Author Archives: admin


Neurons from patient blood cells enable researchers to test treatments for genetic brain disease – Brown University

PROVIDENCE, R.I.[Brown University] New research provides insights into the treatment of Christianson syndrome (CS), an X-linked genetic disease characterized by reduced brain growth after birth, intellectual disability, epilepsy and difficulties with balance and speech.

One of the major challenges in developing treatments for human brain disorders, like CS, is developing an experimental system for testing potential therapeutics on human neurons, said study senior author Dr. Eric Morrow, an associate professor of molecular biology, neuroscience and psychiatry at Brown University. In recent years, advanced stem cell therapies that use tissues from patients have provided powerful new approaches for engineering human neurons from the patients themselves, who may undergo the treatment in the future.

For the study, published in Science Translational Medicine on Feb. 10, 2021, Morrow and his colleagues obtained blood samples from five CS patients and the patients unaffected brothers. They then reprogrammed these blood cells into stem cells, and these stem cells were converted into neurons in a petri dish. As a result, they obtained neurons that were representative of those from CS patients, and they used these neurons to test treatments.

Morrow who directs the Center for Translational Neuroscience at the Carney Institute for Brain Science and the Brown Institute for Translational Science said the team also used a new gene-editing approach that employs CRISPR-Cas9 technologies to correct patient mutations back to a healthy gene sequence.

CS is caused by a mutation in a gene encoding for NHE6, a protein that helps regulate acid levels within cell structures called endosomes. Past research suggests that the loss of NHE6 causes endosomes to become overly acidic, which disrupts the abilities of developing neurons to branch out and form connections in the growing brain.

Loss of this important protein can arise from a variety of gene mutations in patients. The majority of CS mutations are called nonsense mutations, which prevent NHE6 from being produced at all; four of the five CS patients involved in this study exhibited this class of mutation. However, some CS patients exhibit missense mutations. Individuals with missense mutations still have some NHE6, but it is produced in smaller amounts, and the protein fails to function as it should.

The research team tested two main forms of treatment on the stem-cell-derived neurons: first, gene transfer, which involves adding a healthy NHE6 gene into the cell; and second, administration of trophic factors, which are substances that promote neuron growth and encourage neurons to develop connections with other neurons. The researchers found that the neurons response to treatment depended on the class of mutation present.

The gene transfer studies, which may represent the first steps toward developing gene therapy, were successful in neurons with nonsense mutations. After the researchers inserted a functional NHE6 gene into nonsense-mutation CS neurons, the neurons branched out properly. In neurons with missense mutations, however, gene transfer failed completely. Further tests suggested that the abnormal NHE6 produced as a result of missense mutations may interfere with normal NHE6, thereby rendering gene transfer therapy ineffective in patient cells with these mutations.

In contrast, administration of trophic factors, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), successfully promoted proper branching in all the CS neurons studied, regardless of mutation type.

While these initial results are encouraging, Morrow hopes that future studies will examine these treatments in animal models.

Our results provide an initial proof-of-concept for these treatment strategies, indicating that they should be studied further, he said. However, we may ultimately need to pay close attention to the class of mutation that a patient has when we choose a specific treatment.

In addition to Morrow, the research team included scientists from Brown University, the University of South Carolina and the Icahn School of Medicine at Mount Sinai. The study was supported by multiple grants from the National Institutes of Health as well as a number of awards from foundations and academic institutions.

This news story was authored by contributing science writerKerry Benson.

Continued here:
Neurons from patient blood cells enable researchers to test treatments for genetic brain disease - Brown University

Zebrafish reveal regenerative protein that could inspire new treatments for muscle-wasting diseases and aging – FierceBiotech

Scientists in the field of regenerative medicine have long been interested in using muscle stem cells to repair injuries, but growing the cells in the lab has proven to be challenging. Now, a team of Australian researchers is suggesting an alternative: a naturally occurring protein that regenerates muscle.

A team from the Australian Regenerative Medicine Institute at Monash University discovered that a protein called NAMPT (nicotinamide phosphoribosyltransferase) stimulates the growth of muscle stem cells and healing in zebrafish and mice. They published their findings in the journal Nature.

The researchers started by studying the cells that migrated to injury sites in zebrafish. They discovered that a particular group of immune cells called macrophages stimulated the regeneration of muscle stem cells.

One innovative drug discovery or biotechnology company will be awarded a Golden Ticketone year of free individual bench space at LabCentrals shared facility, including all resident benefits! We will be accepting applications from now until February 17, 2021. Enter today!

Macrophages are known to migrate to injury sites, where some remove debris that appears immediately and others stay for long-term cleaning. But the Australian scientists discovered eight genetically distinct macrophagesonly one of which seemed to be involved in the regeneration of muscle stem cells.

