Author Archives: admin


CareDx Demonstrates Potential of AlloHeme and AlloCell for Allogeneic Cell Transplant and Therapy Monitoring at Transplantation & Cellular Therapy…

SOUTH SAN FRANCISCO, Calif., April 22, 2022 (GLOBE NEWSWIRE) -- CareDx, Inc.. (Nasdaq: CDNA) The Transplant Company focused on the discovery, development, and commercialization of clinically differentiated, high-value healthcare solutions for transplant patients and caregivers today announced the presentation of new data during the Tandem Meetings, Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR being held on April 23-26 in Salt Lake City, Utah, highlighting the capabilities of AlloHeme and AlloCell for allogeneic cell transplant and therapy monitoring.

CareDx will also share information about its OTTR Patient Management Software that has recently been validated to SMART (Substitutable Medical Applications, Reusable Technologies) on FHIR (Fast Healthcare Interoperability Resource) standards and is available for customer use.

"CareDx has led the way in setting new standards of care for solid organ transplant monitoring, and we're excited to share the latest data on how our innovative solutions in development are poised to improve the care of patients receiving allogeneic hematopoietic stem cell transplants or being treated with allogeneic cell therapies," said Reg Seeto, CEO and President of CareDx. "AlloCellis being used by leading developers of allogeneic CAR T-cell therapies to non-invasively monitor the expansion and persistence of therapies in development, and through the ACROBAT study, our ultra-sensitive AlloHeme chimerism testing solution is being evaluated for its potential in monitoring stem cell transplant patients to enable the earlier detection of disease relapse and timely therapeutic interventions."

"The ACROBAT study is designed to demonstrate the role of AlloHeme in routine post allogeneic HCT patient monitoring," said Dr. Stefan O. Ciurea, Professor of Clinical Medicine and Director of the Hematopoietic Stem Cell Transplantation and Cellular Therapy Program at the University of California Irvine's Chao Comprehensive Cancer Center, and the lead Principal Investigator of the study. "With AlloHeme, we can measure chimerism levels more accurately with much higher sensitivity than the currently widely used STR-based testing methods. The ACROBAT study is assessing the role of AlloHeme for universal early relapse detection, potentially enabling better therapeutic interventions to prevent disease relapse post-transplant and improved treatment outcomes."

CareDx is advancing its product pipeline with new scientific innovations for blood cancers that will help monitor treatment response after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) using AlloHeme and after allogeneic cell therapy using AlloCell.

Kashif Rathore, Senior Vice President of Digital Business at CareDx added, "We're also proud to have successfully partnered with Cerner, a leader in health integration technologies, in validating our OTTR software to SMART on FHIR endpoints and we look forward to offering this new service to customers."

Data being presented:

Title: AlloCell Provides a Highly Accurate, Sensitive, and Universal Solution for Monitoring Expansion and Persistence of Allogeneic Cellular Therapies. Abstract #: 298 This abstract shows that AlloCell is a highly sensitive and precise method for universal detection and quantification of engineered and non-engineered allogeneic cell therapies.

Title: Advances in Chimerism Monitoring Using NGS Technology Design of the ACROBAT Multicenter Clinical Trial Abstract #: 565 This abstract highlights the prospective, multi-center, observational clinical trial designed to evaluate the role of AlloHeme testing to monitor for relapse in patients post allo-HCT.

Title: Analytical Evaluation and STR Comparison of the Accurate and Sensitive Microchimerism Monitoring Tool for Relapse Prediction Post-Allogeneic HCT Abstract #: 435 This abstract highlights the analytical performance of AlloHeme, an ultra-sensitive chimerism detection solution, and demonstrates the high accuracy and sensitivity of AlloHeme in detecting chimerism compared to short tandem repeat (STR).

Title:SMART on FHIR Aligns an EHR with the Transplant-Specific Database Abstract#: 591 This abstract highlights the collaboration between CareDx and Cerner to develop and validate the CareDx OTTR software to support transplant data electronic health record integration in line with public SMART/FHIR API user interface standards. SMART FHIR integration functionality between Cerner andCareDx OTTRsoftware promotes an enhanced user experience allowing clinical resources to be more closely aligned with direct patient care.

About CareDx The Transplant Company CareDx, Inc., headquartered in South San Francisco, California, is a leading precision medicine solutions company focused on the discovery, development and commercialization of clinically differentiated, high-value healthcare solutions for transplant patients and caregivers. CareDx offers testing services, products, and digital healthcare solutions along the pre- and post-transplant patient journey and is the leading provider of genomics-based information for transplant patients. For more information, please visit: http://www.CareDx.com.

Forward Looking Statements This press release includes forward-looking statements related to CareDx, Inc., including statements regarding the potential benefits and results that may be achieved with AlloHeme, AlloCell, OTTR Patient Management Software's validation to SMART on FHIR standards (the "Software Validation"), and CareDx's presentation of data at the upcoming Transplantation & Cellular Therapy Meetings (the "Data Presentation"). These forward-looking statements are based upon information that is currently available to CareDx and its current expectations, speak only as of the date hereof, and are subject to risks and uncertainties that could cause actual results to differ materially from those projected, including risks that CareDx does not realize the expected benefits of AlloHeme, AlloCell, Software Validation, or Data Presentation; risks that CareDx fails to advance its product pipeline with new scientific innovations for blood cancers that will help monitor treatment response after Allo-HSCT using AlloHeme and after allogeneic cell therapy using AlloCell; risks that CareDx fails to present data and share information as identified in this press release; general economic and market factors; and other risks discussed in CareDx's filings with the SEC, including the Annual Report on Form 10-K for the fiscal year ended December 31, 2021 filed by CareDx with the SEC on February 24, 2022, and other reports that CareDx has filed with the SEC. Any of these may cause CareDx's actual results, performance or achievements to differ materially and adversely from those anticipated or implied by CareDx's forward-looking statements. CareDx expressly disclaims any obligation, except as required by law, or undertaking to update or revise any such forward-looking statements.

CONTACTS: CareDx, Inc. Sasha King Chief Marketing Officer 415-287-2393 sking@caredx.com

Investor Relations Ian Cooney (415) 722-4563 investor@CareDx.com

See more here:
CareDx Demonstrates Potential of AlloHeme and AlloCell for Allogeneic Cell Transplant and Therapy Monitoring at Transplantation & Cellular Therapy...

Hairy cell leukemia: Outlook, treatment, and what to expect – Medical News Today

Hairy cell leukemia is a rare type of blood cancer that can affect adults. In people who receive treatment, the long-term outlook for hairy cell leukemia is good.

Hairy cell leukemia (HCL) occurs when bone marrow produces too many white blood cells called lymphocytes.

The disease gets its name from the hairlike projections on its cells. HCL cells can affect the bone marrow, spleen, liver, and lymph nodes.

According to the National Organization for Rare Disorders, HCL is more common in males over the age of 50 years.

HCL affects roughly 6,000 people in the United States, with around 600800 new diagnoses each year. Around 12% of all adult leukemias are HCL.

In many cases, the long-term outlook for HCL is good, with people often continuing to live good-quality lives for years with medical care.

In this article, we look at the outlook and survival rates for HCL, the risk of secondary cancers, and treatment options.

Learn about the symptoms of HCL here.

HCL is a chronic disease, and although there is no cure for it, the condition is treatable. Treatment is usually highly effective and can help people continue to live normal lives.

According to the National Cancer Institute, HCL progresses slowly or does not worsen at all.

The Leukemia and Lymphoma Society reports that the 5-year event-free survival rate for HCL is 90% in people who received initial treatment with the chemotherapy drug cladribine. This means 90% of people will still be alive 5 years after diagnosis.

Treatment with cladribine has led to roughly 85% complete remission and around 10% partial response in people with HCL.

A 2020 study looked at survival rates in 279 people diagnosed with HCL between 1980 and 2011. The median age of the participants was 59 years old. In 208 of the participants, the first-line treatments were the drugs cladribine or pentostatin.

A 10-year follow-up found that the median survival rate was 27 years overall, with 11 years of relapse-free survival. There was a relapse rate of 39%. The study concluded that people with HCL have a good long-term outlook.

Research suggests that there may be racial disparities in HCL outcomes. A 2015 study included participants of the following racial groups:

The study found that the 10-year survival rate was worse in African American participants than in those of other racial groups.

Half of African American participants were alive at the 10-year follow-up, whereas more than two-thirds of those in other racial groups were alive at the follow-up.

The researchers concluded that the biological, socioeconomic, and health system factors contributing to this disparity need further investigation.

According to a 2020 study, people with HCL have an increased risk of secondary cancer.

Among 279 participants, 59 people developed at least one secondary cancer. The most common secondary cancers were prostate cancer, nonmelanoma skin cancer, and blood cancers.

The study did not find that treatment with purine analogs, such as cladribine or pentostatin, was a risk factor for secondary cancers.

However, according to the National Cancer Institute, cladribine and pentostatin may increase the risk of Hodgkin lymphoma and non-Hodgkin lymphoma.

Some research suggests that HCL and its effects on the body may increase the risk of secondary cancer.

People with HCL must attend regular cancer screenings to detect any early signs of secondary cancer.

Blood cell changes in those with HCL may result in compromised immune systems, making people more susceptible to infection or autoimmune disease.

HCL responds very well to treatment, which aims to manage the cancer rather than cure it.

Unlike with many other types of cancer, doctors may choose to wait before starting treatment.

Doctors will monitor the condition and may only begin treatment if they believe it is necessary to control it. This can help avoid any unnecessary side effects of treatment.

The type of treatment will depend on each condition but may include the following:

Cladribine and pentostatin are purine analogs, which are the first-line treatment for HCL.

According to the Hairy Cell Leukemia Foundation, both medications are highly effective treatments and can result in long-term remission.

In 2018, the Food and Drug Administration (FDA) approved another drug, moxetumomab pasudotox, to treat HCL. Doctors may use this drug in people who have not responded to standard therapies.

Interferon is a drug that doctors may use to treat HCL. Interferon uses the bodys immune system to help fight off cancer. Interferon affects how cancer cells divide and helps slow tumor growth.

