Author Archives: admin


USC scientist Ya-Wen Chen receives American Lung Association grant to advance stem cell-based lung therapies – USC News

USC Stem Cell scientist Ya-Wen Chen hopes to pioneer a new approach to regenerating damaged lung tissue, with support from a Catalyst Grant from the American Lung Association (ALA). The award provides $50,000 year for up to two years.

For many patients with chronic lung diseases, the only available treatment is transplantationa difficult, dangerous surgery that involves challenges ranging from the severe shortage of donor organs to immune rejection, said Chen, who is an assistant professor of medicine, and stem cell biology and regenerative medicine at USC. Even patients who are lucky enough to receive donor organs only have a 10 to 20 percent survival rate at 10 years. If we can encourage these patients own cells to repair damage and heal their lungs, we could dramatically improve this prognosis.

With this goal in mind, Chen is using human stem cells to generate rudimentary lung-like structures known as lung bud organoids. Within these organoids, Chens group will probe how a specific population of cells repairs the tiny gas-exchange interfaces called alveoli in damaged lungs.

Specifically, Chen is interested in a population of cells known as distal small airway epithelial progenitors or SAEPs, which could have the potential to improve lung function in patients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD). A group of lung diseases that includes chronic bronchitis and emphysema, COPD affects at least 16 million Americans and is the third leading cause of death in the U.S. An additional 200,000 Americans are living with IPF, a progressive, incurable and often deadly disease that, for unknown reasons, causes scar tissue to form in the lungs, impeding breathing.

Our ultimate goal is to leverage patients existing stem and progenitor cells to promote healing through a non-surgical, regenerative approach, said Chen, a member of the USC Hastings Center for Pulmonary Research, as well as USCs stem cell research center.

Chen is one of 98 scientists to receive research support from the ALA, which has committed $11.55 million total to support scientific investigations aimed at reducing the burden of lung disease.

Despite the fact that the pandemic poses significant economic challenges, said ALA President and CEO Harold Wimmer, the American Lung Association is prioritizing research and significantly increasing award funding to help improve the lung health of all Americans.

Link:
USC scientist Ya-Wen Chen receives American Lung Association grant to advance stem cell-based lung therapies - USC News

[Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT – Dove Medical Press

Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the major causes of cancer-associated illness and death, with more than 600,000 newly diagnosed cases worldwide each year1 and a continuously increasing incidence rate.2 HNSCC includes cancers of the oral cavity, pharynx, and larynx. The anatomical structures of the head and neck can be damaged by the tumor itself or treatments such as surgical resection and chemoradiotherapy, which sometimes cause speech, swallowing, and breathing impairments.3,4 Patients with HNSCC have been shown to bear greater psychological distress than those with other types of cancer.5

Despite the currently available therapies, patients with advanced HNSCC still experience poor outcomes.68 For example >50% of patients with locoregionally advanced HNSCC experience recurrence or metastases development within 3 years of treatment.911 Treatment options for patients with the recurrent and metastatic disease following progression after a platinum-based regimen are limited, and the median overall survival of such patients is less than 7 months.1215

The recurrence and metastasis of HNSCC are facilitated by immune evasion;16 therefore, as one of the methods to inhibit immune evasion, the use of programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway inhibitors is considered effective in the treatment of recurrent HNSCC.1719 Nivolumab, a fully human IgG4 antiPD-1 monoclonal antibody, has shown remarkable antitumor efficacy and safety when administered to patients with recurrent HNSCC whose disease had progressed within 6 months of platinum-based chemotherapy;19 Furthermore, nivolumab treatment has been shown to improve the quality of life of these patients.20 However, PD-1 inhibitors can upregulate T cells in vivo, which may lead to the development of graft-versus-host disease (GVHD) in patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT).2123 To the best of the authors knowledge, no studies have investigated the safety and efficacy of nivolumab in patients with HNSCC after allo-HSCT. Here, we report the case of a patient who experienced excellent control of left buccal squamous cell carcinoma with nivolumab after the failure of platinum-based chemotherapy despite receiving allogeneic bone marrow transplantation.

Without any family history of tumor, a 33-year-old man was diagnosed with Philadelphia chromosome-positive T cell acute lymphoblastic leukemia on March 19, 2014. He received one course of vincristine and prednisone therapy and four courses of vincristine, daunorubicin, cyclophosphamide, and prednisone therapy. He was in complete remission at the end of therapy. Subsequently, allogeneic bone marrow transplantation was performed; the donor was his human leukocyte antigen (HLA)-haploidentical sibling (sister). He experienced chronic GVHD (c GVHD) of the oral cavity and skin 3 months after transplantation, for which he was treated with steroid hormone- and cyclosporine-based therapies. Skin rejection lasted for more than 3 years. Imatinib mesylate was administered for 2 years after transplantation, and his leukemia was well controlled.

In August 2018, the patient developed an ulcer of approximately 0.5 0.5 cm size in the left buccal mucosa; the ulcer was slightly painful and covered with white moss. In September 2018, the patient was admitted to Peking University Stomatological Hospital, where a biopsy of the buccal mucosa was performed. The pathology results showed the presence of squamous cell carcinoma in the left cheek. Unfortunately, this patient was not a right candidate for HNSCC in terms of exposure to risk factors, such as long terms of smoking and drinking. On October 10, 2018, 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (CT) showed that the mass in the left cheek was metabolically active, which is consistent with the activity of a malignant tumor. One course of an adjuvant therapy regimen (nimotuzumab [200 mg d0] + docetaxel [60 mg d1, 8]+ nedaplatin [60 mg d2, 3]) was administered on October 26, 2018. Following this, the patient developed degree II thrombocytopenia and redness, swelling, and ulceration of the cheek, which had discharge with a peculiar smell. On November 29, 2018, a head and neck CT scan showed a left buccal malignant tumor with the destruction of the neighboring mandibular bone and lymph node enlargement in the left submaxillary region and right carotid sheath. The CT examination revealed disease progression. Following a multidisciplinary consultation in our hospital, surgery was not recommended; instead, a chemotherapy-based comprehensive treatment was recommended as a better option for the patient. The patient received chemotherapy with albumin paclitaxel (200 mg d1, 8)+ bleomycin (15,000 units d2, 9) from November 30, 2018 to January 9, 2019. On another CT scan, the curative effect was evaluated as partial remission (showed in Video 1, Figure 1A); subsequently, two courses of a chemotherapy regimen comprising nivolumab (140 mg d1) + albumin paclitaxel (200 mg d1, d8) were administered. A CT examination showed stable disease (SD) on March 12, 2019, following which the patient was administered 120 mg of nivolumab once every 2 weeks from March 15 to May 23, 2019. Another CT examination was performed on May 28, 2019 (showed in Video 2, Figure 1B). During the therapy course, the related tumor markers showed an overall downward trend, the new metastases did not appear, the patients status became better than before. Subsequently, another CT examination performed in August 02, 2019 showed the extent of the tumor was obvious reduction than before (showed in video 3, Figure 1C). And the corresponding CT report in August 02, 2019 was described as follows Compared with the CT on 28 May, 2019, the extent of the tumor in the left cheek became obviously smaller, the tubercle in the left submandibular and the lymph nodes in the left neck also became smaller. There were no other significant changes in this image. Most importantly, the patient did not develop any form of GVHD following nivolumab administration.