They went on to discover that the macrophages with those regenerative abilities released NAMPT. So they tried removing the macrophages from the fish and then adding NAMPT to the aquarium water. It worked: Muscle stem cells started to grow and promote healing, showing that the protein took over for the missing macrophages, the researchers said.

RELATED: Stem cells don't repair injured hearts, but inflammation might, study finds

Several regenerative medicine research teams are focused on harnessing the healing power of macrophages. Researchers from the Cincinnati Children's Hospital Medical Center, for example, discovered that the inflammatory response to stem-cell injections into the heart activated macrophages, which in turn promoted healing.

The Monash-led research team did further studies with NAMPT, which included placing patches that contained the protein into mouse models of muscle-wasting disease. They observed significant muscle healing and are now in discussions with biotech companies about taking the technique into clinical trials, they said in a statement.

They believe NAMPT-based therapies could prove useful in treating a range of conditions including muscular dystrophy, limb injuries and muscle wasting due to aging.

View original post here:
Zebrafish reveal regenerative protein that could inspire new treatments for muscle-wasting diseases and aging - FierceBiotech

Stem cell study illuminates the cause of an inherited heart disorder | Penn Today – Penn Today

Scientists in the Perelman School of Medicine have uncovered the molecular causes of a congenital form of dilated cardiomyopathy (DCM), an often-fatal heart disorder.

This inherited form of DCMwhich affects at least several thousand people in the United States at any one time and often causes sudden death or progressive heart failureis one of multiple congenital disorders known to be caused by inherited mutations in a gene called LMNA. The LMNA gene is active in most cell types, and researchers have not understood why LMNA mutations affect particular organs such as the heart while sparing most other organs and tissues.

In a study published in Cell Stem Cell, the Penn Medicine scientists used stem cell techniques to grow human heart muscle cells containing DCM-causing mutations in LMNA. They found that these mutations severely disrupt the structural organization of DNA in the nucleus of heart muscle cellsbut not two other cell types studiedleading to the abnormal activation of non-heart muscle genes.

Were now beginning to understand why patients with LMNA mutations have tissue-restricted disorders such as DCM even though the gene is expressed in most cell types, says study co-senior author Rajan Jain, an assistant professor of cardiovascular medicine and cell and developmental biology at the Perelman School of Medicine.

This story is by Sophie Kluthe. Read more at Penn Medicine News.

Here is the original post:
Stem cell study illuminates the cause of an inherited heart disorder | Penn Today - Penn Today

Therapeutic Solutions International Acquires Stem Cell Therapy That Successfully Completed FDA Double Blind Placebo Controlled Efficacy Study for Lung…

ELK CITY, Idaho, Feb.10, 2021 /PRNewswire/ --Therapeutic Solutions International, Inc., (OTC Markets: TSOI), announced today acquisition of the JadiCell, cell therapy, for use in the treatment of acute respiratory distress syndrome and other lung pathologies.

"Having worked with the Team at Therapeutic Solutions International for over 4 years, I am glad to place our highly promising and clinically advanced stem cell therapy into this innovative and cutting-edge company," said Dr. Amit Patel, inventor of the JadiCell. "Therapeutic Solutions International is unique in that it is currently running clinical trials in the area of nutraceuticals, as well as developing preclinical and clinical stage immunotherapies. There are numerous synergies to be had with the existing work and expertise in the Company."

"While there is a lot of excitement about various approaches to lung inflammation, there are very few therapies that not only potently block pathological immunity while concurrently induce regeneration of pulmonary tissues," said Dr. James Veltmeyer, Chief Medical Officer of the Company. "To date, by far the most promising regenerative therapy our scientists have worked with for acute respiratory distress syndrome (ARDS) has been the JadiCell. I am honored to work with our team of experts such as Dr. Francesco Marincola and Dr. Santosh Kesari in leading the JadiCell through Phase III and into the hands of patients."

"It is a significant accomplishment to acquire rights to this extremely promising and cost-effective technology that is scalable and functions as a 'cellular drug,'" said Famela Ramos, Vice President of Business Development. "To our knowledge this is the only stem cell therapy for lung pathologies that does not require animal components and can be generated in sufficient quantities to address the multi-billion-dollar market of ARDS."

"Dr. Patel and his team have been strong collaborators with us since our first licensing deal using the JadiCell for Chronic Traumatic Encephalopathy," stated Timothy Dixon, President and CEO of the Company. "Having worked with these cells, we appreciate that to date they are by far the most effective at production of cytokines, stimulation of regeneration, and inhibition of pathological inflammation. We are extremely confident in our ability to take these cells to the finish line in treatment of end stage lung disease."

