Author Archives: admin


Phase 2 Clinical Trial Data of NurOwn in Progressive MS Will Be Presented at the 37th Congress of the European Committee for Treatment and Research in…

NEW YORK, Oct. 14, 2021 /PRNewswire/ --BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of cellular therapies for neurodegenerative diseases, will present findings from a multicenter, open label clinical trial of NurOwn in progressive multiple sclerosis. The study, "Phase 2 Safety and Efficacy Study of Intrathecal MSC-NTF cells in Progressive Multiple Sclerosis," will be delivered in an oral presentation today at the fully digital37thCongress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS).

The Phase 2 clinical trial was designed to evaluate intrathecal administration of NurOwn (autologous MSC-NTF cells) in participants with progressive MS. The study achieved the primary endpoint of safety and tolerability. It demonstrated a reduction of neuroinflammatory biomarkers and an increase in neuroprotective biomarkers in the cerebrospinal fluid (CSF) and consistent improvement across MS functional outcome measures, including measures of walking, upper extremity function, vision and cognition.

"We were pleased that this study demonstrated safety, preliminary evidence of efficacy and relevant biomarker outcomes in patients with progressive multiple sclerosis, in an area of high unmet need," said Jeffrey Cohen, M.D., Director of Experimental Therapeutics at the Cleveland Clinic Mellen Center for MS and principal investigator for the trial. "These results should be confirmed in a randomized placebo-controlled trial."

The study was sponsored by Brainstorm Cell Therapeutics with additional financial support for biomarker analyses from the National Multiple Sclerosis Society Fast-Forward Program. It was conducted at four U.S. MS centers of excellence:

"We very much appreciate the tremendous collaboration among many premier organizations, for their generous sharing of expertise, support and data, which enabled the important balance between scientific rigor and ethical treatment of progressive MS participants in the trial," said Ralph Kern, M.D., MHSc., President and Chief Medical Officer, Brainstorm Cell Therapeutics. "We are holding discussions with key MS experts, and seeking guidance from the FDA to determine next steps for the development of NurOwn in progressive MS."

"The National MS Society is pleased to support the biomarker portion of this study through our commercial funding program Fast Forward," said Mark Allegretta, Ph.D., Vice President, Research. "We're encouraged to see evidence that the biomarker analysis showed proof of concept for detecting neuroprotection and reduced inflammation."

About the trial

The Phase 2 open-label studyevaluated the safety and efficacy of intrathecal administration of autologous MSC-NTF cells in patients with primary or secondary progressive MS. The primary study endpoint was safety and tolerability. Secondary efficacy endpoints included: timed 25-foot walk (T25FW); 9-Hole Peg Test (9-HPT); Low Contrast Letter Acuity (LCLA); Symbol Digit Modalities Test (SDMT); 12 item MS Walking Scale (MSWS-12); as well as cerebrospinal fluid (CSF) and blood biomarkers. Clinical efficacy outcomes were compared with matched (n=48) participants in the Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB) registry, Tanuja Chitnis, MD Brigham and Women's Hospital and the Ann Romney Center for Neurologic Diseases, and 255 patient randomized double blind placebo controlled NN-102 SPRINT-MS Study, courtesy NIH/NINDS, PI: Robert J. Fox, MD, MS, FAAN, Cleveland Clinic, CTR: NCT01982942. Baseline characteristics from these two cohorts were similar allowing for comparison of efficacy results, comparisons with SPRINT-MS were with the placebo arm of this study.

Mean age of participants was 47 years, 56% were female, and mean baseline EDSS score was 5.4. 18 participants were treated, 16 (80%) received all 3 treatments and completed the entire study; 2 study discontinuations were due to procedure-related adverse events. No deaths or treatment-related adverse events due to worsening of MS were observed.

In responder analyses, 14% and 13% of MSC-NTF treated participants showed at least a 25% improvement in T25FW and 9-HPT (combined hands) respectively, compared to 5% and 0% in matched CLIMB patients and 9% and 3% in SPRINT. Twenty-seven percent (27%) showed at least an 8-letter improvement in LCLA (binocular, 2.5% threshold) and 67% showed at least a 3-point improvement in SDMT, compared to 6% and 18% in CLIMB and 13% and 35% in SPRINT, respectively.

Mean improvements of +0.10 ft/sec in T25FW and -0.23 sec in 9-HPT (combined hands), were observed in MSC-NTF treated participants, compared to a mean worsening of -0.07 ft/sec and +0.49 sec in CLIMB and -0.06 ft/sec and +0.28 sec in SPRINT, respectively. MSC-NTF treated participants showed a mean improvement of +3.3 letters in LCLA (binocular, 2.5% threshold) and 3.8 points in SDMT, compared to a mean worsening of -1.07 letters in LCLA (binocular, 2.5% threshold) and mean improvement of +0.10 in SDMT, in CLIMB and -0.6 and -0.1 in SPRINT. In addition the MSFC-4 Composite Z-score of T25W, 9-HPT, SDMT and LCLA showed a 0.18 point improvement in MSC-NTF treated participants, while CLIMB and SPRINT showed decreases of -0.02 and -0.05.

Furthermore, 38% of treated patients showed at least a 10-point improvement in the MSWS-12 a patient reported outcome that evaluates the impact of MS on walking function, whereas this outcome was not evaluated in CLIMB or SPRINT.

CSF biomarkers obtained at 3 consecutive time points, showed increases in neuroprotective molecules (VEGF, HGF, NCAM-1,Follistatin, Fetuin-A) and decreases in neuroinflammatory biomarkers (MCP-1, SDF-1, sCD27 and Osteopontin).

About NurOwn

The NurOwntechnology platform (autologous MSC-NTF cells) represents a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors (NTFs). Autologous MSC-NTF cells are designed to effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression.

About BrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwntechnology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug designation status from the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has completed a Phase 3 pivotal trial in ALS (NCT03280056); this trial investigated the safety and efficacy of repeat-administration of autologous MSC-NTF cells and was supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). BrainStorm completed under an investigational new drug application a Phase 2 open-label multicenter trial (NCT03799718) of autologous MSC-NTF cells in progressive multiple sclerosis (MS) and was supported by a grant from the National MS Society (NMSS).

For more information, visit the company's website atwww.brainstorm-cell.com.

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future NurOwnmanufacturing and clinical development plans, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may," "should," "would," "could," "will," "expect,""likely," "believe," "plan," "estimate," "predict," "potential," and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, the prospects for regulatory approval of BrainStorm's NurOwntreatment candidate, the initiation, completion, and success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwntreatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture, or to use third parties to manufacture, and commercialize the NurOwntreatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

Contacts:

Investor Relations: Eric Goldstein LifeSci Advisors, LLC Phone: +1 (646) 791-9729 egoldstein@lifesciadvisors.com

Media:Mariesa Kemble kemblem@mac.com

View original content:

SOURCE Brainstorm Cell Therapeutics Inc

See the article here:
Phase 2 Clinical Trial Data of NurOwn in Progressive MS Will Be Presented at the 37th Congress of the European Committee for Treatment and Research in...

CellOrigin secured a new round of investment for developing its globally proprietary iPSC-CAR-Macrophage technology platform – WWNY

Published: Oct. 15, 2021 at 8:50 AM EDT|Updated: 17 hours ago

HANGZHOU, China, Oct. 15, 2021 /PRNewswire/ -- On Oct. 11th, 2021, CellOrigin Inc. released data about its second generation of iPSC-CAR-Macrophage which has a genetically integrated secondary signal to confer controlled CAR-iMac polarization, in the 5th International Conference of IGC China, 2021, Beijing.

Recently, CellOrigin Biotech, a company committed to iPSC-derived innate immune cell therapeutics, has announced a new round of investment by Kunlun Capital. The investment will be used for the CMC development for its current pipeline of iPSC-derived innate immune cells such as iPSC-CAR-Macrophage and rationlly designed iPSC-NK cells. Before, CellOrigin have also acquired investment from Shulan Health and Nest. Bio Ventures.

CellOrigin Biotech has a long term focus on iPSC-derived innate immune cells and its applications in new cancer immune cells. Dr. Jin Zhang, the scientific co-founder of CellOrigin used to be trained as a research fellow at the Boston Children's Hospital and Harvard Medical School. Now, his team worked closely with clinicians at the First Affiliated Hospital of Zhejiang University, and for the first time his team reported the induced pluripotent stem cell or iPSC-derived CAR-macrophages (CAR-iMac), and its applications in cancer immunotherapies.

CellOrigin Biotech holds the domestic and global patents for iPSC-derived CAR-Macrophage, and the engineering for polarization. With this proprietary platform, they are collaborating with research groups in genome engineering and synthetic biology worldwide to fully unleash the potential of iPSC-derived immune cells, which are highly editable, expandable and clonal. Eventually, they would like to achieve a goal of bring more effective, universal and safe immune cell products to cancer patients, especially for those with solid tumors. The investigator initiated trials has been initiated at the First Hospital of Zhejiang University. The core proprietary technology platform and the core patents including the engineered macrophages from pluripotent stem cells has been authorized and is in the process of entering different countries worldwide.

To support the CMC of its pipeline products, on Oct 1st, CellOriginhas announced the launch of its 3000 square feet GMP facility at Hangzhou, China.

About Kunlun Capital

Founded in 2015, Kunlun capital is committed to long-term value investment, establishing long-term partnership with entrepreneurs, and focusing on investing in enterprises with high technical barriers, excellent founding team and explosive growth potential. In recent years, Kunlun capital has successively invested in KEYA Medical, EdiGene, Cytek (NASDAQ:CTKB), Hui-Gene Therapeutics, OBiO, Okeanos, Ucell Biotech, CellOrigin, Soonsolid, Inke (HK:03700), Dada (NASDAQ:DADA), Dreame, Bamboocloud, Pony.ai, PingCAP, Leyan Technologies.

View original content:

SOURCE Cell Origin

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

Go here to see the original:
CellOrigin secured a new round of investment for developing its globally proprietary iPSC-CAR-Macrophage technology platform - WWNY

ASU professor researches origins of Alzheimers to find a cure – Eight, Arizona PBS

Tuesday, Oct. 12, 2021

ASU Associate Professor Dr. David Brafman is using personalized medicine to study the origins of Alzheimers. Dr. Brafman is tracing the origins of Alzheimers as a way to reprogram stem cells and potentially find a cure for the disease. We recently spoke to Dr. Brafman about his research.

What we use to model this disease is a special type of Stem cell called induced pluripotent stem cells and these cells are derived from patients and reprogram cells to essentially take on the characteristics of early development, Brafman said.

Brafman says this type of research can help his lab find the origins of the disease. He also says this research can help identify why some people are more predisposed to develop this disease, as well as commonalities between those who develop it.

A difficult aspect of treating Alzheimers is that by the time many develop noticeable symptoms, treatment becomes very difficult.

What were trying to identify is genetic diagnostic markers that might have profiles that predispose them towards Alzheimers disease so we could maybe introduce therapeutic interventions earlier, Brafman said

Another therapeutic strategy thought about is potentially swapping the harmful genes that lead to Alzheimers for less harmful ones. Brafman said his lab is looking at the potential for genome editing and genetic risk factors that may lead to the disease.

Brafman said this research could be used to trace the origins of other diseases down the road as well, and not just Alzheimers.

