioning agent with a selective advantage to edited HSCs post-transplant.

About Beam Therapeutics Beam Therapeutics (Nasdaq: BEAM) is a biotechnology company committed to establishing the leading, fully integrated platform for precision genetic medicines. To achieve this vision, Beam has assembled a platform that includes a suite of gene editing and delivery technologies and is in the process of building internal manufacturing capabilities. Beams suite of gene editing technologies is anchored by base editing, a proprietary technology that is designed to enable precise, predictable and efficient single base changes, at targeted genomic sequences, without making double-stranded breaks in the DNA. This has the potential to enable a wide range of potential therapeutic editing strategies that Beam is using to advance a diversified portfolio of base editing programs. Beam is a values-driven organization committed to its people, cutting-edge science, and a vision of providing life-long cures to patients suffering from serious diseases.

Cautionary Note Regarding Forward-Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Investors are cautioned not to place undue reliance on these forward-looking statements, including, but not limited to, statements related to: our presentation at FASEB; our plans, and anticipated timing, to initiate patient enrollment in our BEAM-101 clinical trial and to submit an investigational new drug application for Beam-102; the therapeutic applications and potential of our technology, including with respect to improved conditioning regimens and sickle cell disease; and our ability to develop life-long, curative, precision genetic medicines for patients through base editing. Each forward-looking statement is subject to important risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statement, including, without limitation, risks and uncertainties related to: our ability to develop, obtain regulatory approval for, and commercialize our product candidates, which may take longer or cost more than planned; our ability to raise additional funding, which may not be available; our ability to obtain, maintain and enforce patent and other intellectual property protection for our product candidates; the potential impact of the COVID-19 pandemic; that preclinical testing of our product candidates and preliminary or interim data from preclinical studies and clinical trials may not be predictive of the results or success of ongoing or later clinical trials; that enrollment of our clinical trials may take longer than expected; that our product candidates may experience manufacturing or supply interruptions or failures; risks related to competitive products; and the other risks and uncertainties identified under the headings Risk Factors Summary and Risk Factors in our Annual Report on Form 10-K for the year ended December 31, 2021, under the heading Risk Factors in our Quarterly Report on Form 10-Q for the quarter ended March 31, 2022, and in any subsequent filings with the Securities and Exchange Commission. These forward-looking statements speak only as of the date of this press release. Factors or events that could cause our actual results to differ may emerge from time to time, and it is not possible for us to predict all of them. We undertake no obligation to update any forward-looking statement, whether as a result of new information, future developments or otherwise, except as may be required by applicable law.

Contacts:

Investors: Chelcie Lister THRUST Strategic Communications chelcie@thrustsc.com

Media: Dan Budwick 1AB dan@1abmedia.com

See the original post:
Beam Therapeutics to Present First Research Highlighting Approach to Develop Non-Genotoxic Conditioning Regimens for Patients with Sickle Cell Disease...

iTolerance, Inc. Awarded Industry Discovery and Development Partnership with JDRF for Advanced Pre-Clinical Development of iTOL-100 and iTOL-101 for…

Company advancing development of lead program, iTOL-101, as a potential breakthrough in curing Type 1 Diabetes with the potential to eliminate the need for chronic life-long immunosuppression

The up to $850,000 award issued to iTolerance was given in furtherance of JDRF's charitable mission to cure and mitigate the effects of Type 1 Diabetes

MIAMI, FL / ACCESSWIRE / June 28, 2022 / iTolerance, Inc. ("iTolerance" or the "Company"), an early-stage regenerative medicine company developing technology to enable tissue, organoid or cell therapy without the need for life-long immunosuppression, today announced it has been awarded an Industry Discovery and Development Partnership ("IDDP") of up to $850,000 from JDRF, a nonprofit organization that funds Type 1 Diabetes (T1D) research, provides a broad array of community and activist services to the T1D population and actively advocates for regulation favorable to medical research and approval of new and improved treatment modalities.