About Therapeutic Solutions International, Inc.Therapeutic Solutions International is focused on immune modulation for the treatment of several specific diseases. The Company's corporate website is http://www.therapeuticsolutionsint.com, and our public forum is https://board.therapeuticsolutionsint.com/

[emailprotected]

SOURCE Therapeutic Solutions International

Home

Continue reading here:
Therapeutic Solutions International Acquires Stem Cell Therapy That Successfully Completed FDA Double Blind Placebo Controlled Efficacy Study for Lung...

The Role and Activation Mechanism of TAZ in Hierarchical Microgroove/N | IJN – Dove Medical Press

Penghui Hu,1,2,* Qian Gao,1,2,* Huimin Zheng,1,2 Yujuan Tian,1,2 Guoying Zheng,1 Xiaoyu Yao,1 Junjiang Zhang,1 Xudong Wu,2 Lei Sui1

1Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, Peoples Republic of China; 2Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, Peoples Republic of China

*These authors contributed equally to this work

Correspondence: Lei Sui Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, Peoples Republic of China Email suilei@tmu.edu.cn

Purpose: To investigate the role and activation mechanism of TAZ in periodontal ligament stem cells (PDLSCs) perceiving hierarchical microgroove/nanopore topography. Materials and Methods: Titanium surface with hierarchical microgroove/nanopore topography fabricated by selective laser melting combined with alkali heat treatment (SLM-AHT) was used as experimental group, smooth titanium surface (Ti) and sandblasted, large-grit, acid-etched (SLA) titanium surface were employed as control groups. Alkaline phosphatase (ALP) activity assays, qRT-PCR, Western blotting, and immunofluorescence were carried out to evaluate the effect of SLM-AHT surface on PDLSC differentiation. Moreover, TAZ activation was investigated from the perspective of nuclear localization to transcriptional activity. TAZ knockdown PDLSCs were seeded on three titanium surfaces to detect osteogenesis- and adipogenesis-related gene expression levels. Immunofluorescence and Western blotting were employed to investigate the effect of the SLM-AHT surface on actin cytoskeletal polymerization and MAPK signaling pathway. Cytochalasin D and MAPK signaling pathway inhibitors were used to determine whether actin cytoskeletal polymerization and the MAPK signaling pathway were indispensable for TAZ activation. Results: Our results showed that SLM-AHT surface had a greater potential to promote PDLSC osteogenic differentiation while inhibiting adipogenic differentiation than the other two groups. The nuclear localization and transcriptional activity of TAZ were strongly enhanced on the SLM-AHT surface. Moreover, after TAZ knockdown, the enhanced osteogenesis and decreased adipogenesis in SLM-AHT group could not be observed. In addition, SLM-AHT surface could promote actin cytoskeletal polymerization and upregulate p-ERK and p-p38 protein levels. After treatment with cytochalasin D and MAPK signaling pathway inhibitors, differences in the TAZ subcellular localization and transcriptional activity were no longer observed among the different titanium surfaces. Conclusion: Our results demonstrated that actin cytoskeletal polymerization and MAPK signaling pathway activation triggered by SLM-AHT surface were essential for TAZ activation, which played a dominant role in SLM-AHT surface-induced stem cell fate decision.

Keywords: TAZ, hierarchical micro/nanoscale topography, periodontal ligament stem cells, osteogenic differentiation, adipogenic differentiation

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Read more:
The Role and Activation Mechanism of TAZ in Hierarchical Microgroove/N | IJN - Dove Medical Press

Translational Regenerative Medicine Market: Immunotherapy is projected to be the fastest growing segment during the forecast period – BioSpace

Regenerative medicine is a segment of translational research in molecular biology and tissue engineering. It involves the process of regeneration of human cells, tissues, or organs to re-establish their normal functions through stimulation of bodys repair system. They are widely used in the treatment of many degenerative disorders occurring in the areas of dermatology, orthopedic, cardiovascular and neurodegenerative diseases. Stem cell therapy is the available tool in the field of translational regenerative medicine. It has gained importance in the past few years as it is a bio-based alternative to synthetic options. Stem cells have high power of regeneration. Hence, these enable production of other cells in the body. This has increased demand for stem cell therapy in the treatment of degenerative diseases. Currently, stem cell therapy has applications in the treatment of diseases such as autism, cancer, retinal diseases, heart failure, diabetes, rheumatoid arthritis, Alzheimers. Extensive research is being carried out on stem cell therapy. The Centre for Commercialization of Regenerative Medicine (CCRM) has reported around 1900 active clinical trials undergoing currently. It also reported 574 active industry-sponsored cell therapy clinical studies, 50 of these are in phase 3 development. Hence, stem cell therapy is projected to contribute to the growth of the translational regenerative medicine market. However, ethical issues in the use of embryonic stem cells is likely to restrain the market.

Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=30440

Rising prevalence of degenerative diseases, aging population, rapid growth of emerging countries, and technical advancements in developed countries are the major factors fueling the growth of the translational regenerative medicine market.

The global translational regenerative medicine market has been segmented based on product type, therapy, application, and region. In terms of product type, the market has been categorized into cellular and acellular. The cellular segment dominated the global market in 2016. Based on therapy, the global translational regenerative market has been segmented into cell therapy, gene therapy, immunotherapy, and tissue engineering. Immunotherapy is projected to be the fastest growing segment during the forecast period. In terms of application, the market has been segmented into orthopedic & musculoskeletal, cardiology, diabetes, central nervous system diseases, dermatology, and others. Cardiology and orthopedic & musculoskeletal are anticipated to be the fastest growing segments of the global translational regenerative medicine market. In terms of region, the global translational regenerative medicine market has been segmented into North America, Latin America, Europe, Asia Pacific, and Middle East & Africa. North America dominated the global regenerative medicine market owing to a large number of leading companies and expansion of research and development activities in the U.S. Increased medical reimbursement and advanced health care also drive the market in the region. Orthopedic is the leading application segment contributing to the growth of the market in the region. Asia Pacific is forecasted the huge growth because of large consumer pool, rising income, and health care expenditure. However, the market in Asia Pacific could face challenges such as high cost of bio-based medicines and stringent regulatory policies.

Request for Analysis of COVID-19 Impact on Translational Regenerative Medicine Market - https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=30440

The global translational regenerative medicine market is dominated by key players such as CONMED Corporation, Arthrex, Inc., Organogenesis, Inc., Nuvasive, Inc., Osiris Therapeutics, Inc., Celgene Corporation, Brainstorm Cell Therapeutics Inc. and Medtronic.

Pre Book Translational Regenerative Medicine Market Report at https://www.transparencymarketresearch.com/checkout.php?rep_id=30440&ltype=S

The following regional segments are covered comprehensively:

Read more information here:

https://www.transparencymarketresearch.com/translational-regenerative-medicine-market.html

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.

Contact

Mr. Rohit Bhisey Transparency Market Research

State Tower,

90 State Street,

Suite 700,

Albany NY - 12207

United States

USA - Canada Toll Free: 866-552-3453

Email: sales@transparencymarketresearch.com

Website: https://www.transparencymarketresearch.com/

Read this article:
Translational Regenerative Medicine Market: Immunotherapy is projected to be the fastest growing segment during the forecast period - BioSpace

Notch Therapeutics Closes $85 Million Series A Financing to Develop Pipeline of Renewable Stem Cell-Derived Cancer Immunotherapies – PRNewswire

VANCOUVER, BC, Feb. 10, 2021 /PRNewswire/ --Notch Therapeutics, Inc., a biotechnology company developing renewable, induced pluripotent stem cell (iPSC)-derived cell therapies for cancer, announced today the closing of an oversubscribed U.S. $85 million Series A financing. The financing was led by an exclusively healthcare-focused investment fund, with participation by existing investors Allogene Therapeutics, Inc. (NASDAQ: ALLO), Lumira Ventures, and CCRM Enterprises Holdings Ltd., an affiliate of Centre for Commercialization of Regenerative Medicine (CCRM); along with new investors EcoR1 Capital, a undisclosed leading global investment firm, Casdin Capital, Samsara BioCapital, and Amplitude Ventures. Proceeds from the financing will support the continuing development of Notch's portfolio of iPSC-derived T cell therapeutic product candidates and clinical readiness of the company's proprietary Engineered Thymic Niche (ETN) platform. The financing will also enable Notch to expand its team to support the company's future growth, including establishing operations in Seattle, in addition to the company's existing operations in Vancouver and Toronto.

"We are gratified to have the confidence of this exceptional group of investors and have them share in our vision that our platform can be game-changing for cell therapies by easing cell manufacturing and broadening their clinical and commercial potential," said David Main, President and Chief Executive Officer of Notch. "The level of interest in this financing round enabled us to far exceed our original capital-raising goals. With this support, Notch is well positioned to support our partners and advance development of our initial cell therapy products for patients with cancer."

Notch is applying its scalable Engineered Thymic Niche (ETN) technology platform to develop homogeneous and universally compatible, stem cell-derived cell therapies. To date, Notch has assembled a world-class scientific team and built a fully integrated, tightly controlled platform for generating and editing immune cells from clonal stem cells to enable development of a broad range of T cell therapeutics. Notch has an existing partnership with Allogene Therapeutics to apply Notch's proprietary ETN platform to develop CAR-targeted, iPSC-derived, off-the-shelf T cell or natural killer (NK) cell therapies for hematologic cancer indications.