Doctors may also use a biologic drug called rituximab, known by the brand name Rituxan, if people with HCL have not responded to other treatments. Rituximab is an antibody that attaches to HCL cells. Doctors may also use rituximab in combination with chemotherapy as a first-line treatment.

Targeted therapies use medications or other substances to find and destroy cancer cells. Targeted therapies may cause less harm to healthy cells than other treatments, such as radiation therapy or chemotherapy.

One type of targeted therapy to treat HCL is monoclonal antibody therapy. A laboratory creates antibodies that attach to cancer cells and destroy them or prevent them from growing and spreading. The biologic drug rituximab is an example of a monoclonal antibody.

Splenectomy is a surgical procedure to remove the spleen. This may be necessary if HCL causes an enlarged spleen.

However, doctors rarely perform splenectomy for HCL because there are medications that can effectively reduce the size of the spleen.

Learn more about immunotherapy for leukemia here.

Treatments for HCL can have the following side effects:

Cancer treatments may also cause other side effects, such as fatigue, appetite loss, or nausea.

Before starting treatment, people can discuss any potential side effects and the risks and benefits of each treatment option with their healthcare team.

Learn more about side effects here.

HCL is a rare type of leukemia. Other types of leukemia include:

HCL is a rare type of adult leukemia. It is more common in males over the age of 50 years.

The overall outlook for people with HCL is good. Treatment with chemotherapy drugs, such as cladribine and pentostatin, is highly effective and may result in long-term remission.

Treatments for HCL may have side effects. People can discuss any treatments potential risks and benefits with their healthcare team.

More here:
Hairy cell leukemia: Outlook, treatment, and what to expect - Medical News Today

The International Society for Stem Cell Application Participates In IMCAS 2022 World Congress – Digital Journal

ISSCA Presents Regenerative Medicine World Congress and Promotes CGELL Technology Training

MIAMI, FL April 28, 2022 The International Society for Stem Cell Application has announced plans to become a sponsor at this yearsIMCAS 2022 World Congress. From June 3rd to June 5th, 2022, dermatologists, plastic surgeons, and aesthetic practitioners will gather in Paris for the worlds largest aging science and aesthetic learning event.

The International Society for Stem Cell Application (ISSCA) will be present, providing invaluable information about its innovative GCELL technology. Regenerative Medicine Certification program for physicians training and Promoting its Regenerative Medicine World Congressto be held in Istanbul, Turkey late September.

Cellular therapy is becoming standard practice in regenerative aesthetics due to its effectiveness and safety compared to existing treatment options Advanced technologies such as GCELL constitute a valuable therapeutic tool. Physicians specializing in dermatology, wound care, cosmetic gynecology, aesthetic medicine, hair transplants, and alopecia. Event participants will have a unique opportunity to learn about GCELL technology and ISSCA training programs.

Interested IMCAS attendees can visit the ISSCA and learn more about GCELL technology and ISSCAs Regenerative Medicine World Congress at Booth999 your spot, visithttps://www.issca.us/world-congress/

Media Contact Company Name: ISSCA Contact Person: Benito Novas Email: Send Email Phone: +1 (305) 560-5337 Address:Datran Center 9100 S Dadeland Boulevard, Suite 1500 City: Miami State: Fl. 33156 Country: United States Website: https://www.issca.us/

See the original post here:
The International Society for Stem Cell Application Participates In IMCAS 2022 World Congress - Digital Journal

Treatment for Myelodysplastic Syndromes: Who, When, and What – Pharmacy Times

Attendees of this live virtual program learned the latest and greatest in a presentation from 2 expert oncology pharmacists.

Attendees of this live virtual program learned the latest and greatest in a presentation titled Beyond Watch and Wait: Advances in Therapeutic and Supportive Care for Patients With Lower-risk Myelodysplastic Syndromes from 2 expert oncology pharmacists.

Sarah E. Stump, PharmD, BCPS, BCOP, began the session with a review of myelodysplastic syndromes (MDS) including epidemiology, risk factors, diagnosis, and risk assessment. She illustrated treatment decisions based on lower-risk and higher-risk MDS categories guided by the Revised International Prognostic Scoring System (IPSS-R). She explained that patients who do not have symptoms can be observed; however, patients with symptomatic anemia or other cytopenias are candidates for treatment. Dr Stump advised that patients with higher-risk MDS may be offered curative therapy with an allogeneic stem cell transplant. She noted few patients are eligible for this intensive therapy and most patients with higher-risk MDS are managed with hypomethylating agents (HMAs) or newer investigative strategies.

She then illustrated options for lower-risk MDS, including lenalidomide for patients with an isolated chromosome 5q deletion; epoetin alfa for patients with anemia and a serum erythropoietin level less than 500 units/L; immunosuppressive therapy for a subgroup of patients with a high likelihood of response to immunosuppressive therapy; and HMAs for patients with multiple cytopenias. Dr Stump wrapped up the first half of the session describing luspatercept, a new option for patients who require two or more red blood cell (RBC) transfusions over 8 weeks after failing an erythropoiesis-stimulating agent; for very low- to intermediate-risk MDS with ring sideroblasts or with myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis.

Kristen McCullough, PharmD, BCPS, BCOP, began the second half of the presentation by talking about iron overload in patients with MDS. She cautioned there are nearly a dozen different guidelines for the use of iron chelation therapy in this patient population. Based on the National Comprehensive Cancer Network guidelines, iron chelation is recom- mended for patients with IPSS-R low- and intermediate-1 risk MDS with a history of more than 20 to 30 RBC transfusions, when the ferritin is above 2500 ng/mL using either deferasirox or deferoxamine. She outlined strategies for dosing, administration, and monitoring iron chelation therapy. Dr McCullough shifted to focus on supportive care strategies and clinical pearls. She wrapped up by emphasizing the benefits of pharmacist-based medication education in hematology/oncology, including:

Patient satisfaction

Patient learning outcomes

Adherence

Revenue

Errors

Severe adverse effects

Sarah E. Stump, PharmD, BCPS, BCOP, explained, In clinical practice, a cutoff IPSS-R score of 3.5 commonly distinguishes between lower-risk MDS, which accounts for approximately two-thirds of all cases at diagnosis and higher-risk MDS, which accounts for approximately one-third of all cases.

Kristen McCullough, PharmD, BCPS, BCOP, stated, Pharmacists can use collaborative practice agreements to follow patients on oral chemotherapies, adjust or hold doses based on laboratory findings, and also facilitate medication refills.

Link:
Treatment for Myelodysplastic Syndromes: Who, When, and What - Pharmacy Times

Emerging potential of PTL nanoformulations in tumor therapy | DDDT – Dove Medical Press

Introduction

As a medical herb, Feverfew (Tanacetum parthenium) is conventionally used in Europe to treat fever, inflammation, migraines, rheumatoid arthritis, and menstrual irregularities. Parthenolide (PTL, Figure 1) is a sesquiterpene lactone found in feverfew, which is currently considered to be responsible for the herbs therapeutical potential.1 Initially, conventional extraction methods using chloroform and petroleum ether were performed to extract PTL; various extraction methods have been developed, such as high-performance liquid chromatography (HPLC), Soxhlet extraction, supercritical fluid extraction (SFE) and microwave-assisted extraction (MAE).1,2

Figure 1 Chemical structure of PTL and DMAPT.

The anti-cancer property of PTL was firstly validated in 1973. Furthermore, its patent application for tumor suppression was approved in 2005.3 Additionally, the in vitro and in vivo antitumor potential of PTL in multiple cancer types has been confirmed by numerous researches, which mainly resulted from its cytotoxicity to the bulk population of cancer cells as well as from selectively targeting cancer stem cells (CSCs); it is a subpopulation currently believed to be responsible for chemotherapy resistance and tumor relapse.310 Further studies revealed a series of direct PTL targets [p65, IB kinase (IKK), focal adhesion kinase 1 (FAK1), and others] that indirectly affect signaling pathways, which account for cell cycle arrest, apoptosis induction, metastasis suppression, redox imbalance, and epigenetic regulation involved in PTLs antitumor properties.3,4,11,12 The potential utility of PTL as radio-sensitization agent and complementary therapy against various cancers has also been widely studied and summarized.1315 As reviewed by Malgorzata et al, PTL has been combined with various anticancer agents, such as tubulin-directed agents, anthracyclines, antimetabolites, histone deacetylase inhibitors, mTOR inhibitors, and inducers of reactive oxygen species (ROS).14

Despite its deciphered anticancer potential and mechanisms of action in pre-clinical experiments, the clinical application of PTL remains hindered because of some disadvantages, including weak aqueous solubility, low oral bioavailability, and relative instability under chemical and physiological conditions.16,17 As a result, various methods for synthesizing PTL derivatives to yield compounds with better hydrophilicity and improved potency have been proposed.4,6,18 Dimethylamino parthenolide (DMAPT, Figure 1), a representative among hydrophilic PTL analogues, showed improved water solubility and oral bioavailability. Thus, it has advanced into the first phase of a clinical trial for the treatment of acute myeloid leukemia (AML).19

Nanomedicine is a rapidly developing field that exploits nanoparticles (NPs) to facilitate the diagnosis and treatment of a wide range of diseases. Nanoparticles applied in nanomedicine generally refer to a type of colloidal drug delivery system, which comprises particles with a size range from 10 to 200 nm in diameter.20 By far, diverse types of nanoparticles have been developed as drug carriers, including but not limited to liposomes, polymeric micelles, carbon nanotubes, mesoporous silica nanoparticles, metal-based nanoparticles, and dendrimers. Moreover, these can be made of diverse materials, including lipids, phospholipids, polymers, proteins, and inorganic materials.21,22

Compared with free drug counterparts, nanoparticles entrapment has displayed distinct advantages, such as improved bioavailability, prolonged circulation time, and ease of functionalization by surface modification. Furthermore, the enhanced permeability and retention (EPR) effect caused by the large amount of leaky vascularization and impaired lymphatic drainage at the tumor site enables non-targeted nanoparticles to accumulate in tumor tissues.23 Some of these nanoparticles have been approved as cancer therapeutics by the Food and Drug Administration.21 Besides the chemical modification of PTL for property improvement, the development of nanoscale drug delivery systems offers another promising strategy to overcome the poor water solubility and bioavailability of PTL as well as to determine its efficient and selective delivery to tumor tissues; the latter of which has not been summarized as compared to the extensively reviewed bioactivities and combination treatments of PTL. Therefore, we focused on the key antitumor mechanisms of PTL as well as its efficiency in being formulated as a nanoparticle delivery system.

