Author Archives: admin


Discovery for turning on cell repair in tissues and organs – Monash University

You are here:

15 February 2021

Monash University researchers have uncovered the barrier to -cell (beta cell) regeneration that could pave the way for improved treatments for diabetes and diseases that involve organ and tissue damage.

The human body doesnt repair itself very well, with our liver the only organ that can regenerate efficiently.We have limited capacity to regenerate new cells or tissue after birth as the genes involved in development are switched off.

This process happens through DNA methylation, a biological process where chemicals (methyl groups) are written on DNA and modify the way the gene functions.This modification effectively silences genes of progenitor cells (early descendants of stem cells) in the body and thereby the ability for the pancreas to generate the insulin producing -cells.

Using mouse models, the study published in Regenerative Medicine, led by Professor Sam El-Osta from Monash Central Clinical School, found that the DNA methylation content of two key developmental genes Ngn3 and Sox 11 were diminished, effectively making them repair dormant.

However, through demethylation, progenitor cells can be reawakened, restoring their capacity to become new insulin producing beta cells, thus paving the way towards improved treatments for Type 1 and Type 2 diabetes.

The collaboration between Dr Keith Al-Hasani and Dr Ishant Khurana has unveiled some surprising results. Their discovery that DNA methylation is a barrier to adult beta-cell regeneration will assist scientists to restore beta-cell function in the pancreas, said Professor El-Osta.

Currently, replacing the damaged -cell mass in diabetic patients consists of whole pancreas or islets transplantation.Although efficient, these therapies face the shortage of organ donors together with the associated side effects of immuno-suppressive drugs.

Current research focuses on the replacement of the lost -cells in diabetic patients using several approaches and cell sources.However, critical to exploiting the potential of these regenerative approaches, is understanding how tissue and cellular processes are controlled during development.

Co-first author on the study, Dr Keith Al-Hasani added: This is a novel and significant finding that will allow us to use these sleeping beauties (stem cell-like cells) to wake up and become insulin cells to cure diabetes.

Read the full paper:

Read this article:
Discovery for turning on cell repair in tissues and organs - Monash University

Be The Match encourages people of color to join bone marrow registry – KING5.com

Black patients in need of bone marrow or blood stem cell treatments have a decreased chance of matching with a donor. The Seattle branch hopes to change that.

Seattles Be The Match Collection Center opened up less than a year ago and is celebrating its 100th blood cell donation with an important message: More bone marrow donors of color are needed.

The nonprofit donation center is a part of the National Marrow Donor Program and increases the capacity to collect blood cells in the Pacific Northwest. Seattles Clinical Manager Hannah Erskine said this month is an important time to focus on the donation gap.

In the midst of Black History Month, its important to note that we frankly dont have enough Black and African American donors on the registry, said Erskin.

Only 4% of approximately 22 million donors on the registry are African American, lowering the chances that a Black patient can find a bone marrow donor who is a genetic match.

According to Be The Match data, the likelihood of finding a matched adult donor is only around 23% for an African American or Black patient, versus a 77% match rate for a white patient.

These matched bone marrow or blood stem cell transplants can help cure blood cancers like leukemia and lymphoma, as well as other blood conditions, such as sickle cell disease. Be The Match has coordinated more than 100,000 transplants.

Erskine said registering is a simple mouth swab that will be mailed to potential donors. They will be contacted if they are a match with a patient.

Being a matching blood stem cell donor can potentially save a life. The first step in changing the trend is to join the registry at http://www.bethematch.org.

Read the original post:
Be The Match encourages people of color to join bone marrow registry - KING5.com

Research Associate in Stem Cells and Regenerative Medicine job with KINGS COLLEGE LONDON | 246711 – Times Higher Education (THE)

Job description The Centre for Stem Cells & Regenerative Medicine is located in Guys Hospital. It is internationally recognized for research on adult and pluripotent stem cells and is a focus for cutting-edge stem cell research currently taking place across the College and its partner NHS trusts, as part of Kings Health Partners. Through the Centre, Kings aims to drive collaboration between scientists and clinicians to translate the potential of stem cells into clinical reality for patients. Applications are invited for a postdoctoral researcher funded as part of the PIs Wellcome Clinical Fellowship, and will work with a dynamic group of scientists focussed on reproductive biology, early embryonic development and the causes of infertility. The post holder will contribute to the regenerative medicine theme and will be involved in the generation and processing of single cell experiments using a variety of techniques. This is an exciting opportunity following our recent work (Sangrithi et al. 2017, Dev Cell & Lau et al. 2020, Dev Cell). The project aims to discover the function of genes on the X-chromosome in male germline stem cells (spermatogonia) and their role in idiopathic and sex chromosome aneuploidy associated infertility. We aim to understand physiological gene regulatory networks functional in spermatogonial stem cells using a combination of single-cell methods, to explain how perturbation in X-gene dosage in SSCs may cause infertility. The postholder will also identify and validate candidate disease bio-markers. This post will be offered on an a fixed-term contract until 05/04/2026 This is a full-time post - 100% full time equivalent