Figure 1 Head and neck CT images showing tumor before (A) and after treatment with nivolumab (B, C, respectively).

Abbreviation: CT, computed tomography.

Note: The arrows indicate the maximum length diameter of tumor or tumor site.

Reliable data on the clinical safety and efficacy of nivolumab in the treatment of recurrent or metastatic HNSCC have been obtained in a Phase III randomized clinical trial (CheckMate 141).19 In this trial, 361 patients with recurrent HNSCC for whom disease had progressed within 6 months after platinum-based chemotherapy were enrolled between May 29, 2014, and July 31, 2015. The median follow-up duration for overall survival (OS) was 5.1 months (range, 016.8 months). OS was significantly greater in patients randomized to receive nivolumab than in those who received standard second-line, single-agent systemic therapy with either methotrexate, docetaxel, or cetuximab (hazard ratio, 0.70; 97.73% confidence interval (CI), 0.510.96; P = 0.01). The median OS was 7.5 months (95% CI, 5.59.1) in the nivolumab group versus 5.1 months (95% CI, 4.06.0) in the standard therapy group. The one-year survival was also greater in patients who received nivolumab than in those who received standard therapy (36.0%vs. 16.6%). Furthermore, the response rate was higher in those who received nivolumab than in those who received standard therapy (13.3% vs 5.8%); however, the median progression-free survival was not significantly different between the groups (2.0 vs 2.3 months; P=0.32). In this study, patients who were treated with nivolumab had a longer OS than those treated with standard therapy, regardless of tumor PD-L1 expression or p16 status. Grade 3 or 4 treatment-related adverse events occurred in 13.1% of patients who received nivolumab and 35.1% of those who received standard therapy. Physical function, role functioning, and social functioning were stable in the nivolumab group, whereas they were substantially worse in the standard therapy group.20 Moreover, among Asian patients, the survival benefits were consistent with the global group.24

It was unclear whether nivolumab could be used in patients with recurrent HNSCC after allo-HSCT, though Khaddour et al proved the efficacy and safety of Pembrolizumab in patients who underwent allo-HSCT after relapsed and refractory Szary Syndrome and cutaneous squamous cell carcinoma.25 However, some case reports (Table 1) and clinical trials (Table 2) have reported the efficacy and safety of nivolumab when administrated to patients with recurrent hematological malignancies (mostly Hodgkins lymphoma) after allo-HSCT.

Table 1 Case Reports of Nivolumab Use After Allo-HSCT

Table 2 Studies on Nivolumab Use After Allo-HSCT

In Herbaux et al, nivolumab (3 mg/kg, once every 2 weeks) was administered to 20 patients with Hodgkins lymphoma who experienced relapse after allo-HSCT. The overall response rate was 95%, the 1-year progression-free survival rate was 58.2%, and the 1-year OS rate was 78.8%.26 Compared with other treatment options, nivolumab was more effective in these patients.2730 Haverkos et al reported results after a median follow-up duration was 428 days (range, 133833 days). After treatment with PD-1 inhibitors [nivolumab 3 mg/kg, once every 2 weeks (n = 28) and pembrolizumab (n =3)], the overall response rate of 31 patients with relapsed lymphoma after allo-HSCT was 77%, the median progression-free survival was 591 days (range,400644 days), and 68% of the patients survived to the end of the study.23 These two studies showed that nivolumab is effective when administered to patients with recurrent blood cancers after allo-HSCT, which is consistent with the results of several other case reports3134 and case series.35,36 The PD-1/PD-L1 pathway plays a key role in the regulation of the balance among T cell activation, T-cell tolerance, and immune-mediated tissue damage. This pathway protects healthy cells from excessive inflammatory or autoimmune responses.37,38 Some studies have shown that the activation of the PD-1/PD-L1 pathway can reduce acute and chronic GVHD, whereas its blockade can accelerate the graft-versus-host response and increase the associated mortality.21,22,39 It is unclear whether the PD-1 inhibitor nivolumab increases the risk of GVHD and the associated mortality in patients after allo-HSCT.23,26 Some clinical studies and case reports have shown that nivolumab treatment-related GVHD and consequent death in patients after allo-HSCT might be affected by the following factors. First, GVHD after antiPD-1 treatment has been observed most frequently in matched sibling donor transplants; for which Haverkos et al reported an incidence of 75%.23 In a Phase I pilot study, without GVHD or G3/G4 immune toxicity after receiving multiple doses of nivolumab was only among one patient whose donor source was Haploidentical+cord blood Fludarabine.40 Second, a history of GVHD, especially for the acute GVHD, may lead to an increased risk of nivolumab treatment-related GVHD after allo-HSCT. In a French cohort, all patients who presented with acute GVHD after nivolumab treatment had a prior history of acute GVHD, among which three patients presented with steroid-refractory nivolumab-induced GVHD, and GVHD was not observed among patients without a history of GVHD.26 This phenomenon was also observed in Steinerovs medical report.41 In the study by Haverkos et al, 63% of patients with a history of GVHD prior to antiPD-1 treatment developed treatment-emergent GVHD after receiving antiPD-1.23 Third, the shorter the interval between transplantation and nivolumab use, the greater the risk of GVHD. In the study by Herbaux et al, the median intervals between transplantation and nivolumab use in cases with the presence and absence of GVHD were 8.5 months and 28.5 months, respectively.26 In another study by Wang et al, the reported four patients all experienced immune-related adverse events following nivolumab treatment and the median time from transplantation to nivolumab use was 7.8 months.40 Fourth, dose is a risk factor for nivolumab treatment-related GVHD. In a case report, chronic skin GVHD was observed when the dose of nivolumab was adjusted from 0.5 mg/kg to 2 mg/kg.33 Other factors, such as immunosuppressive therapy at the time of nivolumab administration, may also influence nivolumab treatment-related GVHD. Recently, a comprehensive literature review was launched by Awais et al to assess the safety and efficacy of the use of checkpoint inhibitors (ipilimumab, nivolumab and pembrolizumab) in blood cancers before and after allo-HSCT. Collective data showed that checkpoint inhibitors use after allo-HSCT for post-transplant relapse had higher efficacy but the risk of GVHD was significant. Moreover, the investigation indicated that higher drug doses, shorter intervals between checkpoint inhibitors exposure and allo-HSCT and prior history of GVHD had a positive correlation with the risk of GVHD.42

In the present case, HNSCC was effectively controlled without any nivolumab treatment-related acute or chronic GVHD after nivolumab administration, while the weight loss being the only adverse event. After comprehensive analysis, we found that many factors may impede the development of nivolumab treatment-related GVHD in our patient. On one hand, the appropriate donor, no use of checkpoint inhibitors prior to allo-HSCT, the long interval between nivolumab administration and allo-HSCT (36 months) and the standard dose use of nivolumab were the negative factors for GVHD development. On the other hand, the chronic GVHD of the oral cavity and skin before nivolumab use might lead to the development of GVHD. However, it remained unknown what role the immunosuppressant therapy played in the occurrence of GVHD, though we definitely known that immunosuppressant was administered more than 2 years after allo-HSCT and discontinued for 2 years before treatment with nivolumab in our patient. Finally, whether the two primary cancers in our case affected the efficacy and safety of nivolumab by some unknown pathways were unclear, which needed further exploration.