Current evidence demonstrates that the antitumor mechanism of PTL is multifactorial and complex, due to the high electrophilic reactivity of -methylene--lactone present in PTL, thereby resulting in the alkylation of various proteins. A number of PTL targets have thus been identified and summarized.4 Furthermore, newer potential targets of PTL, such as USP7 and EGFR, continue to be reported,2427 thereby giving rise to the regulatory effect of PTL on various signaling pathways (Figure 2) and cellular processes (Figure 3) responsible for proliferation, cell cycle regulation, stemness, cell death, angiogenesis and metastasis.3,4 Thus, it is not surprising that PTL displays diverse anticancer effects, including abrogated cell viability and angiogenesis, cell cycle arrest, cell death induction, and decrease in stemness, invasiveness, and chemoresistance (Table 1).

Figure 2 Selected signaling pathways regulated by PTL. The key components and signal transduction cascade reactions in NF-B signaling, Wnt/-catenin signaling, JAK/STAT signaling, FAK1 signaling, and p53 signaling were depicted, and the nodes targeted by PTL were labeled.

Notes: Represents the inhibitory effect, and Represents the activation effect.

Figure 3 Pivotal cellular processes affected by PTL. Schematic diagram showing the formation of microtentacle and major antioxidant machineries were plotted. The targets regulated by PTL were marked.

Note: Represents the accumulation of ROS.

As shown in Figure 2, several signaling pathways closely related to tumorigenesis and progression were suppressed by PTL; among these, the prominent NF-B signaling pathway was the first to be inhibited. Mechanism investigation illustrated that PTL inhibited NF-B signaling by alkylating cysteine 38 in p65 and cysteine 179 in IKK.28,29 Additionally, a later study predicted that tumor necrosis factor receptor-associated factor 6 (TRAF6) might have been a novel target involved in the PTL-associated inhibition of NF-B.30 Moreover, the role of PTL in preventing NF-B activation contributed to the suppression of hypoxia-inducible factor-1 (HIF-1) signaling.31 Recent studies have elucidated that PTL inhibited Wnt/-catenin signaling by targeting ubiquitin specific peptidase 7 (USP7) and ribosomal protein L10 (RPL10), a deubiquitination enzyme stabilizing -catenin and a ribosomal protein related to the synthesis of the transcriptional regulator 4/lymphoid enhancer binding factor 1 (TCF4/LEF1), respectively.24,32 Furthermore, FAK1 and janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling were found to be impaired by PTL by covalently modifying specific cysteine molecules.33,34

Apart from inhibiting the aforementioned signaling pathways, PTL also activated p53 functions by promoting the ubiquitination of E3 ligase murine double minute 2 (MDM2) in an ataxia-telangiectasia mutated (ATM)-dependent manner, thus leading to either cell cycle arrest or apoptosis.35 Specially, USP7 was reported to interact with and stabilize MDM2 and p65.36,37 Thus, the inhibitory effect of PTL on USP7 might be a further step for activating p53 and inhibiting NF-B. Additionally, the activation of c-Jun N-terminal kinase (JNK) by PTL enhanced the sensitivity of human cancer cells to tumor necrosis factor- (TNF-) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).38,39

To date, PTL has been found to exert antitumor effects on several cellular processes, including redox balance and epigenetic modulation; the targets involved in these two processes have also been revealed (Figure 3). Several studies have indicated that PTL disrupted intracellular redox homeostasis by depleting glutathione (GSH) and inhibiting its metabolic enzymes, including glutamate-cysteine ligase catalytic subunit (GCLC), thioredoxin reductase 1/2 (TrxR1/2), and GSH peroxidase 1 (GPX1), thus leading to increased ROS level.4042 Moreover, ROS enhancement by PTL seemed to elicit different forms of cell death, such as necrosis, apoptosis, and autophagic cell death, depending on the tumor cell type.40,41,43 Meanwhile, the action of PTL on ROS partially accounts for its distinctive ability to selectively induce cell death in cancer cells, while sparing the equivalent normal cells. This is due to the fact that oxidative stress in cancer cells is more frequently elevated than that in normal cells. Thus, additional ROS produced by PTL may promote tumor cell death, whereas normal cells may maintain redox homeostasis by adaptive antioxidant responses.44 Moreover, the epigenetic targets of PTL consist of various enzymes, including histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1), and lysine methyltransferase 5C (KMT5C); these regulate the transcription of various genes, such as p21 and high in normal-1 (HIN-1).4547 In addition, PTL disrupted the cyclical detyrosination/tyrosination of tubulin by inhibiting tubulin carboxypeptidase (TCP), which led to a reduced frequency of microtentacles and suppressed tumor cell reattachment to endothelial layers (Figure 2).48,49

Interactions between signaling pathways and cellular processes may be affected by PTL. For instance, the stimulated generation of ROS by PTL was able to induce autophagy and cause NF-kB downregulation.40,43 Furthermore, NF-B inhibition contributed to epigenetic regulation,47 thereby further complicating the antitumor mechanism of PTL.

To understand the pharmacological effects of PTL, in vitro studies on its efficacy, pharmacological activities, and potential molecular mechanisms in a variety of cancer cells as well as available in vivo models since 2019 are tabulated in Table 1, thus further extending and qualifying existing reviews of its biological activities.3,4,50 As shown in Table 1, PTL modulation toward the aforementioned signaling pathways and cellular processes exerts multiple pharmacological effects against a myriad of tumor cell types.

The antiproliferative activity of PTL was detected in almost all studies; the results indicated that PTL exhibited half-maximal inhibitory concentration (IC50) between the range of 2.525 M for most tumor cells listed, thus showcasing its cytotoxicity to different cancer cells.5159 Cell cycle arrest, induction of cell death, and changes in related proteins were further detected, thus further supporting the cytotoxic potential of PTL. Overall, PTL was shown to induce different effects depending on the cell type, which can be illustrated by its ability to induce cell cycle arrest at different phases as well as several types of cell death in various cancer cells. For example, PTL arrested uveal melanoma cells in the G1 phase by upregulating p21 and downregulating cyclin D1, which are two G1 phase cell cycle regulatory proteins.60 On the other hand, PTL decreased the expression of survivin promoting G2/M cell cycle transition, thereby triggering G2/M cell cycle arrest in glioblastoma cells.61 Apoptosis, necrosis, and autophagy are the three forms of cell death caused by PTL;62 among which, apoptosis is the most studied. It is well known that apoptosis is elicited by two distinct pathways, the extrinsic and mitochondria-mediated intrinsic pathways; it culminates in the activation of caspases, which function as the main apoptotic effectors.63

Numerous studies demonstrated that PTL treatment could induce extrinsic or intrinsic apoptosis in tumor cells by inhibiting the activities of the NF-B, STAT3, Wnt and JNK signaling pathways, activating the p53 signaling pathway, regulating the Bcl-2 family members, and generating ROS.24,62,6471 Furthermore, PTL-induced cell death of breast cancer and multiple myeloma cells was dramatically attenuated by co-treatment with the pan-caspase inhibitor, Q-VD-OPh or Z-VAD-fmk, thus indicating that caspases are involved in PTL-induced apoptotic cell death; it also concurs the presence of other forms of cell death.33,72 Indeed, a large number of studies reported that PTL was capable of inducing autophagic or necrotic cell death.50,62 For instance, PTL mediated cell death through ROS-mediated autophagy in human osteosarcoma (Saos-2 and MG-63) and triple-negative breast cancer (MDA-MB-231) cells.40,43 In particular, PTL was capable of simultaneously inducing mixed forms of cell death, as evidenced by observations of PTL-induced apoptosis and autophagy in Hela and HepG2 cells as well as apoptosis and necrosis in HL60 cells.7375 Additionally, the role of autophagy in cell death involves the fact that its inhibition significantly blocked PTL-induced apoptosis in pancreatic cancer cells,76 but potentiated PTL-induced apoptosis in human breast cancer cells.77

Although previous studies have elucidated the selective targeting effect of PTL on CSCs from primary or sensitive cancer cells,3 a recent study by Yi et al suggested that PTL also effectively eliminated leukemia stem cells (LSCs) from adriamycin (ADM)-resistant K562 cells (K562/ADM) by suppressing aberrantly activated NF-B.64 In addition, NF-B inactivation by PTL sensitized gastric tumor and esophageal squamous cell carcinoma (ESCC) cells to chemotherapeutic drugs including ADM and cisplatin.78,79 PTL exerted its anti-angiogenic effects by inhibiting the NF-B-mediated VEGF expression in ESCC cells.79 Moreover, several studies have pointed out that PTL inhibits migration, invasion, and metastasis, which benefits from its abilities to regulate epithelial-to-mesenchymal transition (EMT) and to inhibit FAK1, TCP, and STAT3.33,8083

In short, the ultimate outcomes resulting from the affected signaling pathways and cellular processes by PTL include, but are not limited to, impaired cell proliferation and angiogenesis, induction of cell death, and reduced stemness, invasiveness, and chemoresistance. This has been confirmed by a large body of research, thus providing a sufficient basis for studies investigating and developing a wide range of PTL nanoformulations for various cancer therapies.

To the best of our knowledge, several types of PTL nanocarriers, including liposomes,8489 polymeric micelles,9096 nanocrystals,97 PLGA nanoparticles,98 and nanographene,99 have been synthesized to deliver PTL and ameliorate its anti-cancer efficacy. Whether PTL is co-encapsulated into nanoparticles with other drugs or small molecules and whether the nanoparticles are modified for targeted therapy, these studies can be classified into three types. Furthermore, the types, materials, and properties of nanocarriers mentioned in these studies, as well as the in vitro and in vivo models employed to evaluate the anticancer effects of nanoformulations, are separately tabulated in Tables 24.

