Author Archives: admin


StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa – WIBW

StemExpress to use utilize the Thermo Fisher Accula rapid PCR testing system to provide event attendees with accurate results in 30 minutes.

Published: Oct. 5, 2021 at 2:33 PM CDT|Updated: 3 hours ago

SACRAMENTO, Calif., Oct. 5, 2021 /PRNewswire/ --StemExpress is proud to announce that they will be the official COVID-19 testing provider for 2021's Meeting on the Mesa, a hybrid event bringing together great minds in the cell and gene biotech sphere. It has partnered with Alliance for Regenerative Medicine to comply with the newly implemented California state COVID-19 vaccination and testing policy regarding gatherings with 1,000 or more attendees. This partnership will allow the vital in-person networking aspect of the event to commence while protecting the health and safety of participants and attendees.

In-person networking commences at the 2021 Cell and Gene Meeting on the Mesa with COVID-19 testing options provided by StemExpress.

As a leading global provider of human biospecimen products, StemExpress understands the incredible impact that Meeting on the Mesa has on the industry and has been a proud participant for many years. For over a decade, StemExpress has provided the cell and gene industry with vital research products and holds valued partnerships with many of this year's participants. As such, it understands the immense value that in-person networking provides and is excited to help bring this element back to the meeting safely and responsibly.

StemExpress has been a trusted provider of widescale COVID-19 testing solutions since early 2020 - providing testing for government agencies, public health departments, private sector organizations, and the public nationwide. For Meeting on the Mesa, StemExpress is offering convenient testing options for unvaccinated attendees and those traveling from outside of the country. Options will include take-home RT-PCR COVID Self-Testing Kits and on-site, rapid PCR testing for the duration of the event. The self-testing kit option allows attendees to test for COVID in the days leading up to the event for a seamless admission and the days following the event to confirm they haven't been exposed. The on-site rapid testing option utilizes the new Thermo Fisher Accula, offering in-person testing at the event with results in around 30 minutes. StemExpress is excited to bring these state-of-the-art COVID testing solutions to the frontlines of the Cell & Gene industry to allow for safe in-person connections.

The StemExpress partnership with Alliance for Regenerative Medicine seeks to empower the entire cell and gene industry with a long-awaited opportunity to return to traditional networking practices. It is well known that innovation doesn't exist in a vacuum - allowing great minds to come together is a sure way to spur scientific growth and advance cutting-edge research, giving hope for future cures.

Cell and Gene Meeting on the Mesa will take place October 12th, 2021, through October 14th, 2021, at Park Hyatt Aviara,7100 Aviara Resort Drive Carlsbad, CA 92011. To learn more about the event, please visit MeetingOnTheMesa.com.

For more information about COVID testing solutions for businesses and events, visit https://www.stemexpress.com/covid-19-testing/.

About StemExpress:

Founded in 2010 and headquartered in Sacramento, California, StemExpress is a leading global biospecimen provider of human primary cells, stem cells, bone marrow, cord blood, peripheral blood, and disease-state products. Its products are used for research and development, clinical trials, and commercial production of cell and gene therapies by academic, biotech, diagnostic, pharmaceutical, and contract research organizations (CRO's).

StemExpress has over a dozen global distribution partners and seven (7) brick-and-mortar cellular clinics in the United States, outfitted with GMP certified laboratories. StemExpress runs its own non-profit supporting STEM initiatives, college and high school internships, and women-led organizations. It is registered with the U.S. Food and Drug Administration (FDA) and is continuously expanding its network of healthcare partnerships, which currently includes over 50 hospitals in Europe and 3 US healthcare systems - encompassing 31 hospitals, 35 outpatient facilities, and over 200 individual practices and clinics.

StemExpress has been ranked by Inc. 500 as one of the fastest-growing companies in the U.S.

About the Alliance for Regenerative Medicine:

The Alliance for Regenerative Medicine (ARM) is the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies. ARM promotes legislative, regulatory, reimbursement and manufacturing initiatives to advance this innovative and transformative sector, which includes cell therapies, gene therapies and tissue-based therapies. Early products to market have demonstrated profound, durable and potentially curative benefits that are already helping thousands of patients worldwide, many of whom have no other viable treatment options. Hundreds of additional product candidates contribute to a robust pipeline of potentially life-changing regenerative medicines and advanced therapies. In its 12-year history, ARM has become the voice of the sector, representing the interests of 400+ members worldwide, including small and large companies, academic research institutions, major medical centers and patient groups. To learn more about ARM or to become a member, visit http://www.alliancerm.org.

Media Contact: Anthony Tucker, atucker@stemexpress.com

View original content to download multimedia:

SOURCE StemExpress

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

The rest is here:
StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa - WIBW

Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial – KMVT

SYDNEY, Oct. 5, 2021 /PRNewswire/ -- Clinical stage drug development company Pharmaxis Ltd (ASX: PXS) today announced further positive results of data analysis from a phase 1c clinical trial (MF-101) studying its drug PXS-5505 in patients with the bone marrow cancer myelofibrosis for 28 days at three dosage levels.

Assessment with Pharmaxis' proprietary assays of the highest dose has shown inhibition of the target enzymes, LOX and LOXL2, at greater than 90% over a 24-hour period at day 7 and day 28. The trial safety committee has reviewed the results and having identified no safety signals, has cleared the study to progress to the phase 2 dose expansion phase where 24 patients will be treated at the highest dose twice a day for 6 months.

Pharmaxis CEO Gary Phillips said, "We are very pleased to have completed the dose escalation phase of this study with such clear and positive findings.We will now immediately progress to the phase 2 dose expansion study where we aim to show PXS-5505 is safe to be taken longer term with the disease modifying effects that we have seen in the pre-clinical models. The trial infrastructure and funding is in place and we are on track to complete the study by the end of 2022."

Independent, peer-reviewed research has demonstrated the upregulation of several lysyl oxidase family members in myelofibrosis.The level of inhibition of LOX achieved in the current study at all three doses significantly exceeds levels that caused disease modifying effects with PXS-5505 in pre-clinical models of myelofibrosis with improvements in blood cell count, diminished spleen size and reduced bone marrow fibrosis. LOXL2 was inhibited to a similar degree and based on pre-clinical work such high inhibition is likely replicated for other LOX family members (LOXL1, 3 and 4).[1] Study data can be viewed in the full announcement.

Commenting on the results of the trial, Dr Gabriela Hobbs, Assistant Professor, Medicine, Harvard Medical School & Clinical Director, Leukaemia, Massachusetts General Hospital said, "Despite improvements in the treatment of myelofibrosis, the only curative therapy remains an allogeneic stem cell transplantation, a therapy that many patients are not eligible for due to its morbidity and mortality. None of the drugs approved to date consistently or meaningfully alter the fibrosis that defines this disease. PXS-5505 has a novel mechanism of action by fully inhibiting all LOX enzymes. An attractive aspect of this drug is that so far in healthy controls and in this phase 1c study in myelofibrosis patients, the drug appears to be very well tolerated. This is meaningful as approved drugs and those that are undergoing study, are associated with abnormal low blood cell counts. Preliminary data thus far, demonstrate that PXS-5505 leads to a dramatic, >90% inhibition of LOX and LOXL2 at one week and 28 days. This confirms what's been shown in healthy controls as well as mouse models, that this drug can inhibit the LOX enzymes in patients. Inhibiting these enzymes is a novel approach to the treatment of myelofibrosis by preventing the deposition of fibrosis and ultimately reversing the fibrosis that characterizes this disease."

