Author Archives: admin


COVID-19-positive cancer patients undergoing active anticancer treatment: An analysis of clinical features and outcomes – DocWire News

This article was originally published here

Hematol Oncol Stem Cell Ther. 2020 Dec 24:S1658-3876(20)30180-1. doi: 10.1016/j.hemonc.2020.12.001. Online ahead of print.

ABSTRACT

BACKGROUND: Cancer patients, particularly those on active anticancer treatment, are reportedly at a high risk of severe coronavirus disease 2019 (COVID-19) infection and death. This study aimed to describe the clinical characteristics and outcomes of patients diagnosed with COVID-19 whilst on anticancer treatment in a developing country.

METHODS: This is a retrospective observational study of all adult cancer patients at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Pakistan, from March 15, 2020 to July 10, 2020, diagnosed with COVID-19 within 4 weeks of receiving anticancer treatment, where a purposive sampling was performed. Cancer patients who did not receive anticancer treatment and clinical or radiological diagnosis of COVID-19 without a positive reverse transcription-polymerase chain reaction (RT-PCR) test were excluded. The primary endpoint was all-cause mortality after 30 days of COVID-19 test. Data was analyzed with SPSS version 23 (SPSS Inc., Chicago, IL, USA). Categorical parameters were computed using chi-square test, keeping p value < 0.05 as significant.

RESULTS: A total of 201 cancer patients with COVID-19 were analyzed. The median age of patients was 45 (18-78) years. Mild symptoms were present in 162 (80.6%) patients, whereas severe symptoms were present in 39 (19.4%) patients. The risk of death was statistically significant (p < .05) amongst patients with age greater than 50 years, metastatic disease, and ongoing palliative anticancer treatment. Anticancer treatment (chemotherapy, radiotherapy, hormonal therapy, targeted therapy, and surgery) received within preceding 4 weeks had no statistically significant (p > .05) impact on mortality.

CONCLUSIONS: In cancer patients with COVID-19, mortality appears to be principally driven by age, advanced stage of the disease, and palliative intent of cancer treatment. We did not identify evidence that cancer patients on chemotherapy are at significant risk of mortality from COVID-19 correlating to those not on chemotherapy.

PMID:33387453 | DOI:10.1016/j.hemonc.2020.12.001

Read more:
COVID-19-positive cancer patients undergoing active anticancer treatment: An analysis of clinical features and outcomes - DocWire News

Cell Therapy Market 2020-2026 by Growth, Demand and Upcoming Business Opportunities – Farming Sector

The latest Cell Therapy Market report considers size, application segment, type, regional outlook, market demand, latest trends, as well as Cell Therapy Market share and revenue by manufacturers, the main company profiles, and forecasts of future growth potential. Analyses the current size of the market and its evolution in this sector over the coming years.

The report offers a critical hypothesis that identifies with the Cell Therapy Market by studying its breakdown. The global market with respect to Cell Therapy Market size, market share, growth factor, major supplier, revenue, product demand, sales size, quantity, cost structure, and new development in the Cell Therapy Market. The report also includes data on models and improvements, along with target industries and materials, limitations, and advancements. The formulation of this Cell Therapy Market research report has adopted the highest level of mind, practical solutions, dedicated research and analysis, innovation, integrated approaches, and advanced technology, among others. The insightful research report on the Cell Therapy Market includes Porters five forces analysis and SWOT analysis to understand the factors that influence the behavior of consumers and vendors.

Get | Download Sample Copy @ https://www.adroitmarketresearch.com/contacts/request-sample/611?utm_source=AD

Cell Therapy Market: Competitive Landscape

The competitive landscape of a market explains strategies incorporated by key players of the market. Key developments and shifts in management in recent years by players have been explained through company profiling. This helps readers to understand the trends that will accelerate the growth of the market. It also includes investment strategies, marketing strategies, and product development plans adopted by major players in the market. The market forecast will help readers make better investments.

Impact of Covid-19 in Cell Therapy Market: The utility-owned segment is mainly being driven by increasing financial incentives and regulatory supports from the governments globally. The current utility-owned Cell Therapy Market are affected primarily by the COVID-19 pandemic. Most of the projects in China, the US, Germany, and South Korea are delayed, and the companies are facing short-term operational issues due to supply chain constraints and lack of site access due to the COVID-19 outbreak. Asia-Pacific is anticipated to get highly affected by the spread of the COVID-19 due to the effect of the pandemic in China, Japan, and India.

Key Players Profiled in the Report on the Cell Therapy Market

JCR Pharmaceuticals Co., Ltd., Kolon TissueGene, Inc.; and Medipost and many more.

For more informative information, please visit us @ https://www.adroitmarketresearch.com/industry-reports/cell-therapy-market?utm_source=AD

Cell Therapy Market Regional Analysis Includes:

1. Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia) 2. Europe (Turkey, Germany, Russia UK, Italy, France, etc.) 3. North America (the United States, Mexico, and Canada.) 4. South America (Brazil etc.) 5. The Middle East and Africa (GCC Countries and Egypt.)

Cell Therapy Market: Segment Analysis

This section of the report includes segmentation such as application, product type, and end-user. These segmentations aid in determining parts of the market that will progress more than others. The segmentation analysis provides information about the key elements that are thriving the specific segments better than others. It helps readers to understand strategies to make sound investments. The global Cell Therapy market is segmented on the basis of product type, applications, and its end users.

Cell Therapy Market Segment by Type:

By Use & Type Outlook, (Clinical-use,By Cell Therapy Type,,Non-stem Cell Therapies,Stem Cell Therapies,BM, Blood, & Umbilical Cord-derived Stem Cells,Adipose derived cells,Others), By Therapeutic Area, (Malignancies,Muscoskeletal Disorders,Autoimmune Disorders,Dermatology,Others,Research-use), By Therapy Type, (Allogenic Therapies,Autologous Therapies)

Key Highlights of the Table of Contents:

1. Cell Therapy Market Study Coverage: It includes key market segments, key manufacturers covered, the scope of products offered in the years considered, Cell Therapy Market and study objectives. Additionally, it touches the segmentation study provided in the report on the basis of the type of product and applications.

2. Cell Therapy Market Executive summary: This section emphasizes the key studies, market growth rate, competitive landscape, market drivers, trends, and issues in addition to the macroscopic indicators.

3. Cell Therapy Market Production by Region: The report delivers data related to import and export, revenue, production, and key players of all regional markets studied are covered in this section.

4. Cell Therapy Market Profile of Manufacturers: Analysis of each market player profiled is detailed in this section. This segment also provides SWOT analysis, products, production, value, capacity, and other vital factors of the individual player.

Further Key Aspects Of The Report Indicate That:

Chapter 1: Market Definition and Segment by Type, End-Use & Major Regions Market Size Chapter 2: Global Production & Consumption Market by Type and End-Use Chapter 3: Europe Production & Consumption Market by Type and End-Use Chapter 4: America Production & Consumption Market by Type and End-Use Chapter 5: Asia Production & Consumption Market by Type and End-Use Chapter 6: Oceania Production & Consumption Market by Type and End-Use Chapter 7: Africa Production & Consumption Market by Type and End-Use Chapter 8: Global Market Forecast by Type, End-Use and Region Chapter 9: Company information, Sales, Cost, Margin, news etc. Chapter 10: Market Competition by Companies and Market Concentration Ratio Chapter 11: Market Impact by Coronavirus. Chapter 12: Industry Summary

If you have any custom requirements, please let us know and we will offer you the customized report as per your requirements.

Ask for Discount @ https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/611?utm_source=AD

About Us :

Contact Us :

Ryan Johnson Account Manager Global 3131 McKinney Ave Ste 600, Dallas, TX75204, U.S.A. Phone No.: USA: +1 972-362 -8199/ +91 9665341414

The rest is here:
Cell Therapy Market 2020-2026 by Growth, Demand and Upcoming Business Opportunities - Farming Sector

The real reason behind goosebumps – Jill Lopez

If you've ever wondered why we get goosebumps, you're in good company -- so did Charles Darwin, who mused about them in his writings on evolution. Goosebumps might protect animals with thick fur from the cold, but we humans don't seem to benefit from the reaction much -- so why has it been preserved during evolution all this time?

In a new study, Harvard University scientists have discovered the reason: the cell types that cause goosebumps are also important for regulating the stem cells that regenerate the hair follicle and hair. Underneath the skin, the muscle that contracts to create goosebumps is necessary to bridge the sympathetic nerve's connection to hair follicle stem cells. The sympathetic nerve reacts to cold by contracting the muscle and causing goosebumps in the short term, and by driving hair follicle stem cell activation and new hair growth over the long term.

Published in the journalCell, these findings in mice give researchers a better understanding of how different cell types interact to link stem cell activity with changes in the outside environment.

"We have always been interested in understanding how stem cell behaviors are regulated by external stimuli. The skin is a fascinating system: it has multiple stem cells surrounded by diverse cell types, and is located at the interface between our body and the outside world. Therefore, its stem cells could potentially respond to a diverse array of stimuli -- from the niche, the whole body, or even the outside environment," said Ya-Chieh Hsu, the Alvin and Esta Star Associate Professor of Stem Cell and Regenerative Biology, who led the study in collaboration with Professor Sung-Jan Lin of National Taiwan University. "In this study, we identify an interesting dual-component niche that not only regulates the stem cells under steady state, but also modulates stem cell behaviors according to temperature changes outside."

A system for regulating hair growth

Many organs are made of three types of tissue: epithelium, mesenchyme, and nerve. In the skin, these three lineages are organized in a special arrangement. The sympathetic nerve, part of our nervous system that controls body homeostasis and our responses to external stimuli, connects with a tiny smooth muscle in the mesenchyme. This smooth muscle in turn connects to hair follicle stem cells, a type of epithelial stem cell critical for regenerating the hair follicle as well as repairing wounds.