Table 2 Unmodified Nanoparticles Solely Incorporated with PTL

Table 3 Undecorated Nanovectors Encapsulated PTL and Other Agents

Table 4 Targeted Nanocarriers Encapsulated PTL with or without Other Agents

Baranello et al synthesized different types of micelles formed from amphiphilic diblock copolymers of PSMA-b-PS or PSMA-b-PBA; PTL was successfully loaded into these micelles. However, PTL exhibited the greatest loading efficiency and capacity in PSMA100-b-PS258 micelles, thereby indicating that the composition and hydrophobic core chemistry of micelles were significant parameters for optimization.90 Although subsequent studies suggested that PTL-loaded PSMA100-b-PS258 micelles did not exhibit better cytotoxic ability toward MV4-11 cells than free PTL, it protected sequestered PTL from damage by both cells and deactivating chemicals, such as GSH.91 Similarly, the application of stealthy liposomes and micelles fabricated by F127 or biodegradable PTL-PTMC as nanocarriers of PTL did not appear to efficiently increase its cytotoxicity against MCF-7, MDA-MB-231, and patient T-lineage acute lymphoblastic leukemia (T-ALL) or B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells.89,92,93 However, the combination of stealthy liposomal PTL slightly sensitized the antitumor effects of stealthy liposomes loaded with vinorelbine.89

Unlike the nanocarriers mentioned above, the carboxyl-functionalized nanographene (fGn) as well as the PTL-nanocrystal delivery system showed improved antiproliferation activities in comparison with individual PTL. The IC50 of PTL and PTL-fGn for Panc-1 cells were 39 and 9.5 M respectively, whereas the IC50 of PTL for HepG2 cells decreased from 50.891 M to 33.618 M when delivered with nanocrystals.97,99 Interestingly, there was no significant difference in cytotoxic activity between DMAPT and DMAPT-fGn; this inefficacy may be due to the lack of a hydrophobic interaction between DMAPT and fGn.99 Thus, whether incorporation of DMAPT into other nanovectors could enhance its cytotoxicity is worth exploring. Furthermore, the in vitro and in vivo combination of PTL-nanocrystals and sorafenib achieved remarkable synergistic anti-cancer effects, as reflected by the MTT, wound-healing and HepG2 xenograft assays.97

Given the molecular complexity of cancer, combination therapy has attracted tremendous attention because of its ability to increase drug efficacy, improve drug resistance, and reduce systemic toxicity. Kanwaldeep et al constructed a paclitaxel and PTL co-delivery system of PEG2000-DSPE/vitamin E-TPGS mixed micelles, which retained a high encapsulation efficiency (>95%) and chemical stability over a storage period of 45 days. Furthermore, co-encapsulation of these two drugs significantly suppressed the viability of sensitive and taxol-resistant A549 cells compared to their free drug counterparts in solutions and single drug-loaded micelles.94 In addition, as a component of these mixed micelles, it is noteworthy that vitamin E-TPGS aided in not only maintaining high encapsulation efficiency due to its bulky structure and large surface area, but also enhanced chemosensitization by inhibiting P-glycoprotein (P-gp) efflux.94,100 Recently, a liposome system loaded with betulinic acid, PTL, honokiol and ginsenoside Rh2 displayed in vitro and in vivo antitumor activity comparable to cisplatin, the first-line therapy for lung cancer. In addition, this cocktail liposome therapy circumvented obvious kidney damage induced by cisplatin, as revealed by hematoxylin and eosin (H&E) staining. It also did not cause any significant damage to other major organs, including the heart, liver, spleen, and lungs, thereby indicating that this cocktail is a safer alternative for lung cancer treatment.84

To exploit the advances in photothermal therapy, Jin Xin and co-workers constructed thermosensitive liposomes (TSLs), in which PTL and the photosensitizer indocyanine green (ICG) were co-loaded. ICG converts light energy into heat energy upon near-infrared light irradiation. Compared to groups treated with paclitaxel, a combination of free drugs with or without laser, or PTL-ICG TSLs without laser, groups treated with PTL-ICG TSLs with laser exhibited lower cell viability, higher ROS induction and apoptosis, and better in vivo anti-cancer effects. According to these results, the two benefits of heat energy released by ICG under near-infrared radiation at the tumor location were validated. On the one hand, the heat-promoted phase transition of these liposomes enhanced their fluidity and permeability, thus allowing loaded drugs to effectively diffuse to tumor tissues at high concentrations. On the other hand, the maximum temperature of tumor tissues treated with PTL-ICG TSLs with laser reached 47.4C 2.68C, which led to irreversible damage and further synergized with the oxidative stress of PTL.85

To further improve drug delivery and selective targeting toward cancer cells, targeted nano-encapsulation of PTL with or without other agents was developed according to the characteristics of specific types of tumor cells and their microenvironment or the suction of the magnetic field. CD44 is a pivotal receptor involved in myelopoiesis; its specific variant isoforms have been reported to be overexpressed in AML cells, thus indicating that CD44 can serve as a promising receptor for targeted delivery of anti-AML drugs.101,102 As a result, an intervention was developed by encapsulating PTL into PLGA nanoparticles conjugated with antiCD44 with higher tumor targeting efficiency than PLGA-PTL nanoparticles. Although the cytotoxic abilities of PLGA-antiCD44-PTL and PLGA-PTL nanoparticles were not compared, PLGA-antiCD44-PTL nanoparticles exhibited stronger cytotoxicity than free PTL.98

Leukemia stem cells (LSCs) within the bone marrow (BM) microenvironment are thought to be the primary mediators of relapse and chemotherapy resistance in AML. Furthermore, E-selectin expressed in the BM endothelium provides a feasible approach for targeted BM delivery. In view of the remarkable capability of PTL to eradicate cancer stem cells including LSCs, a multistage vector system (MSV) was developed by entrapping PTL in mPEG-PLA micelles coated with protective degradable porous silicon particles and an E-selectin thioaptamer. In contrast to the negligible therapeutic efficacy of PTL-loaded micelles, MSV-PTL significantly reduced the tumor burden of patient-derived AML xenografts, concurrent with the inhibition of NF-B and activation of -H2AX; this supports the effectiveness of the MSV system for targeted BM delivery. Moreover, the decreased level of secondary xenotransplants implied that the directed delivery of PTL to the BM using the MSV system led to the elimination of LSCs.95

The tLyP-1 peptide has been verified to possess cell-penetrating ability and tumor-targeting capacity, which are derived from its C-terminal structure and affinity to the neuropilin-1 receptor overexpressed in several kinds of cancer cells (eg glioma and lung cancer).103 In which tLyP-1-modified liposomes entrapped in PTL and ginsenoside compound K (CK) were synthesized, the level of ROS and induced apoptosis of A549 cells in vitro significantly increased. Besides, PTL/CK tLyP-1 liposomes exhibited greater anticancer efficacy than the combined administration of these two compounds in A549 tumor-bearing mice.87 In addition, Ran et al developed PTL-loaded PEG-PLA micelles decorated with a Y-shaped DWVAP peptide, which could guide micelles across multiple biological barriers and ultimately target glioma and its associated stem cells. Moreover, combined therapy of PTL-loaded, DWVAP-modified PEG-PLA micelles with temozolomide or DWVAP-modified PEG-PLA micelles loaded with paclitaxel achieved outstanding anti-glioma efficacy, according to the KaplanMeier survival analysis.96

Recently, by virtue of the magnetic field, magnetic nanoparticles (MNPs) were chosen to modify the surface of liposomes (lips) loaded with PTL by Gao and co-workers.86,88 In one study, PTL-ICG-Lips, similar to PTL-ICG TSLs mentioned above, were coated with MNPs. In terms of in vitro heating efficiency and drug release, there was no significant difference between the [emailprotected] group treated only with laser and [emailprotected] group treated with laser plus magnet, which were stronger than non-laser irradiation treated groups. These results suggested the dominant role of photothermal conversion mediated by ICG in these processes. However, the presence of the magnetic field increased the heating rate and percentage of drug release at an earlier stage. In addition, cells treated with [emailprotected] (magnet plus laser) exhibited the highest cellular uptake. Consistently, in vivo studies also showed that the [emailprotected] (magnet plus laser) group displayed the fastest heating rate, highest temperature, and highest intratumoral PTL concentration.86 These findings indicated that the magnetic field could enrich the magnetic liposomes in the irradiated area, thus further enhancing the efficiency of photothermal conversion and facilitating the release and uptake of PTL.

Another multifunctional delivery system generated by Gao et al was the encapsulation of PTL and glucose oxidase (GOD) into nanomagnetic liposomes coated with chitosan, named [emailprotected] The addition of chitosan endowed [emailprotected] with the capability to release drug at a slightly acidic pH, which was characteristic of the tumor microenvironment. As a result, this increased the targeting ability of the system together with the magnetic field. By consuming glucose, GOD in this system lowers the pH and generates H2O2 as well as starves the cancer cells to death. A lower pH further promotes drug release; H2O2 can be subsequently catalyzed by iron ions in MNPs to produce hydroxyl radicals (OH), a noxious ROS. Meanwhile, PTL protects OH from scavenging by depleting GSH,40 which amplifies the intracellular oxidative stress and thus leads to cell apoptosis. Under an extra magnetic field, the [emailprotected] demonstrated prominent antitumor effects in vitro and in vivo through the integration of chemo-, chemodynamic, starvation and magnetic-targeting therapies.88

As discussed above, the incorporation of PTL into nanocarriers results in increased solubility, cellular uptake and stability, prolonged circulation time, and enhanced accumulation at tumor sites. Therefore, the majority of nanocarriers encapsulated with PTL, especially when combined with other agents such as photosensitizers, anticancer drugs, and MNPs, demonstrated higher anticancer efficiency than free PTL. These mechanisms are reflected by better antiproliferative activities, more effective induction of apoptosis, higher suppression rate of migration, and xenograft tumor growth. Histological examination demonstrated the low toxicity of this novel therapeutic agent.