The phase 1c/2a trial MF-101 cleared by the FDA under the Investigational New Drug (IND) scheme aims to demonstrate that PXS-5505, the lead asset in Pharmaxis' drug discovery pipeline, is safe and effective as a monotherapy in myelofibrosis patients who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs. Trial sites will now open to recruit myelofibrosis patients into the 6-month phase 2 study in Australia, South Korea, Taiwan and the USA.

An effective pan-LOX inhibitor for myelofibrosis would open a market that is conservatively estimated at US$1 billion per annum.

While Pharmaxis' primary focus is the development of PXS-5505 for myelofibrosis, the drug also has potential in several other cancers including liver and pancreatic cancer where it aims to breakdown the fibrotic tissue in the tumour and enhance the effect of chemotherapy treatment.

Trial Design

Name of trial

PXS5505-MF-101: A phase 1/2a study to evaluate safety, pharmacokinetic and pharmacodynamic dose escalation and expansion study of PXS-5505 in patients with primary, post-polycythaemia vera or post-essential thrombocythemia myelofibrosis

Trial number

NCT04676529

Primary endpoint

To determine the safety of PXS-5505 in patients with myelofibrosis

Secondary endpoints

Blinding status

Open label

Placebo controlled

No

Trial design

Randomised, multicentre, 4 week duration phase 1 (dose escalation) followed by 6 month phase 2 (dose expansion)

Treatment route

Oral

Treatment frequency

Twice daily

Dose level

Dose escalation: three escalating doses

Dose expansion: one dose

Number of subjects

Dose escalation: minimum of three patients to maximum of 18 patients

Dose expansion: 24 patients

Subject selection criteria

Patients with primary or secondary myelofibrosis who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs

Trial locations

Dose escalation: Australia (2 sites) and South Korea (4 sites)

Dose expansion: Australia, Korea, Taiwan, USA

Commercial partners involved

No commercial partner

Reference: (1) doi.org/10.1002/ajh.23409

AUTHORISED FOR RELEASE TO ASX BY:

Pharmaxis Ltd Disclosure Committee. Contact: David McGarvey, Chief Financial Officer and Company Secretary: T +61 2 9454 7203, E david.mcgarvey@pharmaxis.com.au

Join the Pharmaxis mailing listhere

Follow us on LinkedInand Twitter

About Pharmaxis

Pharmaxis Ltd is an Australian clinical stage drug development company developing drugs for inflammatory and fibrotic diseases, with a focus on myelofibrosis. The company has a highly productive drug discovery engine built on its expertise in the chemistry of amine oxidase inhibitors, with drug candidates in clinical trials. Pharmaxis has also developed two respiratory products which are approved and supplied in global markets, generating ongoing revenue.

Pharmaxis is developing its drug PXS-5505 for the bone marrow cancer myelofibrosis which causes a build up of scar tissue that leads to loss of production of red and white blood cells and platelets. The US Food and Drug Administration has granted Orphan Drug Designation to PXS-5055 for the treatment of myelofibrosis and permission under an Investigational Drug Application (IND) to progress a phase 1c/2 clinical trial that began recruitment in Q1 2021. PXS5505 is also being investigated as a potential treatment for other cancers such as liver and pancreatic cancer.

Other drug candidates being developed from Pharmaxis' amine oxidase chemistry platform are targeting fibrotic diseases such as kidney fibrosis, NASH, pulmonary fibrosis and cardiac fibrosis; fibrotic scarring from burns and other trauma; and inflammatory diseases such as Duchenne Muscular Dystrophy.

Pharmaxis has developed two products from its proprietary spray drying technology that are manufactured and exported from its Sydney facility; Bronchitol for cystic fibrosis, which is approved and marketed in the United States, Europe, Russia and Australia; and Aridol for the assessment of asthma, which is approved and marketed in the United States, Europe, Australia and Asia.

Pharmaxis is listed on the Australian Securities Exchange (PXS). Its head office, manufacturing and research facilities are in Sydney, Australia. http://www.pharmaxis.com.au

About PXS-5505

PXS-5505 is an orally taken drug that inhibits the lysyl oxidase family of enzymes, two members LOX and LOXL2 are strongly upregulated in human myelofibrosis. In pre-clinical models of myelofibrosis PXS-5505 reversed the bone marrow fibrosis that drives morbidity and mortality in myelofibrosis and reduced many of the abnormalities associated with this disease. It has already received IND approval and Orphan Drug Designation from the FDA.

Myelofibrosis is a disorder in which normal bone marrow tissue is gradually replaced with a fibrous scar-like material. Over time, this leads to progressive bone marrow failure. Under normal conditions, the bone marrow provides a fine network of fibres on which the stem cells can divide and grow. Specialised cells in the bone marrow known as fibroblasts make these fibres.

In myelofibrosis, chemicals released by high numbers of platelets and abnormal megakaryocytes (platelet forming cells) over-stimulate the fibroblasts. This results in the overgrowth of thick coarse fibres in the bone marrow, which gradually replace normal bone marrow tissue. Over time this destroys the normal bone marrow environment, preventing the production of adequate numbers of red cells, white cells and platelets. This results in anaemia, low platelet counts and the production of blood cells in areas outside the bone marrow for example in the spleen and liver, which become enlarged as a result.

Myelofibrosis can occur at any age but is usually diagnosed later in life, between the ages of 60 and 70 years. The cause of myelofibrosis remains largely unknown. It can be classified as either JAK2 mutation positive (having the JAK2 mutation) or negative (not having the JAK2 mutation).

Source: Australian Leukemia Foundation: https://www.leukaemia.org.au/disease-information/myeloproliferative-disorders/types-of-mpn/primary-myelofibrosis/

Forward-looking statements

Forwardlooking statements in this media release include statements regarding our expectations, beliefs, hopes, goals, intentions, initiatives or strategies, including statements regarding the potential of products and drug candidates. All forward-looking statements included in this media release are based upon information available to us as of the date hereof. Actual results, performance or achievements could be significantly different from those expressed in, or implied by, these forward-looking statements. These forward-looking statements are not guarantees or predictions of future results, levels of performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this document. For example, despite our efforts there is no certainty that we will be successful in developing or partnering any of the products in our pipeline on commercially acceptable terms, in a timely fashion or at all. Except as required by law we undertake no obligation to update these forward-looking statements as a result of new information, future events or otherwise.

CONTACT:

Media: Felicity Moffatt: T +61 418 677 701, E felicity.moffatt@pharmaxis.com.au

Investor relations:Rudi Michelson (Monsoon Communications) T +61 411 402 737, E rudim@monsoon.com.au

View original content:

SOURCE Pharmaxis Limited

View original post here:
Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial - KMVT

Nucleic Acid Based Gene Therapy Market Analysis Of Industry Trends And Market Growth Opportunities As Per The Business Research Company’s Nucleic Acid…

This report describes and evaluates the global nucleic acid-based gene therapy market. It covers three five-year periods, including 2015 to -2020, termed the historic period, 2020-2025 forecast period and 2025-2030 a further forecast period.