Nivolumab has been shown to be effective in patients with HNSCC for whom platinum-based therapy has failed. However, little is known about the efficacy and safety of nivolumab in patients with HNSCC who have undergone allo-HSCT. Our case report shows that nivolumab could be used effectively and safely in such patients, however, more clinical trials are required to confirm these results.

This study was approved by the Medical Ethics Committee of Tianjin Medical University Cancer Institute and Hospital. The authors state that they have obtained verbal and written informed consent from the patient for the inclusion of their medical and treatment history within this case report.

This work was supported by the Tianjin Science and Technology Commission (18ZXXYSY00070), Key Task Project of Tianjin Health and Family Planning Commission (16KG128), Anticancer Key Technologies R&D Program of Tianjin (12ZCDZSY16200), and Natural Science Foundation of Tianjin (18JCYBJC91600).

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359E386. doi:10.1002/ijc.29210

2. Jakobsen KK, Gronhoj C, Jensen DH, et al. Increasing incidence and survival of head and neck cancers in Denmark: a nation-wide study from 1980 to 2014. Acta Oncol. 2018;57:11431151. doi:10.1080/0284186X.2018.1438657

3. Sobecki-Ryniak D, Krouse HJ. Head and neck cancer: historical evolution of treatment and patient self-care requirements. Clin J Oncol Nurs. 2013;17(6):659663. doi:10.1188/13.CJON.659-663

4. Licitra L, Mesia R, Keilholz U. Individualised quality of life as a measure to guide treatment choices in squamous cell carcinoma of the head and neck. Oral Oncol. 2016;52:1823. doi:10.1016/j.oraloncology.2015.10.020

5. Singer S, Krauss O, Keszte J, et al. Predictors of emotional distress in patients with head and neck cancer. Head Neck. 2012;34(2):180187. doi:10.1002/hed.21702

6. Licitra L, Felip E. Squamous cell carcinoma of the head and neck: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20(Suppl 4):121122. doi:10.1093/annonc/mdp149

7. Adelstein D, Gillison ML, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 2.2017. J Natl Compr Canc Netw. 2017;15(6):761770. doi:10.6004/jnccn.2017.0101

8. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(45):309316. doi:10.1016/j.oraloncology.2008.06.002

9. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350(19):19451952. doi:10.1056/NEJMoa032641

10. Blanchard P, Baujat B, Holostenco V, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site. Radiother Oncol. 2011;100(1):3340. doi:10.1016/j.radonc.2011.05.036

11. Tanvetyanon T, Padhya T, McCaffrey J, et al. Postoperative concurrent chemotherapy and radiotherapy for high-risk cutaneous squamous cell carcinoma of the head and neck. Head Neck. 2015;37(6):840845. doi:10.1002/hed.23684

12. Guardiola E, Peyrade F, Chaigneau L, et al. Results of a randomised Phase II study comparing docetaxel with methotrexate in patients with recurrent head and neck cancer. Eur J Cancer. 2004;40(14):20712076. doi:10.1016/j.ejca.2004.05.019

13. Vermorken JB, Herbst RS, Leon X, Amellal N, Baselga J. Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer. 2008;112(12):27102719. doi:10.1002/cncr.23442

14. Argiris A, Ghebremichael M, Gilbert J, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31(11):14051414. doi:10.1200/JCO.2012.45.4272

15. Saloura V, Cohen EEW, Licitra L, et al. An open-label single-arm, phase II trial of zalutumumab, a human monoclonal anti-EGFR antibody, in patients with platinum-refractory squamous cell carcinoma of the head and neck. Cancer Chemother Pharmacol. 2014;73(6):12271239. doi:10.1007/s00280-014-2459-z

16. Ferris RL. Immunology and Immunotherapy of head and neck cancer. J Clin Oncol. 2015;33(29):32933304. doi:10.1200/JCO.2015.61.1509

17. Chow LQM, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):38383845. doi:10.1200/JCO.2016.68.1478

18. Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956965. doi:10.1016/S1470-2045(16)30066-3

19. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):18561867. doi:10.1056/NEJMoa1602252

20. Harrington KJ, Ferris RL, Blumenschein G Jr, et al. Nivolumab versus standard, single-agent therapy of investigators choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, Phase 3 trial. Lancet Oncol. 2017;18:11041115. doi:10.1016/S1470-2045(17)30421-7

21. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171:12721277. doi:10.4049/jimmunol.171.3.1272

22. Saha A, Aoyama K, Taylor PA, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood. 2013;122:30623073. doi:10.1182/blood-2013-05-500801

23. Haverkos BM, Abbott D, Hamadani M, et al. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood. 2017;130:221228. doi:10.1182/blood-2017-01-761346

24. Kiyota N, Hasegawa Y, Takahashi S, et al. A randomized, open-label, Phase III clinical trial of nivolumab vs. therapy of investigators choice in recurrent squamous cell carcinoma of the head and neck: a subanalysis of Asian patients versus the global population in checkmate 141. Oral Oncol. 2017;73:138146. doi:10.1016/j.oraloncology.2017.07.023

25. Khaddour K, Musiek A, Cornelius LA, et al. Rapid and sustained response to immune checkpoint inhibition in cutaneous squamous cell carcinoma after allogenic hematopoietic cell transplant for szary syndrome. J Immunol Cancer. 2019;7:338. doi:10.1186/s40425-019-0801-z

26. Herbaux C, Gauthier J, Brice P, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed hodgkin lymphoma. Blood. 2017;129:24712478. doi:10.1182/blood-2016-11-749556

27. Peggs KS, Kayani I, Edwards N, et al. Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for hodgkins lymphoma. J Clin Oncol. 2011;29:971978. doi:10.1200/JCO.2010.32.1711

28. Anastasia A, Carlo-Stella C, Corradini P, et al. Bendamustine for Hodgkin lymphoma patients failing autologous or autologous and allogeneic stem cell transplantation: a retrospective study of the fondazione Italiana linfomi. Br J Haematol. 2014;166:140142. doi:10.1111/bjh.12821

29. Carlo-Stella C, Ricci F, Dalto S, et al. Brentuximab vedotin in patients with hodgkin lymphoma and a failed allogeneic stem cell transplantation: results from a named patient program at four Italian centers. Oncologist. 2015;20:323328. doi:10.1634/theoncologist.2014-0420