In addition, a variety of naturally occurring sesquiterpene lactones structurally related to PTL with anticancer efficiency, as represented by micheliolide (MCL, Figure 4), melampomagnolide B (MMB, Figure 4), and costunolide (COS, Figure 4) have been reported.104106 Similar with PTL, most of current researches focus on structural modification of these compounds to improve their antitumor effects, stability, and sustainable release.107111 Several studies started to investigate the incorporation of MCL analogs and COS into nanoparticles.112,113 Bone-targeted PSMA-b-PS NPs entrapped with triazole MCL analog exhibited excellent serum stability and significantly reduced LSC burden in leukemic mice.112 Another study demonstrated that COS and COS-NPs, in combination with doxorubicin (DOX), stimulated the activity of caspase-3 and induced apoptosis of HCT116 and MDA-MB-231-Luc. They also suppressed the tumor growth of HCT116 and MDA-MB-231-Luc implants in nude mice. There was no significant difference in the anti-tumor activity of COS and COS-NPs; the authors deemed that this may have been due to the dose-selective approach for determining the optimal anti-cancer activity for both COS and Nano-COS. Thus, dose-response relationship will be investigated in future studies.113 In addition, Niu et al constructed pH-responsive mesoporous silica nanoparticles (MSNs) loaded with COS, which increased stability and enhanced anti-fibrotic effect of pure COS.114 In short, above-mentioned results implied that nanoparticles entrapped with sesquiterpene lactones show great promise in the treatment of cancer and other diseases.

Figure 4 Chemical structure of MCL, MMB and COS.

Studies from the past decades have validated the great potential of PTL as an anticancer agent with extremely intricate bioactivities. However, poor aqueous solubility, instability, low bioavailability, and drug-targeting property of PTL limit its in vivo anticancer efficacy and clinical application.86 As such, the development of nanoparticle-based platforms has been utilized in multiple biomedical fields, including hydrophobic drug delivery, which undoubtedly provides a promising strategic improvement.115 Indeed, several natural product-derived anticancer nanodrugs, including nanoparticle albuminbound (NAB)-paclitaxel and liposomal vincristine, have been used in clinical practice.21 However, no clinical trials have been reported for nanocomposites of PTL and its structurally related sesquiterpene lactones. Furthermore, despite multiple in vitro and in vivo experiments that have reported the benefits of nanoparticle-based formulations of other natural anti-cancer drugs in the treatment of various cancer types, including quercetin, curcumin, resveratrol, and andrographolide, only a few clinical trials have been performed, thus, suggesting that the investigation of these nanocarriers is still in its relative infancy.116118 Further optimization can be performed because the efficiency of nanoparticles can be influenced by many parameters, such as nanocarrier types, compositions (eg materials, ligand modification, co-encapsulated agents), and physical properties (eg size, shape, surface charge).21 As such, PTL and other natural product-based nanoformulations with improved properties will undoubtedly emerge; clinical trials need to be encouraged to further validate the security and therapeutic efficiency of these nanoparticles for cancer. Finally, PTL has been recently predicted to be a possible agent for the treatment of other diseases, such as Hutchinson-Gilford Progeria syndrome and hypertrophic cardiomyopathy.119,120 Thus, the therapeutic value of PTL nanoparticles for these diseases deserves further study.

The authors acknowledge funding from the Young Scientists Fund of National Science Foundation of China (No. 81803587), the Project of Science and Technology of Yunnan Province (2019FD054), PhD Start-up Fund for Tao An from Qilu University of Technology (No. 81110573), and Industry-University Cooperation Collaborative Education Project of Ministry of Education (202102403007).

The authors declare that they have no conflicts of interest in this work.

1. Vgh K, Alberti , Riethmller E, Tth A, Bni S, Kry . Supercritical fluid extraction and convergence chromatographic determination of parthenolide in Tanacetum parthenium L.: experimental design, modeling and optimization. J Supercrit Fluids. 2014;95:8491. doi:10.1016/j.supflu.2014.07.029

2. Alam P, Siddiqui NA, Rehman MT, et al. Box-Behnken Design (BBD)-Based optimization of microwave-assisted extraction of parthenolide from the stems of tarconanthus camphoratus and cytotoxic analysis. Molecules. 2021;26(7):1876. doi:10.3390/molecules26071876

3. Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013;18(1718):894905. doi:10.1016/j.drudis.2013.05.005

4. Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep. 2020;37(4):541565. doi:10.1039/C9NP00049F

5. Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer. 2017;16(1):13. doi:10.1186/s12943-016-0571-x

6. Araujo TG, Vecchi L, Lima P, et al. Parthenolide and its analogues: a new potential strategy for the treatment of triple-negative breast tumors. Curr Med Chem. 2020;27(39):66286642. doi:10.2174/0929867326666190816230121

7. Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. Semin Cancer Biol. 2016;4041:192208. doi:10.1016/j.semcancer.2016.09.001

8. Ren Y, Yu J, Kinghorn AD. Development of anticancer agents from plant-derived sesquiterpene lactones. Curr Med Chem. 2016;23(23):23972420. doi:10.2174/0929867323666160510123255

9. Mathema VB, Koh YS, Thakuri BC, Sillanpaa M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation. 2012;35(2):560565. doi:10.1007/s10753-011-9346-0

10. Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today. 2010;15(1516):668678. doi:10.1016/j.drudis.2010.06.002

11. Koprowska K, Czyz M. [Molecular mechanisms of parthenolides action: old drug with a new face]. Postepy Hig Med Dosw. 2010;64:100114. Norwegian.

12. Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, DHerde K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs. 2012;23(9):883896. doi:10.1097/CAD.0b013e328356cad9

13. Wyrebska A, Gach K, Janecka A. Combined effect of parthenolide and various anti-cancer drugs or anticancer candidate substances on malignant cells in vitro and in vivo. Mini Rev Med Chem. 2014;14(3):222228. doi:10.2174/1389557514666140219113509

14. Sztiller-Sikorska M, Czyz M. Parthenolide as cooperating agent for anti-cancer treatment of various malignancies. Pharmaceuticals. 2020;13(8):194. doi:10.3390/ph13080194

15. Pordanjani SM, Hosseinimehr SJ. The role of NF-kB inhibitors in cell response to radiation. Curr Med Chem. 2016;23(34):39513963. doi:10.2174/0929867323666160824162718

16. Lesiak K, Koprowska K, Zalesna I, Nejc D, Duchler M, Czyz M. Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro. Melanoma Res. 2010;20(1):2134. doi:10.1097/CMR.0b013e328333bbe4

17. Nasim S, Crooks PA. Antileukemic activity of aminoparthenolide analogs. Bioorg Med Chem Lett. 2008;18(14):38703873. doi:10.1016/j.bmcl.2008.06.050

18. Ren Y, Kinghorn AD. Development of potential antitumor agents from the scaffolds of plant-derived terpenoid lactones. J Med Chem. 2020;63(24):1541015448. doi:10.1021/acs.jmedchem.0c01449

19. Guzman ML, Rossi RM, Neelakantan S, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110(13):44274435. doi:10.1182/blood-2007-05-090621

20. Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine. 2017;12:58795892. doi:10.2147/IJN.S123437

21. Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine. 2017;12:84838493. doi:10.2147/IJN.S148359

22. Jasinski DL, Li H, Guo P. The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther. 2018;26(3):784792. doi:10.1016/j.ymthe.2017.12.018

23. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131135. doi:10.1016/j.addr.2010.03.011

24. Li X, Kong L, Yang Q, et al. Parthenolide inhibits ubiquitin-specific peptidase 7 (USP7), Wnt signaling, and colorectal cancer cell growth. J Biol Chem. 2020;295(11):35763589. doi:10.1074/jbc.RA119.011396

25. Zhang S, Ju X, Yang Q, et al. USP47 maintains the stemness of colorectal cancer cells and is inhibited by parthenolide. Biochem Biophys Res Commun. 2021;562:2128. doi:10.1016/j.bbrc.2021.05.017

26. Ai XY, Zhang H, Gao SY, et al. Sesquiterpene binding Gly-Leu-Ser/Lys-co-adaptation pocket to inhibit lung cancer cell epithelial-mesenchymal transition. Oncotarget. 2017;8(41):7019270203. doi:10.18632/oncotarget.19599

27. Li X, Huang R, Li M, et al. Parthenolide inhibits the growth of non-small cell lung cancer by targeting epidermal growth factor receptor. Cancer Cell Int. 2020;20(1):561. doi:10.1186/s12935-020-01658-1

28. Garcia-Pineres AJ, Castro V, Mora G, et al. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem. 2001;276(43):3971339720. doi:10.1074/jbc.M101985200

29. Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol. 2001;8(8):759766. doi:10.1016/S1074-5521(01)00049-7

30. Kong FC, Zhang JQ, Zeng C, et al. Inhibitory effects of parthenolide on the activity of NF-kappaB in multiple myeloma via targeting TRAF6. J Huazhong Univ Sci Technolog Med Sci. 2015;35(3):343349. doi:10.1007/s11596-015-1435-0

31. Kim SL, Park YR, Lee ST, Kim SW. Parthenolide suppresses hypoxia-inducible factor-1alpha signaling and hypoxia induced epithelial-mesenchymal transition in colorectal cancer. Int J Oncol. 2017;51(6):18091820. doi:10.3892/ijo.2017.4166

32. Zhu X, Yuan C, Tian C, et al. The plant sesquiterpene lactone parthenolide inhibits Wnt/beta-catenin signaling by blocking synthesis of the transcriptional regulators TCF4/LEF1. J Biol Chem. 2018;293(14):53355344. doi:10.1074/jbc.M117.819300

33. Berdan CA, Ho R, Lehtola HS, et al. Parthenolide covalently targets and inhibits focal adhesion kinase in breast cancer cells. Cell Chem Biol. 2019;26(7):10271035 e1022. doi:10.1016/j.chembiol.2019.03.016

34. Liu M, Xiao C, Sun M, Tan M, Hu L, Yu Q. Parthenolide inhibits STAT3 signaling by covalently targeting janus kinases. Molecules. 2018;23(6):1478.