LONDON, Oct. 05, 2021 (GLOBE NEWSWIRE) -- According to The Business Research Companys research report on the nucleic acid-based gene therapy market, companies in the nucleic acid-based gene therapy market and research institutes are increasing the number of pipeline studies to develop gene therapy to treat various diseases. Companies have also started investing in startups and other early-stage companies to develop pipelines for gene therapies. Cell and gene therapies (CGT) have transformed not only how humans treat intractable and genetic diseases, but also reformed the entire pharmaceutical ecosystem. As of 2019, more than 27 CGT products were launched across the globe and nearly 990 companies are engaged in the commercialization, and research & development of next-generation therapies. Additionally, there are more than 1,000 regenerative medicine trials taking place across the globe.

Such global nucleic acid based gene therapy market trends are obtainable with nucleic acid-based gene therapy manufacturers progressively investing in the launch of new manufacturing facilities and product portfolio expansion to meet the increasing demand for gene therapy and related products. Players operating in the nucleic acid-based gene therapy market are gradually investing in the developing regions to capitalize on untapped market opportunities. For example, in September 2021, Viralgen, a Bayer-owned CDMO, spent upwards of 50 million (US$ 55 million) to expand its capacity for gene therapy manufacturing services at its Miramon Technology Park site in San Sebastian, Spain. The commercial facility will have nine cleanrooms, each with a batch capacity of up to 2,000 L. Viralgen claims that this has expanded its existing viral vector capacity 15-fold, helping to meet the demand for gene therapy production. In addition, in May 2021, AGC Biologics, a global biopharmaceutical contract development and manufacturing organization (CDMO), announced plans to expand their Gene Therapy Center of Excellence in Milan, Italy.

Story continues

Major players in the nucleic acid gene therapy market include Copernicus Therapeutics, Moderna Inc., Wave Life Sciences, Protagonist Therapeutics and Transgene.

The Business Research Companys report titled Nucleic Acid Based Gene Therapy Global Market Report 2021 - By Technology (Anti-Sence and Anti-Gene, Short Inhibitory Sequences, Gene Transfer Therapy, Nucleoside Analogs, Ribozymes, Aptamers), By Application (Oncology, Muscular Dystrophy/ Muscular Disorders, Rare Diseases), By End User (Hospitals And Clinics, Academic And Research Institutes), COVID-19 Growth And Change covers major nucleic acid based gene therapy companies, nucleic acid based gene therapy market share by company, nucleic acid based gene therapy manufacturers, nucleic acid based gene therapy market size, and nucleic acid based gene therapy market forecasts. The report also covers the global nucleic acid based gene therapy market and its segments.

Request For A Sample Of The Global Nucleic Acid Based Gene Therapy Market Report:

https://www.thebusinessresearchcompany.com/sample.aspx?id=2820&type=smp

The global nucleic acid based gene therapy market size is expected to grow from $0.56 billion in 2020 to $0.61 billion in 2021 at a compound annual growth rate (CAGR) of 8.9%. The growth is mainly due to the companies resuming their operations and adapting to the new normal while recovering from the COVID-19 impact, which had earlier led to restrictive containment measures involving social distancing, remote working, and the closure of commercial activities that resulted in operational challenges. The nucleic acid-based gene therapy market is expected to reach $0.85 billion in 2025 at a CAGR of 9%.

North America is the largest region in the global nucleic acid-based gene therapy market, accounting for 46.2% of the total in 2020. It is followed by the Western Europe, Asia Pacific and then the other regions. Going forward, the fastest-growing regions in the nucleic acid-based gene therapy market will be the Middle East and Eastern Europe where growth will be at CAGRs of 33.7% and 26.0% respectively. These will be followed by South America and Asia Pacific, where the markets are expected to register CAGRs of 21.0% and 20.4% respectively.

The nucleic acid-based gene therapy market covered in this report is segmented by technology into anti-sense and anti-gene, short inhibitory sequences, gene transfer therapy, nucleoside analogs, ribozymes, aptamers, others. It is also segmented by application into oncology, muscular dystrophy/ muscular disorders, rare diseases and by end user into hospitals and clinics, academic and research institutes.

The top opportunities in the nucleic acid-based gene therapy market segmented by technology will arise in the anti-sense and anti-gene oligonucleotides segment, which will gain $1,290.7 million of global annual sales by 2025. The top opportunities segmented by application will arise in the muscular dystrophy/muscular disorders segment, which will gain $1,000.2 million of global annual sales by 2025, segmented by end-user will arise in the hospitals and clinics segment, which will gain $2,133.7 million of global annual sales by 2025. The nucleic acid-based gene therapy market size will gain the most in the USA at $915.0 million.

Nucleic Acid Based Gene Therapy Global Market Report 2021 COVID-19 Growth And Change is one of a series of new reports from The Business Research Company that provide nucleic acid-based gene therapy market overviews, nucleic acid-based gene therapy market analyze and forecast market size and growth for the whole market, nucleic acid-based gene therapy market segments and geographies, nucleic acid-based gene therapy market trends, nucleic acid-based gene therapy market drivers, nucleic acid-based gene therapy market restraints, nucleic acid-based gene therapy market leading competitors revenues, profiles and market shares in over 1,000 industry reports, covering over 2,500 market segments and 60 geographies.

The report also gives in-depth analysis of the impact of COVID-19 on the market. The reports draw on 150,000 datasets, extensive secondary research, and exclusive insights from interviews with industry leaders. A highly experienced and expert team of analysts and modelers provides market analysis and forecasts. The reports identify top countries and segments for opportunities and strategies based on market trends and leading competitors approaches.

Here Is A List Of Similar Reports By The Business Research Company:

Gene Editing Global Market Report 2021 - By Technology (CRISPR, TALEN, ZFN), By End Users (Biotechnology, Pharmaceutical, Contract Research Organization), By Application (Animal Genetic Engineering, Plant Genetic Engineering, Cell Line Engineering), COVID-19 Growth And Change

CRISPR Technology Global Market Report 2021 - By Product Type (Design Tools, Plasmid And Vector, Cas9 And G-RNA, Delivery System Products), By Application (Genome Editing/ Genetic Engineering, Genetically Modified Organisms, Agricultural Biotechnology), By End-User (Industrial Biotech, Biological Research, Agricultural Research, Therapeutics And Drug Discovery), COVID-19 Growth And Change

Stem Cell Therapy Global Market Report 2021 - By Type (Allogeneic Stem Cell Therapy, Autologous Stem Cell Therapy), By Cell Source (Adult Stem Cells, Induced Pluripotent Stem Cells, Embryonic Stem Cells), By Application (Musculoskeletal Disorders, Wounds And Injuries, Cancer, Autoimmune Disorders), By End-User (Hospitals, Clinics), COVID-19 Growth And Change

Interested to know more about The Business Research Company?

The Business Research Company is a market intelligence firm that excels in company, market, and consumer research. Located globally it has specialist consultants in a wide range of industries including manufacturing, healthcare, financial services, chemicals, and technology.