"We have great confidence in Notch's high-caliber management team and the rigorous science underlying its research programs," said David Chang, M.D., Ph.D., President, Chief Executive Officer, and Co-Founder of Allogene and a member of the Notch Board of Directors. "We are impressed by the company's innovation and accomplishments and pleased to continue our support of Notch as the company advances the development of a new generation of cell therapies for cancer and other immune disorders."

About Notch Therapeutics (www.notchtx.com) Notch is developing a pipeline of cellular immunotherapies originating from pluripotent stem cells that are specifically engineered to address the underlying biology of complex disease systems. The company has unlocked the ability for large-quantity production of T cells and other cells from any source of stem cells to bring best-in-class cell therapies for cancer and other immune disorders to thousands of patients. The core of the Notch platform is the Engineered Thymic Niche (ETN), which enables precision control of cell fate during the differentiation and expansion of stem cells in suspension bioreactors without the need for feeder cells or serum. The ETN has the potential to generate immunotherapies with decreased variability, increased potency, and engineered improvements. The technology was invented in the laboratories of Juan-Carlos Ziga-Pflcker, Ph.D. at Sunnybrook Research Institute and Peter Zandstra, Ph.D., FRSC at the University of Toronto. Notch was founded by these two institutions, in conjunction with MaRS Innovation (now Toronto Innovation Acceleration Partners) and the Centre for Commercialization of Regenerative Medicine (CCRM), which initially incubated the company.

Contact:Mary Moynihan M2Friend Biocommunications 802-951-9600 [emailprotected]

SOURCE Notch Therapeutics

Notch Therapeutics

Here is the original post:
Notch Therapeutics Closes $85 Million Series A Financing to Develop Pipeline of Renewable Stem Cell-Derived Cancer Immunotherapies - PRNewswire

Ensoma Launches to Pioneer Next-Generation In Vivo Approach to Deliver First Off-the-shelf Genomic Medicines – Business Wire

BOSTON--(BUSINESS WIRE)--Ensoma, a company expanding the curative power of genomic medicine by pioneering a next-generation in vivo approach, today launched with a $70 million Series A financing led by co-founder and seed investor 5AM Ventures, with participation from F-Prime Capital, Takeda Ventures, Viking Global Investors, Cormorant Asset Management, RIT Capital Partners, Symbiosis II, LLC, and Alexandria Venture Investments. In addition to an equity investment of $10 million in the Series A financing, Takeda Pharmaceutical Company Limited (Takeda) and Ensoma have entered into a strategic collaboration with the potential for upfront and preclinical research payments totaling $100 million as part of a strategic collaboration worth up to $1.25 billion, announced in a separate press release this morning.

The foundation of the companys platform its Engenious vectors is based on over two decades of academic and clinical research generated by scientific co-founders and renowned experts, Hans-Peter Kiem, M.D., Ph.D., of Fred Hutchinson Cancer Research Center, and Andr Lieber, M.D., Ph.D., of University of Washington School of Medicine. The company will be led by biotechnology industry veterans with demonstrated track records in innovative therapeutic modalities, including gene therapy and editing, across an array of disease areas, including rare disease, hematology and oncology.

Ensomas Engenious vectors are designed to deliver a diverse range of genome modification technologies including those that require a high level of packaging capacity directly to hematopoietic stem cells (HSCs) or the various cell types that arise from these cells, such as T cells, B cells and myeloid cells. The companys vectors are optimized to work without the need for stem cell collection or prior myeloablative conditioning (e.g., chemotherapy). As a result, Ensomas therapies will be designed to be delivered via single injection in diverse environments, including outpatient and areas where access to sophisticated healthcare systems may be limited.

With the launch of Ensoma, we aspire to bring innovative new treatments to patients in a way that is accessible for all, said Paula Soteropoulos, executive chairman of Ensoma. Because our in vivo therapies do not require prior conditioning or stem cell donors, we hope to deliver them as off-the-shelf treatments to address diseases both rare and common dramatically simplifying the logistics of scaling production and reducing patient and healthcare-system burden. Every person, no matter where they are in the world, should have access to the innovative technologies that are changing the way we treat disease.

Engenious Vectors

Ensomas Engenious vectors are specially engineered adenovirus vectors devoid of any viral genome and minimal pre-existing immunity, thus minimizing the chance of an immune response and freeing up ample storage space up to 35 kilobases (kb) of DNA packaging capacity to deliver a diverse range of genome modification technologies. Also known as therapeutic cargo, these technologies may include, separately and in combination, the following:

These approaches enable Engenious vectors to engineer various erythroid, lymphoid (e.g., T cells, B cells) and myeloid (e.g., macrophages, microglia) cell types, with great precision and vast therapeutic potential. Addressable indications range from rare monogenic diseases to broader diseases such as oncology, autoimmunity and infectious diseases via precision, off-the-shelf engineering of the immune system.