30. Tsirigotis P, Danylesko I, Gkirkas K, et al. Brentuximab vedotin in combination with or without donor lymphocyte infusion for patients with hodgkin lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:13131317. doi:10.1038/bmt.2016.129

31. Angenendt L, Schliemann C, Lutz M, et al. Nivolumab in a patient with refractory Hodgkins lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:443445. doi:10.1038/bmt.2015.266

32. Yared JA, Hardy N, Singh Z, et al. Major clinical response to nivolumab in relapsed/refractory hodgkin lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:850852. doi:10.1038/bmt.2015.346

33. Onizuka M, Kojima M, Matsui K, et al. Successful treatment with low-dose nivolumab in refractory hodgkin lymphoma after allogeneic stem cell transplantation. Int J Hematol. 2017;106:141145. doi:10.1007/s12185-017-2181-9

34. Shad AT, Huo JS, Darcy C, et al. Tolerance and effectiveness of nivolumab after pediatric T-cell replete, haploidentical, bone marrow transplantation: a case report. Pediatr Blood Cancer. 2017;64. doi:10.1002/pbc.26257

35. Godfrey J, Bishop MR, Syed S, Hyjek E, Kline J. PD-1 blockade induces remissions in relapsed classical hodgkin lymphoma following allogeneic hematopoietic stem cell transplantation. J Immunol Cancer. 2017;5:11. doi:10.1186/s40425-017-0211-z

36. El Cheikh J, Massoud R, Abudalle I, et al. Nivolumab salvage therapy before or after allogeneic stem cell transplantation in hodgkin lymphoma. Bone Marrow Transplant. 2017;52:10741077. doi:10.1038/bmt.2017.69

37. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677704. doi:10.1146/annurev.immunol.26.021607.090331

38. Francisco LM, Sage PT, Sharpe AH, The PD-1. pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219242.

39. Fujiwara H, Maeda Y, Kobayashi K, et al. Programmed death-1 pathway in host tissues ameliorates Th17/Th1-mediated experimental chronic graft-versus-host disease. J Immunol. 2014;193:25652573. doi:10.4049/jimmunol.1400954

40. Wang AY, Kline J, Stock W, et al. Unexpected toxicities when nivolumab was given as maintenance therapy following allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2020;26:10251027. doi:10.1016/j.bbmt.2020.01.021

41. Steinerov K, Jindra P, Lysk D, Karas M. Development of resistant GvHD in a patient treated with nivolumab for hodgkins lymphoma relapse after allogeneic unrelated transplantation. Klin Onkol. 2019;32:6669. doi:10.14735/amko201966

42. Ijaz A, Khan AY, Malik SU, et al. Significant risk of graft-versus-host disease with exposure to checkpoint inhibitors before and after allogeneic transplantation. Biol Blood Marrow Transplant. 2019;25:9499. doi:10.1016/j.bbmt.2018.08.028

43. Albring JC, Inselmann S, Sauer T, et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone marrow transplantation. 2017. doi:10.1038/bmt.2016.274

44. Covut F, Pinto R, Cooper BW, et al. Nivolumab before and after allogeneic hematopoietic cell transplantation. Bone marrow transplantation. 2017. doi:10.1038/bmt.2017.44

45. Herbaux C, Gauthier J, Brice P, et al. Nivolumab Is Effective and Reasonably Safe in Relapsed or Refractory Hodgkin's Lymphoma after Allogeneic Hematopoietic Cell Transplantation: A Study from the Lysa and SFGM-TC. Blood. 2015. doi:10.1182/blood.V126.23.3979.3979

46. Schoch LK, Borrello I, Fuchs EJ, et al. Checkpoint Inhibitor Therapy and Graft Versus Host Disease in Allogeneic Bone Marrow Transplant Recipients of Haploidentical and Matched Products with Post-Transplant Cyclophosphamide. Blood. 2016. doi:10.1182/blood.V128.22.4571.4571

47. Davids MS, Kim HT, Costello C, et al. Optimizing Checkpoint Blockade As a Treatment for Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation. Blood. 2017. doi:10.1182/blood.V130.Suppl_1.275.275

See the article here:
[Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT - Dove Medical Press

Drugs that trip cellular alarm could help clear out hibernating HIV – New Atlas

HIV can currently be managed with a lifelong daily drug regimen, but unfortunately the infection cant be eliminated entirely. Now, researchers have found a potential way to trip a cellular alarm to alert the immune system to clear out infected cells.

An HIV diagnosis is no longer a death sentence antiretroviral therapy (ART) can prevent the virus from replicating and spreading, letting patients live mostly normal lives. But the virus still lurks inside infected cells, ready to spring into action if the daily drug treatment is ever interrupted.

However, recent work has raised hopes that HIV might be completely curable in the not-too-distant future. Various studies have shown promise in ripping the virus from its hideout using kick and kill drug combos, immunotherapy, engineered stem cells, genetic kill switches, CRISPR gene-editing, or CRISPR and ART drugs together.

In the new study, researchers from Washington University in St. Louis identified a promising new method. They found that human immune cells have an alarm system called the CARD8 inflammasome, which detects a protein called HIV protease and marks the infected cell for destruction.

The problem is, HIV is crafty and it knows how to avoid detection. It silences that protein while inside cells, and usually only activates it once it leaves immune cells, where CARD8 cant reach it.

So for the new study, the researchers found a way to activate that protein while the virus is still inside the cell, where CARD8 can detect it and alert the immune system to destroy the infected cell. Using this method, HIV could be dragged out of hiding and eliminated from a patient entirely. Better yet, one of the drugs that makes HIV protease active again is efavirenz, an antiretroviral drug already in use for HIV.

Weve long used this class of drugs to block HIV from inserting its genetic material into new cells, says Liang Shan, senior author of the study. Thats their day job. But now, we have learned they have a second job activating HIV protease inside the infected cell. When we treat HIV-infected human T cells with this drug, the protease becomes activated before the virus successfully leaves the infected cells. This triggers the CARD8 inflammasome, and the infected cells die within hours. This is a potential route to clearing the virus that we have never been able to completely eliminate.

In tests in human cells in culture, the team showed that the technique worked to destroy the infected cells. It even worked against a range of HIV subtypes found around the world.

Of course, its still early days for the study, and theres no guarantee that the results would carry across to humans. Tests in animals will likely follow, before any trials in humans are conducted, but the method is another intriguing potential tool to add to our growing arsenal against HIV.

The research was published in the journal Science.