Get a quick glimpse of our services here: https://www.youtube.com/channel/UC24_fI0rV8cR5DxlCpgmyFQ

The Worlds Most Comprehensive Database

The Business Research Companys flagship product, Global Market Model, is a market intelligence platform covering various macroeconomic indicators and metrics across 60 geographies and 27 industries. The Global Market Model covers multi-layered datasets which help its users assess supply-demand gaps.

Go here to read the rest:
Nucleic Acid Based Gene Therapy Market Analysis Of Industry Trends And Market Growth Opportunities As Per The Business Research Company's Nucleic Acid...

STIs Reached Record Highs, Then COVID-19 Hit. Test Makers Now Ponder What’s Next – GenomeWeb

NEW YORK As the COVID-19 pandemic pushes into a third year, public health experts and PCR-based assay makers are eager to know whether an increase in sexually transmitted infections is on the horizon.

Rates of STIs in the US had been rising for a decade until lockdowns in the early days of the pandemic led to a sharp reduction in STI testing and screening. Although levels have since recovered, experts are uncertain whether missed cases will lead to increased STI rates, or whether the impact will be offset by pandemic-related changes in sexual behavior.

For developers of STI tests, that uncertaintycouldpresentchallenges as they try to prepare and prioritize for the future.

STIs aren't usually fatal, but they can still create a myriad of personal and public health issues. Chronic, untreated infections in women cause pelvic inflammatory disease in about 12 percent of cases according to one estimate, and approximately 1 in 5 PID cases will result in infertility. Even an asymptomatic STI can increase a person's risk of picking up other infections, like HIV, and STIs can lead to complications for pregnant people and their babies, including infant death in cases of congenital infection.

The majority of people infected with two of the most prevalent STIs chlamydia and gonorrhea have no symptoms whatsoever. For chlamydia, an estimated 90 percent of cases in males are asymptomatic, as are between 70 and 95 percent of cases in females. Gonorrhea infections are also asymptomatic in a little more than half of all cases.

To tamp down rising rates of these infections, the US Centers for Disease Control and Prevention recommends annual screening using nucleic acid amplification tests, and screening up to four times per year for some high-risk groups. Symptomatic cases are also frequently tested using molecular diagnostics, with gonorrhea in particular also isolated and cultured for national reporting and surveillance.

But not only did the pandemic lead to shortages in sample collection and preparation devices, testing reagents, and healthcare and lab staff, it also saw fewer people willing to step into a clinician's office for routine screening.

Overall, STI rates in the US had already risen to an all-time high in 2019, continuing a trend that had been going on for six consecutive years, according to the CDC.

The agency's 2019 STD Surveillance Report, published in April 2021, noted that there were 1,808,703 cases of Chlamydia trachomatis and 616,392 cases of gonorrhea reported to the CDC in 2019. In total, there were 2.5 million reported cases of chlamydia, gonorrhea, and syphilis the three most commonly reported STDs that year which represented a nearly 30 percent increase between 2015 and 2019, CDC said.

Then, COVID happened, resulting in a dramatic reduction in the number of detected STI cases, according to local as well as national data.

BarbaraVan Der Pol runs a clinical microbiology lab at the University of Alabama, Birmingham, and specializes in STIs. The precarious state of plastic consumables and sample prep supplies for molecular testing led her lab, and many others, to restrict STI testing to symptomatic cases and pivot their resources to COVID testing.

"There were three months where nobody in the country could get collection devices, because the same swab used for STI specimens was being used to collect nasal swabs," Van Der Pol said in a recent interview. Just as her lab had restarted its full-capacity STI clinical lab testing a few months ago,the Delta variant came roaring in, and now some of the supplies the lab needs for STI testing are in short supply again, she said.

In a study published online in theAmerican Journal of Preventive Medicine in May, Van Der Pol and colleagues from Quest Diagnostics and Pennsylvania State University reported CT/NG screening hit a low point in April 2020.

The team saw a 59 percent decrease in screening for female patients and a 63 percent decrease for male patients. Further, the results correlated with increases in positivity rates for both chlamydia and gonorrhea.

Overall, the team estimated that in their sample, there were 27,659 cases of chlamydia and 5,577 chases of gonorrhea missed between March and June of 2020.

Philip Chan, a physician and researcher at Brown University who treats STIs in Rhode Island, noted that staff in health departments and publicly funded clinics shifted from STIs to COVID-19 response. Data recently published by him and his team also showed that the pandemic significantly reduced the average number of STI clinic visits per week.

Nationally, reported STI diagnoses dropped significantly, then resurged in 2020 due to COVID-19 lockdowns, according to the CDC. Specifically, a CDC study in Sexually Transmitted Diseases showed that during the most restrictive period of pandemic lockdowns in early April 2020, chlamydia cases dropped nearly 50 percent compared to the same time in 2019. Reported gonorrhea infections fell more than 71 percent, and syphilis infection diagnoses dropped nearly 64 percent. In April 2020 alone, the CDC estimated that roughly 30,000 gonorrhea cases went undetected.

Through a spokesperson, the CDC said three factors likely contributed to the initial decrease in reported cases: reduced screening, limited resources, and stay-at-home orders which may have influenced sexual behaviors and reduced STD transmission.

Yet, by the end of 2020 infection detection resurged, according to CDC data, and the missed cases were mostly recouped. The cumulative total number of cases in the US was just 1 percent lower for syphilis and 14 percent lower for chlamydia for the year than expected, and cumulative numbers of gonorrhea infections were more than 7 percent higher compared to 2019, implying a resurgence of cases.

Commercial perspectives

In September 2020, the CDC issued guidance to healthcare providers on ways to prioritize testing during a national shortage of chlamydia and gonorrhea molecular diagnostic test kits and laboratory supplies.

"The shortages affect multiple diagnostic companies, public health and commercial laboratories, and impact several components of the specimen collection and testing process," the agency wrote in the Dear Colleague Letter.

The agency provided an update in June 2021, noting that "one of the main manufacturers of chlamydia/gonorrhea diagnostic test kits is reporting to CDC that their STI diagnostic test supplies are readily available at normal levels," while other manufacturers reported "continued improvement" in product availability and anticipated "near normal levels" of supplies in the coming months.

Major suppliers of molecular diagnostic tests for STIs including Roche, Hologic, and Becton Dickinson report that STI assay ordering dropped off significantly last year, but that ordering and availability have mostly returned to pre-pandemic rates.

Cindy Perettie, head of Molecular Labs at Roche, said that early in the pandemic the firm invested to scale up production capacity across its core diagnostics business, but that "Roche observed a core business decline, including STIs, at the start of the pandemic," with declines corresponding to peaks in COVID-19 across the world.

But now, Roche has seen an increase in STI testing demand across several of its lab customers, and the firm plans to support higher testing volumes, Perettie said. "We work closely with our country affiliates and customers to plan, as accurately as possible, future demands, in order to secure and safeguard our manufacturing and distribution capabilities," she added.

Kevin Thornal, Hologic's division president of diagnostic solutions, said that Hologic also experienced a significant drop in demand for its STI assays in the spring and summer of 2020 due to the COVID-19 pandemic. "This allowed us to divert some of our manufacturing capacity to production of our Aptima SARS-CoV-2 assay to help meet the rapidly escalating public health need for COVID testing," he said.