Continue reading here:
ASU professor researches origins of Alzheimers to find a cure - Eight, Arizona PBS

Personalized Cell Therapy Market Size Worth US$ 53.8 Billion With a CAGR of 23.5% By 2028 Otterbein 360 – Otterbein 360

Coherent Market Insights released a new market study on 2021-2028Personalized Cell Therapy Market with 100+ market data Tables, Pie Chat, Graphs & Figures spread through Pages and easy to understand detailed analysis. At present, the market is developing its presence. The Research report presents a complete assessment of the Market and contains a future trend, current growth factors, attentive opinions, facts, and industry validated market data. Report offering you more creative solutions that combine our deep geographic experience, intimate sector knowledge and clear insights into how to create value in your business. The research study provides estimates for 2021-2028 Personalized Cell Therapy Market Forecast till 2028*.

Request Here For Market Latest Insights(PDF): https://www.coherentmarketinsights.com/insight/request-pdf/204

Manufacturers are focusing on strategies such as expansion of their manufacturing facilities to produce large volume of cell therapy candidates. This will aid manufacturers in penetrating the untapped markets in emerging economies and increase the number of personalized cell therapy manufacturing procedures, worldwide. For instance, in April 2019, Kite, a subsidiary of Gilead Company, announced that it will build a new production facility in Frederick County, Maryland, U.S. for the production of innovative personalized cell therapies useful for cancer treatment.

Browse 23 Market Data Tables and 19 Figures spread through 157 Pages and in-depth TOC on Personalized Cell Therapy Market, by Cell Type (Lymphocytes, Mesenchymal Stem Cell, Hematopoietic Stem Cell, and Others), by Therapeutic Area (Cardiovascular Diseases, Neurological Disorders, Inflammatory Diseases, Diabetes, and Cancer), and by Region (North America, Latin America, Europe, Asia Pacific, Middle East, and Africa), Global Forecast to 2027

The rising regulatory approval of investigational personalized cell therapy candidates is expected to significantly drive growth of the personalized cell therapy market over the forecast period. For instance, in July 2019, Personalized Stem Cells Inc. received approval from the U.S. FDA for its investigational new drug application that involves usage of adipose-derived stem cells for the treatment of osteoarthritis. Personalized Stem Cells Inc. initiated the first clinical trial for this new therapy candidate in August 2019. The company used stem cells for the treatment of knee osteoarthritis in this clinical trial. The adoption of inorganic strategies such as partnerships and joint ventures by major players is increasing, which is expected to fuel growth of the personalized cell therapy market. For instance, in December 2016, Bayer AG and Versant Ventures launched its joint venture BlueRock Therapeutics, a next-generation regenerative medicine company, for the development of induced pluripotent stem cell (iPSC) therapies to cure various diseases. Moreover, an investment of US$ 225 million was made by Bayer and Versant to strengthen BlueRock Therapeutics manufacturing platform and product pipeline.

The major focus of startup biotech companies are on the development of personalized cell therapies, which is fueling growth of the global personalized cell therapy market. For instance, in October 2019, ElevateBio, a U.S.-based cell and gene therapy developer, initiated a new startup, HighPassBio, for developing novel T cell immunotherapies. In 2019, Phase 1 clinical trial was initiated on an engineered T cell receptor (TCR) T cell therapy for HA-1 expressing tumors targeting relapse of leukemia following hematopoietic stem cell transplant (HSCT).

Key Takeaways of the Global Personalized Cell Therapy Market:

The global personalized cell therapy market is expected to exhibit a CAGR of 23.5% during the forecast period (2019 2027). This is attributed to rising number of personalized cell therapy candidates in investigational phase.

The rising number of acquisitions by major players in the market who are involved in the development of personalized cell therapies is expected to fuel growth of the personalized cell therapy market. For instance, in July 2018, Novartis acquired CellforCure from LFB group, a company that specializes in innovative personalized cell therapy. Through this acquisition, Novartis acquired the cell and gene manufacturing facility of CellforCure for contract manufacturing of Novartis leading CAR-T cell therapy Kymriah (tisagenlecleucel) located in Les Ulis, France.

Personalized Cell Therapy Market Competitive Landscape

Key players functioning in the global prosthetic liners market consists of Cytori Therapeutics Inc., Bellicum Pharmaceuticals, Inc., Saneron CCEL Therapeutics, Inc., MolMed S.p.A., Vericel Corporation, Novartis AG, Gilead Sciences, Inc., Celgene Corporation, Bluebird Bio, Inc. and Aurora Biopharma Inc.

Purchase this Report at Discount Of US $2000 Flat OFF https://www.coherentmarketinsights.com/promo/buynow/204

Reasons to Purchase this Report

Current and future of global Personalized Cell Therapy Market outlook in the developed and emerging markets The segment that is expected to dominate the market as well as the segment which holds highest CAGR in the forecast period. Regions/countries that are expected to witness the fastest growth rates during the forecast period The latest developments, market shares, and strategies that are employed by the major market players

Major Point Answered in Personalized Cell Therapy Market Research Study are:

Request Here Sample Report @ https://www.coherentmarketinsights.com/insight/request-sample/204

Contact Us

Mr. Shah Coherent Market Insights 1001 4th Ave, #3200 Seattle, WA 98154, U.S. Email: sales@coherentmarketinsights.com United States of America: +1-206-701-6702 United Kingdom: +44-020-8133-4027 Japan: +050-5539-1737 India: +91-848-285-0837

See the original post here:
Personalized Cell Therapy Market Size Worth US$ 53.8 Billion With a CAGR of 23.5% By 2028 Otterbein 360 - Otterbein 360

Citius Pharmaceuticals to Host Investor Webcast to Discuss the Acquisition of Late Phase 3 Cancer Immunotherapy I/ONTAK (E7777) – Yahoo Finance

Investor Webcast will be held on October 20, 2021 at 8:30 a.m. ET

CRANFORD, N.J., Oct. 13, 2021 /PRNewswire/ -- Citius Pharmaceuticals, Inc. ("Citius" or the "Company") (Nasdaq: CTXR) today announced that it will host a webcast on October 20, 2021 at 8:30 a.m. ET to discuss the Company's previously announced acquisition of I/ONTAK (E7777), an improved formulation of immunotoxin ONTAK, which was previously approved by the U.S. Food and Drug Administration (FDA) for the treatment of patients with persistent or recurrent cutaneous T-cell lymphoma (CTCL).