iTolerance, Inc., Tuesday, June 28, 2022, Press release picture

Anthony Japour, MD, Chief Executive Officer of iTolerance, commented, "We are incredibly pleased to expand and deepen our partnership with the JDRF. We are grateful for their continued support and dedication to the Type 1 Diabetes community. This funding provides us with the additional capital to support the translation of iTOL-100 production, iTolerance's proprietary biotechnology-derived fusion protein immunomodulator platform, from the academic research laboratories to commercial manufacturing. In addition, the partnership will support Good Laboratory Practice efficacy, safety, toxicology, and pharmacokinetic studies. This will put us a step closer toward a first in human Phase 1/2a clinical trial."

Dr. Japour continued, "The support that the JDRF has provided to our team thus far has been significantly valuable in enabling us to complete our pre-clinical non-human primate study which demonstrated long-term success of allogeneic islet implantation without chronic immunosuppression for the treatment of diabetes. The results from that landmark study were recently published[1] in the peer-reviewed journal, Science Advances. We believe the extension of their support with this IDDP is truly a natural next step as we collectively advance towards a potential breakthrough cure for T1D without the need for chronic immunosuppression."

Story continues

The JDRF award to iTolerance is in support of advancing the Company's platform technology, iTOL-100, which leverages the naturally occurring protein, Fas Ligand (FasL) which is present in all mammals and functions as a natural way for the body to establish local immune tolerance. In pre-clinical studies conducted to date, iTOL-100 has been shown to establish durable, localized immune tolerance, allowing the implanted tissue, organoid or cell therapy to function as a replacement for damaged native cells. Additionally, the award supports the advancement of pre-clinical studies evaluating iTolerance's lead program, iTOL-101, to support a first-in-human clinical study in Type 1 Diabetes.

"We enthusiastically support the iTolerance team's effort toward translating to the clinic the work of our JDRF-funded researchers. The recently published study demonstrates long-term glycemic control in a non-human primate model of diabetes by combining allogenic islets with the SA-FasL microgel. This work has the promise to provide a cell replacement therapy that cures T1D without the need for chronic immunosuppression. The advancement of pre-clinical development builds on the ongoing support from JDRF and we look forward to this next stage of development," added Esther Latres, Ph.D., JDRF Vice President of Research.

About JDRF

JDRF's mission is to accelerate life-changing breakthroughs to cure, prevent and treat T1D and its complications. To accomplish this, JDRF has invested more than $2.5 billion in research funding since our inception. We are an organization built on a grassroots model of people connecting in their local communities, collaborating regionally for efficiency and broader fundraising impact, and uniting on a national stage to pool resources, passion, and energy. We collaborate with academic institutions, policymakers, and corporate and industry partners to develop and deliver a pipeline of innovative therapies to people living with T1D. Our staff and volunteers throughout the United States and our five international affiliates are dedicated to advocacy, community engagement and our vision of a world without T1D. For more information, please visit jdrf.org or follow us on Twitter (@JDRF), Facebook (@myjdrf), and Instagram (@jdrfhq).

About iTOL-100

The Company's iTOL-100 platform technology is a biotechnology-derived Strepavidin-FasL fusion protein, a synthetic form of the naturally occurring protein FasL, mixed with a biotin-PEG microgel (SA-FasL microgel) that potentially allows convenient and effective co-administration with implanted cells or organoids to induce local immune tolerance without the need for life-long immunosuppression. In pre-clinical studies, iTOL-100 has been shown to establish durable, localized immune tolerance, allowing the implanted tissue, organoid or cell therapy to function as a replacement for damaged native cells. iTOL-100 has broad applicability and can be applied to both allogenic and stem cell-derived organoids across a number of diseases.