Simultaneously, Hologic also initiated aggressive efforts to increase its molecular diagnostics capacities at its San Diego and Manchester, UK, manufacturing sites.

"As of today, demand for STI assays has reverted to nearly pre-pandemic levels, while the need for COVID testing remains high," Thornal noted. But, because of the increased production capacities, the firm is "currently meeting demand on all fronts."

Hologic is also continuing its manufacturing expansion. "We are on track to have the capacity to make at least 75 million tests a quarter across our portfolio by early 2022, which is more than triple our pre-pandemic capacity," Thornal also said.

At Becton Dickinson, Chris Beddard, business line leader of core MDx and women's health and cancer at BD Integrated Diagnostic Solutions, said the firm focused on COVID-19 assay manufacturing in the early months of the pandemic.

However, BD manufactures STI tests on multiple platforms, including the BD Viper XTR and BD Viper LT Systems, and the firm has been able to maintain asteady supply consistent with customer demands, and "unimpacted by COVID-19 test manufacturing," Beddard said.

Nevertheless, BD also experienced declines in demand for STI assays early in the pandemic "as laboratories were, of course, focusing resources to support the urgent need for COVID-19 testing," Beddard said, while people were perhaps reluctant to visit physicians for routine and non-COVID-related health concerns.

BD has since seen demand return to pre-COVID levels.

"It is difficult to predict the immediate- and long-term impact on STI rates that the pandemic may have, but BD continues to have the capacity to expand, to innovate, and to address customer demands and changes in the healthcare landscape," Beddard said.

Resistance, risk, and innovation

What the ultimate consequence of missed cases will be on future STI rates is unknown, and may not be known for years to come.

Charles Cartwright, senior VP of clinical affairs at SpeeDx, suggested in an interview that an explosion in cases may not happen, but even so, "it will take three or four years before that is actually able to be analyzed," he said, in part because surveillance data takes a long time to be published.

Rates of antimicrobial resistance, particularly for gonorrhea, may also potentially be impacted.

SpeeDx offers a gonorrhea diagnostic test that supports "resistance-guided therapy," essentially detecting whether an infection is susceptible to a second-tier antibiotic. The firm partnered with Roche last year to offer its resistance assays, and Perettie said Roche saw this as a unique opportunity to extend an important test to its customers, as AMR STIs are "now listed by the Centers for Disease Control and Prevention as key threats due to the rising resistance and the limited available treatment options." In the long term, Roche sees the partnership as "a key strategic goal" to extend solutions to customers as quickly as possible, Perettie also said.

The increase in reported gonorrhea cases in the CDC's preliminary 2020 data is "definitely concerning," the agency spokesperson said, and it is something the CDC is continuing to study.

Past data suggest that about half of all gonorrhea cases are resistant to at least one antibiotic. CDC has not completed analysis for its 2020 resistance monitoring data, but indications are that there could be an upswing in antibiotic resistance.

For example, without treatment, people may have been carrying gonorrhea infections for a longer time, which increases the chance of the bacteria developing resistance. Asymptomatic oral and rectal infections, in particular, may have gone undetected due to decreased screening, and these sites are more prone to encourage resistance development through horizontal gene transfer with other commensal bacteria.

The newest CDC STI guidelines recommend gonorrhea be treated with an injectable antibiotic, and it is possible there were more cases treated with a less effective oral treatment at times when access to clinical settings was limited or difficult, a CDC spokesperson also said. This is particularly relevant for oral gonorrhea because almost all of these infections are asymptomatic and so, detection depends on screening.

The CDC confirmed that its Gonococcal Isolate Surveillance Project, or GISP,was able to continue surveillance throughout the pandemic.

However, some participating clinics were closed, STI patients were not always the highest priority, health department staff were moved to COVID-19 duties, and testing facilities were short on test kits and lab equipment. The ways all these factors ultimately impacted the GISP program are still being evaluated.

Different groups may also be differently impacted by STIs due to a historic lack of care, aversion to seeking treatment, or prevalence of practices that better enable certain transmission events.

The CDC noted in its report on 2019's rates that certain populations had already been disproportionately impacted by STIs. Many nonwhite populations, for example, have significantly higher rates of STIs, including African Americans, whose STI rates were as much as eight times higher than for non-Hispanic white people. Meanwhile, American Indian, Alaska Native, Native Hawaiian and other Pacific Islander populations were as much as five times higher, and Hispanics had STI rates twice as high.

Also, gay and bisexual men who have sex with men made up nearly half of the total number of primary and secondary syphilis cases in 2019, and in some areas of the US, rates of gonorrhea among this group were 42 times that of heterosexual men.

And young people specifically ages 15 to 24 are also disproportionately impacted, making up 61 percent of the nation's chlamydia cases in 2019 and 42 percent of all gonorrhea cases.

The CDC noted in its assessment that pre-existing disparities in STI services may now also be impacted by staff returning to STI testing labs burnt out by stints of COVID testing. On the other hand, the CDC identified "several new and innovative ways STD services can meet more people where they are" during the COVID-19 pandemic and in the future.

These include walk-in STD express clinics, partnerships with pharmacies and retail health clinics, telehealth, and new support for self-testing and patient-collected specimens.

Prognostication

At least one epidemiological model of chlamydia screening suggests that there would have been twice as many infections if there had been no screening programs and notification of partners between 2000 and 2015. Nevertheless, it is possible thatmissed cases and limited testing resources during the pandemic will be offset by the stay-at-home orders, which may have affected sexual behaviors.

Given that STIs have been increasing for the past decade, Brown's Chan said they will likely continue to increase. But, although clinics saw fewer patients, "on the flip side, I think people were socializing less ... and less socializing means, in many cases, less sex." Anecdotally, Chan said some of the higher-risk patients he sees, who typically have many sexual partners, seem to have picked a single partner with whom to get through the pandemic.

Point-of-care STI tests are also on the cusp of making an impact, and Chan noted that the research that went into COVID diagnostics could hopefully translate to other public health concerns, like STIs.

SpeeDx's Cartwright also highlighted that COVID-19 led many firms, includingSpeeDx, to dramatically scale up manufacturing capacity across the spectrum of molecular diagnostics. "Big instrument companies have placed a lot of instruments, and companies like ours have greatly increased our ability to manufacture large amounts of product to meet demand," he said.

Given the number of COVID tests being run daily, "there will be a huge amount of excess capacity in laboratory testing" when the pandemic ends. Combined with an influx in cash, Cartwright said diagnostics companies may become less nervous about menu expansion intoSTIs, which would in turn help to grow the market.

Still, whether diseases that tend to more strongly impact marginalized groups can ever be given enough attention and funding to be fully controlled is an open question. Van Der Pol noted that STI funding is "orders of magnitude less" than funding for HIV research, for example.

Similarly, antibiotic resistance in gonorrhea is a growing problem, and STIs continue to be especially problematic for women who are of reproductive age. Van Der Pol suggested that this demographic is most likely to be impacted by missed cases during the pandemic. "I think we are going to see a lot of infertility coming out of this, since people will have had untreated infections that have gone on for a year or more," she said.

The solution, ultimately, is to declare that "these are important infections that we should always be paying attention to," and for society to get over the stigma and learn to talk about STIs, Van Der Pol said.

