Author Archives: admin


BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors – StreetInsider.com

Get inside Wall Street with StreetInsider Premium. Claim your 1-week free trial here.

MELVILLE, N.Y., Oct. 26, 2021 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (BioRestorative or the Company) (OTC: BRTX), a life sciences company focused on stem cell-based therapies, today announced the nomination of two new independent members to its Board of Directors with industry and medical device experience: Patrick F. Williams, Chief Financial Officer at STAAR Surgical, and David Rosa, President and Chief Executive Officer at NeuroOne. Their election to the Board will take effect in the event the Companys pending registration statement becomes effective.

Our new board member nominations represent qualified and diverse executives who bring new perspectives, relevant expertise and leadership experience, positioning BioRestorative to fulfill our mission of bringing cell therapies to patients said Lance Alstodt, Chief Executive Officer of BioRestorative. The addition of Patrick and David is part of a strategic effort to add meaningful leadership experience to BioRestoratives Board of Directors to support the companys focus on driving future growth, enhancing its corporate governance, and creating additional shareholder value.

Patrick F. Williams

Patrick F. Williams has more than 20 years of experience across medical device, consumer product goods and technology sectors. Appointed as Chief Financial Officer of STAAR Surgical Company in July 2020, Mr. Williams is responsible for optimizing the financial performance of STAAR and ensuring the scalability of various functions to support high growth expansion. From 2016 to 2019, he served as the Chief Financial Officer of Sientra, Inc. before transitioning to General Manager for its miraDry business unit. From 2012 to 2016, Mr. Williams served as Chief Financial Officer of ZELTIQ Aesthetics, Inc., a publicly-traded medical device company that was acquired by Allergan. Previously, he served as Vice President in finance, strategy and investor relations roles from 2007 to 2012 at NuVasive, Inc., a San-Diego based medical device company servicing the spine sector. He has also held finance roles with Callaway Golf and Kyocera Wireless. Mr. Williams received an MBA in Finance and Management from San Diego State University and a Bachelor of Arts in Economics from the University of California, San Diego.

David Rosa

DavidRosa has served as the Chief Executive Officer, President and a director of NeuroOne Medical Technologies Corporation, or NeuroOne (Nasdaq: NMTC), since July2017 and served as Chief Executive Officer and a director of NeuroOne, Inc., formerly its wholly-ownedsubsidiary, from October2016 until December2019, when NeuroOne, Inc. merged with and into NeuroOne. NeuroOne is committed to providing minimally invasive and hi-definition solutions for EEG recording, brain stimulation and ablation solutions for patients suffering from epilepsy, Parkinsons disease, dystonia, essential tremors, chronic pain due to failed back surgeries and other related neurological disorders that may improve patient outcomes and reduce procedural costs. From November2009 to November2015, Mr.Rosa served as the Chief Executive Officer and President of Sunshine Heart, Inc., n/k/a Nuwellis, Inc. (Nasdaq: NUWE), a publicly-heldearly-stagemedical device company. From 2008 to November2009, he served as Chief Executive Officer of Milksmart, Inc., a company that specializes in medical devices for animals. From 2004 to 2008, Mr.Rosa served as the Vice President of Global Marketing for Cardiac Surgery and Cardiology at St. Jude Medical, Inc. He serves as a director on the board of directors of Biotricity Inc (Nasdaq: BTCY) and is Chairman of the Board at Neuro Event Labs, a privately held AI-based diagnostics company in Finland.

About BioRestorative Therapies, Inc.

BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders or as a complementary therapeutic to a surgical procedure. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat chronic lower back pain arising from degenerative disc disease.

Metabolic Program (ThermoStem): We are developing a cell-based therapy candidate to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in animals may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, those set forth in the Company's latest Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT: Email: ir@biorestorative.com

Read this article:
BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors - StreetInsider.com

They demonstrate the existence of stem cells in the hippocampus of the human brain – Market Research Telecast

Madrid, Oct 21 (EFE) .- An international team of scientists has shown that there are stem cells in the hippocampus of the human brain that allow the generation of neurons throughout life through a process called adult neurogenesis, something that was known about the brain of some animals such as rodents, but it had never been shown in adult humans.