Key responsibilities Carry out world class research. Are adept at working in a wet lab setting with experience in designing and executing experiments. Familiarity in single cell work nucleic acid manipulation is desirable Communicate results effectively in writing and orally Contribute to publications arising from the research projects Keep clear and up-to-date records of work Attend and present at seminars, journal clubs and conferences Contribute to collaborative atmosphere of the department Share skills by training others Comply with all relevant safety legislation to ensure a safe working environment Take part in public engagement activities To support grant writing, for maintaining the continual research in this domain, e.g. Fellowships Post holder will be expected to plan and prioritise their own workload, with competing and shifting priorities under pressure of deadlines The above list of responsibilities may not be exhaustive, and the post holder will be required to undertake such tasks and responsibilities as may reasonably be expected within the scope and grading of the post.

Skills, knowledge, and experience

Essential criteria PhD awarded in the biological sciences Excellent general knowledge of molecular biology Knowledge of cell biology Knowledge of flow cytometry Relevant postdoctoral experience Experience in a molecular biology research lab Excellent record keeping / attention to detail Organized and systematic approach to research Pro-active, enthusiastic, positive attitude Self-motivated, with the ability to work under pressure & to meet deadlines Keen interest in infertility and regenerative medicine Ability to think strategically

Desirable criteria Understanding of the biology of germ cells and embryo development Previous experience in working with the laboratory mouse ES cell culture experience General knowledge of computational tools for single cell RNAseq Ability to make collaborative and independent decisions *Please note that this is a PhD level role but candidates who have submitted their thesis and are awaiting award of their PhDs will be considered. In these circumstances the appointment will be made at Grade 5, spine point 30 with the title of Research Assistant. Upon confirmation of the award of the PhD, the job title will become Research Associate and the salary will increase to Grade 6. Further information ABOUT THE SCHOOL The School of Basic & Medical Biosciences is led by Professor Mathias Gautel and comprises five departments with a wide range of expertise and interests. Using a bench to bedside approach, the School aims to answer fundamental questions about biology in health and disease and apply this to the development of new and innovative clinical practise, alongside providing a rigorous academic programme for students. Departments The Centre for Human & Applied Physiological Sciences (CHAPS) uses an integrative and translational research approach focusing on fundamental questions about human physiological function in health and disease to explore 3 research themes: skeletal muscle & aging, sensory-motor control & pain and aerospace & extreme environment adaptation. The Centre for Stem Cells & Regenerative Medicine focuses on cutting-edge stem cell research, how stem cells interact with their local environment and how these interactions are important for developing effective cell therapies in the clinic. The Department of Medical & Molecular Genetics uses cutting-edge technologies and analysis techniques to explore the mechanistic basis of disease, improve diagnostics and understand the epigenetic mechanisms of gene regulation and RNA processing, working from whole population level to complex and rare disease genomes The Randall Centre of Cell & Molecular Biophysics takes a multi-disciplinary approach at the interface of Biological and Physical Sciences to explore the underlying mechanisms behind common diseases. St Johns Institute of Dermatology seeks to improve the diagnosis and management of severe skin diseases, through a better understanding of the basic pathogenetic mechanisms that cause and sustain these conditions focussing on cutaneous oncology, genetic skin disorders, inflammatory & autoimmune skin disorders, and photomedicine. About the Department of Centre for Stem Cells & Regenerative Medicine The Centre for Stem Cells & Regenerative Medicine is led by Professor Fiona Watt, whos laboratory comprises approximately 30 research staff and visiting scientists and is internationally recognised for research on adult and pluripotent stem cells. Along with Professor Watts group there are nine other research groups operating at the Centre, bringing the total number of staff to approximately 80 people. Research at the Centre is focused on how stem cells interact with their local environment, or niche. We believe that an understanding of these interactions is important for developing effective cell therapies in the clinic. Located on the Guys Hospital campus, the Centre acts as a focus for cutting-edge stem cell research taking place across the College and its partner NHS Trusts, as part of Kings Health Partners. To facilitate collaborations within Kings and with external partners, we have opened a Stem Cell Hotel where researchers can access specialist equipment and technical support to study stem cell behaviour at single cell resolution. We also host an international seminar series and run the Stem Cells @ Lunch seminar series to share ideas and unpublished data. Our researchers are committed to public engagement and take part in diverse outreach events.Detailed information about the Centre for Stem Cells & Regenerative medicine can be found in the link below: http://www.kcl.ac.uk/lsm/research/divisions/gmm/departments/stemcells/index.aspx