About iTolerance, Inc.

iTolerance is an early-stage privately held regenerative medicine company developing technology to enable tissue, organoid or cell therapy without the need for life-long immunosuppression. Leveraging its proprietary biotechnology-derived Strepavidin-FasL fusion protein/biotin-PEG microgel (SA-FasL microgel) platform technology, iTOL-100, iTolerance is advancing a pipeline of programs using both allogenic pancreatic islets and stem cells that have the potential to cure diseases. The Company's lead program, iTOL-101 is being developed for Type 1 Diabetes and in a pre-clinical non-human primate study, pancreatic islet cells co-implanted with iTOL-101 exhibited long-term function with control of blood glucose levels and restoration of insulin secretion without the use of chronic immune suppression. The Company's second lead candidate, iTOL-102, is leveraging significant advancements in stem cells to derive pancreatic islets which allows an inexhaustible supply of insulin-producing cells. Utilizing iTOL-100 to induce local immune tolerance, iTOL-102 has the potential to be a cure for Type 1 Diabetes without the need for life-long immunosuppression. Additionally, the Company is developing iTOL-201 for liver failure and iTOL-301 as a potential regenerative protein and cell therapy that leverages stem cell sources to produce proteins or hormones in the body in conditions of high unmet need without the need for life-long immunosuppression. For more information, please visit itolerance.com.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of the "safe-harbor" provisions of the Private Securities Litigation Reform Act of 1995. When used herein, words such as "anticipate", "being", "will", "plan", "may", "continue", and similar expressions are intended to identify forward-looking statements. In addition, any statements or information that refer to expectations, beliefs, plans, projections, objectives, performance or other characterizations of future events or circumstances, including any underlying assumptions, are forward-looking.

All forward-looking statements are based upon the Company's current expectations and various assumptions. The Company believes there is a reasonable basis for its expectations and beliefs, but they are inherently uncertain. The Company may not realize its expectations, and its beliefs may not prove correct. Actual results could differ materially from those described or implied by such forward-looking statements as a result of various important factors, including, without limitation, anticipated levels of revenues, future national or regional economic and competitive conditions, and difficulties in developing the Company's platform technology. Consequently, forward-looking statements should be regarded solely as the Company's current plans, estimates and beliefs. Investors should not place undue reliance on forward-looking statements. The Company cannot guarantee future results, events, levels of activity, performance or achievements. The Company does not undertake and specifically declines any obligation to update, republish, or revise any forward-looking statements to reflect new information, future events or circumstances or to reflect the occurrences of unanticipated events, except as may be required by law.

[1] https://www.science.org/doi/abs/10.1126/sciadv.abm9881

Investor Contact:

Jenene Thomas Chief Executive Officer JTC Team, LLC T: 833.475.8247 iTolerance@jtcir.com

SOURCE: iTolerance, Inc.

View source version on accesswire.com: https://www.accesswire.com/706772/iTolerance-Inc-Awarded-Industry-Discovery-and-Development-Partnership-with-JDRF-for-Advanced-Pre-Clinical-Development-of-iTOL-100-and-iTOL-101-for-the-Treatment-of-Type-1-Diabetes

The rest is here:
iTolerance, Inc. Awarded Industry Discovery and Development Partnership with JDRF for Advanced Pre-Clinical Development of iTOL-100 and iTOL-101 for...

BMS cancer drug’s expanded approval gives it an edge over a Gilead cell therapy – MedCity News

A Bristol Myers Squib cancer drug made by engineering a patients own immune cells is now approved to treat patients in earlier stages of their disease, a regulatory decision that expands the number of patients that can be reached with this type of personalized cell therapy. The decision could also give BMS an edge over a rival cell therapy marketed by Gilead Sciences.

The CAR T-therapy from BMS, named Breyanzi, was initially approved last year as a treatment for diffuse large B-cell lymphoma, (DLBCL) a type of non-Hodgkin lymphoma in which the body produces abnormal B lymphocytes. Standard treatment is chemotherapy plus the antibody drug Rituximab. When that treatment doesnt work or the cancer relapses, the next treatment option is an autologous stem cell transplant.