35. Gopal YN, Chanchorn E, Van Dyke MW. Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther. 2009;8(3):552562. doi:10.1158/1535-7163.MCT-08-0661

36. Tavana O, Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J Mol Cell Biol. 2017;9(1):4552. doi:10.1093/jmcb/mjw049

37. Colleran A, Collins PE, OCarroll C, et al. Deubiquitination of NF-kappaB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci U S A. 2013;110(2):618623. doi:10.1073/pnas.1208446110

38. Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM. Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis. 2004;25(11):21912199. doi:10.1093/carcin/bgh234

39. Nakshatri H, Rice SE, Bhat-Nakshatri P. Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene. 2004;23(44):73307344. doi:10.1038/sj.onc.1207995

40. DAnneo A, Carlisi D, Lauricella M, et al. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis. 2013;4:e891. doi:10.1038/cddis.2013.415

41. Duan D, Zhang J, Yao J, Liu Y, Fang J. Targeting thioredoxin reductase by parthenolide contributes to inducing apoptosis of hela cells. J Biol Chem. 2016;291(19):1002110031. doi:10.1074/jbc.M115.700591

42. Pei S, Minhajuddin M, Callahan KP, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288(47):3354233558. doi:10.1074/jbc.M113.511170

43. Yang C, Yang QO, Kong QJ, Yuan W, Ou Yang YP. Parthenolide induces reactive oxygen species-mediated autophagic cell death in human osteosarcoma cells. Cell Physiol Biochem. 2016;40(12):146154. doi:10.1159/000452532

44. Xu Y, Fang F, Miriyala S, et al. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Cancer Res. 2013;73(14):44064417. doi:10.1158/0008-5472.CAN-12-4297

45. Liu Z, Liu S, Xie Z, et al. Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther. 2009;329(2):505514. doi:10.1124/jpet.108.147934

46. Gopal YN, Arora TS, Van Dyke MW. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. Chem Biol. 2007;14(7):813823. doi:10.1016/j.chembiol.2007.06.007

47. Nakshatri H, Appaiah HN, Anjanappa M, et al. NF-kappaB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis. 2015;6:e1608. doi:10.1038/cddis.2014.569

48. Fonrose X, Ausseil F, Soleilhac E, et al. Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res. 2007;67(7):33713378. doi:10.1158/0008-5472.CAN-06-3732

49. Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K, Martin SS. Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-kappaB inhibition. Breast Cancer Res. 2013;15(5):R83. doi:10.1186/bcr3477

50. Carlisi D, Lauricella M, DAnneo A, et al. Parthenolide and its soluble analogues: multitasking compounds with antitumor properties. Biomedicines. 2022;10(2):514. doi:10.3390/biomedicines10020514

51. Marino S, Bishop RT, Carrasco G, Logan JG, Li B, Idris AI. Pharmacological inhibition of NFkappaB reduces prostate cancer related osteoclastogenesis in vitro and osteolysis ex vivo. Calcif Tissue Int. 2019;105(2):193204. doi:10.1007/s00223-019-00538-9

52. Ge W, Liu Z, Sun Y, et al. Design and synthesis of parthenolide-SAHA hybrids for intervention of drug-resistant acute myeloid leukemia. Bioorg Chem. 2019;87:699713. doi:10.1016/j.bioorg.2019.03.056

53. Mehri S, Mohammadi S, Nikbakht M, Sahmani M, Zahedpanah M. Osteopontin siRNA does not confer resistance to toxic effects of parthenolide in Jurkat cells. Exp Oncol. 2020;42(3):188191. doi:10.32471/exp-oncology.2312-8852.vol-42-no-3.15180

54. Ge W, Hao X, Han F, et al. Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur J Med Chem. 2019;166:445469. doi:10.1016/j.ejmech.2019.01.058

55. De Blasio A, Di Fiore R, Pratelli G, et al. A loop involving NRF2, miR-29b-1-5p and AKT, regulates cell fate of MDA-MB-231 triple-negative breast cancer cells. J Cell Physiol. 2020;235(2):629637. doi:10.1002/jcp.29062

56. Dawood M, Ooko E, Efferth T. Collateral sensitivity of parthenolide via NF-kappaB and HIF-alpha inhibition and epigenetic changes in drug-resistant cancer cell lines. Front Pharmacol. 2019;10:542. doi:10.3389/fphar.2019.00542

57. Ding Y, Li S, Ge W, et al. Design and synthesis of parthenolide and 5-fluorouracil conjugates as potential anticancer agents against drug resistant hepatocellular carcinoma. Eur J Med Chem. 2019;183:111706. doi:10.1016/j.ejmech.2019.111706

58. Sun L, Yuan W, Wen G, et al. Parthenolide inhibits human lung cancer cell growth by modulating the IGF1R/PI3K/Akt signaling pathway. Oncol Rep. 2020;44(3):11841193. doi:10.3892/or.2020.7649

59. Luo Q, Wu X, Chang W, et al. ARID1A hypermethylation disrupts transcriptional homeostasis to promote squamous cell carcinoma progression. Cancer Res. 2020;80(3):406417. doi:10.1158/0008-5472.CAN-18-2446

60. Che ST, Bie L, Li X, Qi H, Yu P, Zuo L. Parthenolide inhibits the proliferation and induces the apoptosis of human uveal melanoma cells. Int J Ophthalmol. 2019;12(10):15311538. doi:10.18240/ijo.2019.10.03

Continue reading here:
Emerging potential of PTL nanoformulations in tumor therapy | DDDT - Dove Medical Press

Podcast: Has the First 150-Year-Old Already Been Born – Leaps

One is that there are some people that are naturally resistant to heart attack and have lifelong, low levels of LDL, the cardiologist says. Second, there are some genes that can be switched off that lead to very low LDL cholesterol, and individuals with those genes switched off are resistant to heart attacks.

Kathiresan and his team formed a hypothesis in 2016 that if they could develop a medicine that mimics the natural protection that some people enjoy, then they might identify a powerful new way to treat and ultimately prevent heart attacks. They launched Verve in 2018 with the goal of creating a one-time therapy that would permanently lower LDL and eliminate heart attacks caused by high LDL.

The medication is targeted specifically for patients who have a genetic form of high cholesterol known as heterozygous familial hypercholesterolemia, or FH, caused by expression of a gene called PCSK9. Verve also plans to develop a program to silence a gene called ANGPTL3 for patients with FH and possibly those with or at risk of atherosclerotic cardiovascular disease.

FH causes cholesterol to be high from birth, reaching levels of 200 to 300 milligrams per deciliter. Suggested normal levels are around 100 to 129 mg/dl, and anything above 130 mg/dl is considered high. Patients with cardiovascular disease usually are asked to aim for under 70 mg/dl, but many still have unacceptably high LDL despite taking oral medications such as statins. They are more likely to have heart attacks in their 30s, 40s and 50s, and require lifelong LDL control.

The goal for drug treatments for high LDL, Kathiresan says, is to reduce LDL as low as possible for as long as possible. Physicians and researchers also know that a sizeable portion of these patients eventually start to lose their commitment to taking their statins and other LDL-controlling medications regularly.

If you ask 100 patients one year after their heart attack what fraction are still taking their cholesterol-lowering medications, its less than half, says Kathiresan. So imagine a future where somebody gets a one-time treatment at the time of their heart attack or before as a preventive measure. Its right in front of us, and its something that Verve is looking to do.

In late 2020, Verve completed primate testing with monkeys that had genetically high cholesterol, using a one-time intravenous injection of VERVE-101. It reduced the monkeys LDL by 60 percent and, 18 months later, remains at that level. Kathiresan expects the LDL to stay low for the rest of their lives.

Verves gene editing medication is packaged in a lipid nanoparticle to serve as the delivery mechanism into the liver when infused intravenously. The drug is absorbed and makes its way into the nucleus of the liver cells.

Verves program targeting PCSK9 uses precise, single base, pair base editing, Kathiresan says, meaning it doesn't cut DNA like CRISPR gene editing systems do. Instead, it changes one base, or letter, in the genome to a different one without affecting the letters around it. Comparing it to a pencil and eraser, he explains that the medication erases out a letter A and makes it a letter G in the A, C, G and T code in DNA.

By making that simple change from A to G, the medication switches off the PCSK9 gene, automatically lowering LDL cholesterol.

Once the DNA change is made, all the cells in the liver will have that single A to G change made, Kathiresan says. Then the liver cells divide and give rise to future liver cells, but every time the cell divides that change, the new G is carried forward.

Additionally, Verve is pursuing its second gene editing program to eliminate ANGPTL3, a gene that raises both LDL and blood triglycerides. In 2010, Kathiresan's research team learned that people who had that gene completely switched off had LDL and triglyceride levels of about 20 and were very healthy with no heart attacks. The goal of Verves medication will be to switch off that gene, too, as an option for additional LDL or triglyceride lowering.

Success with our first drug, VERVE-101, will give us more confidence to move forward with our second drug, Kathiresan says. And it opens up this general idea of making [genomic] spelling changes in the liver to treat other diseases.

The approach is less ethically concerning than other gene editing technologies because it applies somatic editing that affects only the individual patient, whereas germline editing in the patients sperm or egg, or in an embryo, gets passed on to children. Additionally, gene editing therapies receive the same comprehensive amount of testing for side effects as any other medicine.

We need to continue to advance our approach and tools to make sure that we have the absolute maximum ability to detect off-target effects, says Euan Ashley, professor of medicine and genetics at Stanford University and founding director of its Center for Inherited Cardiovascular Disease. Ashley and his colleagues at Stanfords Clinical Genomics Program and beyond are increasingly excited about the promise of gene editing.

We can offer precision diagnostics, so increasingly were able to define the disease at a much deeper level using molecular tools and sequencing, he continues. We also have this immense power of reading the genome, but were really on the verge of taking advantage of the power that we now have to potentially correct some of the variants that we find on a genome that contribute to disease.

He adds that while the gene editing medicines in development to correct genomes are ahead of the delivery mechanisms needed to get them into the body, particularly the heart and brain, hes optimistic that those arent too far behind.

It will probably take a few more years before those next generation tools start to get into clinical trials, says Ashley, whose book, The Genome Odyssey, was published last year. The medications might be the sexier part of the research, but if you cant get it into the right place at the right time in the right dose and not get it to the places you dont want it to go, then that tool is not of much use.

Medical experts consider knocking out the PCSK9 gene in patients with the fairly common genetic disorder of familial hypercholesterolemia roughly one in 250 people a potentially safe approach to gene editing and an effective means of significantly lowering their LDL cholesterol.

Nurse Erin McGlennon has an Implantable Cardioverter Defibrillator and takes medications, but she is also hopeful that a gene editing medication will be developed in the near future.