Myron Holubiak, Chief Executive Officer of Citius Pharmaceuticals, will be joined by Leonard Mazur, Executive Chairman and Dr. Myron Czuczman, Chief Medical Officer to discuss the Company's strategy and the I/ONTAK opportunity. Jaime Bartushak, Chief Financial Officer of Citius Pharmaceuticals will join management for a question-and-answer session following the presentations.

Pre-registration for the webcast is required. Questions related to the I/ONTAK acquisition may be submitted in advance or during the live call via the webcast portal.

Date

Thursday, October 20, 2021

Time

8:30 a.m. ET

Registration link

To join the webcast, please register prior to the event date using this link

US (Toll free)

877-407-6176

US (Toll) / International

201-689-8451

Webcast (live and archive)

Available at http://www.citiuspharma.com in the "Events" section

Q&A

Questions may be submitted in advance to ir@citiuspharma.com

About I/ONTAK (E7777)I/ONTAK (E7777) is a recombinant fusion protein that combines the interleukin-2 (IL-2) receptor binding domain with diphtheria toxin fragments. The agent specifically binds to IL-2 receptors on the cell surface, causing diphtheria toxin fragments that have entered cells to inhibit protein synthesis. I/ONTAK, a purified version of denileukin diftitox, is a reformulation of previously FDA-approved oncology treatment ONTAK. ONTAK was marketed in the U.S. from 2008 to 2014, when it was voluntarily withdrawn from the market to enable manufacturing improvements. These improvements resulted in I/ONTAK, which maintains the same amino acid sequence but features improved purity and bioactivity. I/ONTAK has received regulatory approval in Japan for the treatment of cutaneous T-cell lymphoma (CTCL) and peripheral T-cell lymphoma (PTCL). In 2011 and 2013, the FDA granted orphan drug designation (ODD) to I/ONTAK for the treatment of PTCL and CTCL, respectively, making it eligible for seven years of market exclusivity post-approval.

Story continues

A global, multicenter, open-label, single-arm Pivotal study of I/ONTAK in participants with recurrent or persistent CTCL (NCT01871727) is underway. The last patient has been recruited; top line results are anticipated in the first half of 2022. A BLA for I/ONTAK is expected to be filed with the FDA by the end of 2022.

About Citius Pharmaceuticals, Inc.Citius is a late-stage biopharmaceutical company dedicated to the development and commercialization of first-in-class critical care products, with a focus on oncology, anti-infectives in adjunct cancer care, unique prescription products, and stem cell therapies. The Company has two late-stage product candidates, Mino-Lok, an antibiotic lock solution for the treatment of patients with catheter-related bloodstream infections (CRBSIs), which is currently enrolling patients in a Phase 3 Pivotal superiority trial, and I/ONTAK (E7777), a novel IL-2R immunotherapy for an initial indication in cutaneous T-cell lymphoma (CTCL), which has completed enrollment in its Pivotal Phase 3 trial. Mino-Lok was granted Fast Track designation by the U.S. Food and Drug Administration (FDA). I/ONTAK has received orphan drug designation by the FDA for the treatment of CTCL and peripheral T-cell lymphoma (PTCL). Through its subsidiary, NoveCite, Inc., Citius is developing a novel proprietary mesenchymal stem cell treatment derived from induced pluripotent stem cells (iPSCs) for acute respiratory conditions, with a near-term focus on acute respiratory distress syndrome (ARDS) associated with COVID-19. For more information, please visit http://www.citiuspharma.com.

Safe HarborThis press release may contain "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Such statements are made based on our expectations and beliefs concerning future events impacting Citius. You can identify these statements by the fact that they use words such as "will," "anticipate," "estimate," "expect," "plan," "should," and "may" and other words and terms of similar meaning or use of future dates. Forward-looking statements are based on management's current expectations and are subject to risks and uncertainties that could negatively affect our business, operating results, financial condition and stock price. Factors that could cause actual results to differ materially from those currently anticipated are: our ability to successfully integrate I/ONTAK (E7777) into our operations; the risks of relying on a third party to complete the development of I/ONTAK (E7777); risks relating to the results of research and development activities, including those from existing and new pipeline assets, including I/ONTAK (E7777); our ability to successfully undertake and complete clinical trials and the results from those trials for our product candidates; uncertainties relating to preclinical and clinical testing; our need for substantial additional funds; the early stage of products under development; our dependence on third-party suppliers; the estimated markets for our product candidates and the acceptance thereof by any market; the ability of our product candidates to impact the quality of life of our target patient populations; our ability to commercialize our products if approved by the FDA; market and other conditions; risks related to our growth strategy, including our ability to successfully integrate and develop I/ONTAK (E7777); patent and intellectual property matters; our ability to attract, integrate, and retain key personnel; our ability to obtain, perform under and maintain financing and strategic agreements and relationships; our ability to identify, acquire, close and integrate product candidates and companies successfully and on a timely basis, including I/ONTAK (E7777); our ability to procure cGMP commercial-scale supply; government regulation; competition; as well as other risks described in our SEC filings. These risks have been and may be further impacted by Covid-19. Accordingly, these forward-looking statements do not constitute guarantees of future performance, and you are cautioned not to place undue reliance on these forward-looking statements. Risks regarding our business are described in detail in our Securities and Exchange Commission ("SEC") filings which are available on the SEC's website at http://www.sec.gov, including in our Annual Report on Form 10-K for the year ended September 30, 2020, filed with the SEC on December 16, 2020 and updated by our subsequent filings with the SEC. These forward-looking statements speak only as of the date hereof, and we expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations or any changes in events, conditions or circumstances on which any such statement is based, except as required by law.