Breyanzis initial approval made it a third-line treatment for DLBCL patients whose cancer relapsed or has not responded to two earlier therapies. The expanded approval of the drug, announced late Friday, moves the drug up in the treatment hierarchy and makes it a second-line therapy for patients whose disease has relapsed within 12 months of the initial chemotherapy regimen. That matches the expanded approval earlier this year of Gilead Sciences cell therapy, Yescarta. Furthermore, Breyanzis additional approval also covers those who are not eligible for a stem cell transplant.

Leo Gordon, an investigator in Breyanzis PILOT study and a professor of medicine at Northwestern University, said factors that may make patients bad candidates for a stem cell transplant include age, poor kidney or heart function, or low scores according to an assessment of frailty. Usually, such patients would receive palliative care to ease the cancers symptoms.

We thought there was a possible place for CAR T-therapy, Gordon said during an interview earlier this month at the annual meeting of the American Society of Clinical Oncology. The purpose of this is to get another option for patients for what is considered to be the standard [of care treatment]. Thats why this is an important group to look at.

CAR T-therapy is a personalized treatment made by harvesting a patients T cells and engineering them to target a protein on the surface of cancer cells. Those immune cells are multiplied in a lab and then infused back into the patient. Expanded approval of Breyanzi was based on the results of two studies evaluating the drug as a second-line therapy.

The TRANSFORM study evaluated Breyanzi in 184 patients still eligible for a stem cell transplant. The main goal was to measure how long a patient remains free of certain cancer complications. At one year, 45% of patients treated with Breyanzi achieved this mark compared with 24% of those who received standard therapy. Event-free survival in the treatment group was an estimated 10.1 months compared with 2.3 months in the control arm. Of those patients who received standard treatment, nearly half went on to receive an autologous stem cell transplant.

Measuring complete response and overall response were the main goals of PILOT, an open-label study that enrolled patients with a median age of 73. Gordon said that efficacy in PILOT was similar to what was observed in healthier and younger patients who were evaluated in tests of the drug as a third-line therapy. The median duration of response has not yet been reached, but in the 61 patients, 54% achieved a complete response. That is actually better than what we would expect for a transplant, Gordon said.

The major safety risks of CAR T-therapies as a class include an immune response called cytokine release syndrome and toxic effects in the brain. Gordon said the cytokine release syndrome cases observed in the latest Breyanzi study were mild to moderate. While some patients had severe neurotoxicity, Gordon said no one had to go to the intensive care unit and everyone recovered. About 20% of patients were treated on an outpatient basis.

In a research note sent to investors on Monday, William Blair analyst Matt Phipps noted that compared to Yescarta, Breyanzis broader label as a second-line treatment gives it access to a bigger pool of patients that Gileads drug is not approved to treat.

We assume around 40% of patients are refractory or will relapse at some point following first-line therapy, and with 50% of these patients being transplant ineligible, around 6,000 patients per year could be eligible for Breyanzi based on PILOT, Phipps wrote. Thus, this approval clearly provides Bristol Myers with a bigger opportunity with less CAR T-competition.

Breyanzi accounted for $87 million in total revenue in 2021, according to BMSs financial reports. For the first quarter of this year, the drug tallied $44 million in sales. Phipps said that Breyanzis new approval and broad label are positive signs for BMS as the company looks to other drugs that can offset patent expirations facing key products in coming years. He added that BMS projects Breyanzi could top $3 billion in annual sales by the end of the decade.

Photo by Bristol Myers Squibb

More:
BMS cancer drug's expanded approval gives it an edge over a Gilead cell therapy - MedCity News

North Island College alum on cutting edge of bio-medical research – Comox Valley Record

NIC alumna Milena Restan bioprints on a BioX printer at the Willerth Laboratory in Victoria. photo supplied

North Island College alum Milena Restan is combining her love of medicine and engineering in ground-breaking stem cell and tissue engineering research to help patients.

Restan has completed a biomedical engineering degree at the University of Victoria and was recently the lead author of a research paper on 3D bioprinting stem cell-derived neural tissue.