Given the highly specific nature of these technologies, Ensomas Engenious vectors enable preferential targeting of HSCs inside the body. Additionally, Ensomas founders have developed an in vivo selection system that can increase the population of genetically modified HSCs, if needed. This proprietary approach enables precise titration to lasting therapeutic levels without the need to re-dose patients, bypassing the immunogenic challenges associated with re-dosing for some other gene therapy modalities.

Ensomas Engenious platform has been extensively validated in numerous preclinical models with a range of genome editing technologies, demonstrating robust genetic modification of bone marrow HSCs and stable long-term expression of therapeutic proteins in small and large preclinical models.

There have been tremendous advancements in technologies to precisely target, genetically edit and modify human disease. However, many of these tools pose delivery challenges; some lack the ability to reach the right cells within the body, while others lack the ability to broadly reach significant numbers of patients due to complex procedures and supply chain challenges, said Kush M. Parmar, M.D., Ph.D., founding chief executive officer of Ensoma. Ensomas scientific approach allows us to do what hasnt been done beforeto make the curative power of genomic medicine and stem cell technology portable so they may be administered in low-resource and outpatient settings for the very first time.

Leadership & Scientific Founders

Ensoma was founded by and incubated within the 4:59 Initiative, the company creation engine of 5AM Ventures. The companys scientific co-founders include Dr. Hans-Peter Kiem, an oncologist and world-renowned pioneer in gene-editing technologies, including stem cell and gene therapies, from Fred Hutch, who also serves as vice president of the American Society of Gene & Cell Therapy and chief scientific and clinical advisor for Ensoma; and Dr. Andr Lieber, an accomplished academic researcher and professor of medicine, Division of Medical Genetics, UW School of Medicine, who has studied the biological and translational aspects of human adenoviruses for more than two decades. Ensoma is based on an exclusively licensed portfolio of technologies developed by the Fred Hutch lab of Dr. Kiem and the University of Washington lab of Dr. Lieber that enable in vivo genome engineering and gene therapy advances of HSCs for therapeutic use in blood diseases.

Following more than 20 years of academic and clinical research, Ensoma has assembled an exceptional team to boldly forge a new era of genomic medicine in vivo, said Bihua Chen, founder and portfolio manager at Cormorant Asset Management. The company is moving swiftly to accelerate and broaden the therapeutic potential of its approach, and I am confident they have the right team and the right technology to potentially bring life-changing, curative therapies within reach for people all over the world.

Additional details surrounding company leadership, including its board of directors, are as follows:

Ensoma has also named its scientific advisory board, which may be viewed here.

About 5AM Ventures

Founded in 2002, 5AM actively invests in next-generation biotech companies. With approximately $1.5 billion raised since inception, 5AM has invested in 89 companies. For more information, please visit http://www.5amventures.com.

About the 4:59 Initiative

The 4:59 Initiative is the internal company creation engine at 5AM Ventures that helps discover, incubate, and fund breakthrough science. The 4:59 team provides hands-on scientific, strategic, and operational support, working closely with academics and entrepreneurs to advance breakthrough science and establish proof-of-concept data to enable a clear path to transformative therapies for patients.

Read the original post:
Ensoma Launches to Pioneer Next-Generation In Vivo Approach to Deliver First Off-the-shelf Genomic Medicines - Business Wire

Global Biopreservation Market Is Expected to Reach USD 7.67 Billion by 2028 : Fior Markets – GlobeNewswire

February 10, 2021 13:00 ET | Source: Fior Markets

Newark, NJ, Feb. 10, 2021 (GLOBE NEWSWIRE) -- As per the report published by Fior Markets, theglobal biopreservation market is expected to grow from USD 3.55 billion in 2020 to USD 7.67 billion by 2028, at a CAGR of 10.1% during the forecast period 2021-2028.

Some of the critical factors that are fuelling the growth of the global biopreservation market are technological advancements in the field of biopreservation, increasing private as well as government investment in R&D, increasing health care expenditure, and a rising regenerative medicine demand due to the expanding rate of lifestyle diseases. Biopreservation is crucial for the success of distinct commercial & clinical applications of emerging cell-based technologies. Advancements in biopreservation such as next-gen cryopreservation solutions, integration & design with nanoscale technology, and standardization of hypothermic storage are leading to important long period preservation of complex tissues & organs in transplantation & regenerative medicine. The Cooperative Human Tissue Network (CHTN) was set up by the National Cancer Institute, which uses collective efforts to advance bio-banking.