The connection between the sympathetic nerve and the muscle has been well known, since they are the cellular basis behind goosebumps: the cold triggers sympathetic neurons to send a nerve signal, and the muscle reacts by contracting and causing the hair to stand on end. However, when examining the skin under extremely high resolution using electron microscopy, the researchers found that the sympathetic nerve not only associated with the muscle, but also formed a direct connection to the hair follicle stem cells. In fact, the nerve fibers wrapped around the hair follicle stem cells like a ribbon.

"We could really see at an ultrastructure level how the nerve and the stem cell interact. Neurons tend to regulate excitable cells, like other neurons or muscle with synapses. But we were surprised to find that they form similar synapse-like structures with an epithelial stem cell, which is not a very typical target for neurons," Hsu said.

Next, the researchers confirmed that the nerve indeed targeted the stem cells. The sympathetic nervous system is normally activated at a constant low level to maintain body homeostasis, and the researchers found that this low level of nerve activity maintained the stem cells in a poised state ready for regeneration. Under prolonged cold, the nerve was activated at a much higher level and more neurotransmitters were released, causing the stem cells to activate quickly, regenerate the hair follicle, and grow new hair.

The researchers also investigated what maintained the nerve connections to the hair follicle stem cells. When they removed the muscle connected to the hair follicle, the sympathetic nerve retracted and the nerve connection to the hair follicle stem cells was lost, showing that the muscle was a necessary structural support to bridge the sympathetic nerve to the hair follicle.

How the system develops

In addition to studying the hair follicle in its fully formed state, the researchers investigated how the system initially develops -- how the muscle and nerve reach the hair follicle in the first place.

"We discovered that the signal comes from the developing hair follicle itself. It secretes a protein that regulates the formation of the smooth muscle, which then attracts the sympathetic nerve. Then in the adult, the interaction turns around, with the nerve and muscle together regulating the hair follicle stem cells to regenerate the new hair follicle. It's closing the whole circle -- the developing hair follicle is establishing its own niche," said Yulia Shwartz, a postdoctoral fellow in the Hsu lab. She was a co-first author of the study, along with Meryem Gonzalez-Celeiro, a graduate student in the Hsu Lab, and Chih-Lung Chen, a postdoctoral fellow in the Lin lab.

Responding to the environment

With these experiments, the researchers identified a two-component system that regulates hair follicle stem cells. The nerve is the signaling component that activates the stem cells through neurotransmitters, while the muscle is the structural component that allows the nerve fibers to directly connect with hair follicle stem cells.

"You can regulate hair follicle stem cells in so many different ways, and they are wonderful models to study tissue regeneration," Shwartz said. "This particular reaction is helpful for coupling tissue regeneration with changes in the outside world, such as temperature. It's a two-layer response: goosebumps are a quick way to provide some sort of relief in the short term. But when the cold lasts, this becomes a nice mechanism for the stem cells to know it's maybe time to regenerate new hair coat."

In the future, the researchers will further explore how the external environment might influence the stem cells in the skin, both under homeostasis and in repair situations such as wound healing.

"We live in a constantly changing environment. Since the skin is always in contact with the outside world, it gives us a chance to study what mechanisms stem cells in our body use to integrate tissue production with changing demands, which is essential for organisms to thrive in this dynamic world," Hsu said.

Read this article:
The real reason behind goosebumps - Jill Lopez

Synthetic lethality across normal tissues is strongly associated with cancer risk, onset, and tumor suppressor specificity – Science Advances

Abstract

Various characteristics of cancers exhibit tissue specificity, including lifetime cancer risk, onset age, and cancer driver genes. Previously, the large variation in cancer risk across human tissues was found to strongly correlate with the number of stem cell divisions and abnormal DNA methylation levels. Here, we study the role of synthetic lethality in cancer risk. Analyzing normal tissue transcriptomics data in the Genotype-Tissue Expression project, we quantify the extent of co-inactivation of cancer synthetic lethal (cSL) gene pairs and find that normal tissues with more down-regulated cSL gene pairs have lower and delayed cancer risk. Consistently, more cSL gene pairs become up-regulated in cells treated by carcinogens and throughout premalignant stages in vivo. We also show that the tissue specificity of numerous tumor suppressor genes is associated with the expression of their cSL partner genes across normal tissues. Overall, our findings support the possible role of synthetic lethality in tumorigenesis.

Cancers of different human tissues have markedly different molecular, phenotypic, and epidemiological characteristics, known as the tissue specificity in cancer. Various aspects of this intriguing phenomenon include a considerable variation in lifetime cancer risk, cancer onset age, and the genes driving the cancer across tissue types. The variation in lifetime cancer risk is known to span several orders of magnitude (1, 2). Such variation cannot be fully explained by the difference in exposure to carcinogens or hereditary factors and has been shown to strongly correlate with differences in the number of lifetime stem cell divisions (NSCD) estimated across tissues (2, 3). As claimed by Tomasetti and Vogelstein (2), these findings are consistent with the notion that tissue stem cell divisions can propagate mutations caused either by environmental carcinogens or random replication error (4). In addition, the importance of epigenetic factors in carcinogenesis has long been recognized (5), and Klutstein et al. (6) have recently reported that the levels of abnormal CpG island DNA methylation (LADM) across tissues are highly correlated with their cancer risk. Although both global (e.g., smoking and obesity) and various cancer typespecific (e.g., HCV infection for liver cancer) risk factors are well known (7), no factors other than NSCD and LADM have been reported to date to explain the across-tissue variance in lifetime cancer risk.

Besides lifetime cancer risk, cancer onset age, as measured by the median age at diagnosis, also varies among adult cancers (1). Although most cancers typically manifest later in life [more than 40 years old (1, 8)], some such as testicular cancer often have earlier onset (1). Many tumor suppressor genes (TSGs) and oncogenes are also tissue specific (911). For example, mutations in the TSG BRCA1 are predominantly known to drive the development of breast and ovarian cancer but rarely other cancer types (12). In general, factors explaining the overall tissue specificity in cancer could be tissue intrinsic (10, 13), and their elucidation can further advance our understanding of the forces driving carcinogenesis.

Synthetic lethality/sickness (SL) is a well-known type of genetic interaction, conceptualized as cell death or reduced cell viability that occurs under the combined inactivation of two genes but not under the inactivation of either gene alone. The phenomenon of SL interactions was first recorded in Drosophila (14) and then in Saccharomyces cerevisiae (15). In recent years, much effort has been made to identify SL interactions specifically in cancer, since targeting these cancer SLs (cSLs) has been recognized as a highly valuable approach for cancer treatment (1619). The effect of cSL on cancer cell viability has led us to investigate whether it plays an additional role even before tumors manifest, i.e., during carcinogenesis. In this study, we quantify the level of cSL gene pair co-inactivation in normal (noncancerous) human tissue as a measure of resistance to cancer development (termed cSL load, explained in detail below). We show that cSL load can explain a considerable level of the variation in cancer risk and cancer onset age across human tissues, as well as the tissue specificity of some TSGs. Together, these correlative findings support the effect of SL in impeding tumorigenesis across human tissues.

To study the potential effects of cSL in normal, noncancerous tissues, we define a measure called cSL load, which quantifies the level of cSL gene pair co-inactivation based on gene expression of normal human tissues from the Genotype-Tissue Expression (GTEx) dataset (20). Specifically, we used a recently published reference set of genome-wide cSLs that are common to many cancer types, identified from both in vitro and The Cancer Genome Atlas (TCGA) cancer patient data (21) via the identification of clinically relevant synthetic lethality (ISLE) (table S1A) (22, 23). For each GTEx normal tissue sample, we computed the cSL load as the fraction of cSL gene pairs (among all the genome-wide cSLs) that have both genes lowly expressed in that sample (Methods; illustrated in Fig. 1). We further defined tissue cSL load (TCL) as the median cSL load value across all samples of each tissue type in GTEx (Methods and table S2A). We then proceed to test our hypothesis that TCL can be a measure of the level of resistance to cancer development intrinsic to each human tissue (outlined in Fig. 1).

This diagram illustrates the computation of cSL load for each sample and each tissue type (i.e., TCL) and depicts the outline of this study, where we attempted to explain the tissue-specific lifetime cancer risk, cancer onset age, and TSGs using TCL. See main text and Methods for details.

SL is widely known to be context specific across species, tissue types, and cellular conditions (24). In theory, a cancer-specific cSL gene pair can be co-inactivated in the normal tissue without reducing normal cell fitness, while conferring resistance to the emergence of malignantly transformed cells due to the lethal effect specifically on the cancer cells. Different normal tissues can have varied TCLs (representing the levels of cSL gene pair co-inactivation) as a result of their specific gene expression profiles, and we hypothesized that normal tissues with higher TCLs should have lower cancer risk, as transforming cancerous cells in these tissues will face higher cSL-mediated vulnerability and lethality. To test this hypothesis, we obtained data on the tissue-specific lifetime cancer risk in humans (Methods) and correlated that with the TCL values computed for the different tissue types. We find a strong negative correlation between the TCL (computed from older-aged GTEx samples, age 50 years) and lifetime cancer risk across normal tissues (Spearmans = 0.664, P = 1.59 104; Fig. 2A and table S2A). This correlation is robust, as comparable results are obtained when this analysis is carried out in various ways (e.g., different cutoffs for low expression of genes, different cSL network sizes, and different cancer typenormal tissue mappings; fig. S1 and note S3). We also showed that this correlation is not confounded by the number of poised genes associated with bivalent chromatin, variation in cancer driver gene expression, and immune cell or fibroblast abundance (notes S11 to S13 and figs. S12 to S14). Notably, the cSL load varies with age due to age-related gene expression changes, and the correlation with lifetime cancer risk is not found when the TCL is computed on samples from the young population (20 age < 50 years, Spearmans = 0.0251, P = 0.901; fig. S2A); this is consistent with the observation that lifetime cancer risk is mostly contributed by cancers occurring in older populations (1). We still see a marked negative correlation between TCL and lifetime cancer risk when analyzing samples from all age groups together (Spearmans = 0.49, P = 0.01; fig. S2B). Repeating these analyses using different control gene pairs including (i) random gene pairs, (ii) shuffled cSL gene pairs, and (iii) degree-preserving randomized cSL network (same size as the actual cSL network; note S4) results in significantly weaker correlations (empirical P < 0.001; fig. S3, A to C, and note S4), confirming that the associations found with cancer risk results from a cSL-specific effect.