It was very special to be a lead author as an undergrad student, said Restan.

Originally from the Comox Valley, Restan began her engineering journey at NIC but was always torn between medicine and engineering.

I always wanted to be a doctor, but after taking a calculus course I was really torn between pursuing my love of mathematics and medicine, she said. When I learned about NICs engineering transfer with UVic, and about the option of biomedical engineering, I realized I didnt have to choose it was the perfect combination.

Biomedical engineering focuses on mechanical and electrical engineering, combined with anatomy, physiology and biochemistry.

Engineering is learning about why things work the way they do, and then using that knowledge to solve all kinds of real-world problems, said Dennis Lightfoot, NIC engineering instructor. Todays engineering students are going to be preparing to solve the problems of the present and the future including mitigating climate change, designing for sustainability, and developing new renewable energy sources for the future. Biomedical research and development like Milena is working on will also be a growth area for our future engineers.

NIC students can seamlessly transfer directly to UVic thanks to a partnership agreement between the two institutions one of many partnership and transfer agreements NIC has with institutions across B.C., Canada and internationally.

Our goal is to make it as easy as possible for students to complete their first year at NIC and then move on to the institution of their choice to continue their studies, said Neil Cruickshank, dean of arts, science, technology, business and applied studies.

It was after her transfer to UVic that Restans career path turned again. Her original focus was on medical device design and prosthetics when she was introduced to 3D tissue printing. She then got a job working with Willerth Lab, run by Dr. Stephanie Willerth at the University of Victoria, which specialized in tissue engineering and regenerative medicine.

You can take a mature cell, reprogram it back to a pluripotent stem cell and 3D bioprint it along with various biomaterials, she explained. This allows us to engineer personalized tissue models which can be used to study disease progression. Right now, were focusing on neural tissues, but were hoping to expand to cardiac tissues. Theres a lot of potential with this approach.

Restan is wrapping up her final year at UVic and looking forward to graduation in June. For now, Restan is looking forward to furthering her research work and is also considering pursuing her MD/PhD, which combines clinical medical training with research.

What Ive learned through all this is that you never know what opportunities may present themselves. My advice to students would be to take electives youre interested in and to look for opportunities to volunteer outside the classroom. You never know what pathways will open up for you.

CourtenayNorth Island College

View post:
North Island College alum on cutting edge of bio-medical research - Comox Valley Record

Cell Separation Technology Market Size, Scope and Forecast | Beckman Coulter, Becton, Dickinson and Company, GE Healthcare, Merck KGaA, Miltenyi…

New Jersey, United States This Cell Separation Technology Market research examines the state and future prospects of the Cell Separation Technology market from the perspectives of competitors, regions, products, and end Applications/industries. The Worldwide Cell Separation Technology market is segmented by product and Application/end industries in this analysis, which also analyses the different players in the global and key regions.

The analysis for the Cell Separation Technology market is included in this report in its entirety. The in-depth secondary research, primary interviews, and internal expert reviews went into the Cell Separation Technology reports market estimates. These market estimates were taken into account by researching the effects of different social, political, and economic aspects, as well as the present market dynamics, on the growth of the Cell Separation Technology market.

Get Full PDF Sample Copy of Report: (Including Full TOC, List of Tables & Figures, Chart) @https://www.verifiedmarketresearch.com/download-sample/?rid=39900

Key Players Mentioned in the Cell Separation Technology Market Research Report:

Beckman Coulter, Becton, Dickinson and Company, GE Healthcare, Merck KGaA, Miltenyi Biotec, BD Bioscience, Thermo Fisher Scientific, Stemcell Technologies, and many others.

The Porters Five Forces analysis, which explains the five forces: customers bargaining power, distributors bargaining power, the threat of substitute products, and degree of competition in the Cell Separation Technology Market, is included in the report along with the market overview, which includes the market dynamics. It describes the different players who make up the market ecosystem, including system integrators, middlemen, and end-users. The competitive environment of the Cell Separation Technology marketis another major topic of the report. For enhanced decision-making, the research also provides in-depth details regarding the COVID-19 scenario and its influence on the market.