Investor Relations for Citius Pharmaceuticals:Ilanit AllenVice President, Investor Relations & Corporate Communications T: 908-967-6677 x113 E: ir@citiuspharma.com

Citius Pharmaceuticals, a late-stage biopharmaceutical company (PRNewsfoto/Citius Pharmaceuticals, Inc.)

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/citius-pharmaceuticals-to-host-investor-webcast-to-discuss-the-acquisition-of-late-phase-3-cancer-immunotherapy-iontak-e7777-301399505.html

SOURCE Citius Pharmaceuticals, Inc.

Read the original:
Citius Pharmaceuticals to Host Investor Webcast to Discuss the Acquisition of Late Phase 3 Cancer Immunotherapy I/ONTAK (E7777) - Yahoo Finance

Wolter Earns Young Investigator Award | Newsroom – UNC Health and UNC School of Medicine

The Brain & Behavior Research Foundation named Justin Wolter, PhD, postdoc in the Neuroscience Research Center, as a recipient of the Young Investigator Award.

Justin Wolter, PhD, a postdoctoral researcher in the labs of Jason Stein, PhD, and Mark Zylka, PhD, at the UNC Neuroscience Research Center, the UNC Department of Genetics, and the UNC Department of Cell Biology and Physiology, was named a recipient of the 2021 Young Instigator Award by the Brain & Behavior Research Foundation (BBRF). The award is for $70,000 over two years.

In his research at the UNC School of Medicine, Wolter aims to understand the molecular and cellular mechanisms of neurodevelopmental diseases. With the BBRF award, he will establish a resource to systematically identify genetic interactions between high-risk autism genes and common genetic variation. This project will build upon work in which Wolter established a cell culture-based approach to conduct genome wide association studies in primary human neural progenitor cells.

Wolter will establish a pilot library of genetically diverse induced pluripotent stem cell (iPSC) lines to explore how common and rare genetic variation interact to influence risk and resilience in a genetically defined subtype of autism.

In 2020, Wolter was first author of a Nature paper from the Zylka lab showing how to use the gene-editing technology CRISPR-Cas9 as part of a potential gene therapy approach to treating Angelman syndrome, an autism spectrum disorder.

Initiated in 1987, the BBRF Young Investigator Grant program provides support for the most promising young scientists conducting neurobiological and psychiatric research. This program facilitates innovative research through support of early-career basic, translational and clinical investigators.

This year, the Foundations Scientific Council, led by Herbert Pardes, MD, and comprised of 176 world-renowned scientists with expertise in every area of brain research, reviewed more than 780 applications and selected the 150 meritorious research projects. Many of the Young Investigator grantees are pursuing basic research projects. Others are specifically focusing on new ideas for therapies, diagnostic tools, and technologies. These research projects will provide future insights and advances that will help move the fields of psychiatry and neuroscience forward.

See original here:
Wolter Earns Young Investigator Award | Newsroom - UNC Health and UNC School of Medicine

Stem cells and their role in lung transplant rejection – Michigan Medicine

A lung transplant can mean the difference between life and death for people with diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease (COPD) and even severe COVID-19. Yet, recipients of donor lungs must take daily medications to stave off damage caused by their own immune system, which attacks the organs it recognizes as foreigna process known as rejection.

A new University of Michigan Health study, published in the Journal of Clinical Investigation, has identified cells that appear to play a pivotal role in creating the scarring, or fibrosis, characteristic of chronic rejection following a lung transplant.

Almost 15 years ago, Vibha Lama, MBBS, M.S., a professor in the Division of Pulmonary Disease and Critical Care Medicine, and her lab described the presence of stem-cell-like cells, called mesenchymal stromal cells, in lung sample fluid from lung transplant recipients.

We found that even ten years post-transplant, these cells belonged to the donor, not the recipient, she explained. At that time, we had no clue where in the lung they were coming from or what role they played.

To figure this out, her lab generated a mouse model to recreate what happens within a lung transplant recipient. With the model, they followed a transcription factor known as FOXF1 as a sort of trail of breadcrumbs back to the cells original location.

MORE FROM THE LAB: Subscribe to our weekly newsletter

They discovered that these cells formed a reservoir of stem cells within the bronchovascular bundle deep inside the lung. These bundles contain a bronchus (airway), arteries, connective tissue and other structures and is the part of the lung which connects it to the outside environment.

In this study, explained Lama, who is senior author on the paper, they show that these specific stem cells are interacting with neighboring epithelial cells within that airway niche.

Epithelial cells line and protect the airways and produce a protein known as Sonic hedgehog. Via this protein, epithelial cells signal the stem-cell-like mesenchymal cells, which make up the scaffolding of the lungs, to make FOXF1, a repressor that keeps the stem cells in check.

We are just recently understanding that there are many different kinds of mesenchymal cells in the lung, said Lama. What we describe here is not only are there many kinds of mesenchymal cells, FOXF1 is retained only in these specific stem-cell-like cells.

In the case of lung transplant rejection, Lama hypothesized that immune cells from the recipient attack the epithelial cells which disrupts the balance between them and the mesenchymal cells.

Like Podcasts? Add the Michigan Medicine News Break oniTunes, Google Podcasts or anywhere you listen to podcasts.

Because of the damage caused by rejection, the epithelial cells get damaged, Sonic hedgehog is reduced and that interrupts the signaling to the mesenchymal cells to keep quiet, she said. Because of that, these cells start dividing and they lay down more collagen, which leads to fibrotic scarring.