(A) Scatterplot showing Spearmans correlations between lifetime cancer risk and TCL computed for the older population (age 50 years) (ranked values are used as lifetime cancer risk spans several orders of magnitude.) (B) Lifetime cancer risks across tissues were predicted using linear models (under cross-validation) containing different sets of explanatory variables: (i) TCL only, (ii) the number of stem cell divisions (NCSD) only, and (iii) TCL and NSCD (27 data points). The prediction accuracy is measured by Spearmans , shown by the bar plots. The result of a likelihood ratio test between models (ii) and (iii) is also displayed. (C) A similar bar plot as in (B) comparing the predictive models for cancer risk involving the following variables: (i) TCL only, (ii) the LADM only, and (iii) TCL and LADM combined (21 data points only due to the smaller set of LADM data). A model containing all the three variables does not increase the prediction power (Spearmans = 0.77 under cross-validation) and is not shown. (D) Bar plot showing the correlations between lifetime cancer risk with TCLs computed (age 50 years) using subsets of cSLs: hcSLs, lcSLs, and all cSLs. Spearmans and P values are shown. The hcSLs and lcSLs are identified using data of matched TCGA cancer types and GTEx normal tissues (Methods), which correspond to only a subset of tissue types. To facilitate comparison, here, the correlation for all cSLs was also computed for the same subset of tissues, and therefore, the resulting correlation coefficient is different from that in (A).

While the randomized cSL networks used in the control tests described above provide significantly weaker correlations with cancer risk than those observed with cSLs, many of these correlations are still significant by themselves (fig. S3, B and C). This suggests that there may be a possible association between the expression of single genes in the cSL network (cSL genes) and cancer risk. To investigate this, we computed the tissue cSL single-gene load (SGL; the fraction of lowly expressed cSL genes) for each tissue (Methods). We do find a significant negative correlation between tissue SGL levels and cancer risk (Spearmans = 0.49, P = 0.01; fig. S3D and note S5). This correlation vanishes when we use random sets of single genes (fig. S3F). However, after controlling for the single-gene effect, the partial correlation between TCL and cancer risk is still highly significant (Spearmans = 0.69, P = 6.10 105; fig. S3G), pointing to the dominant role of the SL genetic interaction effect (note S5).

We next compared the predictive power of TCL to those obtained with the previously reported measures of NSCD (2, 3) and LADM (6), using the set of GTEx tissue types investigated here (Methods). We first confirmed the strong correlations of NSCD and LADM with tissue lifetime cancer risk in our specific dataset (Spearmans = 0.72 and 0.74, P = 2.6 105 and 1.3 104, respectively; fig. S4). These correlations are stronger than the one we reported above between TCL and cancer risk. However, adding TCL to either NSCD or LADM in linear regression models leads to enhanced predictive models of cancer risk compared to those obtained with NSCD or LADM alone [log-likelihood ratio (LLR) = 2.18 and 2.39, P = 0.037 and 0.029, respectively]. Furthermore, adding TCL to each of these factors increases their prediction accuracy under cross-validation (Spearmans s from 0.67 and 0.69 with NSCD and LADM alone to 0.71 and 0.77, respectively; Fig. 2, B and C). LADM and NSCD are significantly correlated (Spearmans = 0.66, P = 0.02), while the TCL correlates only in a borderline significant manner with either NSCD (Spearmans = 0.57, P = 0.06) or LADM (Spearmans = 0.52, P = 0.08). Together, these observations support the hypothesis that TCL is associated with tissue cancer risk, with a partially independent role from either NSCD or LADM.

We have shown results that support the role of TCL in impeding cancer development, and we reason that such an effect is dependent on the notion that many of the cSLs are specific to cancer while having weaker or no lethal effects in normal tissues. We tested and found that the co-inactivation of cSL gene pairs is under much weaker negative selection in GTEx normal tissues versus matched TCGA cancers [Wilcoxon rank sum test P = 2.93 106 (fig. S5A), also shown using cross-validation (note S7)]. Moreover, we hypothesize that those cSLs with the highest specificity to cancer (i.e., with the strongest SL effect in cancer and no or the weakest effect on normal cells) should have the strongest effect on cancer development. To test this, we identified the subset of such cSLs (termed highly specific cSLs or hcSLs) and those with the lowest specificity to cancer (termed lowly specific cSLs or lcSLs; Methods) and recomputed the TCLs of all normal GTEx tissues using these two cSL subsets, respectively. The TCLs computed from the hcSLs correlate much stronger with cancer lifetime risk than those computed from the lcSLs (Spearmans = 0.593 versus 0.319; Fig. 2D), testifying that these cSLs with high functional specificity to cancer are more relevant to carcinogenesis. These hcSLs are enriched for cell cycle, DNA damage response, and immune-related genes [false discovery rate (FDR) < 0.05; table S5 and Methods], which are known to play key roles in tumorigenesis.

We have thus established that TCL in the older population is inversely correlated with lifetime cancer risk across tissues. We next hypothesized that higher cSL load in a given normal tissue in the young population may delay cancer onset, which typically occurs later (age >40 years) (1). To test this, we use the median age at cancer diagnosis (1) of a certain tissue as its cancer onset age (table S3 and Methods). We find that the TCL values (for age 40 years) are markedly correlated with cancer onset age (Spearmans = 0.502, P = 0.011; Fig. 3A). This result is again robust to variations in our methods to compute TCL and cancer onset age (fig. S6, table S3, and note S3). We note that the cancer onset age is not significantly correlated with lifetime cancer risk (Spearmans = 0.279, P = 0.28).

(A) Scatterplot showing Spearmans correlations between cancer onset age and TCL (age 40 years). (B) Bar plot showing the correlations between cancer onset age with TCLs computed (age 40 years) using subsets of cSLs: hcSLs, lcSL, and all cSLs. Spearmans and P values are shown. As in Fig. 2D, this analysis was done for a subset of GTEx normal tissues for which we had matched TCGA cancer types to identify the hcSLs and lcSLs (Methods); therefore, the correlation result for all cSLs is also different from that in (A).

Similar to our earlier analysis, we see that the TCLs computed from the hcSLs correlate much stronger with onset age than those from the lcSLs or all cSLs (Spearmans = 0.603 versus 0.157; Fig. 3B and fig. S7A) and also stronger than those obtained from control tests performed as before (empirical P < 0.001; fig. S7, B to D). As with the case of cancer risk, the observed correlation is dominated by the SL genetic interaction effects rather than the single-gene effects (fig. S7, E to G, and note S5).

To further corroborate the relevance of cSL load to carcinogenesis, we next investigated whether carcinogen treatment in normal (noncancer) cell lines and primary cells in vitro can lead to cSL load decrease. First, we analyzed gene expression data from a recent study where human primary hepatocytes, renal tube epithelial cells, and cardiomyocytes were treated with the carcinogen and hepatotoxin thioacetamide-S-oxide (25). We computed the cSL load in each cell type after treatment versus control and found a significant decrease of cSL load only in the hepatocytes (Wilcoxon rank sum test P = 0.014; Fig. 4A), which is consistent with thioacetamide-S-oxides role as a hepatotoxin and a carcinogen primarily in the liver. Second, we collected the gene expression signatures of chemotherapy drug treatments in a total of four primary cells and normal cell lines from the Connectivity Map (CMAP) (26). We quantified the drug-induced cSL load changes indirectly from the gene signatures (Methods), comparing the strongly mutagenic DNA-targeting drugs (n = 6) including alkylating agents and DNA topoisomerase inhibitors to the weak/nonmutagenic taxanes and vinca alkaloids (n = 5), which act on the cytoskeleton and not directly on DNA (27). We find that the strong mutagenic chemotherapy drugs lead to a significantly larger decrease in cSL load (Fig. 4B, P = 0.03 from a linear model controlling for cell type; Methods). The strong mutagenicity of alkylating agents and DNA topoisomerase inhibitors is consistent with their mechanisms of actions; they are also World Health Organization class I carcinogens (28), supported by incidence of secondary cancers in patients treated by these drugs for their primary cancers (29). In contrast, taxanes and vinca alkaloids have shown negative or weak/inconclusive results in mutagenic tests (27, 30). These results are not likely affected by cell death, as the cSL decreased specifically only for the two classes among all tested chemotherapy drugs. Although the CMAP dataset used for this analysis does not include cell viability information, the gene expression of the cells does not show an apoptotic signature after the drug treatment.