"Hiding them is part of why we are not getting rid of them," she said.

More here:
STIs Reached Record Highs, Then COVID-19 Hit. Test Makers Now Ponder What's Next - GenomeWeb

Ronawk using stem cell tech developed at Olathe lab to advance liver cancer research in Turkey – Startland News

A Kansas City-based biomanufacturing startup announced its first international customer Tuesday: a university team in Istanbul that was among the first to beta test Ronawks lauded T-Blocks.

The maker of 3D cell culture products said the collaboration with Professor Ranan Aktas and the Cancer and Stem Cell Research Center at Maltepe University in Turkey will help researchers to better understand cancer development across different environmental conditions using T-Blocks.

We love working with Professor Aktas group and their thoughtful feedback, said Heather Decker, CTO and co-founder of Ronawk. We cannot wait to see how the T-Blocks will continue to help and accelerate their research for cancer patients.

Click here to learn why Ronawk was named one of Startland News 2021 Kansas City Startups to Watch.

Ronawk spun out of the University of Kansas Department of Plastic Surgery (KUMC) and the Bioengineering Graduate Program in 2019, gained its own manufacturing facility in 2020, and now is making an impact with researchers in 2021, emphasized A.J. Mellott, CEO and co-founder of the startup. Operating from a lab in Olathe, Ronawk was selected this summer for MassChallenges 50th accelerator program.

The T-Blocks product has been recognized as one of the Coolest Things Made in Kansas for the past two years by the Kansas Manufacturing Council, an affiliate program of the Kansas Chamber.

Aktas group was among 30 pilot studies across the globe that sought to use Ronawks bioprinting technologies to develop products that simplify and modernize cell culture practices to accelerate research across virtually all disease specialties. The follow-up purchase of T-Blocks for current and future studies by Maltepe University is a major milestone for Ronawk, Mellott added.

T-Blocks in 6-well plate; image courtesy of Ronawk

T-Blocks (Tissue-Blocks) enable researchers to rapidly expand growth of cells up to one trillion at a time.

T-blocks have provided an excellent opportunity to investigate the effects of the change in the stiffness of the microenvironment on liver cancer cells and cancer stemness, said Aktas, describing her teams interest in the technology. We will present our first data during the Liver Meeting in Boston and continue creating different micro-environments using T-blocks with various stiffness. We already learned a lot from T- blocks and would love to gather more information using those well-designed 3D scaffolds.

Click here to read more about the Olathe startup and its plan to launch a STEM training facility and create 150 jobs over next seven years.

This story is possible thanks to support from the Ewing Marion Kauffman Foundation, a private, nonpartisan foundation that works together with communities in education and entrepreneurship to create uncommon solutions and empower people to shape their futures and be successful.

For more information, visit http://www.kauffman.org and connect at http://www.twitter.com/kauffmanfdnandwww.facebook.com/kauffmanfdn

Original post:
Ronawk using stem cell tech developed at Olathe lab to advance liver cancer research in Turkey - Startland News

Researching the Safety and Effectiveness of Stem Cells to Treat ‘Long Covid’ – Entrepreneur

Opinions expressed by Entrepreneur contributors are their own.

A representative from CNN reached out to us recently with some questions about stem cells as a potential treatment for so-called long Covid. As they were working on their story, they learned about an interventional clinical trial BioXcellerator has designed to study stem-cell therapy as a possible treatment for Covid-19.

Yes, we are conducting a studyon the use of stem cells to treat cases of acute respiratory distress syndrome (ARDS) that can develop in many Covid-19 patients and cause even higher mortality rates.

But this was a study we designed back in January of 2020. Thats when the global pandemic was in its infancy. The medical community was squarely focused on coping with acute disease, not chronic symptoms that might linger long after a patient recovers. The word Covid was still unfamiliar to many people, and the term long Covid wasn't used until months later.

As we explained to CNN, theres a big difference between acute cases of a disease and chronic conditions that may require different treatment approaches. So such a study would need to be a different one with its own set of research criteria. We pointed out that few, if any, such studies have begun by any research organization, but that didnt reflect a lack of interest.

In fact, quite the contrary. Our medical team is hard at work evaluating just such a study because we need more research to determine whether stem-cell therapy may indeed be a safe and effective treatment for the long-term lingering impact of this disease.

Related:High-Potency 'GoldenCells' Offer Hope to Those With Severe Chronic Back and Neck Pain

In the scientific community, clinical trials are designed to test the safety and efficacy of various treatments using strict controls to measure results. Im proud of our companys participation with leading scientists in a wide variety of studies.

To design these studies, scientists will often publish reviews of prior research to help guide the development of future research. I also take great pride in our participation in these types of reviews. Back in February, BioXcellerator Chief Medical Officer Dr. Karolynn Halpert and our epidemiologist Dr. Santiago Saldarriaga were coauthors of a review on this topic published in the Journal of Stem Cells Research Development & Therapy.

That review, Regenerative Rehabilitation for COVID 19 Sequelae, discusses thevarious disease processes that can impair lung function, prior research on regenerative rehabilitative approaches to treating patients and the potential for stem cells to improve treatment outcomes.

One major theme of this review is how controlling inflammation that results from an overactive immune response might help more patients recover lung function and promote healing of damaged tissue caused by the Covid virus.

Related:This Is HowStem-CellTherapy Treats Serious Brain Injuries

The study we are currently working on is based on treating acute Covid-19 using a specific type of stem cell:mesenchymal stem cells (MSCs) from the Whartons Jelly in donated umbilical cords. Many years of research haveshown the potential of this type of stem cell for reducing harmful inflammation. Earlier research demonstrates how stem cells can modulate the bodys immune response, which may help prevent the production of excess cytokines that can trigger serious inflammation and ARDS. As that journal review explains, MSCs release anti-inflammatory signals and growth factors that may help prevent cell death by reducing that serious inflammation.

And other studies not of stem cells show that reducing systemic inflammation through other treatments may reduce plasma levels of these harmful cytokines and, in turn, may prevent the onset of ARDS or help more patients recover from it.

Whats more, weve developed proprietary protocols for enhancing the potency of the stem cells we use for treatment through a process that include screening stem cells from donated umbilical cords for specific biomarkers that indicate the highest possible potency, selecting only those cells that meet strict criteria for potency and quality, and refining and purifying these cells before reproducing them into infusions of millions of high-potency stem cells for treatment.

This approach has led to treatments for a wide range of diseases and disorders where reducing inflammation and modulating the bodys immune response can be effective at promoting healing.

So back to the question CNN asked. Can stem cells be effective at treating long Covid? Obviously, it will take far more research by many organizations to reach any definitive conclusion, but the question itself demonstrates the importance of understanding that while there are differences between acute disease and chronic conditions, in some cases, results from one study can influence the direction of later studies.

Its also a reflection of how the value of all of our research may be uncertain now, but often becomes clear in the future. Indeed, as Soren Kierkegaard once pointed out, life must be lived looking forward, but it can only be understood by looking back.

Im not sure exactly what well understand when we look back at this unprecedented global pandemic, but we know far more about the role of regenerative medicine and stem-cell therapy in treating a wide range of diseases and how all of usentrepreneurs, scientists and physicians can work together to make even more discoveries to improve the quality of our lives.