Continued here:
Research Associate in Stem Cells and Regenerative Medicine job with KINGS COLLEGE LONDON | 246711 - Times Higher Education (THE)

Stem Cells Market Size 2021 by Share Growing Rapidly with Recent Trends, Size, Development, Revenue, Demand and Forecast to 2024 NeighborWebSJ -…

Healthcare

Inquire or Share Your Questions If Any before the Purchasing This Report https://www.absolutereports.com/enquiry/pre-order-enquiry/13841602

The content of the study subjects, includes a total of 15 chapters:

Chapter 1, to describe Stem Cells product scope, market overview, market opportunities, market driving force and market risks.

Chapter 2, to profile the top manufacturers of Stem Cells, with price, sales, revenue and global market share of Stem Cells in 2017 and 2018.

Chapter 3, the Stem Cells competitive situation, sales, revenue and global market share of top manufacturers are analyzed emphatically by landscape contrast.

Chapter 4, the Stem Cells breakdown data are shown at the regional level, to show the sales, revenue and growth by regions, from 2014 to 2019.

Chapter 5, 6, 7, 8 and 9, to break the sales data at the country level, with sales, revenue and market share for key countries in the world, from 2014 to 2019.

Chapter 10 and 11, to segment the sales by type and application, with sales market share and growth rate by type, application, from 2014 to 2019.

Chapter 12, Stem Cells market forecast, by regions, type and application, with sales and revenue, from 2019 to 2024.

Chapter 13, 14 and 15, to describe Stem Cells sales channel, distributors, customers, research findings and conclusion, appendix and data source.

Purchase This Report (Price 3480 USD for single user license): https://www.absolutereports.com/purchase/13841602

Table of Contents of Stem Cells Market:

1 Market Overview

1.1 Stem Cells Introduction

1.2 Market Analysis by Type

1.2.1 Type 1

1.2.2 Type 2

1.3 Market Analysis by Applications

1.3.1 Application 1

1.3.2 Application 2

1.4 Market Analysis by Regions

1.4.1 North America (United States, Canada and Mexico)

1.4.1.1 United States Market States and Outlook (2014-2024)

1.4.1.2 Canada Market States and Outlook (2014-2024)

1.4.1.3 Mexico Market States and Outlook (2014-2024)

1.4.2 Europe (Germany, France, UK, Russia and Italy)

1.4.2.1 Germany Market States and Outlook (2014-2024)

1.4.2.2 France Market States and Outlook (2014-2024)

1.4.2.3 UK Market States and Outlook (2014-2024)

1.4.2.4 Russia Market States and Outlook (2014-2024)

1.4.2.5 Italy Market States and Outlook (2014-2024)

1.4.3 Asia-Pacific (China, Japan, Korea, India and Southeast Asia)

1.4.3.1 China Market States and Outlook (2014-2024)

1.4.3.2 Japan Market States and Outlook (2014-2024)

1.4.3.3 Korea Market States and Outlook (2014-2024)

1.4.3.4 India Market States and Outlook (2014-2024)

1.4.3.5 Southeast Asia Market States and Outlook (2014-2024)

1.4.4 South America, Middle East and Africa

1.4.4.1 Brazil Market States and Outlook (2014-2024)

1.4.4.2 Egypt Market States and Outlook (2014-2024)

1.4.4.3 Saudi Arabia Market States and Outlook (2014-2024)

1.4.4.4 South Africa Market States and Outlook (2014-2024)

1.4.4.5 Turkey Market States and Outlook (2014-2024)

..

Continued..