(A) Box plots showing the cSL loads in control versus thioacetamide-S-oxidetreated samples in human primary hepatocytes (liver), renal tube epithelial cells (kidney), and cardiomyocytes (heart), using the data from (25). One-sided Wilcoxon rank-sum test P values are shown. (B) Box plots showing the cSL load changes after treatment by different classes of chemotherapy drugs in four cell types, using the CMAP data (26). Asterisk indicates that the cSL load change is estimated indirectly from the CMAP drug treatment gene expression signatures (Methods). Strongly mutagenic drugs (n = 6), including alkylating agents (green points) and DNA topoisomerase inhibitors (purple points), lead to a significantly larger cSL load decrease compared to weak or nonmutagenic drugs (n = 5), including taxanes (red points) and vinca alkaloids (blue points); P = 0.03 from a linear model controlling for cell type. HA1E is an immortalized kidney cell line; PHH, primary human hepatocyte; ASC, adipose-derived stem cell; SKB, human skeletal myoblast. (C) Box plots showing the cSL load in samples of different stages of premalignant lesions in the lung (including normal tissue and lung squamous cell carcinoma) (28). The cSL load shows an overall decreasing trend from normal to different pre-cancer stages to cancer (one-sided Wilcoxon rank sum test of normal versus cancer P = 4.47 105; ordinal logistic regression has negative coefficient 28.7, P = 5.89 107).

Further beyond these in vitro findings, analyzing a recently published lung cancer dataset (31), we find that cSL load decreases progressively as cancers develop from normal tissues throughout the multiple stages of premalignant lesions in vivo (normal versus cancer Wilcoxon rank sum test P = 4.47 105, ordinal logistic regression P = 5.89 107 with negative coefficient 28.7; Fig. 4C). These results provide further evidence supporting cSL as a factor that may be involved in cancer development.

Given the role of cSLs in cancer development, we turned to ask whether cSL may also contribute to the tissue/cancer-type specificity of TSGs (10, 32). Specifically, we reasoned that the loss of function of a gene is unlikely to have cancer-driving effects in tissues where its cSL partner genes are lowly expressed, due to the synthetic lethal effect of such co-inactivation on the emerging cancer cells. In other words, this gene is unlikely to be a TSG in such tissues. To study this hypothesis, we obtained a list of TSGs together with the tissues in which their loss is annotated to have a tumor-driving function from the COSMIC database (table S6A) (11). We further identified the cSL partner genes of each such TSG using ISLE (Methods and table S6B) (22). In total, there are 23 TSGs for which we were able to identify more than one cSL partner gene. Consistent with our hypothesis, we find that in most of the cases, the cSL partner genes of TSGs have higher expression levels in the tissues where the TSGs are known drivers compared to the tissues where they are not established drivers (binomial test for the direction of the effect P = 0.023; Fig. 5A). We identified 10 TSGs whose individual effects are significant (FDR < 0.05) and cSL specific (as shown by the random control test), and all these 10 cases exhibit the expected direction of effect (labeled in Fig. 5A and table S6C; two example TSGs, FAS and BRCA1, are shown in Fig. 5B, details are in fig. S8 and Methods). Reassuringly, these findings disappear under randomized control tests involving random partner genes of the TSGs and shuffled TSGtissue type mappings (note S9), further consolidating the role of cancer-specific cSLs of normal tissues in cancer risk and development.

(A) For each tissue-specific TSG gene Gi, the expression levels of its cSL partner genes in the tissue type(s) where gene Gi is a TSG were compared to those where gene Gi is not an established TSG, using GTEx normal tissue expression data. The volcano plot summarizes the result of comparison with linear models. Positive linear model coefficients (x axis) mean that the expression levels of the cSL partner genes are, on average, higher in the tissue(s) where gene Gi is a TSG. Many cases have near-zero P values and are represented by points (half-dots) on the top border line of the plot. Overall, there is a dominant effect of the cSL partner genes of TSGs having higher expression levels in the tissues where the TSGs are known drivers (binomial test P = 0.023). All TSGs with FDR < 0.05 that also passed the random control tests are labeled. (B) Examples of two well-known TSGs, FAS and BRCA1, are given. The heatmaps display the normalized expression levels of their cSL partner genes (rows) in tissues of where these two genes are known to be TSGs [according to the annotation from the COSMIC database (11)] and in tissues where they are not established TSGs (columns), respectively. High and low expressions are represented by red and blue, respectively. For clarity, one typical tissue type where the TSG is a known driver (e.g., testis for FAS) and three other tissue types where the TSG is not an established driver (and the least frequently mutated) are shown.

In this work, we show that the cSL load in normal tissues is a strong predictor of tissue-specific lifetime cancer risk and is much stronger than the pertaining predictive power observed on the individual gene level. Consistently, we find that higher cSL load in the normal tissues from young people is associated with later onset of the cancers of that tissue. As far as we know, no other factor has been previously reported to be predictive of cancer onset age across tissues. Furthermore, cSL load decreases upon carcinogen treatment in vitro and during cancer development through stages of precancerous lesions in vivo. Last, we show that the activity status of cSL partners of TSGs can explain their tissue-specific inactivation.

We have shown that the correlation between cSL and cancer risk in normal tissues may be explained by the fact that many of the cSLs are specific to cancer and have weak or no functional lethal effect in the normal tissues (Figs. 2D and 3B and fig. S5); therefore, normal tissues can bear relatively high cSL loads without being detrimentally affectedquite to the contrary, they become more resistant to cancer due to the latent effect of these cSLs on potentially emerging cancer cells. We emphasize that while we quantified the cSL loads using the normal tissue data from GTEx, the set of cSLs we used was derived exclusively in cancer from completely independent cancer datasets (and without using any information regarding lifetime cancer risk, onset, or tumor suppressor tissue specificity), so there is no circularity involved. The cSL load in normal tissues was computed to reflect the summed effects of individual cSL gene pairs. The underlying assumption is that the low expression of each cSL gene pair is synthetic sick (i.e., reducing cell fitness to some extent) and that the effects from different cSL gene pairs are additive, consistent with the ISLE method of cSL identification (22). Many experimental screenings of SL interactions also rely on techniques such as RNA interference that inhibits gene expression rather than completely knocks out a gene (33), and it is evident that most of the resulting SL gene pairs have milder than lethal effects. While these cSLs likely act via a diverse range of biological pathways and thus do not provide pathway-specific mechanisms, the additive cancer-specific lethal effect of such cSL gene pairs, however, could form a negative force impeding cancer development from normal tissues.

Obviously, as we are studying the across-tissue association between cSL load and cancer risk, it is essential to focus on cSLs that are common to many cancer types (i.e., pan-cancer). Therefore, we focused on cSLs identified computationally by ISLE via the analysis of the pan-cancer TCGA patient data (22). In contrast, most experimentally identified cSLs are obtained in specific cancer cell lines and are thus less likely to be pan-cancer [and possibly, less clinically relevant (22)]. However, for completeness, we also compiled a set of experimentally identified cSLs from published studies (22, 34) (note S1 and table S1B). The corresponding TCL values computed using this set of cSLs correlate significantly with lifetime cancer risk but not with cancer onset age; the correlation with cancer risk is also markedly weaker than that obtained from ISLE-derived cSLs [Spearmans = 0.433, P = 0.024 (fig. S9A), control tests and detailed analysis are explained in note S4]. These experimentally identified cSLs can explain some cases of tissue-specific TSGs including BRCA1 and BRCA2 (fig. S9E) but do not result in overall significant accountability for a large proportion of TSGs present in the analysis (like in Fig. 5A). This corroborates the importance of pan-cancer cSLs and their relevance to cancer risk.

TCL is not likely to be a corollary of NSCD and LADM [while LADM was thought to be closely related to NSCD (6)], as the cSL load is computed by analyzing expression data of bulk tissues, where stem cells occupy only a minor proportion. We have shown that TCL significantly adds to either NSCD or LADM in predicting lifetime cancer risk (Fig. 2, B and C), which also suggests that cSL load is an independent factor correlated with cancer risk with unique underlying mechanisms. Furthermore, NSCD is measured as the product of the rate of tissue stem cell division and the number of stem cells residing in a tissue (2), and we confirmed that TCL is correlated with lifetime cancer risk independent of both of these components (partial Spearmans = 0.510 and 0.567, P = 0.007 and 0.002, respectively; fig. S10, A and B). We additionally tested and verified that proliferation indices computed for the bulk normal tissues do not correlate with lifetime cancer risk across tissues (Spearmans = 0.062, P = 0.77; fig. S10C and note S10). Furthermore, we verified that our observed correlations are not confounded by the number of samples from each cancer or tissue type (fig. S11).

Since cSL load can vary with age, one may wonder whether cSL load could be extended to correlate with age-specific cancer risk within a tissue (as opposed to across tissues). However, variations in cancer risk across tissues and across ages can be driven by different factors. We did not find a consistent correlation between cSL load computed by age range and age-specific cancer risk in all tissue types (note S14 and fig. S15). Another extension to our current research question is studying the effect of higher-order genetic interactions on cancer risk, which is plausible but challenging to study due to the limited knowledge available on such complex interactions.

While revealing cSL as a previously unknown factor associated with cancer development, our study has several limitations. First, because of the importance of using pan-cancer cSLs as discussed above, we mainly relied on the cSLs computationally inferred by ISLE (22) as one of the most comprehensive pan-cancer cSL datasets. However, current cSL prediction algorithms are far from perfect and should not be regarded as the gold standard for general cSL identification. Only a minor fraction of the large number of predicted cSLs have been experimentally validated only in specific cell types. The cSLs inferred by ISLE should be best viewed as a set of candidate cSL pairs that emerge from genetic screen data in vitro but with further support from patient and phylogenetic data. Future studies that provide experimentally validated pan-cancer cSLs are needed to consolidate our current findings. Second, we have relied on analyzing the gene expression data of bulk tissues from GTEx and not the expression data of the specific cells of origin of the corresponding cancers. More refined future analysis is desirable using single-cell data across normal human tissues as such data becomes more widely available. Last, our study does not establish a causal relationship between the cSL load and the risk of cancer, as it is challenging to experimentally perturb a large number of cSLs simultaneously. The results shown are descriptive and association based, and the causal role of SLs in carcinogenesis remains to be studied mechanistically.