Related:The Future of Health: Why Age 100 Will Soon Become 'the New 60'

See the original post:
Researching the Safety and Effectiveness of Stem Cells to Treat 'Long Covid' - Entrepreneur

StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa – WSAW

StemExpress to use utilize the Thermo Fisher Accula rapid PCR testing system to provide event attendees with accurate results in 30 minutes.

Published: Oct. 5, 2021 at 2:33 PM CDT|Updated: 3 hours ago

SACRAMENTO, Calif., Oct. 5, 2021 /PRNewswire/ --StemExpress is proud to announce that they will be the official COVID-19 testing provider for 2021's Meeting on the Mesa, a hybrid event bringing together great minds in the cell and gene biotech sphere. It has partnered with Alliance for Regenerative Medicine to comply with the newly implemented California state COVID-19 vaccination and testing policy regarding gatherings with 1,000 or more attendees. This partnership will allow the vital in-person networking aspect of the event to commence while protecting the health and safety of participants and attendees.

In-person networking commences at the 2021 Cell and Gene Meeting on the Mesa with COVID-19 testing options provided by StemExpress.

As a leading global provider of human biospecimen products, StemExpress understands the incredible impact that Meeting on the Mesa has on the industry and has been a proud participant for many years. For over a decade, StemExpress has provided the cell and gene industry with vital research products and holds valued partnerships with many of this year's participants. As such, it understands the immense value that in-person networking provides and is excited to help bring this element back to the meeting safely and responsibly.

StemExpress has been a trusted provider of widescale COVID-19 testing solutions since early 2020 - providing testing for government agencies, public health departments, private sector organizations, and the public nationwide. For Meeting on the Mesa, StemExpress is offering convenient testing options for unvaccinated attendees and those traveling from outside of the country. Options will include take-home RT-PCR COVID Self-Testing Kits and on-site, rapid PCR testing for the duration of the event. The self-testing kit option allows attendees to test for COVID in the days leading up to the event for a seamless admission and the days following the event to confirm they haven't been exposed. The on-site rapid testing option utilizes the new Thermo Fisher Accula, offering in-person testing at the event with results in around 30 minutes. StemExpress is excited to bring these state-of-the-art COVID testing solutions to the frontlines of the Cell & Gene industry to allow for safe in-person connections.

The StemExpress partnership with Alliance for Regenerative Medicine seeks to empower the entire cell and gene industry with a long-awaited opportunity to return to traditional networking practices. It is well known that innovation doesn't exist in a vacuum - allowing great minds to come together is a sure way to spur scientific growth and advance cutting-edge research, giving hope for future cures.

Cell and Gene Meeting on the Mesa will take place October 12th, 2021, through October 14th, 2021, at Park Hyatt Aviara,7100 Aviara Resort Drive Carlsbad, CA 92011. To learn more about the event, please visit MeetingOnTheMesa.com.

For more information about COVID testing solutions for businesses and events, visit https://www.stemexpress.com/covid-19-testing/.

About StemExpress:

Founded in 2010 and headquartered in Sacramento, California, StemExpress is a leading global biospecimen provider of human primary cells, stem cells, bone marrow, cord blood, peripheral blood, and disease-state products. Its products are used for research and development, clinical trials, and commercial production of cell and gene therapies by academic, biotech, diagnostic, pharmaceutical, and contract research organizations (CRO's).

StemExpress has over a dozen global distribution partners and seven (7) brick-and-mortar cellular clinics in the United States, outfitted with GMP certified laboratories. StemExpress runs its own non-profit supporting STEM initiatives, college and high school internships, and women-led organizations. It is registered with the U.S. Food and Drug Administration (FDA) and is continuously expanding its network of healthcare partnerships, which currently includes over 50 hospitals in Europe and 3 US healthcare systems - encompassing 31 hospitals, 35 outpatient facilities, and over 200 individual practices and clinics.

StemExpress has been ranked by Inc. 500 as one of the fastest-growing companies in the U.S.

About the Alliance for Regenerative Medicine:

The Alliance for Regenerative Medicine (ARM) is the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies. ARM promotes legislative, regulatory, reimbursement and manufacturing initiatives to advance this innovative and transformative sector, which includes cell therapies, gene therapies and tissue-based therapies. Early products to market have demonstrated profound, durable and potentially curative benefits that are already helping thousands of patients worldwide, many of whom have no other viable treatment options. Hundreds of additional product candidates contribute to a robust pipeline of potentially life-changing regenerative medicines and advanced therapies. In its 12-year history, ARM has become the voice of the sector, representing the interests of 400+ members worldwide, including small and large companies, academic research institutions, major medical centers and patient groups. To learn more about ARM or to become a member, visit http://www.alliancerm.org.

Media Contact: Anthony Tucker, atucker@stemexpress.com

View original content to download multimedia:

SOURCE StemExpress

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

See original here:
StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa - WSAW

Faster healing of wounds can decrease pain and suffering and save lives – KY3

Published: Oct. 4, 2021 at 3:02 PM CDT

ORLANDO, Fla., Oct. 4, 2021 /PRNewswire/ --Billions of dollars are spent every year because of complications of wound healing. Researchers at the College of Medicine at the University of Central Florida (UCF) in Orlando have discovered a new technology to accelerate wound healing. Their research is published in the Life Cell Biology and Tissue Engineering Journal (https://pubmed.ncbi.nlm.nih.gov/34575027/). The UCF lab's research focus is to develop stem cell therapies for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, wound healing and ALS.

Researchers at the College of Medicine at UCF in Orlando have discovered a new technology to accelerate wound healing.

Dr. Frederick R Carrick, Professor of Neurology at the College of Medicine at UCF, reported that animals with wounds and injured stem cells that were placed on a special ceramic blanket healed much faster than controls. Gladiator Therapeutics manufactured the therapeutic ceramic blanket that was used in this research. The researchers reported that wounds in animals and in stem cells were both repaired significantly faster when they treated them with the ceramic blankets.

This research was designed and accepted for presentation at the USA Department of Defense's premier scientific meeting, the Military Health System Research Symposium (MHSRS). Dr Carrick stated that the new ceramic blankets do not need a power supply and are ideally suited for use in both combat and civilian wound treatments. Large wounds, such as those suffered in combat are easily infected and may result in increased suffering, disability and death amongst Warfighters. Faster healing of wounds can decrease pain and suffering and save lives.

The UCF College of Medicine research team is conducting ongoing research on the use of the Gladiator ceramic blanket in animal models of Alzheimer's and Parkinson's disease, traumatic brain injury and wound care. They have recently developed a new Alzheimer's therapy combining drugs that affect stem cells that increase the development of brain cells and improve brain function. The UCF lab is also the first to transplant stem cells isolated from the human brain to aged rats where they showed increased development of new brain cells and improvement of cognition.

Dr. Kiminobu Sugaya, Professor of Medicine at the UCF College of Medicine is excited about their findings. Dr. Sugaya stated that the benefits of using the Gladiator ceramic blanket are that it can be used anywhere without a power supply or the side effects that are commonly found when injecting chemicals or drugs.