Erin McGlennon

Mary McGowan, MD, chief medical officer for The Family Heart Foundation in Pasadena, CA, sees the tremendous potential for VERVE-101 and believes patients should be encouraged by the fact that this kind of research is occurring and how much Verve has accomplished in a relatively short time. However, she offers one caveat, since even a 60 percent reduction in LDL wont completely eliminate the need to reduce the remaining amount of LDL.

This technology is very exciting, she said, but we want to stress to our patients with familial hypercholesterolemia that we know from our published research that most people require several therapies to get their LDL down., whether that be in primary prevention less than 100 mg/dl or secondary prevention less than 70 mg/dl, So Verves medication would be an add-on therapy for most patients.

Dr. Kathiresan concurs: We expect our medicine to lower LDL cholesterol by about 60 percent and that our patients will be on background oral medications, including statins that lower LDL cholesterol.

Several leading research centers are investigating gene editing treatments for other types of cardiovascular diseases. Elizabeth McNally, Elizabeth Ward Professor and Director at the Center for Genetic Medicine at Northwestern Universitys Feinberg School of Medicine, pursues advanced genetic correction in neuromuscular diseases such as Duchenne muscular dystrophy and spinal muscular atrophy. A cardiologist, she and her colleagues know these diseases frequently have cardiac complications.

Even though the field is driven by neuromuscular specialists, its the first therapies in patients with neuromuscular diseases that are also expected to make genetic corrections in the heart, she says. Its almost like an afterthought that were potentially fixing the heart, too.

Another limitation McGowan sees is that too many healthcare providers are not yet familiar with how to test patients to determine whether or not they carry genetic mutations that need to be corrected. We need to get more genetic testing done, she says. For example, thats the case with hypertrophic cardiomyopathy, where a lot of the people who probably carry that diagnosis and have never been genetically identified at a time when genetic testing has never been easier.

One patient who has been diagnosed with hypertrophic cardiomyopathy also happens to be a nurse working in research at Genentech Pharmaceutical, now a member of the Roche Group, in South San Francisco. To treat the disease, Erin McGlennon, RN, has an Implantable Cardioverter Defibrillator and takes medications, but she is also hopeful that a gene editing medication will be developed in the near future.

With my condition, the septum muscles are just growing thicker, so Im on medicine to keep my heart from having dangerous rhythms, says McGlennon of the disease that carries a low risk of sudden cardiac death. So, the possibility of having a treatment option that can significantly improve my day-to-day functioning would be a major breakthrough.

McGlennon has some control over cardiovascular destiny through at least one currently available technology: in vitro fertilization. Shes going through it to ensure that her children won't express the gene for hypertrophic cardiomyopathy.

Go here to see the original:
Podcast: Has the First 150-Year-Old Already Been Born - Leaps

Tackling chronic disease with gene and cell therapies – The Irish Times

The repair of old, damaged, or diseased tissues using gene or cell therapies promises a future where people live longer, healthier lives and Ireland is well placed to become a manufacturing hub for products based on this technology.

Gene therapy is the technology used to correct a gene defect that is causing an inherited genetic disease. Cell therapy is the use of living cells from the patient or a donor, to repair tissue or treat an inflammatory condition or disease. These therapies can be used alone or combined for greater effect.

Weve been interested, for a very long time in the development of new treatments for patients involving cell and gene therapy, says professor of cellular therapy at NUI Galway Frank Barry a co-founder of the Regenerative Medicine Institute (Remedi) in 2004.

Over the last several decades there have been some extraordinary, transformative developments in medicine; for example, antibiotics and monoclonal antibodies and these have had a dramatic impact on how diseases were treated, says Barry. Many people believe that cell and gene therapy represent the next transformative innovation that will change medicine.

There are many examples of outstanding success stories, where diseases which were previously untreatable are now actually being treated and were very anxious to continue to play a role in this, says Barry.

The combination of cell and gene therapy has been successful in treating cancers that were thought incurable. For example, stem cells have been taken from the blood of patients with specific cancers, genetically modified so they target a particular cancer, and are delivered back into the patients blood.

Gene therapy has had a troubled history with some adverse outcomes reported from early clinical trials two decades ago. Most notably, and tragically, was the case of 18-year-old Jesse Gelsinger, who died in 1999 during a University of Pennsylvania run gene therapy trial. Jesse suffered from a genetic disease affecting his liver which meant that he was unable to metabolise ammonia.

The learnings from that have proven to be very helpful not to diminish the impact of his death on his family and the tragedy of that, says Prof Tim OBrien, head of medicine at NUI Galway, an Irish pioneer of this field.

In Ireland, the origins of cell and gene therapy research go back to 2004, when Remedi was set up with funding from Science Foundation Ireland (SFI). Then in 2014, the Centre for Cell Manufacturing in Ireland (CCMI) was established. Barry and OBrien have been the key figures driving the process.

From the beginning, the dream of Barry and OBrien was to convert promising gene and cell therapy research into new therapies that could then be tested in clinical trials. Galway was a good place to do it, as it was known as a leading hub for medical device research and manufacturing, and it had the laboratories, hospital tissue facilities and clinical trial expertise that would be required.

Almost two decades down the road, the next step, they say, requires putting in place a national plan for developing a cell and gene therapy industry across the island similar to what has been achieved for medical devices and other high areas dependent on advanced technology, like ICT and pharmaceuticals. The UK offers a model of what can be achieved as it benefits from a decision by government to heavily invest in gene and cell therapy 15 years ago through an independent body it established called the Cell and Gene Therapy Catapult.

The opportunity for gene and cell therapy to grow here in coming years helped attract Dr Meadhbh Brennan, a post-doctoral researcher at Harvard University, back to Ireland. She also worked at the National Institute of Health and Inserm in France before returning to NUIG to set up her own research group.

In France, Brennan had worked on a clinical trial using stem cells to treat bone defects, while in the US her research focused on factors secreted by stem cells which could be used as a therapeutic. While in the US, she was awarded funding from SFI and that provided impetus for her move home, to take up a position at NUIG working at the interface between engineering and medicine.

She has a European Research Council starting grant award to investigate ways of regenerating bone defects, building on her work in this area. There are more than one million bone grafting procedures performed annually in Europe, and after blood, bone is the most transplanted tissue. There are issues with these procedures, however, as bone tissue is limited in quantity and quality and there is often pain at the surgical site for patients.

Brennan and her team are seeking alternatives to bone grafting through the use of byproducts from the manufacturing of stem cells called extracellular vesicles (EVs). These EVs are tiny biological packages that each contain a therapeutic cargo that has been shown to be capable of enhancing healing processes in tissues by delivering healing messages from cell to cell.

Up to now, EVs have been disposed of as waste products from commercial stem cell manufacturing. We want to divert these discarded products and harness their therapeutic potential, Brennan says, This will make the whole stem cell manufacturing process more efficient and sustainable.

Remedi scientists have experience running patient cell therapy trials, with a trial to treat arthritis of the knee using patients own cells having finished and its results set to be reported during 2022. We dont have the formal results yet, but every piece of information that weve seen about this kind of effort suggests that there is a positive benefit associated with delivering cells to these arthritic joints, Barry says. The next step would be to conduct a larger, well controlled, multinational trial of the therapy, which could be led in Ireland.

There is a huge need for new therapies to treat bone defects, given that about 10 per cent of all bone fractures wont heal if left alone, while bone infection and surgery can leave big voids in bone that need to be healed. This is where new approaches based on EVs can come in, says Brennan. These tiny particles hold huge promise for regenerating not only bone tissue, but also older tissues and organs, and have healing potential in other diseases too.

A key challenge to sort out with EV-based therapies is to find a way to safely transport them from the stem cell manufacturing facility to the clinic. Brennan and her team are investigating ways to allow the vesicles to be stored for longer durations at room temperature. The ultimate goal is to develop novel EV treatments that are inexpensive and available off the shelf when a patient has an injured or damaged tissue or needs an anti-inflammatory treatment.

The whole idea about these technologies is that they are regenerative, stimulate repair or correct defects which are chronic, Barry notes. If they work then you are saving years and years of care associated with chronic illness. The economics of this make an awful lot of sense, and the investment that is needed is very much worth it in terms of the long term.

This is a huge new industry which is exploding worldwide and will require advanced manufacturing capacity in all corners of the world, Barry points out. There is an opportunity for Ireland to become a major centre of this, and we have the people, expertise, and infrastructure to allow the industry to develop here. We need to move with lightning speed to capture the opportunity.

The idea of Ireland becoming a global hub for cell and gene therapy and manufacturing is something we should talk about seriously, he adds.

Read more here:
Tackling chronic disease with gene and cell therapies - The Irish Times

Gamida Cell Announces Results of New Health Economic and Outcome Study Reporting Improved Health Equity – BioSpace

BOSTON--(BUSINESS WIRE)-- Gamida Cell Ltd.. (Nasdaq: GMDA), the leader in the development of NAM-enabled cell therapies for patients with solid and hematological cancers and other serious diseases, today announced the results of a new study demonstrating the potential impact of access to omidubicel on health disparities in allogeneic hematopoietic stem cell transplant in a poster presentation at the 2022 Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR Tandem Meetings (TCT), being held in Salt Lake City, UT, April 23-26, 2022.

The study, titled Projected Impact of Omidubicel on Racial and Ethnic Disparities in Allogeneic Hematopoietic Cell Transplant Access and Outcomes for Patients with Hematologic Malignancies in the US, leveraged a decision-tree model to project allo-HCT access and clinical outcomes in a hypothetical population of 10,000 allo-HCTeligible patients in the U.S. with hematologic malignancies without an available match-related donor. The study concluded that broad use of omidubicel will extend access for allo-HCT-eligible patients, decrease time to transplant and improve clinical outcomes, notably among racial and ethnic groups with worse status quo outcomes. Projected increases in one-year overall survival ranged (with 20% omidubicel use among allo-HCTeligible patients) from 2.5% for whites patients to 6.3% for Black patients. The study also concluded that higher levels of modeled omidubicel uptake were associated with greater improvements in clinical outcomes and greater reductions in racial disparities.

Previous studies indicate that non-white patients have a lower likelihood of finding an appropriate match in the U.S. public donor registries, with Black patients have a 16-20% chance of finding an appropriate match. Given that an allogeneic stem cell transplant is intended as a curative option, if patients cannot find an appropriate match they will not have access to allogeneic stem cell transplant, a potentially curative treatment. The Phase 3 study of omidubicel demonstrated the ability of the therapy to be used as a donor source for racially and ethnically diverse patients with 40% of patients enrolled in the study being non-white.