Together, our findings demonstrate strong associations between SL and cancer risk, onset time, and context specificity of tumor suppressors across human tissues. This suggests that beyond the effect on cancer after it has developed, cSL could also play an important role during the entire course of carcinogenesis, although further studies are needed to establish causality. While SL has been attracting tremendous attention as a way to identify cancer vulnerabilities and target them, this is the first time that its potential role in mediating cancer development is uncovered.

The cSL gene pairs computationally identified by the ISLE (identification of clinically relevant SL) pipeline were obtained from (22). We used the cSL network identified with FDR < 0.2 for the main text results, containing 21,534 cSL gene pairs, which is a reasonable size representing only about one cSL partner per gene on average. This also allows us to capture the effects of many weak genetic interactions. Nevertheless, we also used the cSL network with FDR < 0.1 (only 2326 cSLs) to demonstrate the robustness of the results to this parameter (notes S1 and S3). Each gene pair is assigned a significance score [the SL-pair score defined in (22)], that a higher score indicates that there is stronger evidence that the gene pair is SL in cancer. Out of these, we used 20,171 cSL gene pairs whose genes are present in the GTEx data (table S1A). The experimentally identified cSL gene pairs were collected from 18 studies [obtained from the supplementary data 1 of Lee et al. (22) except for those from Horlbeck et al. (34)]. Horlbeck et al. (34) provided a gene interaction (GI) score for each gene pair in two leukemia cell lines. Gene pairs with GI scores of <1 in either cell line were selected as cSLs. A total of 27,975 experimentally identified cSLs were obtained, out of which 27,538 have both their genes present in the GTEx data (table S1B).

The V6 release of GTEx (20) RNA sequencing (RNA-seq) data [gene-level reads per kilobase of transcript, per million mapped reads (RPKM) values] was obtained from the GTEx Portal (https://gtexportal.org/home/). The associated sample phenotypic data were downloaded from dbGaP (35) (accession number phs000424.vN.pN). For comparing the level of negative selection to co-inactivation of cSL gene pairs between normal and cancer tissues, the RNA-seq data of TCGA and GTEx as RNA-seq by expectation-maximization (RSEM) values that have been processed together with a consistent pipeline that helps to remove batch effects were downloaded from UCSC Xena (36). The expression data for each tissue type (normal or cancer) was normalized separately (inverse normal transformation across samples and genes) before being used for the downstream analyses. We mapped the GTEx tissue types to the corresponding TCGA cancer types (table S2B), resulting in one-on-many mappings, e.g., the normal lung tissue was mapped to both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC).

Lifetime cancer risk denotes the chance a person has of being diagnosed with cancer during his or her lifetime. Lifetime cancer risk data (table S2A) are from Tomasetti and Vogelstein (2), which are based on the U.S. statistics from the SEER (Surveillance, Epidemiology, and End Results) database (1). We derived the cancer onset age based on the age-specific cancer incidence data from the SEER database with the standard formula (37). Specifically, for each cancer type, SEER provides the incidence rates for 5-year age intervals from birth to 85+ years old. The cumulative incidence (CI) for a specific age range S is computed from the corresponding age-specific incidence rates (IRi, i S) as CI = 5i SIRi, and the corresponding risk is computed as risk = 1 exp(CI). The onset age for each cancer type (table S3) was computed as the age when the CI from birth is 50% of the lifetime CI (i.e., birth to 85+ years old). Usually, the onset age defined as such is between two ages where the actual CI data are available, so the exact onset age was obtained by linear interpolation. Alternative parameters were used to define onset age (note S3) to show the robustness of the correlation between TCL and cancer onset age based on different definitions.

For each sample, we computed the number of cancer-derived SL gene pairs that have both genes lowly expressed and divided it by the total number of cSLs available to get the cSL load per sample. In the ISLE method described in (22), low expression was defined as having expression levels below the 33 percentile in each tissue or cell type. Thus, the ISLE-derived cSL gene pairs were shown to exhibit synthetic sickness effects when both genes in the gene pair are expressed at levels below the 33 percentile in each tissue, even though this appears to be a very tolerant cutoff (22). We therefore adopted the same criterion for low expression for the main results, although we also explored other low expression cutoffs to demonstrate the robustness of the results (note S3).

TCL of each tissue type is the median value of the cSL loads of all the samples (or a subpopulation of samples) in that tissue, with the cSL load of a sample computed as above. For example, TCL for the older population (age 50 years) is the median cSL load for the samples of age 50 years in each tissue type. For analyzing the correlation between the TCLs computed from GTEx normal tissues and cancer risk, we mapped the GTEx tissue types to the corresponding cancer types for which lifetime risk data are available from Tomasetti and Vogelstein (2), resulting in 16 GTEx types mapped to 27 cancer types (table S2A). Gallbladder nonpapillary adenocarcinoma and osteosarcoma of arms, head, legs, and pelvis are not mapped to GTEx tissues and excluded from our analysis. Similarly for the correlation between TCLs and cancer onset age, we mapped GTEx tissue types to the tissue sites from the SEER database (as given in the data slot site recode ICD-O-3/WHO 2008) by their names (table S3).

To investigate the effect on the single-gene level, we computed the cSL SGL in a paralleling way to the computation of the cSL load. Among all the unique genes constituting the cSL network (i.e., cSL genes), we computed the fraction of lowly expressed cSL genes for each sample as the cSL SGL, where low expression was defined in the same way as the computation of cSL load as elaborated above. Similarly, tissue cSL SGL is the median value of the cSL SGLs of all the samples in a tissue.

The lifetime cancer risks across tissue types were predicted with linear models containing three different sets of explanatory variables: (i) the number of total stem cell divisions (NSCD) alone, (ii) TCL alone, and (iii) NSCD together with TCL. LLR test was used to determine whether model (iii) (the full model) is significantly better than model (i) (the null model) in predicting lifetime cancer risks. The three models were also used to predict the lifetime cancer risks with a leave-one-out cross-validation procedure, and the prediction performances were measured by Spearman correlation coefficient. A similar analysis was performed to predict lifetime cancer risks across tissue types with three linear models involving the level of abnormal DNA methylation levels of the tissues (6): (i) the number of LADM alone, (ii) TCL alone, and (iii) LADM together with TCL.

For each pair of GTEx normalTCGA cancer of the same tissue type (table S2B), we computed the fraction of samples where a cSL gene pair i has both genes lowly expressed (defined above) among the normal samples (fni) and cancer samples (fci) and computed a specific score as rsi = fni fci. We selected the hcSLs as those whose specific scores are greater than the 75% percentile of all scores and lcSLs as those with a score below the 25% percentile (table S4, A and B). We compared SL significance scores between the hcSLs and lcSLs in each tissue using a Wilcoxon rank sum test. For each type of the GTEx normal tissues used in this analysis (i.e., those that can be mapped to TCGA cancer types), we also computed the TCL as above but using the hcSLs, lcSLs, or all cSLs, respectively, and analyzed their correlation with lifetime cancer risk or cancer onset age across the tissues.

We designed an empirical enrichment test as below to account for the fact that each cSL consists of two genes. For the hcSLs in each tissue type and each given pathway from the Reactome database (38), we computed the odds ratio (OR) for the overlap between the genes in hcSLs and the genes within the pathway based on the Fishers exact test procedure, with the background being all the genes in the ISLE-inferred cSLs. A greater than 1 OR indicates that the hcSLs are positively enriched for the genes of the pathway. To determine the significance of the enrichment, we repeatedly and randomly sampled the same number of cSLs as that of the hcSLs, computed the ORs similarly, and computed the empirical P value as the fraction of cases where the OR from the random cSLs is greater than that from the hcSLs. We corrected for multiple testing across pathways with the Benjamini-Hochberg method.

The phase I CMAP (26) data were downloaded from the Gene Expression Omnibus database (GSE92742). Level 5 data that represent the consensus perturbation-induced differential expression signature were used. We focused on CMAP data that involve treatment by specific classes of chemotherapy drugs (mutagenic: alkylating agents and DNA topoisomerase inhibitors; nonmutagenic: taxanes and vinca alkaloids) in normal cell lines or primary cells. We identified a total of 11 drugs tested in four cell types. Given the signature (z score) of a drug treatment in a cell, we estimated the drug-induced cSL load change as follows1|S|((i,j)SI(zi<0.5zj<0.5)(i,j)SI(zi>0.5zj<0.5))where S is the set of cSLs, and |S| is the total number of cSL gene pairs. A gene pair is denoted by (i, j), and zi and zj are the z scores of gene i and gene j, respectively. I() is the indicator function. Intuitively, the above formula quantifies the number of cSL gene pairs where both genes are down-regulated with a z score cutoff of 0.5 (i.e., contributing to cSL load increase), minus the number of cSL gene pairs where either gene is up-regulated with a z score cutoff of 0.5 (i.e., contributing to cSL load decrease), normalized by the total number of cSL gene pairs. We then tested whether the mutagenic drugs lead to a larger decrease in cSL load compared to nonmutagenic drugs with a linear model that controls for both cell type and drug.