Cell Separation TechnologyMarket Segmentation:

Cell Separation Technology Market, By Type

Density Gradient Centrifugation Immunodensity Cell Separation Microfluidic Cell Separation Immunomagnetic Cell Separation Fluorescence-activated Cell Sorting (FACS) Others

Cell Separation Technology Market, By Application

Stem Cell Research Immunology Neuroscience Cancer Research Others

Inquire for a Discount on this Premium Report@ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=39900

Cell Separation Technology Market Report Scope

Key questions answered in the report:

1. Which are the five top players of the Cell Separation Technology market?

2. How will the Cell Separation Technology market change in the next five years?

3. Which product and application will take a lions share of the Cell Separation Technology market?

4. What are the drivers and restraints of the Cell Separation Technology market?

5. Which regional market will show the highest growth?

6. What will be the CAGR and size of the Cell Separation Technology market throughout the forecast period?

For More Information or Query or Customization Before Buying, Visit @ https://www.verifiedmarketresearch.com/product/cell-separation-technology-market/

Visualize Cell Separation Technology Market using Verified Market Intelligence:-

Verified Market Intelligence is our BI-enabled platform for narrative storytelling of this market. VMI offers in-depth forecasted trends and accurate Insights on over 20,000+ emerging & niche markets, helping you make critical revenue-impacting decisions for a brilliant future.

VMI provides a holistic overview and global competitive landscape with respect to Region, Country, and Segment, and Key players of your market. Present your Market Report & findings with an inbuilt presentation feature saving over 70% of your time and resources for Investor, Sales & Marketing, R&D, and Product Development pitches. VMI enables data delivery In Excel and Interactive PDF formats with over 15+ Key Market Indicators for your market.

Visualize Cell Separation Technology Market using VMI @ https://www.verifiedmarketresearch.com/vmintelligence/

About Us: Verified Market Research

Verified Market Research is a leading Global Research and Consulting firm that has been providing advanced analytical research solutions, custom consulting and in-depth data analysis for 10+ years to individuals and companies alike that are looking for accurate, reliable and up to date research data and technical consulting. We offer insights into strategic and growth analyses, Data necessary to achieve corporate goals and help make critical revenue decisions.

Our research studies help our clients make superior data-driven decisions, understand market forecast, capitalize on future opportunities and optimize efficiency by working as their partner to deliver accurate and valuable information. The industries we cover span over a large spectrum including Technology, Chemicals, Manufacturing, Energy, Food and Beverages, Automotive, Robotics, Packaging, Construction, Mining & Gas. Etc.

We, at Verified Market Research, assist in understanding holistic market indicating factors and most current and future market trends. Our analysts, with their high expertise in data gathering and governance, utilize industry techniques to collate and examine data at all stages. They are trained to combine modern data collection techniques, superior research methodology, subject expertise and years of collective experience to produce informative and accurate research.

Having serviced over 5000+ clients, we have provided reliable market research services to more than 100 Global Fortune 500 companies such as Amazon, Dell, IBM, Shell, Exxon Mobil, General Electric, Siemens, Microsoft, Sony and Hitachi. We have co-consulted with some of the worlds leading consulting firms like McKinsey & Company, Boston Consulting Group, Bain and Company for custom research and consulting projects for businesses worldwide.

Contact us:

Mr. Edwyne Fernandes

Verified Market Research

US: +1 (650)-781-4080 UK: +44 (753)-715-0008 APAC: +61 (488)-85-9400 US Toll-Free: +1 (800)-782-1768

Email: sales@verifiedmarketresearch.com

Website:- https://www.verifiedmarketresearch.com/

See the original post:
Cell Separation Technology Market Size, Scope and Forecast | Beckman Coulter, Becton, Dickinson and Company, GE Healthcare, Merck KGaA, Miltenyi...