In addition, the work has revealed that neurodegenerative diseases specifically attack these hippocampal stem cells, preventing the regeneration of new healthy neurons.

The research, led by Mara Llorens-Martn, researcher at the Severo Ochoa Molecular Biology Center (CBMSO), a joint center of the CSIC and the Autonomous University of Madrid, is published today in Science.

These findings could be useful for developing therapeutic strategies to prevent or slow down some of the symptoms that accompany these diseases, Llorens-Martn pointed out at a press conference in which he presented the results of the important study.

The research was done with 48 brain samples provided by the CIEN Foundation Brain Bank: 15 belonged to neurologically healthy people (called control group) and 33 to others with different ailments such as amyotrophic lateral sclerosis (ALS), Huntingtons disease, Parkinsons disease, Lewy body dementia, and frontotemporal dementia.

The samples came from subjects between 43 and 89 years of age; 16 women and 32 men.

NEUROGENESIS IN THE HUMAN BRAIN UP TO 90 YEARS

In all of them there were stem cells (even in patients with some of these neurodegenerative diseases the levels of stem cells were increased), which confirms that the process of adult neurogenesis continues in the human brain, at least until the age of 90, underlines the researcher.

Neurogenesis is a key process for the generation, acquisition and storage of new memories in the brain. It is a very complex process that occurs in different stages in which stem cells divide and create daughters that actively proliferate and mature into a healthy neuron.

Article Source

Disclaimer: This article is generated from the feed and not edited by our team.

View post:
They demonstrate the existence of stem cells in the hippocampus of the human brain - Market Research Telecast

Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology – UConn Today – UConn Today

Akiko Nishiyama, professor and head of physiology and neurobiology, on August 17, 2021. (Bri Diaz/UConn Photo)

Forty years ago,neurologistsand neurobiologistsbelieved that the adult brain became lessplastic and less able to learn and retain new things.Theyhad no idea that non-neuronal cells had anything to do with information processing in the brain, including learning and memory.

Now,afterdecades of researchingand characterizinga particular cell type, called glial cells, in the brain, Akiko Nishiyama, professor of physiology and neurobiology and the new department head,can tell youthatthese cells areessential to enabling humans to learn new tasks well into adulthood, thanks to a very dynamic regulation of the ability of oligodendrocyte precursor cells she had found to generate mature myelin-forming cells. She believes that these cells also play a yet unidentified critical role in the network of brain activity.

We sat down with Nishiyama to talk about her goals for the department and current trends in the growing field of physiology and neurobiology.

What isthephysiology and neurobiology (PNB)majorat UConn?

Physiology is the study of how different parts of the body work, andneurobiology is the study of how the nervous system (brain, spinal cord, and peripheral nerves) works, and this is what I study.ThePNBdepartmentis where faculty andstudentsstudy both disciplines.

In the early- to mid-20th Century, we saw a tremendous expansion of the study of the nervous system, which led to the emergence of a multi-disciplinary field called neurobiology. The name of our department reflects this transition.

How did you get started inneurobiology? Tell us about your research.

I startedmy career in neuropathologyafter finishing six years of medical training.I was curious about how different cells in the nervous system support the function of neurons and how these support cells, known as glial cells, might malfunction in the process of neurodegenerative diseases. Halfway through the residency-doctoral program, I switched to a more basic doctoral program in molecular neurobiology, because I wanted to ask fundamental molecular and cellular questions about how different glial cells in the nervous system interact with neurons.

I sought my postdoctoral training in a lab studying the NG2 protein that seemed to be present in a yet-unidentified subset of glia,andI spent my career characterizing them.

Thirty years later, these cells have become widely known to cellular neurobiologists and have made it into textbooks. My studies established that NG2 cells are precursor cells to oligodendrocytes that make myelin sheaths but are different from stem cells or other known glial cell types.

Now we know these myelin structures are constantly being remodeled as we learn new skills as adults. And if you disrupt the process of the precursor cells, you disrupt the ability to acquire new tasks or learn new motor skills.

Why are these cells important?