The work sets the stage for more research into the interaction of these cells with epithelial and other cells it their vicinity to further characterize what happens during chronic rejection and potentially how to prevent it. Furthermore, discovery of these cells is also important in understanding other airway diseases like asthma and COPD.

Paper cited: Transcription factor FOXF1 identifies compartmentally distinct mesenchymal cells with a role in lung allograft fibrogenesis, J Clin Invest. DOI: 10.1172/JCI147343

See the original post:
Stem cells and their role in lung transplant rejection - Michigan Medicine

New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair – Tech Times

Urian B., Tech Times 05 October 2021, 12:10 am

(Photo : Image from Unsplash Website) New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair

A new stem cell approach through the use of wavelength lasers might have discovered why humans lose their hair. Rui Yi, a professor of pathology at Northwestern University, is now setting out to answer the question.

According to the Straits Times, a generally accepted hypothesis regarding stem cells notes that they replenish tissues and organs, which include hair, but they will then eventually be exhausted and then even die in place. This particular process is seen as quite an integral part of the aging process.

Stem cells reportedly play a huge role when it comes to the growth of human and mice hair. The director of the Black Family Stem Cell Institute at the Icahn School of Medicine located at Mount Sinai, Sarah Millar, gave a statement. Luminate Medicine has been able to find a way to avoid chemotherapy hair loss.

Sarah Millar wasn't reportedly involved in Yi's paper and explained that the cells gave rise to the hair shaft as well as its sheath. After a period of time, which is short for human body hair and still much longer for hair on a person's head, the follicles then become inactive, and its lower part starts to degenerate. Sarah Millar's discovery can be found on Eurekalert.

The hair shaft then stops its growth and starts to shed, which is only to be replaced by a brand new strand of hair while the cycle repeats. While the rest of the follicles then die, a collection of stem cells still remains in the bulge and are ready to start turning into hair cells in order to grow a strand of hair.

Researchers who study aging usually take chunks of tissue from animals at different ages and examine the changes. There are, however, two drawbacks to this approach, according to Yi. There has also been a relation made betweenhair loss and teeth.

First, it was noted that the tissue was already dead. It is also not clear as to what led to the charges that are reportedly observed or what will then come after them. He then decided that the team would use a different approach.

Read Also:Best Diabetes Apps for Sugar-Conscious Peeps 2021

They reportedly watched the growth of other individual hair follicles in the ears of mice through the use of a long-wavelength laser that will be able to penetrate deep into the tissue. They then start labeling hair follicles along with green fluorescent protein, anesthetizing the animals in order for them to not move.

They then put their ear under the microscope and started to go back and forth to watch what was happening to the exact same hair follicle. The result showed that when the animals got older and grey, they started to lose their hair, their stem cells also started to escape their own small homes in the bulge.

The cells then changed their shapes from around to certain amoeba-like and squeezed out of small holes in the follicles. They then reportedly recovered their normal shapes and started darting away.

Related Article:Gaming And Mental Health: A Closer Look

This article is owned by Tech Times

Written by Urian B.

2021 TECHTIMES.com All rights reserved. Do not reproduce without permission.

Continue reading here:
New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair - Tech Times

StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa – WIBW

StemExpress to use utilize the Thermo Fisher Accula rapid PCR testing system to provide event attendees with accurate results in 30 minutes.

Published: Oct. 5, 2021 at 2:33 PM CDT|Updated: 3 hours ago

SACRAMENTO, Calif., Oct. 5, 2021 /PRNewswire/ --StemExpress is proud to announce that they will be the official COVID-19 testing provider for 2021's Meeting on the Mesa, a hybrid event bringing together great minds in the cell and gene biotech sphere. It has partnered with Alliance for Regenerative Medicine to comply with the newly implemented California state COVID-19 vaccination and testing policy regarding gatherings with 1,000 or more attendees. This partnership will allow the vital in-person networking aspect of the event to commence while protecting the health and safety of participants and attendees.

In-person networking commences at the 2021 Cell and Gene Meeting on the Mesa with COVID-19 testing options provided by StemExpress.

As a leading global provider of human biospecimen products, StemExpress understands the incredible impact that Meeting on the Mesa has on the industry and has been a proud participant for many years. For over a decade, StemExpress has provided the cell and gene industry with vital research products and holds valued partnerships with many of this year's participants. As such, it understands the immense value that in-person networking provides and is excited to help bring this element back to the meeting safely and responsibly.

StemExpress has been a trusted provider of widescale COVID-19 testing solutions since early 2020 - providing testing for government agencies, public health departments, private sector organizations, and the public nationwide. For Meeting on the Mesa, StemExpress is offering convenient testing options for unvaccinated attendees and those traveling from outside of the country. Options will include take-home RT-PCR COVID Self-Testing Kits and on-site, rapid PCR testing for the duration of the event. The self-testing kit option allows attendees to test for COVID in the days leading up to the event for a seamless admission and the days following the event to confirm they haven't been exposed. The on-site rapid testing option utilizes the new Thermo Fisher Accula, offering in-person testing at the event with results in around 30 minutes. StemExpress is excited to bring these state-of-the-art COVID testing solutions to the frontlines of the Cell & Gene industry to allow for safe in-person connections.

The StemExpress partnership with Alliance for Regenerative Medicine seeks to empower the entire cell and gene industry with a long-awaited opportunity to return to traditional networking practices. It is well known that innovation doesn't exist in a vacuum - allowing great minds to come together is a sure way to spur scientific growth and advance cutting-edge research, giving hope for future cures.

Cell and Gene Meeting on the Mesa will take place October 12th, 2021, through October 14th, 2021, at Park Hyatt Aviara,7100 Aviara Resort Drive Carlsbad, CA 92011. To learn more about the event, please visit MeetingOnTheMesa.com.

For more information about COVID testing solutions for businesses and events, visit https://www.stemexpress.com/covid-19-testing/.