Contact Us:

Name: Ajay More

Phone: US +1424 253 0807/ UK +44 203 239 8187

Email id- [emailprotected]

Our Other Reports:

4-Methylbenzophenone(Photoinitiator MBP) Market Size Research Report 2021 by Industry Definition, Types, Regions, Company Profiles and Forecast to 2026

4-Methylbenzophenone(Photoinitiator MBP) Market Size Research Report 2021 by Industry Definition, Types, Regions, Company Profiles and Forecast to 2026

4-Methylbenzophenone(Photoinitiator MBP) Market Size Research Report 2021 by Industry Definition, Types, Regions, Company Profiles and Forecast to 2026

4-Methylbenzophenone(Photoinitiator MBP) Market Size Research Report 2021 by Industry Definition, Types, Regions, Company Profiles and Forecast to 2026

4-Methylbenzophenone(Photoinitiator MBP) Market Size Research Report 2021 by Industry Definition, Types, Regions, Company Profiles and Forecast to 2026

Arthroscopy Market Size 2020 by Capacity, Production, Revenue, Price, Cost, Gross Margin Analysis and Forecast to 2024

Cable Modem Termination System Market Size 2021 by Regional Production Volume, Opportunities, Revenue, Growth Rate and Forecast to 2025

Neonatal Transport Incubator Market 2021 Research Report by Manufactures, Types, Applications and Covering US., Canada, Germany, France, UK., Italy, Russia, China

Server Chassis Market Size 2020 Analysis and In-depth Research on Trends, Emerging Growth Factors and Forecast to 2024

Air Cargo Security and Screening Systems Market Size Research Report 2021 by Market Revenue, Growth Rate and Forecast to 2026

Vincristine Sulfate Liposome Injection Market Share, Size from 2020 Growth Trends by Manufacturers, Regions, Type and Application, Outlook to 2026 Research Report by Absolute Report

Metal and Composite Well Tanks Market 2020 Top Countries Data, Market Size with Global Demand Analysis and Business Opportunities Outlook 2026

Military Helmet Market Size 2021 Covid-19 Impact and Global Analysis by Manufactures, Types, Development, Trends, Market Dynamics and Forecast to 2026

Global Damper Actuators Market 2020 by Key Players, Comprehensive Analyze, Growth Strategies, Covid-19 Impact and Forecast to 2024 | Absolute Reports

https://neighborwebsj.com/

Continue reading here:
Stem Cells Market Size 2021 by Share Growing Rapidly with Recent Trends, Size, Development, Revenue, Demand and Forecast to 2024 NeighborWebSJ -...

Cell transplant therapy could be a treatment for leading cause of blindness – The Denver Channel

CINCINNATI, Ohio Donuts have a way of pleasing the senses. Chocolate, blueberry, glazed you can almost taste them just by looking at them. What if you couldn't see the wide selection?

Cheri McDaniel, who started Ms. Cheri's Donuts in 2009, has been losing her eyesight more and more every year.

"People's faces from across the room, if I don't know who you are, I can't see your face," McDaniel said.

Shes one of 11 million Americans slowly losing her eyesight due to macular degeneration.

Macular degeneration is the leading cause of visual loss among American senior citizens. It affects one out of every three American senior citizens so its a pretty big deal, said Dr. Chris Riemann, a retinal surgeon at Cincinnati Eye Institute.

Dr. Riemann says macular degeneration withers away at the back of the eye. McDaniel has been seeing him since she was diagnosed with the disease in her 40s.

The UV rays can destroy your eyes and smoking," McDaniel said. "I did smoke I quit like 20 years ago because I still remember Dr. Riemann saying the very first time I went to him that if you dont quit smoking while youre dying of your lung cancer, you will be blind. And I was like oh, thank you!

McDaniel says her vision loss has gotten far worse in the last five years.

I cant tell you the last time I read a book, because I cant see it, even with my glasses and a magnifying glass.

McDaniel says she thought she would eventually lose vision completely, especially because her form of the disease the most common form in the U.S. has no approved treatment options. Then Dr. Riemann told her about a clinical trial for a cell transplant therapy called OpRegen.

It is a cell line that we actually inject under the retina of patients with the geographic atrophy to try to replace the cells that are atrophying away, Dr. Riemann said. They are ethically sourced human embryonic stem cells that come from discarded in vitro fertilization embryos.

McDaniel says she was told she would be the 26th person in the world to be a part of the early-phase FDA trial.

She found it nerve-wracking, but says she mostly felt honored to be a part of the new therapy.

If its a chance to see or be blind, youre kind of up against a wall," McDaniel said. "You jump at that chance yes, I will do this.

Three months ago, Dr. Riemann performed the surgery on McDaniel. Now, she says she can pay her bills again without a magnifying glass.

I was so excited; I mean I was so excited. Just for that little thing 'Oh my gosh, I can see these numbers.'

Not only did the cell transplant therapy stop the deterioration of her vision. Her eyesight has actually improved.

Dr. Riemann says there are still many steps left before the therapy gets FDA approval. However, he and McDaniel are holding onto hope.