With the outbreak of a global pandemic, many have faced salary cuts and job losses. Covid-19 has become a threat to the entire world's economy and has negatively impacted all kinds of markets, including the biopreservation market. With less disposable income and broken supply chains, the market's growth is expected to slow down. Research activities all over the world had been stopped due to lockdowns. The emergence of competing technologies like room temperature storage technology has a negative effect on the market. Another challenge is the strict regulations that governments have put up regarding biopreservation.

DOWNLOAD FREE SAMPLE REPORT AThttps://www.fiormarkets.com/report-detail/419199/request-sample

Key players operating in the global biopreservation market include BioCision, Custom Biogenic Systems, Panasonic Biomedical, Thermo Fisher Scientific, VWR International, Atlanta Biologics, BioLife Solutions, Chart MVE Biomedical, LabVantage Solutions, and Taylor-Wharton Cryogenics, among others. To gain a significant market share in the global biopreservation market, the key players are now focusing on adopting strategies such as product innovations, mergers & acquisitions, recent developments, joint ventures, collaborations, and partnerships. Thermo Fisher Scientific and Taylor-Wharton Cryogenics are some of the biggest players in the global biopreservation market.

The equipment segment dominated the market and held the largest market share of 61.8% in the year 2020

The product segment consists of laboratory information management system, media, and equipment. The equipment segment dominated the market and held the largest market share of 61.8% in the year 2020. The extensive use of equipment in plasma, DNA, tissue, and stem cell research is driving the growth of this segment. Advanced equipment is necessary for high cost-efficiency, low maintenance and adequate storage capacity.

The tumor cells segment dominated the market and held the largest market share of 22.45% in the year 2020

Based on cell provider, the global market has been divided into tumor cells, hESC (human Embryonic Stem Cell), CD19+, CD34+, iPSC (Induced Pluripotent Stem Cells), MSC (Mesenchymal stem cells), and others. The tumor cells segment dominated the market and held the largest market share of 22.45% in the year 2020 due to its numerous applications in R&D, diagnosis, and cancer treatment. Tumor cells act as effective biomarkers in different types of cancers like breast, prostate, and colon cancer.

The bio-banking segment dominated the market and held the largest market share of 58.36% in the year 2020

On the basis of application, the biopreservation market has been segmented into bio-banking, regenerative medicine, and drug discovery. The bio-banking segment dominated the market and held the largest market share of 58.36% in the year 2020 due to the various advantages of stem cell preservation. The expanding number of egg banks and sperm banks around the world boost the growth of this segment.

Browse full report with TOC athttps://www.fiormarkets.com/report/biopreservation-market-by-product-laboratory-information-management-system-419199.html

Regional Segment Analysis of the Biopreservation Market

On the basis of geography, the global biopreservation market has been classified into North America, Europe, South America, Asia Pacific, and Middle East and Africa. The North America region accounted for the major market share of 46.9% in the year 2020 and is anticipated to grow throughout the projected period. The large share of this segment is attributed to key factors such as the growing geriatric population, advancing drug development & biomedical research, an increasing number of patients needing specialized treatment for lifelong diseases, and the presence of significant pharmaceutical & pharmaceutical companies in the region. On the other hand, the Asia-Pacific region is expected to grow at the highest CAGR during the forecast period 2021-2028. This growth is owing to factors like an increasing patient base and rising government investments in biomedical research & development.

Request for Customization:https://www.fiormarkets.com/enquiry/request-customization/419199

About the report:

The global biopreservation market is analyzed on the basis of value (USD Billion). All the segments have been analyzed on a global, regional, and country basis. The study includes the analysis of more than 30 countries for each segment. The report offers an in-depth analysis of driving factors, opportunities, restraints, and challenges for gaining the key insight of the market. The study includes porter's five forces model, attractiveness analysis, raw material analysis, and competitor position grid analysis.

For Instant Purchase:https://www.fiormarkets.com/checkout.html?reportid=419199&type=single

Customization of the Report:

The report can be customized as per client requirements. For further queries, you can contact us onsales@fiormarkets.comor +1-201-465-4211. Our executives will be pleased to understand your requirements and offer you the best-suited reports.

About Fior Markets

Fior Markets is a futuristic market intelligence company, helping customers flourish their business strategies and make better decisions using actionable intelligence. With transparent information pool, we meet clients objectives, commitments on high standard and targeting possible prospects for SWOT analysis and market research reports. Fior Markets deploys a wide range of regional and global market intelligence research reports including industries like technology, pharmaceutical, consumer goods, food and beverages, chemicals, media, materials and many others. Our Strategic Intelligence capabilities are purposely planned to boost your business extension and elucidate the vigor of diverse industry. We hold distinguished units of highly expert analysts and consultants according to their respective domains. The global market research reports we provide involve both qualitative and quantitative analysis of current market scenario as per the geographical regions segregated and comprehensive performance in different regions with global approach. In addition, our syndicated research reports offer a packaged guide to keep companies abreast of the upcoming major restyle in their domains. Fior Markets facilitates clients with research analysis that are customized to their exact requirements, specifications and challenges, whether it is comprehensive desk research, survey work, composition of multiple methods, in-detailed interviewing or competitive intelligence. Our research experts are experienced in matching the exact personnel and methodology to your business need.