About StemExpress:

Founded in 2010 and headquartered in Sacramento, California, StemExpress is a leading global biospecimen provider of human primary cells, stem cells, bone marrow, cord blood, peripheral blood, and disease-state products. Its products are used for research and development, clinical trials, and commercial production of cell and gene therapies by academic, biotech, diagnostic, pharmaceutical, and contract research organizations (CRO's).

StemExpress has over a dozen global distribution partners and seven (7) brick-and-mortar cellular clinics in the United States, outfitted with GMP certified laboratories. StemExpress runs its own non-profit supporting STEM initiatives, college and high school internships, and women-led organizations. It is registered with the U.S. Food and Drug Administration (FDA) and is continuously expanding its network of healthcare partnerships, which currently includes over 50 hospitals in Europe and 3 US healthcare systems - encompassing 31 hospitals, 35 outpatient facilities, and over 200 individual practices and clinics.

StemExpress has been ranked by Inc. 500 as one of the fastest-growing companies in the U.S.

About the Alliance for Regenerative Medicine:

The Alliance for Regenerative Medicine (ARM) is the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies. ARM promotes legislative, regulatory, reimbursement and manufacturing initiatives to advance this innovative and transformative sector, which includes cell therapies, gene therapies and tissue-based therapies. Early products to market have demonstrated profound, durable and potentially curative benefits that are already helping thousands of patients worldwide, many of whom have no other viable treatment options. Hundreds of additional product candidates contribute to a robust pipeline of potentially life-changing regenerative medicines and advanced therapies. In its 12-year history, ARM has become the voice of the sector, representing the interests of 400+ members worldwide, including small and large companies, academic research institutions, major medical centers and patient groups. To learn more about ARM or to become a member, visit http://www.alliancerm.org.

Media Contact: Anthony Tucker, atucker@stemexpress.com

View original content to download multimedia:

SOURCE StemExpress

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

The rest is here:
StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa - WIBW

Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial – KMVT

SYDNEY, Oct. 5, 2021 /PRNewswire/ -- Clinical stage drug development company Pharmaxis Ltd (ASX: PXS) today announced further positive results of data analysis from a phase 1c clinical trial (MF-101) studying its drug PXS-5505 in patients with the bone marrow cancer myelofibrosis for 28 days at three dosage levels.

Assessment with Pharmaxis' proprietary assays of the highest dose has shown inhibition of the target enzymes, LOX and LOXL2, at greater than 90% over a 24-hour period at day 7 and day 28. The trial safety committee has reviewed the results and having identified no safety signals, has cleared the study to progress to the phase 2 dose expansion phase where 24 patients will be treated at the highest dose twice a day for 6 months.

Pharmaxis CEO Gary Phillips said, "We are very pleased to have completed the dose escalation phase of this study with such clear and positive findings.We will now immediately progress to the phase 2 dose expansion study where we aim to show PXS-5505 is safe to be taken longer term with the disease modifying effects that we have seen in the pre-clinical models. The trial infrastructure and funding is in place and we are on track to complete the study by the end of 2022."

Independent, peer-reviewed research has demonstrated the upregulation of several lysyl oxidase family members in myelofibrosis.The level of inhibition of LOX achieved in the current study at all three doses significantly exceeds levels that caused disease modifying effects with PXS-5505 in pre-clinical models of myelofibrosis with improvements in blood cell count, diminished spleen size and reduced bone marrow fibrosis. LOXL2 was inhibited to a similar degree and based on pre-clinical work such high inhibition is likely replicated for other LOX family members (LOXL1, 3 and 4).[1] Study data can be viewed in the full announcement.

Commenting on the results of the trial, Dr Gabriela Hobbs, Assistant Professor, Medicine, Harvard Medical School & Clinical Director, Leukaemia, Massachusetts General Hospital said, "Despite improvements in the treatment of myelofibrosis, the only curative therapy remains an allogeneic stem cell transplantation, a therapy that many patients are not eligible for due to its morbidity and mortality. None of the drugs approved to date consistently or meaningfully alter the fibrosis that defines this disease. PXS-5505 has a novel mechanism of action by fully inhibiting all LOX enzymes. An attractive aspect of this drug is that so far in healthy controls and in this phase 1c study in myelofibrosis patients, the drug appears to be very well tolerated. This is meaningful as approved drugs and those that are undergoing study, are associated with abnormal low blood cell counts. Preliminary data thus far, demonstrate that PXS-5505 leads to a dramatic, >90% inhibition of LOX and LOXL2 at one week and 28 days. This confirms what's been shown in healthy controls as well as mouse models, that this drug can inhibit the LOX enzymes in patients. Inhibiting these enzymes is a novel approach to the treatment of myelofibrosis by preventing the deposition of fibrosis and ultimately reversing the fibrosis that characterizes this disease."

The phase 1c/2a trial MF-101 cleared by the FDA under the Investigational New Drug (IND) scheme aims to demonstrate that PXS-5505, the lead asset in Pharmaxis' drug discovery pipeline, is safe and effective as a monotherapy in myelofibrosis patients who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs. Trial sites will now open to recruit myelofibrosis patients into the 6-month phase 2 study in Australia, South Korea, Taiwan and the USA.

An effective pan-LOX inhibitor for myelofibrosis would open a market that is conservatively estimated at US$1 billion per annum.

While Pharmaxis' primary focus is the development of PXS-5505 for myelofibrosis, the drug also has potential in several other cancers including liver and pancreatic cancer where it aims to breakdown the fibrotic tissue in the tumour and enhance the effect of chemotherapy treatment.