There are exciting things that dont always pan out," Dr. Riemann said. "But Im hoping this one will.

Its just an amazing opportunity for anyone who cant see well to get fixed, McDaniel said.

Read more from the original source:
Cell transplant therapy could be a treatment for leading cause of blindness - The Denver Channel

Cellular Reprogramming Tools Market likely to touch new heights by end of forec – Business-newsupdate.com

Cellular Reprogramming Tools market data documented in the study includes market share, market size, application spectrum, market trends, supply chain, and revenue graph. Understand the economic impact on Cellular Reprogramming Tools market using our holistic market research methodology, we are focused on aiding your business sustain and grow during COVID-19 pandemics. This market report offers an overall scope of the market which includes future supply and demand scenarios, changing market trends, high growth opportunities, and in-depth analysis of the future prospects of the market.

Objective

The research report on Cellular Reprogramming Tools market offers significant information of the several factors influencing the growth rate of this business vertical over the period of 2020-2025. It highlights the production and the consumption patterns in order to deliver a broad perspective of the remuneration scale of this industry vertical. The document offers an accurate representation of this industry behavior based on the following pointers:

Request Sample Copy of this Report @ https://www.business-newsupdate.com/request-sample/25695

Market segmentations covered in the Cellular Reprogramming Tools report:

Product spectrum

Application spectrum

Production outlook

Regional scope

Competitor landscape

Major Points Covered in TOC:

Overview: Along with a broad overview of the global Cellular Reprogramming Tools market, this section gives an overview of the report to give an idea about the nature and contents of the research study.

Analysis on Strategies of Leading Players: Market players can use this analysis to gain competitive advantage over their competitors in the Cellular Reprogramming Tools market.

Study on Key Market Trends: This section of the report offers deeper analysis of latest and future trends of the Cellular Reprogramming Tools market.

Market Forecasts: Buyers of the report will have access to accurate and validated estimates of the total market size in terms of value and volume. The report also provides consumption, production, sales, and other forecasts for the Cellular Reprogramming Tools market.

Regional Growth Analysis: All major regions and countries have been covered in the report. The regional analysis will help market players to tap into unexplored regional markets, prepare specific strategies for target regions, and compare the growth of all regional Cellular Reprogramming Tools markets.

Request Customization on This Report @ https://www.business-newsupdate.com/request-for-customization/25695

More here:
Cellular Reprogramming Tools Market likely to touch new heights by end of forec - Business-newsupdate.com

Equillium Presents Positive Interim Clinical Data of Itolizumab in First-line Treatment of Acute Graft-Versus-Host Disease at the 2021 Transplantation…

LA JOLLA, Calif., Feb. 12, 2021 (GLOBE NEWSWIRE) -- Equillium, Inc.(Nasdaq: EQ), a clinical-stage biotechnology company developing itolizumab to treat severe autoimmune and inflammatory disorders, presented interim data from the EQUATE clinical trial supporting itolizumabs potential as a first-line treatment for acute graft-versus-host disease (aGVHD). The study, described in the late-breaking oral presentation titled Preliminary Safety and Efficacy of Itolizumab, A Novel Targeted Anti-CD6 Therapy, in Newly Diagnosed Severe Acute Graft-Versus-Host Disease: Interim Results from Equate Study, was presented earlier today by John Koreth, MBBS, DPhil, Associate Professor of Medicine, Harvard Medical School, Director of Translational Research Stem Cell Transplantation, Dana-Farber Cancer Institute, at the 2021 TCT Meetings Digital Experience.

Itolizumabs favorable safety and tolerability profile, combined with preliminary efficacy results and the ability to reduce corticosteroid use, bodes very well for treating aGVHD patients in the first-line setting, said Dr. Koreth. There is a critical need for new treatments for aGVHD, and this study supports further evaluation of itolizumab as a novel immunomodulatory treatment for this life-threatening condition.

Key Highlights, Summary and Conclusions from Oral Presentation:

The data highlighted in the presentation underscore itolizumabs potential as a first-line treatment in patients with acute GVHD, as well as a reduction in steroid use by as much as eighty percent in the first four weeks. Building on favorable safety data and durable response rates demonstrated so far, we look forward to the topline data results of the EQUATE study towards the middle of the year, said Stephen Connelly, Ph.D., chief scientific officer of Equillium.

Full text of the abstract can be found on theconference website and the presentation is available on the Publications page, under the Our Science section of Equilliums website.