Source: Washington University in St. Louis

Read the original post:
Drugs that trip cellular alarm could help clear out hibernating HIV - New Atlas

Responses to Liso-Cel Not Influenced by Prior Treatment With Anti-CD19 Agents in R/R Large B-Cell Lymphoma – Targeted Oncology

A post-hoc analysis of the practice-changing TRANSCEND NHL 001 trial (NCT02631044) revealed that exposure to anti-CD19 therapy in patients with relapsed/refractory large B-cell lymphoma (LBCL), did not impact response to lisocabtagene maraleucel (liso-cel; Breyanzi).1

Data were presented during the 2021 Transplantation & Cellular Therapy Meeting and showed that among 12 patients who had previously received anti-CD19 therapy, 2 patients achieved a complete response (CR) as their best response to that treatment, 3 patients reported a partial response (PR), and 1 achieved stable disease. Five patients experienced disease progression, while 1 patients response status was unknown.

Results from the analysis showed that 92% (n = 11/12) experienced an objective response to liso-cel per independent review committee (IRC) assessment and Lugano criteria; this included 6 CRs (50%) and 5 PRs with the CAR T-cell therapy. Moreover, 5 patients experienced a duration of response (DOR) to liso-cel of 9 months or longer (range, 0.8-27.4), with 4 patients continuing to respond at the time of data cutoff.

The response rates reported in this subgroup proved to be comparable to those observed in the overall TRANSCEND NHL 001 study population. Of the 256 patients determined to be efficacy evaluable, which included those who were given at least 1 dose of liso-cel and had PET-positive disease per IRC, the objective response rate was 73% (95% CI, 66.8%-78.0%), with a CR rate of 53% (95% CI, 46.8%-59.4%).2 The median DOR had not been reached (95% CI, 8.6not reached [NR]). Moreover, the median progression-free survival (PFS) was 6.8 months in this population (95% CI, 3.3-14.1) and the median overall survival (OS) was 21.1 months (95% CI, 13.3-NR).

In this post-hoc analysis of a small subset of patients from TRANSCEND, patient response to liso-cel and liso-cel pharmacokinetics were not impacted by prior exposure to anti-CD19 therapy, Scott R. Solomon, MD, of the Blood and Marrow Transplant Program, Leukemia and Cellular Immunotherapy Program at the Northside Hospital Cancer Institute, and colleagues, wrote in a poster highlighting the data. Additional analyses on a larger number of patients with prior anti-CD19 therapy are warranted to confirm these findings.

An investigational, CD19-targeted, defined composition, 4-1BB CAR T-cell product, liso-cel is given at equal target doses of CD8 and CD4 T cells; the product has showcased safety and efficacy in patients with aggressive, relapsed/refractory LBCL in the TRANSCEND NHL 001 trial. Data from the trial led to theFebruary 2021 FDA approval of liso-cel for use in adult patients with certain types of large B-cell lymphoma who have not responded to, or who have relapsed after, at least 2 other types of systemic treatment.

The multicenter, pivotal, phase 1 trial enrolled adult patients aged 18 years or older with relapsed/refractory LBCL; this included those with diffuse large B-cell lymphoma (DLBCL); high-grade B-cell lymphoma with rearrangements of MYC and either BCL-2, BCL-6, or both; DLBCL transformed from an indolent lymphoma; primary mediastinal B-cell lymphoma; and follicular lymphoma. To be eligible for enrollment, patients had to have an ECOG performance status of 0-2, creatinine clearance of greater than 30 mL/min/1.73 m2, and a left ventricular ejection fraction of at least 40%.

Those who underwent prior hematopoietic stem cell transplantation and those with secondary central nervous system lymphoma were permitted. Notably, no lower threshold for absolute lymphocyte count, absolute neutrophil count, platelets, or hemoglobin, were established.

In the trial, patients were screened and then underwent leukapheresis where bridging therapy was permitted while the product was being manufactured. Once disease was reconfirmed via PET imaging, patients went on to receive lymphodepleting chemotherapy with fludarabine at 30 mg/m2 and cytarabine at 300 mg/m2, delivered over the course of 3 days. Two to 7 days after the chemotherapy, patients received liso-cel.

A total of 269 participants were assigned to 1 of 3 target dose levels of the CAR T-cell product: 50 106 CAR T cells (1 or 2 doses), 100 106, and 150 106; this was given as a sequential infusion of 2 components, CD8 and CD4 CAR T cells, at equal target doses.

The co-primary end points of the trial included adverse effects (AEs), dose-limiting toxicities, and ORR per Lugano criteria and IRC. Key secondary end points comprised CR rate by IRC, DOR, PFS, OS, and cellular kinetics.

For the post-hoc analysis, investigators looked at a subset of patients from the trial who had previously received CD19-targeted therapy before liso-cel to evaluate impact of the CAR T-cell product on safety and efficacy outcomes, as well as cellular kinetics.

The median age of the 12 patients in the subgroup of interest was 60.5 years, and 83% were male. Half of the patients had an ECOG performance status of 0, while the remainder had a status of 1. The median number of previous lines of treatment was 4. Fifty-eight percent of patients previously underwent transplantation and 67% were refractory to chemotherapy. Regarding histology, 58% had DLBCL not otherwise specified, 33% had DLBCL that was transformed from follicular lymphoma, and 8% had high-grade B-cell lymphoma.

Additional data showed that previous anti-CD19 therapy did not impact cellular kinetic parameters. Liso-cel demonstrated long-term persistence at 3 months in the majority, or 83% (n = 5/6), of those who received prior CD19-targeted treatment; persistence at 1 year was observed in 50% of patients (n = 2/4), which was comparable to those who did not receive previous CD19-targeted treatment.

Regarding safety, all patients in this subgroup experienced treatment-emergent AEs (TEAEs), 58% (n = 7) of which were grade 3 or higher. The most reported grade 3 or higher TEAEs included neutropenia (58%), thrombocytopenia (42%), and anemia (33%). Sixty-seven percent of patients reported all-grade cytokine release syndrome (CRS) and 42% experienced all-grade neurological effects with liso-cel. However, all toxicity rates proved to be comparable to those experienced by the overall study population and all CRS or neurological effects were either grade 1 or 2.

These findings suggest that liso-cel can be considered for the treatment of patients who have received prior anti-CD19 therapies, concluded Solomon.

References:

1. Solomon S, Mehta A, Abramson JS, et al. Experience of prior anti-CD19 therapy in patients with relapsed or refractory large B-cell lymphoma receiving lisocabtagene maraleucel (liso-cel), an investigational anti-CD19 chimeric antigen receptor T cell product. Presented at: 2021 Transplantation & Cellular Therapy Meeting; February 9-13, 2021; Virtual.

2. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839-852. doi:10.1016/S0140-6736(20)31366-0

Read the rest here:
Responses to Liso-Cel Not Influenced by Prior Treatment With Anti-CD19 Agents in R/R Large B-Cell Lymphoma - Targeted Oncology

Hemophilia Treatment Market Analysis to 2025 – Growth Trends and Changes Influencing the Industry – Technology Magazine

Global hemophilia treatment market is inclined to accumulate substantial returns over the ensuing years owing to the rising cases of genetic abnormalities and increasing prevalence of hemophilia. Hemophilia is a rare bleeding disorder, which causes incessant or prolonged bleeding after an injury or surgery due to delayed blood clotting. Quality care and efficient treatment can help prevent some serious consequences of the disorder.