We used to think that myelin was formed during the few years after birth and remained stable throughout life.What I found was that oligodendrocyte precursor cells persist in the adult brain and are implicated in some neurological disorders, such as multiple sclerosis.

Thisis an expanding areaof research in a new field called myelin plasticity.Myelin repair is important for the functional repair not only in multiple sclerosis but also after trauma such as spinal cord injury. New genomic studies are emerging that have linked oligodendrocytes to neuropsychiatric and neurodegenerative diseases such as schizophrenia and Parkinsons disease.

What are some of the things you can do with a degree in PNB?

We provide a wide-ranging set of skills, collectively, in the department, because the possibilities grow every day.

Many of our undergraduate students pursue medical, dental, or other health care professions. For instance, we recently developed theInteroperative Neuromonitoring Programwith a masters degree in Surgical Neurophysiology. This program trains specialized medical technologists who monitor the patients muscle and brain activity and other neurophysiologicalindicatorsduring surgery that may be important for surgeons and anesthesiologists to see in real-time.

Some PNB majors go to graduate school to pursue a career in academic or industry research. In addition,students withan advanced degree inphysiology andneurobiology can become teachers or science writers.

Regardless of whether they are pursuing research, we train our undergraduate students to develop a good habit ofidentifying and thinkingthrough a problem. We have faculty with diverse expertise, and our students are introduced to a wide range of questions and approaches to answer them in the classroom as well as in faculty laboratories.

What are some of your goals for the department over the next five years?

Imreally luckyto have astrong andfriendly department. Its a smallenoughdepartment that I can get to knoweach faculty and staff memberquite well.

I would like tobetter connectwith our undergraduate majors early during their time at UConn. Currently, we see them for the first time when they take our gatewayHuman Physiology and Anatomycourse in their sophomore year, and most of our faculty do not see them until they are juniors or seniors. I am interested in exposing freshmen and early sophomores to more experientialtypesof learning, monitoring their progress, and providing feedback and support where needed.

One of the strengths of our department is our facultys research. Many of our faculty, especially the younger faculty, have expanding research programs, have been successful in securing large external grants, and are active in mentoring graduate and undergraduate students in their labs. I would like to provide an environment where the successful faculty can attain an even greater level of excellence and as a department attract a larger number of talented doctoral and postdoctoral trainees to UConn.

I would like to strengthen our graduate program to providemoremultidisciplinary training for the next generation of physiologists andneurobiologiststo gain quantitative and computer skillsas well.

See the article here:
Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today

What are the different kinds of stem cells? | American for …

There are three types of stem cells: adult stem cells, embryonic (or pluripotent) stem cells, and induced pluripotent stem cells (iPSCs).

Adult stem cells, or tissue stem cells, can come from different parts of the adult body. They are specific to a certain kind of tissue in the body: for instance, liver stem cells can regenerate liver tissue, and muscle stem cells can regenerate muscle fibers. But adult stem cells are limited to only becoming more of their specialized tissueliver stem cells cannot make new muscle fibers, nor can muscle stem cells make new liver tissue.

The thousands of different cell types that make up our bodies all came from one single master builder cell, called a pluripotent stem cell.

Pluripotent stem cells can be thought of as blank slates, because of their ability to build any cell type in the bodyskin cells, brain cells, muscle cells, etc. Unlike tissue stem cells, pluripotent stem cells are not limited to only becoming more of a certain tissue. Pluripotent stem cells primarily consist of embryonic stem cells, but the term now also encompasses another type of cells, called induced pluripotent stem cells. More on that later.

Induced pluripotent stem (iPS) cells are pluripotent cells that are derived from adult tissue using new scientific technology. They share characteristics with embryonic stem cells in that they can become any cell type in the body.

Reprogramming stem cells to create iPSCs involves some genetic manipulation, and this may cause some differences that are not present in cells that are already embryonic in nature. It is essential to continue research using all cell types. Because the field of stem cell research is so new, it is critical to explore all avenues of stem cell research, from pluripotent to tissue stem cells.