We obtained the list of TSGs and their associated tissue types from the COSMIC database (11) (https://cancer.sanger.ac.uk/cosmic/download, the Cancer Gene Census data; table S6A). For each TSG, their cSL partner genes were identified using the ISLE pipeline (22) with an FDR cutoff of 0.1 (table S6B). Here, the FDR cutoff is more stringent than that used for the pan-cancer genome-wide cSL network (FDR < 0.2 for the main results) since, here, FDR correction was performed for each TSG, corresponding to a much lower number of multiple hypotheses. As a result, the FDR correction has more power, and a relatively more stringent cutoff can give rise to a more reasonable number of cSL partner genes per TSG. We focused our analysis on 23 TSGs for which more than one cSL partner genes were identified (no cSL partner was identified for most of the other TSGs). The expression levels of the cSL partner genes were then compared between tissue type(s) where the TSG is a known driver and the rest of the tissues where the TSG is not an established driver with linear models. Specifically, the expression levels of the cSL partners were modeled with two explanatory variables: (i) driver status of the TSG in the tissue (binary) and (ii) cSL partner gene (categorical, indicating each of the cSL partner genes of a TSG). The coefficient and P value associated with variable (i) were used to analyze the general trend of differential expression among the cSL partner genes. Positive coefficients of variable (i) means that the expression levels of the cSL partner genes are, on average, higher in the tissue(s) where the TSG is a known driver compared to those in the tissues where the TSG is not an established cancer driver.

Read the original here:
Synthetic lethality across normal tissues is strongly associated with cancer risk, onset, and tumor suppressor specificity - Science Advances

New Approaches to the Treatment of Relapsed or Refractory Diffuse Large B-cell Lymphoma – Targeted Oncology

In the United States, the most common of the aggressive non-Hodgkin lymphomas (NHLs) is diffuse large B-cell lymphoma (DLBCL), which accounts for between 22% and 24% of newly diagnosed B-cell NHL cases.1 Although DLBCL can affect children and young adults, it is most commonly diagnosed in individuals between the ages of 65 and 74 years, with a median age at diagnosis of 66 years.2,3 Given the aggressive nature of DLBCL, patients often present with lymphadenopathy, extranodal involvement, and other constitutional symptoms that require immediate treatment.1

The treatment spectrum for DLBCL has expanded significantly in recent years, particularly for patients with relapsed or refractory (R/R) disease. Mechanisms of action differ greatly among agents, reflecting the complex pathophysiology and genetic variations of the disease. This article reviews the advances in DLBCL understanding that have led to the approval of new agents and subsequent utilization of new mechanisms.

The current standards of care for first-line DLBCL treatment include the combination chemoimmunotherapy regimen of rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone (R-CHOP). The varying numbers of cycles and use in combination with or without radiotherapy (RT) depends upon the stage of disease at presentation.1 The addition of rituximab to CHOP was associated with a 2-year event-free survival of 57% in elderly patients in a 2002 randomized trial (LNH-98.5), which, along with results of other trials, led to the FDA approval of this combination therapy.4,5 Although durable remission can be achieved with R-CHOP in about 60% of patients, its use has resulted in poorer long-term outcomes for patients with double-hit and triple-hit lymphomas (DHL and THL).1

In 2007, the International Harmonization Project issued guidelines on malignant lymphoma response criteria, defining relapsed disease as consisting of new lesions greater than 1.5 cm in any axis during or after the completion of therapy or a 50% or greater increase in the sum of the product of diameters of a previously involved node(s) or other lesion(s).6 The authors also defined refractory, or progressive, disease as entailing a 50% or greater increase in the size of a lymph node with a prior short-axis diameter of less than 1.0 cm to a size of 1.5 cm 1.5 cm (or a long-axis size of > 1.5 cm).6

For patients with R/R disease, high-dose chemotherapy and autologous stem cell transplant (ASCT) may offer the chance for cure, but several factors may limit the utility of this approach. For example, in the treatment of patients with MYC-positive R/R DLBCL, ASCT is considered controversial because it has produced poorer outcomes in patients with DHL.1 Additionally, patients who are older or have comorbidities may be inappropriate candidates for this approach,7 and patients with disease that is unresponsive to second-line chemotherapy may have poorer prognoses (ie, poorer rates of long-term survival) and incur added toxicity from the chemotherapy.7 Even when including patients who undergo high-dose, salvage chemotherapy and subsequent ASCT, patients with R/R DLBCL have a 1-year survival rate of 28%.1 Hence, in a search for improved outcomes in the R/R setting, clinical studies have focused on DLBCL subtypes, especially in those ineligible for transplant or who have relapsed following transplant.1

Another option for patients in the relapsed setting is chimeric antigen receptor (CAR) T-cell therapy, which entails the genetic modification of autologous T cells via cloned DNA plasmids carrying a viral recombinant vector in addition to T-cell receptor-expressing genes. CAR T-cell therapy plays an important role in the R/R DLBCL setting, with reported 2-year remissions and a complete response (CR) rate in 40% of patients and 25% DHL/THL patients.1 Other therapeutic classes that have been explored for DLBCL include phosphoinositide 3-kinase (PI3K) inhibitors, B-cell lymphoma 2 (BCL2) inhibitors, and checkpoint inhibitors.1,8-10

Given reduced survival in patients who are unresponsive to subsequent lines of therapy and the toxicity involved, a great need exists for novel agents in the R/R DLBCL setting. Recent entrants to the R/R DLBCL treatment landscape include the antibody-drug conjugate (ADC) polatuzumab vedotin-piiq, the selective inhibitor of nuclear export, selinexor, and the monoclonal antibody tafasitamab-cxix (TABLE 111-20).

Polatuzumab vedotin-piiq was approved by the FDA in 2019 and is indicated in combination with bendamustine and rituximab in adults with RR DLBCL not otherwise specified, following at least 2 previous therapies.11 It is an ADC wherein the monoclonal antibody is linked to an antimitotic agent, monomethyl auristatin E (MMAE). The ADC targets the B-cell surface protein CD79B and, after binding to the surface protein, is internalized by the cell. Lysosomal enzymes then cleave the link between the antibody and MMAE, the latter of which binds microtubules, thereby inhibiting cell division and inducing apoptosis.11

A 2020 phase 1b/2 study (NCT02257567) randomized patients with R/R DLBCL who were ineligible for ASCT to receive polatuzumab vedotin-piiq with bendamustine and rituximab (pola-BR) or bendamustine and rituximab (BR) alone.12 The phase 2 primary end point was CR; secondary end points included overall response rate (ORR) at end of treatment, superior overall response, duration of response (DOR), and progression-free survival (PFS) assessed per independent review committee (IRC).12 With a median follow-up of 22.3 months, the CR was significantly higher in the pola-BR group (40% vs 17.5% in the BR group; P = .026).12 Overall survival rate was also significantly higher in the pola-BR group (12.4 vs 4.7 months in the BR group; HR, 0.42; 95% CI, 0.24-0.75; P = .002).12 Similarly, median PFS was significantly longer at 9.5 months in the pola-BR group compared with 3.7 months in the BR group (HR, 0.36; 95% CI, 0.21-0.63; P < .001).12 Also, DOR was longer at 12.6 months in the pola-BR group vs 7.7 months in the BR group (HR, 0.47; 95% CI, 0.19-1.14).12 Finally, the pola-BR group had a 58% reduction in risk of death compared with the BR group (HR, 0.42; 95% CI, 0.24-0.75; P = .002).12 In terms of safety, grade 3/4 anemia, neutropenia, thrombocytopenia, and peripheral neuropathy occurred more frequently in the pola-BR group than in the BR group.12 Polatuzumab vedotin-piiq was deemed an effective agent that might provide a therapeutic option for patients with R/R DLBCL who were not ideal candidates for CAR T-cell therapy.12

In 2020, selinexor was approved by the FDA for use in adult patients with R/R DLBCL (including follicular lymphoma-derived DLBCL) after at least 2 lines of systemic treatment.13 Selinexor inhibits nuclear export of tumor suppressor proteins by blocking exportin 1.13

The FDA approval was based on results of the open-label single-arm phase 2 SADAL trial (NCT02227251), which included patients 18 years or older with DLBCL (based on pathologic confirmation) with an Eastern Cooperative Oncology Group (ECOG) score of 2 or less, who had 2 to 5 lines of prior therapy, and who had progressed following or were ineligible for ASCT.14 The primary end point of the SADAL trial was ORR (comprising patients with CR or PR per 2014 Lugano criteria), with secondary end points consisting of DOR and disease control rate.14 Patients received the 60-mg oral selinexor on the first and third day of each week until disease progression or unacceptable toxicity occurred.14

The updated phase 2b ORR was 28.3% with a disease control rate of 37% (95% CI, 28.6-46.0). Of 36 responders, CRs were reported in 13 evaluable patients and PRs were reported in 23 patients. At a median follow-up of 11.1 months, the median DOR was 9.3 months (95% CI, 4.8-23.0). For those with a CR, median DOR was 23.0 months (95% CI, 10.4-23.0); median DOR was 4.4 months for those with a PR (95% CI, 2.0not evaluable).14,15 To address potential differences by subtype, the SADAL trial also included a subgroup analysis of patients with the germinal center B-cell (GCB)like subtype (n = 59), which demonstrated an ORR of 33.9%, a 14% CR rate, and a 20% PR rate, whereas the patients with a non-GCB subtype (n = 63) had an ORR of 20.6%. At the time of data cutoff, 7% (n = 9) of patients showed continuing response.14,15 The SADAL trial also included 5 patients with the unclassified subtype, in 1 of whom a CR was achieved and in 2 of whom a PR was achieved.15 With respect to safety, 98% of patients in the SADAL trial had at least 1 treatment-emergent adverse event (TEAE). The most frequent grade 3/4 events were thrombocytopenia, neutropenia, anemia, fatigue, hyponatremia, and nausea.14 Among serious AEs affecting 48% of patients, the most common were pyrexia, pneumonia, and sepsis.14 Gastrointestinal AEs were reported in 80% of patients, hyponatremia in 61%, and central neurologic events (which included dizziness and altered mental status) in 25%.16 Trial investigators concluded that selinexor improved survival considerably and that it presented a nonchemotherapy oral option for patients with R/R DLBCL.14