About Graft-Versus-Host Disease (GVHD) GVHD is a multisystem disorder that is a common complication of allogeneic hematopoietic stem cell transplants (allo-HSCT) caused by the transplanted immune system recognizing and attacking the recipients body. Symptoms of GVHD include rash, itching, skin discoloration, nausea, vomiting, diarrhea, and jaundice, as well as eye dryness and irritation.

GVHD is the leading cause of non-relapse mortality in cancer patients receiving allo-HSCT, and the risk of GVHD limits the number and type of patients receiving HSCT. GVHD results in very high morbidity and mortality, with five-year survival of approximately 53% in patients who respond to steroid treatment and mortality as high as 95% in patients who do not respond to steroids. In the first-line aGVHD setting, published literature (MacMillan et al., 2015) describes background response rates to high-dose steroid administration in less severe standard risk patients as 69% overall response rate (ORR) and 48% CR, whereas in more severe high-risk patients response rates observed were 43% ORR and 27% CR.

About the EQUATE Study The EQUATE study is a Phase 1b/2 trial to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and clinical activity of itolizumab for first-line treatment in patients who present with aGVHD (NCT 03763318). The Phase 1b part of the trial is an open-label dose escalation study in adult patients who present with high-risk aGVHD and typically respond poorly to steroids. The Phase 1b data will inform selection of the dose to be used in the next phase of development for the program.

About Itolizumab Itolizumab is a clinical-stage, first-in-class anti-CD6 monoclonal antibody that selectively targets the CD6-ALCAM pathway. This pathway plays a central role in modulating the activity and trafficking of T cells that drive a number of immuno-inflammatory diseases. Equillium acquired rights to itolizumab through an exclusive partnership with Biocon Limited.

About Equillium Equillium is a clinical-stage biotechnology company leveraging deep understanding of immunobiology to develop novel products to treat severe autoimmune and inflammatory disorders with high unmet medical need. Equillium is developing itolizumab for multiple severe immuno-inflammatory diseases, including acute graft-versus-host-disease (aGVHD), lupus/lupus nephritis and uncontrolled asthma.

For more information, visitwww.equilliumbio.com.

Forward Looking Statements Statements contained in this press release regarding matters that are not historical facts are "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Such statements include, but are not limited to statements regarding the potential benefit of treating patients with aGVHD with itolizumab, the ability of Equillium to transition to later-stage development, the expected timing of further results from the EQUATE study, Equilliums plans and expected timing for developing itolizumab and potential benefits of itolizumab. Risks that contribute to the uncertain nature of the forward-looking statements include: Equilliums ability to execute its plans and strategies; risks related to performing clinical trials;the risk that interim results of a clinical trial do not necessarily predict final results and that one or more of the clinical outcomes may materially change as patient enrollment continues, following more comprehensive reviews of the data, and as more patient data become available; potential delays in the commencement, enrollment and completion of clinical trials and the reporting of data therefrom;the risk thatstudies willnot becompletedas planned; Equilliums plans and product development, including the initiation and completion of clinical trials and the reporting of data therefrom; whether the results from clinical trials will validate and support the safety and efficacy of itolizumab; and changes in the competitive landscape. These and other risks and uncertainties are described more fully under the caption "Risk Factors" and elsewhere in Equillium's filings and reports with the SEC. All forward-looking statements contained in this press release speak only as of the date on which they were made. Equillium undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Investor Contact Michael Moore Vice President, Investor Relations & Corporate Communications +1-619-302-4431 ir@equilliumbio.com

Media Contact Katherine Carlyle Smith Senior Account Associate Canale Communications +1-805-907-2497 katherine.smith@canalecomm.com

Read the original post:
Equillium Presents Positive Interim Clinical Data of Itolizumab in First-line Treatment of Acute Graft-Versus-Host Disease at the 2021 Transplantation...

Stem Cell Therapy Los Angeles – Darrow Stem Cell Institute

Darrow Stem Cell Institute

Marc Darrow, MD., JD. is the medical director and founder of the Darrow Stem Cell Institute in Los Angeles, California. With over 23 years experience in regenerative medicine techniques and the treatment of thousands of patients, Dr. Darrow is considered a leading pioneer in the non-surgical treatment of degenerative Musculoskeletal Disordersandsports related injuries.He is one of the busiest Regenerative Medicine doctors in the world.

Dr. Darrow has co-authored and continues to co-author leading edge medical research including the use of bone marrow derived stem cell therapy for shoulder, hip, knee and spinal disorders. He also comments and writes on research surrounding the treatment of chronic tendon injury, ankle and foot pain, elbow, hand and finger pain.