Further information about this study:

drfrcarrick@post.harvard.edu 321-868-6464

View original content to download multimedia:

SOURCE University of Central Florida College of Medicine

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

Follow this link:
Faster healing of wounds can decrease pain and suffering and save lives - KY3

Global Hemoglobinopathies Markets, 2021-2028 – High Unmet Needs / Increasing R&D Investment / Initiatives to Improve Disease Awareness -…

DUBLIN--(BUSINESS WIRE)--The "Global Hemoglobinopathies Market Size, Share & Trends Analysis Report by Type (Thalassemia, Sickle Cell Disease, Other Hemoglobin (Hb) Variants), by Diagnosis, by Therapy, by Region, and Segment Forecasts, 2021-2028" report has been added to ResearchAndMarkets.com's offering.

The global hemoglobinopathies market size is expected to reach USD 15.7 billion by 2028, expanding at a CAGR of 10.8%

Increasing awareness regarding hemoglobinopathies and government initiatives to diagnose the diseases at an early stage are expected to propel market growth over the forecast period. Moreover, increasing R&D investment, the presence of a promising drug pipeline, and technologically advanced diagnostics platforms are expected to boost the growth of the market.

The development of novel curative technologies, such as CRISPR/Cas9 and hematopoietic stem cell transplantation, coupled with a promising pipeline, is expected to propel market growth. Moreover, the presence of regulatory agencies, such as the FDA, which are working toward improving drug approval rate by granting accelerated approval for hemoglobinopathies drugs, is expected to drive the market.

Initiatives such as the Sickle Cell Awareness Initiative (SCAI) are working toward educating the people about the disease, which will increase the diagnosis and treatment rate. SCAI also raises funds for individuals affected with sickle cell diseases (SCDs) and provides research funding.

Moreover, governments of Middle Eastern and Asian countries provide funds for R&D of hemoglobinopathies treatment. For instance, various programs undertaken by governments, such as thalassemia screening in neonates and providing medicines, are impacting the market growth positively.

The high patient population in low-income countries has encouraged market players and non-profit organizations to launch several initiatives to improve the access to the therapy.

For instance, in February 2019, the Access to Excellent Care for Sickle Cell Patients Pilot Program (ACCEL) was launched by Global Blood Therapeutics, Inc. in order to provide research funding for novel SCD projects, with an aim to expand the access to optimal healthcare for sickle cell disease.

Biopharmaceutical companies are collaborating with nonprofit organizations to promote public awareness about hemoglobinopathies.

An increase in investment and funding for the development of novel therapies to treat hemoglobinopathies will further boost the market growth over the forecast period. The National Heart, Lung, and Blood Institute (NHLBI) has significantly invested in research & development in sickle cell disease.

The NHLBI supports research work through various initiatives. Furthermore, private funding such as the Bronx Blood Research Fund (BBRF) provides a platform for research and management of thalassemia and other hemoglobinopathies.

Gene therapy has emerged as a promising treatment option for managing hemoglobin disorder as it targets the underlying genetic cause of the condition through the administration of one-time gene therapy and significantly reduces the need for blood transfusions.

The current pipeline of gene therapy products includes CTX001 (CRISPR Therapeutics), BIVV003 (Sangamo Therapeutics, Inc. & Bioverativ Inc), and HGB-206 (bluebird bio, Inc).

Hemoglobinopathies Market Report Highlights

Global Hemoglobinopathies Market Variables, Trends & Scope

Penetration and Growth Prospect Mapping

Epidemiology Assessment of Hemoglobinopathies

Market Variable Analysis

Market Restraint Analysis

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/8dphl0

Read more here:
Global Hemoglobinopathies Markets, 2021-2028 - High Unmet Needs / Increasing R&D Investment / Initiatives to Improve Disease Awareness -...

Stanford neuroscientist’s ‘assembloids’ pave the way for innovative brain research – Scope

A Stanford neuroscientist has led the development of a novel brain research tool for understanding diseases of brain development.

A recent article in the journal Nature credits Stanford physician-neuroscientist Sergiu Pasca, MD, with blazing a trail toward a more profound understanding of early brain development, and of what can go wrong in the process, using a cell-based research innovation he named "assembloids."

In 2015, Pasca and his colleagues published a paper in Nature Methods describing a fascinating feat: His tinkering with induced pluripotent stem cells, or iPS cells -- former skin cells transformed so that they've acquired an almost magical capacity to generate all the tissues in the body -- had borne a three-dimensional product. From these "magic" iPS cells grew a complex conglomerate of cells capable of modeling specific organs.

Pasca's particular interest was in the brain, and in the experiments detailed in the study, his lab had caused human iPS cells to multiply and differentiate into small spherical clusters of brain tissue suspended in laboratory glassware.

These clusters recapitulated the architecture and physiology of the human cerebral cortex -- the outermost layer of brain tissue, critical to perception, cognition and action. Pasca named these clusters, which grew to several millimeters in diameter and contained millions of cells, "cortical spheroids." Today, researchers around the world are using similar methodology to create models, broadly known as "organoids," to study other parts of the human body.

Two years later, in a study published in Nature, Pasca upped the ante by, first, generating a second kind of neural spheroid -- this time, representative of a deeper part of the developing forebrain called the subpallium -- and, second, by growing this kind of spheroid in conjunction with cortical spheroids, in the same dish.

To the researchers' amazement, spheroids of both types fused together, with nerve cells from subpallial spheroids migrating and poking extensions into the cortical spheroids and establishing working connections with nerve cells of a different type in the latter spheroids, just as occurs in fetal development.

"It's amazing that these cells already self-organize and know what they need to do," Pasca marveled in "Brain Balls," an article I wrote for our magazine, Stanford Medicine, a few years ago.

Pasca sensibly dubbed the two-fused-spheroid combos "assembloids," the Nature recap notes.

But why stop at two? Pasca has since created three-element assembloids composed of spheroids representative of cerebral cortex, spinal cord and skeletal muscle in order to model the circuitry of voluntary movement. He's also shown that stimulating the "cerebral cortex" spheroid can result in contraction of the "muscle" spheroid. (This accomplishment was published in Cell in late 2020.) He has explored other assembloid combinations, as well, such as the fusing of cortical spheroids with spheroids representing the striatum, a brain structure implicated in regulating our movements and responses to rewarding and aversive stimuli.

Because each spheroid begins with skin cells, they can be grown on a personalized basis -- and can therefore be extracted from patients with neurological disorders known or suspected to spring from early developmental aberrations (such as autism or schizophrenia). The cells can then be used to create models to probe these disorders' molecular, cellular and circuit-based deviations from the pathways of normal brain development, allowing scientists to study the brain in way they could never do with a living patient.

From the Nature article:

Assembloids are now at the leading edge of stem-cell research. Scientists are using them to investigate early events in organ development as tools for studying not only psychiatric disorders, but other types of disease as well.

An assembloid is by no means a complete, working brain. But, the article notes, "Pasca stands by the aphorism that all models are wrong, and some are useful. 'There's been important progress in the field in a short period of time,' he says."

Photo courtesy of the Pasca laboratory

Global health

Stanford researchers find that "entertainment education" helps teach new mothers about the importance of breastfeeding.

Nutrition

Originally posted here:
Stanford neuroscientist's 'assembloids' pave the way for innovative brain research - Scope