Tafasitamab-cxix is a CD19-targeting monoclonal antibody that gained FDA approval in 2020 for use with lenalidomide in adults with R/R DLBCL who are ineligible for ASCT, including patients with low-grade lymphoma derived DLBCL.17 Tafasitamab-cxix binds to the pre-B and mature B-lymphocyte surface antigen CD19, which is expressed in DLBCL and other B-cell malignancies.17 Tafasitamab-cxix, once bound to CD19, facilitates B-lymphocyte lysis via apoptosis and immune effector mechanisms that encompass antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis.17

The FDA approval of tafasitamab-cxix was based on data from the phase 2, single-arm, multicenter, open-label L-MIND trial (NCT02399085).17,18 The L-MIND trial included patients 18 years or older with R/R DLBCL who had received 1 to 3 previous therapies ( 1 of which incorporated a CD20-directed regimen), had an ECOG score of 0 to 2, and were ASCT ineligible.18 Patients were administered tafasitamab-cxix and lenalidomide in 28-day cycles and continued to receive tafasitamab-cxix every 2 weeks after cycle 12 until disease progression.18 Objective response rate (ie, PR and CR) was the primary end point per IRC, which implemented PET imaging; secondary end points included investigator-assessed objective response rate, DOR, OS, PFS, biomarker analyses, and safety.18 Eighty patients were included in the full analysis set (FAS), receiving tafasitamab-cxix plus lenalidomide.18 Of the FAS, the objective response rate was 60.0% (95% CI, 48.4%-70.8%) and the CR rate was 42.5% (34/80).18 The rate of patients achieving a 12-month DOR rate was comparable across subgroups, with 70.5% of patients who received 1 prior line of therapy achieving a 12-month DOR (95% CI, 47.2%-85.0%) and 72.7% of patients who had 2 or more prior lines of therapy achieving a 12-month DOR (95% CI, 46.3%-87.6%).18

Outcomes in patients with GCB DLBCL (n = 37) were promising, with an objective response rate of 48.6%, a 12-month DOR rate of 53.5%, and a 12-month OS rate of 65.4% (based upon the Hans algorithm). Outcomes in patients with non-GCB DLBCL (n = 21) were an improvement over those with the GCB subtype, with an objective response rate of 71.4%, a 12-month DOR rate of 83.1%, and a 12-month OS rate of 84.2%.18 IRC-evaluated data from a 2-year follow up of the L-MIND trial showed an objective response rate of 58.8% (47/80) and CR rate of 41.3% (33/80).19 The 2-year follow up data also showed a median DOR of 34.6 months, with a 31.6-month median OS and a 16.2-month median PFS.19

Safety data from the preliminary L-MIND trial results showed that the most frequent TEAEs (of any grade) were neutropenia (48%), thrombocytopenia (32%), anemia (31%), diarrhea (30%), pyrexia (22%), and asthenia (20%).20 A lenalidomide dose reduction was required in 42% of patients; 72% of patients could remain on daily lenalidomide at 20 mg or higher.20 Trial investigators concluded that the combination of tafasitamab-cxix and lenalidomide was well tolerated and did not lead to compounded AEs.20

The promising data from recent trialsparticularly from their DLBCL subtype based subgroupsunderscore the importance of understanding the unique prognoses and responses that these subtypes confer on patient outcomes. The establishment of DLBCL subtypes as prognostic and therapeutic response factors has fueled a search for more specific molecular targets in the disease process. In addition, the importance of subtype characterization is evidenced by ongoing diagnostic assay development (for use in conjunction with immunohistochemistry). As exemplified by the patient populations in these trials, new therapeutic options with distinct mechanisms of actions are needed for patients with R/R DLBCL who are ineligible for ASCT. Multiple studies of targeted agents in the R/R DLBCL setting are under way that include CAR T-cell, bispecific T-cell engager, programmed death receptor 1 (PD-1) inhibitor, and BCL2 inhibitor therapies.1 Continued development of clinically applicable diagnostics holds promise for improved prognostic capability and assessment of therapeutic response. With improved diagnostics, further elucidation of DLBCL-driver mutations can continue to provide additional DLBCL subtype-specific options and, hence, more treatments tailored to individual patients.

References 1. Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2019;94(5):604-616. doi:10.1002/ajh.25460 2. Diffuse large B-cell lymphoma. Lymphoma Research Foundation. Accessed October 12, 2020. https://lymphoma.org/aboutlymphoma/nhl/dlbcl/ 3. Cancer stat facts: NHL diffuse large B-cell lymphoma (DLBCL). National Cancer Institute. Accessed October 12, 2020. https://seer.cancer.gov/statfacts/html/dlbcl.html 4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large B-cell lymphoma. N Engl J Med. 2002;346(4):235-242. doi:10.1056/NEJMoa011795 5. Rituxan plus CHOP approved for diffuse large B-cell lymphoma. Cancer Network. February 28, 2006. Accessed November 6, 2020. https://www.cancernetwork.com/view/rituxan-plus-chop-approved-diffuse-large-b-cell-lymphoma 6. Cheson BD, Pfistner B, Juweid ME, et al; International Harmonization Project on Lymphoma. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579-586. doi:10.1200/JCO.2006.09.2403 7. Elstrom RL, Martin P, Ostrow K, et al. Response to second-line therapy defines the potential for cure in patients with recurrent diffuse large B-cell lymphoma: implications for the development of novel therapeutic strategies. Clin Lymphoma Myeloma Leuk. 2010;10(3):192-196. doi:10.3816/CLML.2010.n.030 8. Oki Y, Kelly KR, Flinn I, et al. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica. 2017;102(11):1923-1930. doi:10.3324/haematol.2017.172882 9. Ansell S, Gutierrez ME, Shipp MA, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016; 128(22):183. doi:10.1182/blood.V128.22.183.183 10. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698-2704. doi:10.1200/JCO.2015.65.9789 11. POLIVY. Prescribing information. Genentech, Inc; 2020. Accessed October 22, 2020. https://www.gene.com/download/pdf/polivy_prescribing.pdf 12. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38(2):155-165. doi:10.1200/JCO.19.00172 13. XPOVIO. Prescribing information. Karyopharm Therapeutics, Inc; 2020. Accessed October 22, 2020. https://www.karyopharm.com/wp-content/uploads/2019/07/NDA-212306-SN-0071-Prescribing-Information-01July2019.pdf 14. Kalakonda N, Maerevoet M, Cavallo F, et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020;7(7):e511-e522. doi:10.1016/S2352-3026(20)30120-4 15. Karyopharm reports updated data from the phase 2b SADAL study at the 2019 International Conference on Malignant Lymphoma. News release. Karyopharm. June 19, 2019. Accessed June 28, 2020. https://www.globenewswire.com/news-release/2019/ 06/19/ 1871363/0/en/Karyopharm-Reports-Updated-Data-from-the-Phase-2b-SADAL-Study-at-the-2019-International-Conference-on-Malignant-Lymphoma.html 16. FDA approves selinexor for relapsed/refractory diffuse large B-cell lymphoma. News release. FDA. June 22, 2020. Accessed June 28, 2020. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selinexor-relapsedrefractory-diffuse-large-b-cell-lymphoma 17. Monjuvi. Prescribing information. MorphoSys US Inc; 2020. Accessed October 22, 2020. https://www.monjuvi.com/pi/monjuvi-pi.pdf 18. Duell J, Maddocks KJ, Gonzalez-Barca E, et al. Subgroup analyses from L-Mind, a phase II study of tafasitamab (MOR208) combined with lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. Blood. 2019;134(suppl 1):1582. doi:10.1182/blood-2019-122573 19. MorphoSys and Incyte announce long-term follow-up results from L-MIND study of tafasitamab in patients with r/r DLBCL. News release. Morpho-Sys. May 14, 2020. Accessed June 26, 2020. https://www.morphosys.com/media-investors/media-center/morphosys-and-incyte-announce-long-term-follow-up-results-from-l-mind 20. Salles GA, Duell J, Gonzlez-Barca E, et al. Single-arm phase II study of MOR208 combined with lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma: L-Mind. Blood. 2018;132(suppl 1):227. doi:10.1182/blood-2018-99-113399

More:
New Approaches to the Treatment of Relapsed or Refractory Diffuse Large B-cell Lymphoma - Targeted Oncology

Creative Medical Technology Holdings Announces Reversion of Liver Failure Using ImmCelz Personalized Cellular Immunotherapy in Preclinical Model -…

PHOENIX, Dec. 29, 2020 /PRNewswire/ --(OTC-CELZ)Creative Medical Technology Holdings Inc. announced today novel data and patent filing No. 63131261 describing the ability of ImmCelz to reverse liver failure in the carbon tetrachloride preclinical model of hepatocyte necrosis.

These findings are the basis for a patent filing covering various means of generating the ImmCelz product in a hepatoprotective specific manner. The Company has previously reported that ImmCelz is capable of treating animal models of stroke,1 as well as inducing "immunological tolerance" in a model of autoimmune rheumatoid arthritis.2

The work is an extension of previously published findings of Dr. Thomas E. Ichim, in which mesenchymal stem cells were capable of inhibiting progression of liver failure.3

"I am proud of the work the team at Creative Medical Technologies is conducting in advancing the concept of immunologically-mediated regeneration,"said Dr. Ichim, Co-inventor of the patent. "ImmCelz is an advancement on our previous liver failure work due to the fact that we have shown transfer of regenerative activity from the stem cell to the immune cell. Immune cells possess ability to home to injured tissues faster than stem cells due to their smaller size. Additionally, immune cells possess immunological memory, which we believe may be applied to the concept of regeneration."