ABOUT US THE DARROW STEM CELL INSTITUTE

Over the years Dr. Darrow has made it his mission to help get people out of pain and to do so without surgery. To achieve this goal, Dr. Darrow and the staff of the Stem Cell institute guide patients through a hands on approach to healing. This includes reliance of physical examination over MRI and a realistic healing program designed around Bone Marrow Derived Stem Cells instead of surgery.

From Dr. Darrows book: A firm believer in regenerative medicine, I have been using these therapies since 1997, when I was doing my physical medicine residency at UCLA. My Los Angeles clinic, the Darrow Stem Cell Institute, has long been recognized for utilizing advanced, nonsurgical options for musculoskeletal pain, and degenerative joint disease, with Stem Cell Therapy and PRP having become a very exciting option in the past several years. In fact, I have been told by others in my field that no one does anywhere near as much regenerative medicine with Stem Cell Therapy and PRP as I do. A question I am asked by most patients is why these treatments have never been offered to them by other doctors. Part of the answer to this question is supplied in the research shown throughout this book. In this book, I will share with you the latest medical information on the use of Stem Cell Therapy and PRP for osteoarthritis and soft tissue damage, and I will also present the research supporting their use in the clinical setting for pain in most areas of the musculoskeletal system of the body.

Non-surgical treatment of degenerative disc disease

My MRI says I need back surgery. Can I avoid it?

Stem cell therapy for spinal stenosis

Four case studies of low back pain treated with stem cell therapy

Research: Some spinal surgeries and MRIs are unjustified and wasteful

Treatment of Hip Osteoarthritis with Platelet-Rich Plasma Injections

You need a hip replacement and spinal surgery. What are your non-surgical options?

PRP treatments for hip bursitis and Greater trochanteric pain syndrome

Stem cell therapy for a bone on bone hip waiting for hip replacement

Can stem cell therapy help you play golf again? Golf, stem cells and the knee replacement alternatives

Platelet Rich Plasma Injections for knee osteoarthritis

Weight loss can be a knee replacement alternative treatment

Research on stem cell therapy bone marrow derived treatments for knee osteoarthritis

Knee pain, back pain, and hip pain after knee replacement

Meniscus

Stem Cell Therapy Alternative For Meniscus Surgery

Platelet Rich Plasma (PRP) Therapy for Partial Meniscus Tears

Stem cell therapy and PRP for Whiplash associated disorders

Cervical Spine and Neck Pain

Shoulder Labrum Repair and biceps tenodesis

Shoulder Impingement Subacromial shoulder pain non-surgical options

Alternatives to shoulder replacement

PRP and Stem Cell Therapy for Slap Tears

Go here to read the rest:
Stem Cell Therapy Los Angeles - Darrow Stem Cell Institute

Stem Cell Transplants: A Lifesaving Treatment for Cancer …

If you have leukemia or lymphoma, you may need a stem cell transplant. These cells help replace cells damaged by the cancer. They also let your body recover faster from intense chemotherapy and radiation treatments.

For some, it may be the best -- or only -- approach.

They grow inside your marrow, the soft tissue of your bones. Theyre also in your blood, as well as blood from umbilical cords.

As they mature, blood stem cells change into threetypes of cells your body needs:

There are two types of transplants. Your doctor will decide which is best for you.

In an autologous (AUTO) transplant, doctors take healthy stem cells from your bone marrow or blood. Theyre frozen and carefully stored. Since they're outside your body, they arent harmed during the chemotherapy or radiation treatments youll need to get rid of your cancer cells.

After your treatment ends, your thawed stem cells are returned to your bloodstream through an IV. Theyll find their way back to your bone marrow.

Once there, they can help your body make healthy blood cells again.

In an allogeneic (ALLO)transplant, you get healthy stem cells from a donor.

Its important that the donors bone marrow closely matches yours. If it doesnt, your body may reject their cells. Your donor might be a family member. You can also get stem cells from someone you dont know.

Before an ALLO transplant, youll get chemotherapy, radiation, or both. This wipes out your own stem cells and gets your body ready for the new ones soon after your treatment is done.

If your doctor cant find a donor,theymay use cells from donated umbilical cord blood. After a baby is born, blood rich in stem cells remains in the discarded cord and placenta. It can be frozen and stored in a cord blood bankuntil its stem cells are needed.

Cord blood is tested before its banked. This lets doctors quickly check to see if theres a match for you. Plus, the pairing doesnt have to be as perfect as it would be from a donor.

If youre being treated with your own stem cells, you may have high-dose chemotherapy first. This can cause side effects. What and how severe they are depend on the dose. You might have:

That doesnt sound great, but advances in cancer treatment can make them easier to live with.