Contact Us

Avinash D Head of Business Development Phone:+1-201-465-4211 Email:sales@fiormarkets.com Web:www.fiormarkets.com

To Read Top Industries Reports, Visit our Affiliated Website: https://www.marketquest.biz

Related Reports

Histone Deacetylase (HDAC) Inhibitors Market - https://www.fiormarkets.com/report/histone-deacetylase-hdac-inhibitors-market-by-application-oncology-399164.html Anthrax Vaccines Market - https://www.fiormarkets.com/report/anthrax-vaccines-market-by-vaccine-type-live-vaccines-399166.html Antifungal Drugs Market - https://www.fiormarkets.com/report/antifungal-drugs-market-by-drug-class-azoles-echinocandins-407129.html Bovine Lactoferrin Market - https://www.fiormarkets.com/report/bovine-lactoferrin-market-by-type-freeze-dried-and-milled-417794.html

Read the original post:
Global Biopreservation Market Is Expected to Reach USD 7.67 Billion by 2028 : Fior Markets - GlobeNewswire

Stem Cell Therapy Market Revenue, Key Players, Supply-Demand, Investment Feasibility and Forecast By 2029: Osiris Therapeutics, NuVasive, Chiesi…

Stem Cell Therapy Market

Stem Cell Therapy Market Projections (2020-2029): The Global market Stem Cell Therapy theologizes is the most recent of the world business market curves. The report prospects the current and frequent collectors, technological innovations, product supplementation, and their representation of performance broadly across the foreign market.

Thisphenomenalstudy on world-widebusiness includes the results of vital primary and secondary resources. These research findings are accepted by the companys skilled analysts and experts, providing rich in-depth information to associated partners, appraisers as well as captains of the industry.

Get a Sample Copy of this Report @ https://www.regalintelligence.com/request-sample/148234

Prominent players in the industry covered in the report:

Osiris Therapeutics, NuVasive, Chiesi Pharmaceuticals, JCRPharmaceutical, Pharmicell, Medi-post, Anterogen, Molmed, Takeda (TiGenix)

Market split by Type, can be divided into: Autologous Allogeneic

Market split by Application, can be divided into: Musculoskeletal Disorder Wounds & Injuries Cornea Cardiovascular Diseases Others

Market split by Sales Channel, can be divided into: Direct Channel Distribution Channel

Ourstudypasses through ahaven ofprofound qualitative and quantitativeresearch by industryexperts andprofessionals.Within the reportcontributes a broadperceptionof thepast as well ascurrent marketvista,which implies future statistics and prospects in position with the technical developments over time. Furthermore, the report includes and provides analyses of demand and supply, microeconomic and macroeconomic elements, administrative components and growth indices through the Stem Cell Therapy marketplace. The report outlines keytacticsutilized bykey market participants.

Reach us to quote the effective price of this report (UPTO 50% OFF) @ https://www.regalintelligence.com/check-discount/148234

This report provides an accurate understanding and discovery of key geographic areas underway with market Stem Cell Therapy, including critical segments and additional segments.The report sets out aspects of territorial growth and the size and scope of the market. Additionally, the report also deals with trading information such as business range, cost and revenue margin as well as gross value. However, this understanding assists readers in the conduct of consumer experts as well as major tactic to reach market share.

Substantivebeneficiaries:

Additional Information:

This reportcontributes to the following:

Important questions answered within this report:

About Us: We, Regal Intelligence, aim to change the dynamics of market research backed by quality data. Our analysts validate data with exclusive qualitative and analytics driven intelligence. We meticulously plan our research process and execute in order to explore the potential market for getting insightful details. Our prime focus is to provide reliable data based on public surveys using data analytics techniques. If you have come here, you might be interested in highly reliable data driven market insights for your product/service,reach us here 24/7.

Mention your Queries here to Get a Call from Our Industry Expert @sales@regalintelligence.com

Contact Us: Regal Intelligence: http://www.regalintelligence.com Ph no: +1 231 930 2779 (U.S.) | +44 141 628 8787 (UK)

Read more here:
Stem Cell Therapy Market Revenue, Key Players, Supply-Demand, Investment Feasibility and Forecast By 2029: Osiris Therapeutics, NuVasive, Chiesi...