Today, minority groups comprise only about 30% of all allogeneic hematopoietic stem cell transplant transplants, indicating that lack of access to a matched donor is a significant barrier to treatment in the current landscape, said Julian Adams, Ph.D., Chief Executive Officer of Gamida Cell. This study is encouraging in that it projects that broad access to omidubicel has the potential to open up allo-HSCT as an effective treatment for more patients and address the barriers that have contributed to this alarming health disparity. These data are particularly encouraging as we continue to advance our rolling BLA submission to the FDA and move closer to bringing the therapy to more patients in need.

Gamida Cell initiated a rolling Biologics License Application (BLA) submission for omidubicel in the first quarter of 2022 and is on-track to complete submission of all modules of the BLA in the second quarter of 2022.

In addition to this poster, two oral presentations and four additional poster presentations on omidubicel and a poster presentation on GDA-201, the companys leading NK cell therapy program, will be shared during the conference. All poster presentations will be publicly available at http://www.ASTCT.org. Details below:

About Omidubicel

Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell transplant for patients with hematologic malignancies (blood cancers), for which it has been granted Breakthrough Status and orphan drug designation by the FDA. Omidubicel is also being evaluated in a Phase 1/2 clinical study in patients with severe aplastic anemia (NCT03173937). For more information on clinical trials of omidubicel, please visit the Gamida Cell website.

Omidubicel is an investigational therapy, and its safety and efficacy have not been established by the FDA or any other health authority.

About NAM Technology

Our NAM-enabling technology is designed to enhance the number and functionality of targeted cells, enabling us to pursue a curative approach that moves beyond what is possible with existing therapies. Leveraging the unique properties of NAM (nicotinamide), we are able to enhance, expand and metabolically modulate multiple cell types including stem cells and natural killer cells with appropriate growth factors to maintain the cells active phenotype and enhance potency. This allows us to administer a therapeutic dose of cells that may help cancer patients live longer better lives.

About Gamida Cell

Gamida Cell is pioneering a proprietary NAM-enabled immunotherapy pipeline of diverse potentially curative cell therapies for patients with solid tumor and blood cancers and other serious blood diseases. We apply a proprietary platform leveraging the properties of NAM to allogeneic cell sources including umbilical cord blood-derived cells and NK cells to create therapies with potential to redefine standards of care. These include omidubicel, an investigational product with potential as a life-saving alternative for patients in need of transplant, and a line of modified and unmodified NAM-enabled NK cells targeted at solid tumor and hematological malignancies. For additional information on Gamida Cell, please visit http://www.gamida-cell.com or follow Gamida Cell on LinkedIn, Twitter, Facebook or Instagram at @GamidaCellTx.

Cautionary Note Regarding Forward Looking Statements

This press release contains forward-looking statements as that term is defined in the Private Securities Litigation Reform Act of 1995, including with respect to timing of initiation and progress of, and data reported from, the clinical trials of Gamida Cells product candidates (including GDA-201), anticipated regulatory filings and the potentially life-saving or curative therapeutic and commercial potential of omidubicel. Any statement describing Gamida Cells goals, expectations, financial or other projections, intentions or beliefs is a forward-looking statement and should be considered an at-risk statement. Such statements are subject to a number of risks, uncertainties and assumptions, including those related to the impact that the COVID-19 pandemic could have on our business, and including the scope, progress and expansion of Gamida Cells clinical trials and ramifications for the cost thereof; clinical, scientific, regulatory and technical developments; and those inherent in the process of developing and commercializing product candidates that are safe and effective for use as human therapeutics, and in the endeavor of building a business around such product candidates. In light of these risks and uncertainties, and other risks and uncertainties that are described in the Risk Factors section and other sections of Gamida Cells Annual Report on Form 10-K, filed with the Securities and Exchange Commission (SEC) on March 24, 2022, as amended, and other filings that Gamida Cell makes with the SEC from time to time (which are available at http://www.sec.gov), the events and circumstances discussed in such forward-looking statements may not occur, and Gamida Cells actual results could differ materially and adversely from those anticipated or implied thereby. Although Gamida Cells forward-looking statements reflect the good faith judgment of its management, these statements are based only on facts and factors currently known by Gamida Cell. As a result, you are cautioned not to rely on these forward-looking statements.

View source version on businesswire.com: https://www.businesswire.com/news/home/20220425005348/en/

Here is the original post:
Gamida Cell Announces Results of New Health Economic and Outcome Study Reporting Improved Health Equity - BioSpace

We have found an antibody against cancer stem cells. Its less exciting than it seems – InTallaght

This week, a piece of news about cancer has found its way into the dense web of current political, economic and military information: an international consortium led by the Barcelona Institute for Biomedical Research (IRB) has just completed the pre-clinical studies that place the MCLA-158 antibody at the head of the race to find the first drug to target cancer stem cells from solid tumors.

Cancer stem cells? Until recently, we believed that cancer was essentially a homogeneous mass of rapidly proliferating cells. For this reason, the therapies that were emerging focused on that: on eliminating those highly proliferative cells. In recent decades, we have learned that there is enormous diversity in cancer cells. Both in proliferation and differentiation.

Whats more, in recent years, we discovered cancer stem cells. A small subset of cells that, as in the case of normal stem cells, have the capacity to renew and generate the variety of proliferating and differentiated cells that make up the bulk of the tumor. The problem is that they are not affected by the therapies we used. To put it metaphorically, we were attacking the soldiers, but the factory was still running.

How to differentiate a normal stem cell from a cancerous one? Every time we discovered this problem, researchers have focused on finding mechanisms that allow us to attack some cells without compromising the rest. In this case, MCLA-158 is a bispecific antibody that recognizes two characteristic proteins of cancer stem cells (EGFR and LGR5). The idea of the team led by Eduard Batlle is that, precisely for this reason, it should not interfere with the functioning of the bodys healthy stem cells, which are essential for the proper functioning of tissues.

Still far from the clinic. This is a very important discovery and there are indications that the data is strong, but we need to temper our enthusiasm. These are preclinical data. We have known for a long time that only 5% of all drugs that have demonstrated their effectiveness in preclinical phases reach the market. As I say, this is not an argument against this antibody; it is rather an argument against overly sensational narratives.

welcome organoids. However, there is something for which this work is interesting beyond what happens in the future: the use of organoids. The researchers built a biobank that features organoids derived from colon cancer patients, organoids from colon cancer metastases in the liver, and organoids from normal, noncancerous tissue.

Organoids explained to us a few years ago Benjamin Freedman, professor of medicine at the University of Washington and an expert in kidney organoids are collections of cells on a support, like a plate, that resemble a tissue or organ of the body . This means that, by incorporating them in the earliest phases of drug generation, he helps identify those that are effective for most patients or even for tumors that carry a particular mutation. It allows us to go faster.

At least that was what we believed. Now, with the good results of this study and the development of a clear methodology for the use of organoids, we can confirm it. In this way, the work of Batlle and his team opens the door to better, faster and more efficient cancer science. Even if the antibody ultimately failed to reach hospitals, its contribution would have been enormous.

Read the original:
We have found an antibody against cancer stem cells. Its less exciting than it seems - InTallaght

I would not be here were it not for the blood: Duval residents describe impact of blood donation – Yahoo News

Community members are speaking out about the role blood donation has played in their personal lives.

This comes as Action News Jax and our Family Focus partners have teamed up for our annual Spring Into Action Blood Drive.

Jacksonville resident Penelope McGowan told Action News Jax reporter Kennedy Dendy that having the opportunity to give blood is an honor. My father needed a life-saving procedure, so it became more important to me to start giving blood, McGowan said.

She then became a regular giver, knowing the impact donation truly has.

That allowed him the time to spend time with his grandchildren, McGowan said. He walked his granddaughter down the aisle and got to see some of his great-grandchildren.

McGowan said blood donation made that moment possible.

Now that hes passed away, I want to give that gift of time to other families, McGowan said. So, its so important to me to give blood.

RELATED: OneBlood, Action News Jax team up for the Spring into Action Blood Drive

Action News Jax also spoke with John Dean, who is a patient at the Mayo Clinic. Hes from South Carolina but has been living in Jacksonville since January.

I got the bone marrow transplant, which is basically a stem cell infusion on January 17th, Dean said. I have been dealing with myelodysplastic syndrome.

Dean said its a form of bone marrow cancer hes been battling since 2017.

During that time, I had become increasingly dependent upon blood because the syndrome destroys my bodys ability to make red blood cells, Dean said. So when the blood numbers drop, I get very very sick.

He said the transplant was designed to cut down on his need to get the blood, but that hasnt happened yet.

Ive been more blood dependent since January than I had been before I came down here, Dean said.

Dean spoke with me just moments after he received a blood transfusion at the hospital -- but he wanted one message out there.

Youre transmitting a miracle, Dean said. Im a living example of that. I would not be here were it not for the blood.

Story continues

OneBlood said to donate youll need an ID, and you must be 16 years and older.

Randy Varner donated double red blood cells at Tuesdays drive.

My wife has had to have two heart valves replaced, so shes had to have blood before at the hospital -- so I try to help out when I can, Varner said.

Varner shared that if youre able to -- you should give.

Theres nothing to it, Varner said. You go in there. You answer a few questions. You lay down. You can take a little nap if you have to.

Nicole Payne is the Senior Program and Membership Director with the Brooks Family YMCA, one of the many sites for the drive.

Theres always a lack of blood available for people that come into any traumatic situation, Payne said. We want to make sure that we can hopefully combine some of the best parts of Jacksonville -- and thats through OneBlood being here to help people have access to donate.

The Spring into Action Blood Drive kicked off Tuesday and runs through Friday.

When you donate you will receive a free t-shirt, a $20 e-gift card, and an additional gift depending on the location where you donate.

CLICK HERE to find out when and where you can donate.

STAY UPDATED: Download the Action News Jax app for live updates on breaking stories

Download WJAX Apps

More:
I would not be here were it not for the blood: Duval residents describe impact of blood donation - Yahoo News