The process of generating an iPS cell line takes time and resources in a lab. To do so in a sterile and safe way in which the cells can be transplanted back into someone is even more expensive. It is also necessary that these cells undergo tests to ensure that they have not mutated or changed in any detrimental way through the reprogramming process. It is a cool idea that everyone could have their own iPS cell line that could be used to make a personalized therapy product for themselves, but in practice this is very time consuming and expensive to do it on a per-person basis. In embryonic stem cell therapies, the generation of the cells has already been performed in the proper ways, and the expensive tests can be performed on a single stem cell line, rather than a different line for every individual.

It is possible that one day iPSCs may prove to be equivalent to embryonic stem cells (ESCs) and could be used in the same way we use ESCs now. However, because iPSCs are a very new discovery (2006), it is still to be determined iPS cells are are equivalent to embryonic stem cells in all ways. Scientists are working hard on understanding the differences that may exist between embryonic stem cells and iPS cells, and we still have yet to determine which cell type will be the most useful for regenerative medicine.

What Are Stem Cells and Why Are They So Important? Stem cells are the builders

Research using pluripotent stem cells is legal in the United States. Federal courts, including the

Proposition 71 created the California stem cell program, formally titled the California Institute of Regenerative

See more here:
What are the different kinds of stem cells? | American for ...

European Wellness Collaborates with Heidelberg University Germany to Conduct Efficacy Studies of Peptides and Cell Therapy Research – WILX-TV

Published: Oct. 27, 2021 at 4:30 AM EDT|Updated: 21 hours ago

FRANKFURT, Germany, Oct. 27, 2021 /PRNewswire/ European Wellness Academy (EWA), the educational arm of European Wellness Biomedical Group (EWG), has signed an agreement to carry out joint scientific research on the efficacy of peptides, cell therapy, exosomes and cell reprogramming for rejuvenation in premature murine aging models.

EWA was represented by its Group Chairman, Prof. Dr. Mike Chan, while Heidelberg University was represented by its Commercial Managing Director, Katrin Erk and its Head of Institute of Anatomy and Cell Biology III, Prof. Dr. Thomas Skutella.

The cutting-edge therapeutics used for the studies include precursor (progenitor) stem cells (PSC), precursor cells (Frozen Organo Crygenics (FOC)), Mito Organelle (MO), Nano Organo Peptides (NOP) and exosomes.

Their studies include in vitro experiments concentrating on the effects of the products on the aging of somatic cells and cellular senescence, which is known to contribute to disease onset and progression. Investigated exosomes include neuronal stem cells (NSCs), mesenchymal stem cells (MSCs), cardiomyocytes, kidney progenitors and hepatocytes.

EWA and Heidelberg University will also conduct in vivo experiments to demonstrate both safety and efficacy of the therapeutics, whereby the proof of effectivity will be recorded in the life span, histopathological and molecular criteria of neurodegeneration including Alzheimer/dementia, and system degeneration disorders including those affecting the immune system, skin, cardio, lung, kidney, liver, stomach/intestine/gut, eye, and muscular dystrophy.

Other criteria included are cartilage/joint/bone regeneration including knees/joints/hips, cervical, thoracic, lumbar, pelvic and musculoskeletal disorder, as well as endocrine disorders like endocrinal dysfunction due to over and underproduction of hormones and other activity pattern under the sleep wake cycle.

The ongoing specially designed studies are coordinated and designed by Prof. Dr. Thomas Skutella of Heidelberg University, a world-renowned research university and one of Germany's Top 3, Prof. Dr.Mike Chan and scientists of EWG.

European Wellness Academy

Located in Germany, Switzerland, Greece and Malaysia, EWA is a UK CPD authorised body with a premium training and development wing that revolves around cutting-edge Bio-Regenerative Medicine modalities for practitioners and researchers. The Academy has extensive years of combined clinical experience and a core academic team comprising of qualified clinicians and scientists with multiple international affiliations and accreditations.

https://ewacademy.eu https://european-wellness.eu/

View original content to download multimedia:

SOURCE European Wellness Biomedical Group

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

See original here:
European Wellness Collaborates with Heidelberg University Germany to Conduct Efficacy Studies of Peptides and Cell Therapy Research - WILX-TV