Development of advanced treatment technologies such as hemophilia gene therapy is slated to further augment market growth in the succeeding years. Biotechnology companies have been particularly proactive in this regard, working on investigational gene therapies for patients with severe hemophilia A. Successful execution and approval of hemophilia gene therapy will have a substantial effect on hemophilia treatment market size in the future.

Request for a sample copy of this report @ https://www.gminsights.com/request-sample/detail/2772

Based on product, the recombinant factor concentrates segment is poised to exhibit a growth rate of 5% through 2025, as a result of low disease transmission risks and its prevention of viral infection. Additionally, the product is capable of increasing the replacement therapy safety.

The global hemophilia treatment market from the adult segment recorded revenue worth $6,778.2 million in 2018, as adult patients have high chances of developing moderate to severe hemophilia. As per authentic reports, over 65% of the patients diagnosed with hemophilia are adults.

With regards to the treatment spectrum, the global hemophilia treatment market from the prophylaxis treatment segment registered remuneration of $7,219.9 million in 2018 and is set to account for a major market share over the forecast spell, which can be credited to its effectiveness in treating bleeding episodes and joint pain.

Based on end-use, the hemophilia treatment centers segment is poised to register a growth rate of 4.6% through 2025, which can be attributed to the enhanced care services provided by these centers as compared to clinics and hospitals.

Major industry players have executed several growth strategies such as collaborations, new launches, and mergers to reinforce their position in the global hemophilia treatment market. In 2017, patients with hemophilia A received a more long-lasting option with Roches Hemlibra. The drug received approval from Health Canada for hemophilia A patients deprived of factor VIII inhibitors as routine prophylaxis to prevent bleeding or reduce its frequency. Increasing demand for Roches Hemlibra and similar medications among hemophilia A patients would escalate hemophilia treatment industry share.

The competitive landscape of the hemophilia treatment market comprises of companies such as Genentech, Biotest AG, Swedeish Orphan Biovitrum AB, and Sanofi SA, among others. These firms are focusing on expanding their stance in the global market through various strategies including partnerships and innovative product launches.

Request for customization @ https://www.gminsights.com/roc/2772

Partial Chapter of the Table of Content

Chapter 5. Hemophilia Treatment Market, By Product

5.1. Global market share by product, 2018 & 2025

5.2. Recombinant Factor Concentrates

5.2.1. Market size, by region, 2014 2025 (USD Million)

5.2.2. Factor VIII

5.2.2.1. Market size, by region, 2014 2025 (USD Million)

5.2.3. Factor IX

5.2.3.1. Market size, by region, 2014 2025 (USD Million)

5.3. Plasma-derived Factor Concentrates

5.3.1. Market size, by region, 2014 2025 (USD Million)

5.3.2. Factor VIII

5.3.2.1. Market size, by region, 2014 2025 (USD Million)

5.3.3. Factor IX

5.3.3.1. Market size, by region, 2014 2025 (USD Million)

5.4. Extended Half-life Products

5.4.1. Market size, by region, 2014 2025 (USD Million)

5.4.2. Factor VIII

5.4.2.1. Market size, by region, 2014 2025 (USD Million)

5.4.3. Factor IX

5.4.3.1. Market size, by region, 2014 2025 (USD Million)

5.5. Others

5.5.1. Market size, by region, 2014 2025 (USD Million)

Browse full table of contents (TOC) of this report @ https://www.gminsights.com/toc/detail/hemophilia-treatment-market

Read this article:
Hemophilia Treatment Market Analysis to 2025 - Growth Trends and Changes Influencing the Industry - Technology Magazine

Alpha Thalassemia Market Global Production, Growth, Share, Demand and Applications Forecast to 2027 NeighborWebSJ – NeighborWebSJ

Alpha Thalassemia Market Forecast 2020-2027

The Global Alpha Thalassemia Market research report provides and in-depth analysis on industry- and economy-wide database for business management that could potentially offer development and profitability for players in this market. This is a latest report, covering the current COVID-19 impact on the market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions. The rapidly changing market scenario and initial and future assessment of the impact is covered in the report. It offers critical information pertaining to the current and future growth of the market. It focuses on technologies, volume, and materials in, and in-depth analysis of the market. The study has a section dedicated for profiling key companies in the market along with the market shares they hold.

The report consists of trends that are anticipated to impact the growth of the Alpha Thalassemia Market during the forecast period between 2020 and 2027. Evaluation of these trends is included in the report, along with their product innovations.

Get a PDF Copy of the Sample Report for free @ https://www.upmarketresearch.com/home/requested_sample/39552

The Report Covers the Following Companies: Bluebird Bio Novartis Kiadis Pharma Acceleron Pharma

By Types: Iron Chelating Drugs Gene Therapy

By Applications: Hospitals Private clinics Other

Furthermore, the report includes growth rate of the global market, consumption tables, facts, figures, and statistics of key segments.

By Regions:

Grab Your Report at an Impressive Discount! Please click here @ https://www.upmarketresearch.com/home/request_for_discount/39552

Years Considered to Estimate the Market Size: History Year: 2015-2020 Base Year: 2020 Estimated Year: 2020 Forecast Year: 2020-2027

Important Facts about Alpha Thalassemia Market Report:

What Our Report Offers:

Make an Inquiry of This Report @ https://www.upmarketresearch.com/home/enquiry_before_buying/39552

About UpMarketResearch: Up Market Research (https://www.upmarketresearch.com) is a leading distributor of market research report with more than 800+ global clients. As a market research company, we take pride in equipping our clients with insights and data that holds the power to truly make a difference to their business. Our mission is singular and well-defined we want to help our clients envisage their business environment so that they are able to make informed, strategic and therefore successful decisions for themselves.

Contact Info UpMarketResearch Name Alex Mathews Email [emailprotected] Organization UpMarketResearch Address 500 East E Street, Ontario, CA 91764, United States.

https://neighborwebsj.com/

Here is the original post:
Alpha Thalassemia Market Global Production, Growth, Share, Demand and Applications Forecast to 2027 NeighborWebSJ - NeighborWebSJ

Creative Bioarray Offers Stem Cell Lines Generation Service for Promoting Scientific Research – Press Release – Digital Journal

Recently, Creative Bioarray announced the release of its stem cell line generation services in order to promote scientific research.

New York, USA - February 9, 2021 - Creative Bioarray, the world's leading biotechnology company focuses on offering high quality products and services including cell services, biosample services and histology services to accelerate life science research, help scientists solve complex analytical issues. Recently, Creative Bioarray announced the release of its stem cell line generation services in order to promote scientific research.

At present, stem cell research and application are focused on adult stem cells and iPSC, which is a technology called "reprogramming" to develop stem cells from somatic cells. Therefore, generating stem cell lines from different sources through different methods to maintain the high purity and viability of stem cells is extremely important in stem cell research. Creative Bioarray is committed to providing detailed data and comprehensive services for scientific research.