Trial Design

Name of trial

PXS5505-MF-101: A phase 1/2a study to evaluate safety, pharmacokinetic and pharmacodynamic dose escalation and expansion study of PXS-5505 in patients with primary, post-polycythaemia vera or post-essential thrombocythemia myelofibrosis

Trial number

NCT04676529

Primary endpoint

To determine the safety of PXS-5505 in patients with myelofibrosis

Secondary endpoints

Blinding status

Open label

Placebo controlled

No

Trial design

Randomised, multicentre, 4 week duration phase 1 (dose escalation) followed by 6 month phase 2 (dose expansion)

Treatment route

Oral

Treatment frequency

Twice daily

Dose level

Dose escalation: three escalating doses

Dose expansion: one dose

Number of subjects

Dose escalation: minimum of three patients to maximum of 18 patients

Dose expansion: 24 patients

Subject selection criteria

Patients with primary or secondary myelofibrosis who are intolerant, unresponsive or ineligible for treatment with approved JAK inhibitor drugs

Trial locations

Dose escalation: Australia (2 sites) and South Korea (4 sites)

Dose expansion: Australia, Korea, Taiwan, USA

Commercial partners involved

No commercial partner

Reference: (1) doi.org/10.1002/ajh.23409

AUTHORISED FOR RELEASE TO ASX BY:

Pharmaxis Ltd Disclosure Committee. Contact: David McGarvey, Chief Financial Officer and Company Secretary: T +61 2 9454 7203, E david.mcgarvey@pharmaxis.com.au

Join the Pharmaxis mailing listhere

Follow us on LinkedInand Twitter

About Pharmaxis

Pharmaxis Ltd is an Australian clinical stage drug development company developing drugs for inflammatory and fibrotic diseases, with a focus on myelofibrosis. The company has a highly productive drug discovery engine built on its expertise in the chemistry of amine oxidase inhibitors, with drug candidates in clinical trials. Pharmaxis has also developed two respiratory products which are approved and supplied in global markets, generating ongoing revenue.

Pharmaxis is developing its drug PXS-5505 for the bone marrow cancer myelofibrosis which causes a build up of scar tissue that leads to loss of production of red and white blood cells and platelets. The US Food and Drug Administration has granted Orphan Drug Designation to PXS-5055 for the treatment of myelofibrosis and permission under an Investigational Drug Application (IND) to progress a phase 1c/2 clinical trial that began recruitment in Q1 2021. PXS5505 is also being investigated as a potential treatment for other cancers such as liver and pancreatic cancer.

Other drug candidates being developed from Pharmaxis' amine oxidase chemistry platform are targeting fibrotic diseases such as kidney fibrosis, NASH, pulmonary fibrosis and cardiac fibrosis; fibrotic scarring from burns and other trauma; and inflammatory diseases such as Duchenne Muscular Dystrophy.

Pharmaxis has developed two products from its proprietary spray drying technology that are manufactured and exported from its Sydney facility; Bronchitol for cystic fibrosis, which is approved and marketed in the United States, Europe, Russia and Australia; and Aridol for the assessment of asthma, which is approved and marketed in the United States, Europe, Australia and Asia.

Pharmaxis is listed on the Australian Securities Exchange (PXS). Its head office, manufacturing and research facilities are in Sydney, Australia. http://www.pharmaxis.com.au

About PXS-5505

PXS-5505 is an orally taken drug that inhibits the lysyl oxidase family of enzymes, two members LOX and LOXL2 are strongly upregulated in human myelofibrosis. In pre-clinical models of myelofibrosis PXS-5505 reversed the bone marrow fibrosis that drives morbidity and mortality in myelofibrosis and reduced many of the abnormalities associated with this disease. It has already received IND approval and Orphan Drug Designation from the FDA.

Myelofibrosis is a disorder in which normal bone marrow tissue is gradually replaced with a fibrous scar-like material. Over time, this leads to progressive bone marrow failure. Under normal conditions, the bone marrow provides a fine network of fibres on which the stem cells can divide and grow. Specialised cells in the bone marrow known as fibroblasts make these fibres.

In myelofibrosis, chemicals released by high numbers of platelets and abnormal megakaryocytes (platelet forming cells) over-stimulate the fibroblasts. This results in the overgrowth of thick coarse fibres in the bone marrow, which gradually replace normal bone marrow tissue. Over time this destroys the normal bone marrow environment, preventing the production of adequate numbers of red cells, white cells and platelets. This results in anaemia, low platelet counts and the production of blood cells in areas outside the bone marrow for example in the spleen and liver, which become enlarged as a result.

Myelofibrosis can occur at any age but is usually diagnosed later in life, between the ages of 60 and 70 years. The cause of myelofibrosis remains largely unknown. It can be classified as either JAK2 mutation positive (having the JAK2 mutation) or negative (not having the JAK2 mutation).

Source: Australian Leukemia Foundation: https://www.leukaemia.org.au/disease-information/myeloproliferative-disorders/types-of-mpn/primary-myelofibrosis/

Forward-looking statements

Forwardlooking statements in this media release include statements regarding our expectations, beliefs, hopes, goals, intentions, initiatives or strategies, including statements regarding the potential of products and drug candidates. All forward-looking statements included in this media release are based upon information available to us as of the date hereof. Actual results, performance or achievements could be significantly different from those expressed in, or implied by, these forward-looking statements. These forward-looking statements are not guarantees or predictions of future results, levels of performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this document. For example, despite our efforts there is no certainty that we will be successful in developing or partnering any of the products in our pipeline on commercially acceptable terms, in a timely fashion or at all. Except as required by law we undertake no obligation to update these forward-looking statements as a result of new information, future events or otherwise.

CONTACT:

Media: Felicity Moffatt: T +61 418 677 701, E felicity.moffatt@pharmaxis.com.au

Investor relations:Rudi Michelson (Monsoon Communications) T +61 411 402 737, E rudim@monsoon.com.au

View original content:

SOURCE Pharmaxis Limited

View original post here:
Pharmaxis Cleared To Progress To Phase 2 Bone Marrow Cancer Trial - KMVT