When you get stem cells from a donor or cord blood, theres a risk of something called graft-versus.-host disease. Its when your body fights to get rid of the new cells, or the cells launch an attack against you. It could happen right after the transplant or not until a year later.

Thanks to strides in the matching process in the past decade or so, your odds of having more problems from the treatment are much lower than they used to be.Youll also get medicine after your transplant that can workto keep those problems at bay.

Still, if youre older, it can be harder for you to manage side effects. Also, its more likely youhave another health condition like high blood pressure or diabetes. Your doctor may want you to have a reduced-intensity, or mini, stem cell transplant.

Youll start out with a lower dose of chemo and radiation before you get the stem cells. Its less taxing on your body, and new cells can still grow and fight your cancer.

They sound like special cells that fight cancer. They arent. Theyre cells that advance cancer.

Experts used to think all cancer cells were the same. Now, theres reason to believe that special, fast-growing cancer stem cells keep your disease alive by reproducing.

If thats true, in the next few years, the focus of treatments could shift from trying to shrink tumors to trying to kill this type of cell.

WebMD Medical Reference Reviewed by Kumar Shital, DO on July 17, 2020

SOURCES:

MD Anderson Cancer Center: Stem Cell Transplantation.

National Cancer Institute: Stem Cell Transplant.

Linda Burns, MD, vice president and medical director of health services research, National Marrow Donor Program/Be The Match, Minneapolis, MN.

Jack Jacoub, MD, medical oncologist and director of thoracic oncology at MemorialCare Cancer Institute at Orange Coast Memorial Medical Center, Fountain Valley, CA.

American Society of Clinical Oncology: What Is a Stem Cell Transplant?

American Cancer Society: Stem Cell Transplant for Multiple Myeloma.

City of Hope: Breakthroughs: Mini Stem Cell Transplant: What Is It and How Does It Treat Cancer?

National Cord Blood Program: Cord Blood Q&A.

Stanford Medicine Ludwig Center for Cancer Stem Cell Research and Medicine: The Stem Cell Theory of Cancer.

Cleveland Clinic: Graft vs Host Disease: An Overview in Bone Marrow Transplant.

Read this article:
Stem Cell Transplants: A Lifesaving Treatment for Cancer ...

Smart Stem Cells Made From Fat Have the Power to Heal – Freethink

New smart stem cells show a promising power to heal.

Researchers have reprogrammed human fat cells into adaptive smart stem cells that can lie dormant in the body until they are needed to heal various tissues. They demonstrated the cells' effectiveness at healing damaged tissue in a mouse study.

To create the smart stem cells, the team from UNSW Sydney exposed human fat cells to a compound mixture. After about three and a half weeks, the cells lost their original identity and began acting like stem cells, or iMS (induced multipotent stem cells).

"The stem cells acted like chameleons. They followed local cues to blend into the tissue that required healing."

"The stem cells we've developed can adapt to their surroundings and repair a range of damaged tissues," said UNSW hematologist John Pimanda, and co-author of the study, which they published in Science Advances.

"To my knowledge, no one has made an adaptive human multipotent stem cell before. This is uncharted territory."

Next, they injected the experimental iMS cells into healthy mice to see how the cells would respond. The cells remained dormant for some time, but they activated when the mouse was injured. Because of the cells' regenerative ability to act as "smart stem cells," they transformed themselves into whatever tissue was needed to heal the injured mouse --- like bone tissue, heart, or skin.

"The stem cells acted like chameleons," said Avani Yeola, lead author on the study at UNSW Medicine & Health. "They followed local cues to blend into the tissue that required healing."

All cells in a human body contain the same DNA. To differentiate between tissues, like a skin cell versus a bone cell, the cells only use a small portion of their total DNA. The rest of the DNA is shut down naturally by local modifications.

"The idea behind our approach was to reverse these modifications," said Pimanda. "We wanted the cells to have the option of using that part of the DNA if there was a signal from outside the cell."

Tissue-specific stem cells, like those that are restricted to becoming parts of the liver or lung, are limiting. But smart stem cells that can respond to their environment and become any tissue, like multipotent stem cells, will have many uses.

In the future, doctors could take a patient's fat cells, incubate them with the compound, and inject them into the patient to heal heart damage or trauma injuries.

But applications like this could be a long way off. The team needs to do much more research to prove this is safe in humans for different kinds of trauma before it becomes a real therapy.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [emailprotected]

More here:
Smart Stem Cells Made From Fat Have the Power to Heal - Freethink