Adult stem cells provide a platform for different disease research or drug selection. The most common use of adult stem cells is MSC, which has basic functions in cell therapy, immunomodulation and gene therapy. Creative Bioarray can provide customers with stable and purified MSC lines and other adult stem cell lines in a short period of time to meet customer needs.

iPSC technology is a promising breakthrough in regenerative medicine. It was first proposed by Yamanaka in 2006. By reprogramming somatic cells such as fibroblasts and blood cells, iPSCs can be directly generated. Creative Bioarray provides customers with iPSC strains with high viability, which can be produced from different cell sources by globally recognized methods.

Creative Bioarray's advantages for stem cell lines generation services mainly include globally recognized advanced methods, stable and pure cell lines from reliable sources, service quality assurance, and detailed reports of experimental results.

"Creative Bioarray is an experienced and outstanding provider of stem cell research services. We are committed to providing detailed data and comprehensive services for your scientific research, and we are happy to use our rich experience and advanced platform to provide the best services to meet every customer's needs," said Hannah Cole, the marketing director of Creative Bioarray.

About Creative Bioarray

Founded in 2005, Creative Bioarray is dedicated to offering customers with innovative biotechnology products and services for research use to greatly enhance and drive innovation and standards in science. As a well-recognized industry leader with more than 10 years of experience and in-house experts supported, Creative Bioarray has already countenanced research all around the world.

Media Contact Company Name: Creative Bioarray Contact Person: Hannah Cole Email: Send Email Phone: 1-631-619-7922 Country: United States Website: https://www.creative-bioarray.com

More here:
Creative Bioarray Offers Stem Cell Lines Generation Service for Promoting Scientific Research - Press Release - Digital Journal

JSP191 With Low Dose Irradiation and Fludarabine is Safe and Effective for Patients with MRD+ AML/MDS – Cancer Network

JSP191 combined with low dose total body irradiation (TBI) and fludarabine is a safe, well-tolerated treatment option capable of clearing minimal residual disease (MRD)positive acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) in older adult patients undergoing nonmyeloablative allogeneic hematopoietic cell transplantation (HCT), according to a poster presented at the 2021 Transplantation and Cellular Therapy Meetings.

While the results of this phase 1 trial (NCT04429191) are early, the investigators emphasized that these data are the first to demonstrate that the antiCD117 monoclonal antibody is safe and effective in this disease cohort.

We are developing a first-in-class monoclonal antibody (mAb), JSP191, which targets and depletes normal and MDS/AML disease-initiating hematopoietic stem cells, wrote the investigators. JSP191 acts by inhibiting stem cell factor binding to CD117 present on HSC. We and others showed in pre-clinical models that HSC depletion can be enhanced by combining anti-CD117 mAb with low dose total body radiation.

The anti-CD117 monoclonal antibody was administered to a total of 6 patients intravenously at a dose of 0.6 mg/kg. Of note, the study population consisted of patients aged 60 years or older with MRD detected via cytogenetics, difference from normal flow cytometry, or next-generation sequencing (NGS).

The dual primary end points of the study are the safety and tolerability of JSP191 combined with low dose total body radiation and fludarabine and of JSP191 pharmacokinetics. The secondary end points include engraftment and donor chimerism, MRD clearance, event-free survival, and overall survival, among others.

The team used serum concentration of JSP191 determined by pharmacokinetics to establish the predicted JSP191 clearance and safety for the administration of fludarabine at 30 mg/m2 per day for 3 days, at days 4, -3, and -2 leading up to transplant.

At 28 days following transplant, 5 out of 6 patients showed signs of complete (>95%) donor CD15 myeloid chimerism in the peripheral blood.

To this point, there has been no evidence of significant infusion toxicities or JSP191-related serious adverse events. Also, a reduction or elimination of MRD in all subjects was seen at 28 days following transplant.

The research team explained that blood stem cell transplantation may offer the only curative therapy for many forms of both AML and MDS. Even though the current standard-of-care conditioning regimens administered before blood stem cell transplantation are well tolerated, they remain associated with increased relapse rates due to the prevalence of disease-causing hematopoietic stem cells and inadequate graft versus leukemia effect.

Further accrual for this study continues, while correlative analyses focusing on JPS191s impact with disease-initiating hematopoietic stem cells are ongoing.

References:

Muffly L, Kwon HS, Chin M, et al. Phase 1 study of JSP191, an anti-CD117 monoclonal antibody, with low dose irradiation and fludarabine in older adults with MRD-positive AML/MDS undergoing allogeneic HCT. Presented at the 2021 Transplantation and Cellular Therapy Meetings, held February 8-12, 2021. Abstract LBA5.

Read more here:
JSP191 With Low Dose Irradiation and Fludarabine is Safe and Effective for Patients with MRD+ AML/MDS - Cancer Network

JSP191 With Low Dose Irradiation and Chemotherpy Demonstrates Efficacy and Safety in MRD+ AML/MDS – Targeted Oncology

In older adult patients undergoing nonmyeloablative allogeneic hematopoietic cell transplantation (HCT), treatment with JSP191 combined with low dose total body irradiation (TBI) and fludarabine appears safe, well-tolerated treatment option capable of clearing minimal residual disease (MRD)positivity, according to a poster presented during the 2021 Transplantation and Cellular Therapy Meetings.

While the results of this phase 1 trial (NCT04429191) are early, the investigators emphasized that these data are the first to demonstrate that the antiCD117 monoclonal antibody is safe and effective in this disease cohort.

We are developing a first-in-class monoclonal antibody (mAb), JSP191, which targets and depletes normal and MDS/AML disease-initiating hematopoietic stem cells, wrote the investigators. JSP191 acts by inhibiting stem cell factor binding to CD117 present on HSC. We and others showed in pre-clinical models that HSC depletion can be enhanced by combining anti-CD117 mAb with low dose total body radiation.

The anti-CD117 monoclonal antibody was administered to a total of 6 patients intravenously at a dose of 0.6 mg/kg. Of note, the study population consisted of patients aged 60 years or older with MRD detected via cytogenetics, difference from normal flow cytometry, or next-generation sequencing (NGS).

The dual primary end points of the study are the safety and tolerability of JSP191 combined with low dose total body radiation and fludarabine and of JSP191 pharmacokinetics. The secondary end points include engraftment and donor chimerism, MRD clearance, event-free survival, and overall survival, among others.

The team used serum concentration of JSP191 determined by pharmacokinetics to establish the predicted JSP191 clearance and safety for the administration of fludarabine at 30 mg/m2 per day for 3 days, at days 4, -3, and -2 leading up to transplant.

At 28 days following transplant, 5 out of 6 patients showed signs of complete (>95%) donor CD15 myeloid chimerism in the peripheral blood.

To this point, there has been no evidence of significant infusion toxicities or JSP191-related serious adverse events. Also, a reduction or elimination of MRD in all subjects was seen at 28 days following transplant.

The research team explained that blood stem cell transplantation may offer the only curative therapy for many forms of both AML and MDS. Even though the current standard-of-care conditioning regimens administered before blood stem cell transplantation are well tolerated, they remain associated with increased relapse rates due to the prevalence of disease-causing hematopoietic stem cells and inadequate graft versus leukemia effect.

Further accrual for this study continues, while correlative analyses focusing on JPS191s impact with disease-initiating hematopoietic stem cells are ongoing.

References:

Muffly L, Kwon HS, Chin M, et al. Phase 1 study of JSP191, an anti-CD117 monoclonal antibody, with low dose irradiation and fludarabine in older adults with MRD-positive AML/MDS undergoing allogeneic HCT. Presented at the 2021 Transplantation and Cellular Therapy Meetings, held February 8-12, 2021. Abstract LBA5.

Read the original post:
JSP191 With Low Dose Irradiation and Chemotherpy Demonstrates Efficacy and Safety in MRD+ AML/MDS - Targeted Oncology

Human Embryonic Stem Cells Market Analysis By Growth …

The MarketWatch News Department was not involved in the creation of this content.

Japan, Japan, Tue, 09 Feb 2021 02:20:38 / Comserve Inc. / -- The report analyzes the international markets including development trends, competitive landscape analysis, investment plan, business strategy, opportunity, and key regions development status.

The government funding for the development of regenerative medicine has been increasing in most developed countries, because of its applications in organ transplantation, tissue engineering, and various other applications. In the United States, two major government agencies, National Institutes of Health (NIH) and California Institute of Regenerative Medicine (CIRM), fund almost all the translational researches and regenerative medicine development in the country. It is estimated that the United States government invests around USD 800-900 million every year in stem cell research. Additionally, other factors such as the high prevalence of cardiac and malignant diseases, and rising demand for regenerative medicines are expected to drive the market.

Key Market Trends

Stem Cell Biology Research Segment is Expected to Show Better Growth in the Forecast Years

Based on the application, it is segmented into regenerative medicine, stem cell biology research, tissue engineering, and toxicology testing. Stem cell biology research will show better growth, owing to the high prevalence of cardiac and malignant diseases. An article published by the ISSCR (International Society for Stem Cell Research) reported that the stem cells hold potential for the treatment of Parkinson's disease in humans. Recently, one of the market players, International Stem Cell Corporation (ISCO), received the patent covering methods for generating HLA homozygous parthenogenetic human stem cell lines from unfertilized eggs. The patent was issued in Australia. Furthermore, to boost the pace of stem cell research, the government is providing funding opportunities to researchers. Thus, owing to these factors, the market studied is expected to witness a high growth rate over the forecast period.

Click Here to Download Sample Report >> https://www.sdki.jp/sample-request-81122

North America Dominates the Human Embryonic Stem Cells Market

The human embryonic stem cells market is expected to dominate in the North America region owing to extensive research activities, along with high burden of chronic diseases and genetic disorders in the region. The United States also shows a high incidence of other diseases, such as diabetes, heart disease, renal failure, and osteoporosis. Human embryonic stem cells have high potential for use in treatment and may become a standard of care for these diseases. Additionally, the FDA has approved clinical trials, which indicated the use of stem cells. Hence, these factors are expected to influence the growth of the human embryonic stem cells market over the forecast period.

Competitive Landscape

The global players into the human embryonic stem cells market are Becton, Dickinson and Company, Cynata Therapeutics Limited, ESI BIO, Geron Corporation, International Stem Cell Corporation, Merck KGaA, PromoCell GmbH, STEMCELL Technologies Inc, Thermo Fisher Scientific and ViaCyte, Inc.

Reasons to Purchase this report:

- The market estimate (ME) sheet in Excel format - Report customization as per the client's requirements - 3 months of analyst support

Request For Full Report >>https://www.sdki.jp/sample-request-81122

1 INTRODUCTION 1.1 Study Deliverables 1.2 Study Assumptions 1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS 4.1 Market Overview 4.2 Market Drivers 4.2.1 High Prevalence of Cardiac and Malignant Diseases 4.2.2 Rising Demand for Regenerative Medicines 4.2.3 Increasing Support from Governments and Government and Private Institutions 4.3 Market Restraints 4.3.1 High Cost of the Procedure 4.3.2 Stringent Regulatory Guidelines 4.4 Porter's Five Forces Analysis 4.4.1 Threat of New Entrants 4.4.2 Bargaining Power of Buyers/Consumers 4.4.3 Bargaining Power of Suppliers 4.4.4 Threat of Substitute Products 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION 5.1 By Application 5.1.1 Regenerative Medicine 5.1.2 Stem Cell Biology Research 5.1.3 Tissue Engineering 5.1.4 Toxicology Testing 5.2 Geography 5.2.1 North America 5.2.1.1 United States 5.2.1.2 Canada 5.2.1.3 Mexico 5.2.2 Europe 5.2.2.1 Germany 5.2.2.2 United Kingdom 5.2.2.3 France 5.2.2.4 Italy 5.2.2.5 Spain 5.2.2.6 Rest of Europe 5.2.3 Asia-Pacific 5.2.3.1 China 5.2.3.2 Japan 5.2.3.3 India 5.2.3.4 Australia 5.2.3.5 South Korea 5.2.3.6 Rest of Asia-Pacific 5.2.4 Rest of World

6 COMPETITIVE LANDSCAPE 6.1 Company Profiles 6.1.1 Becton, Dickinson and Company 6.1.2 Cynata Therapeutics Limited 6.1.3 ESI BIO 6.1.4 Geron Corporation 6.1.5 International Stem Cell Corporation 6.1.6 Merck KGaA 6.1.7 PromoCell GmbH 6.1.8 STEMCELL Technologies Inc 6.1.9 Thermo Fisher Scientific 6.1.10 ViaCyte, Inc.

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

The dynamic nature of business environment in the current global economy is raising the need amongst business professionals to update themselves with current situations in the market. To cater such needs, Shibuya Data Count provides market research reports to various business professionals across different industry verticals, such as healthcare & pharmaceutical, IT & telecom, chemicals and advanced materials, consumer goods & food, energy & power, manufacturing & construction, industrial automation & equipment and agriculture & allied activities amongst others.

For more information, please contact:

Shibuya Data Count Email: sales@sdki.jp Tel: + 81 3 45720790

The post Human Embryonic Stem Cells Market Analysis By Growth, Emerging Trends , Future Opportunities and Forecast to 2025 appeared first on Comserveonline.

COMTEX_380504484/2652/2021-02-09T02:22:14

Is there a problem with this press release? Contact the source provider Comtex at editorial@comtex.com. You can also contact MarketWatch Customer Service via our Customer Center.

The MarketWatch News Department was not involved in the creation of this content.

Excerpt from:
Human Embryonic Stem Cells Market Analysis By Growth ...