"While stem cell therapeutics are recognized as the future of medicine, I believe it is important to realize that many activities of stem cells are mediated by changes to the immune system," said Dr. Amit Patel, Board Member of the Company and Co-Inventor of the Patent Application. "ImmCelz represents a fundamental advancement in regenerative medicine in that instead of administering stem cells in the body to induce immune modulation, we actually optimize the immune modulation in the laboratory before injecting immune cells into the patient."

Being at the forefront in identifying novel regenerative treatment options, the Company possesses numerous issued patents in the area of cellular therapy, including patent no. 10,842,815 covering use of T regulatory cells for spinal disc regeneration, patent no. 9,598,673 covering stem cell therapy for disc regeneration, patent no. 10,792,310 covering regeneration of ovaries using endothelial progenitor cells and mesenchymal stem cells, patent no. 8,372,797 covering use of stem cells for erectile dysfunction, and patent no. 7,569,385 licensed from the University of California covering a novel stem cell type.

"Liver failure represents a significant unmet medical need and I am extremely excited that ImmCelz has the potential to help the numerous patients on the liver transplant waiting list who currently have no other option.

With growing validation and acceptance of such technologies, the company intends to continue to broaden its intellectual property portfolio by compiling research data and filing patents, in order to record early filing dates and increase the likelihood of our receiving patent issue.

We continue to welcome opportunities with collaborators and Key Opinion Leaders as we are dedicated to accelerating the further development of our technology."

About Creative Medical Technology Holdings

Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of urology, neurology and orthopedics and trades on the OTC under the ticker symbol CELZ. For further information about the company, please visitwww.creativemedicaltechnology.com.

Forward Looking Statements

OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website atwww.sec.gov.

Creativemedicaltechnology.com http://www.StemSpine.com http://www.Caverstem.com http://www.Femcelz.com

1Creative Medical Technology Holdings Identifies Mechanism of Action of ImmCelz Stroke Regenerative Activity (prnewswire.com) 2Creative Medical Technology Holdings Reports Positive Preclinical Data on ImmCelz Immunotherapy Product in Rheumatoid Arthritis Model | BioSpace 3Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice | Journal of Translational Medicine | Full Text (biomedcentral.com)

SOURCE Creative Medical Technology Holdings, Inc.

http://creativemedicaltechnology.com

Here is the original post:
Creative Medical Technology Holdings Announces Reversion of Liver Failure Using ImmCelz Personalized Cellular Immunotherapy in Preclinical Model -...

Rheumatoid Arthritis Stem Cell Therapy Market Latest Trends and Future Growth Study by 2029 – Farming Sector

Global Rheumatoid Arthritis Stem Cell Therapy Market: Overview

Rheumatoid arthritis is an inflammatory disease of the bodys supportive tissues, usually affecting an individuals toes and fingers. Inflammation is triggered by an abnormal response to the bodys normally functioning tissues. This results in malformed joints and severe pain. Stem cells are novel cells that are generated in regenerative centers of the body. They can be transformed into any other cell type in the body with the right kind of stimulus.

Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6864

Stem cell therapy for rheumatoid arthritis works on the principle of such cellular replacement. Stem cells are injected into a patients body and are transformed on site into anti inflammatory cells that limit the spread of this disease. Stem cells work better than traditional inflammation suppressing medicines because they are more organic and act in a targeted manner. In light of the development of innovations in allopathic medicine and demand of people for better healthcare facilities, the market for rheumatoid arthritis stem cell therapy is expected to grow at a commendable pace from 2019 to 2029, opines TMRR.

Global Rheumatoid Arthritis Stem Cell Therapy Market: Competitive Landscape

Handful of pharmaceutical manufacturing facilities is seen to be involved in the production of stem cell therapy solutions.

Significant players n the market include.

Some of these manufacturers are established players in the pharmaceutical industry and have branched into the foray of stem cell therapy. Their established base for pharmaceutical therapy makes the distribution and marketing of stem cell therapy easier. Innovations in this market scenario are funded by these players to increase patient compliance with therapy.

Buy This Report @https://www.tmrresearch.com/checkout?rep_id=6864<ype=S

Global Rheumatoid Arthritis Stem Cell Therapy Market: Key Trends and Drivers

Global Rheumatoid Arthritis Stem Cell Therapy Market: Regional Analysis

North America and Europe currently lead in the rheumatoid arthritis stem cell therapy market. This might be because of the presence of a robust healthcare infrastructure that is under pressure from people for better facilities. Moreover, most innovatory laboratories are based in these regions and enjoy supple funding from regional governments. Population in these regions too is more aged than in other regions of the world. Hence, market growth for stem cell therapy should be good here.

The Asia Pacific region (APAC) is expected to register the fastest growth in this market in the coming years. A growing healthcare infrastructure that derives protocol from western medicine should support the growth of stem cell therapy. Population here is also expected to age in future decades, and an increasingly stressful lifestyle shall undoubtedly bring an increase in incidence of stressful conditions like rheumatoid arthritis.

Based on treatment type, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on application, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on distribution channel, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on geography, the global rheumatoid arthritis stem cell therapy market can be segmented into:

To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6864

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research, 3739 Balboa St # 1097, San Francisco, CA 94121 United States Tel: +1-415-520-1050

Continue reading here:
Rheumatoid Arthritis Stem Cell Therapy Market Latest Trends and Future Growth Study by 2029 - Farming Sector

Impacts of COVID 19 on Stem Cell Therapy Market 2020 Size, Demand, Opportunities & Forecast To 2026 – Factory Gate

The newly added research report illustrating details on global Stem Cell Therapy market delivers key insights on specific market elements such as competition intensity, regional growth opportunities, vendor profiles and requisite understanding of most potential growth triggers and vendor activities that harbinger growth in global Stem Cell Therapy market. Crucial details on SWOT analysis, PESTEL analysis and Porters Five Forces analytical reviews have been professed with great detail in the report to encourage high investment returns by leading players in global Stem Cell Therapy market. The report carries out a deep analytical study to identify and understand the potential of core factors that stimulate high end growth. The report includes an illustrative overview and serves as an ideal reference point to encourage thoughtful market discretion pertaining to current, historical and future ready business decisions, trends and technologies that have growth steering vigor.

Get PDF Sample Report of Stem Cell Therapy (COVID-19 Version) Market 2020, Click Here @ https://www.adroitmarketresearch.com/contacts/request-sample/691?utm_source=Pallavi

This report gives a complete comprehension of different viewpoints, for example, monetary, creation in the Stem Cell Therapy market. The report contains the current situation of the market by utilizing the effective and exact chronicled information in different market fragments, for example, type and Application Different contextual analyses from different industry specialists are remembered for the report to shape the organizations.

The Stem Cell Therapy market report gives complete data of the development drivers and restrictions that will characterize the business development in the impending years. In addition, it recognizes the open doors existing across the different areas to additional guide business development.

Segmentation Overview The global Stem Cell Therapy market has been examined with ample detailing to disclose vital market specific developments across segment categories. Segment classification of the market structure has been encouraged by our seasoned in-house research experts to allow readers comprehend the versatility of the market in terms of product and service variation. Additional details on regional expanse and geography-based vendor investments are also discussed extensively based on which global Stem Cell Therapy market is splintered into type, application and end-user.

Browse the complete report Along with TOC @ https://www.adroitmarketresearch.com/industry-reports/stem-cell-therapy-market?utm_source=Pallavi

Stem Cell Therapy Market Segmentation Type Analysis of Stem Cell Therapy Market:

Based on cell source, the market has been segmented into,

Adipose Tissue-Derived Mesenchymal SCs Bone Marrow-Derived Mesenchymal SCs Embryonic SCs Other Sources

Applications Analysis of Stem Cell Therapy Market:

Based on therapeutic application, the market has been segmented into,

Musculoskeletal Disorders Wounds & Injuries Cardiovascular Diseases Gastrointestinal Diseases Immune System Diseases Other Applications

COVID-19 Impact on Stem Cell Therapy Market: The outbreak of COVID-19 has brought along a global recession, which has impacted several industries. Along with this impact COVID Pandemic has also generated few new business opportunities for Stem Cell Therapy Market. Overall competitive landscape and market dynamics of Stem Cell Therapy has been disrupted due to this pandemic. All these disruptions and impacts has been analysed quantifiably in this report, which is backed by market trends, events and revenue shift analysis. COVID impact analysis also covers strategic adjustments for Tier 1, 2 and 3 players of Stem Cell Therapy Market.

Table of Contents Includes Major Pointes as follows: 1. Stem Cell Therapy Market Overview 2. Global Stem Cell Therapy Market Competition by Manufacturers 3. Global Stem Cell Therapy Capacity, Production, Revenue (Value) by Region (2014-2019) 4. Global Stem Cell Therapy Supply (Production), Consumption, Export, Import by Region (2014-2019) 5. Global Stem Cell Therapy Production, Revenue (Value), Price Trend by Type 6. Global Stem Cell Therapy Market Analysis by Application 7. Global Stem Cell Therapy Manufacturers Profiles/Analysis 8. Stem Cell Therapy Manufacturing Cost Analysis 9. Industrial Chain, Sourcing Strategy and Downstream Buyers 10. Marketing Strategy Analysis, Distributors/Traders 11. Market Effect Factors Analysis 12. Global Stem Cell Therapy Market Forecast (2019-2026) 13. Research Findings and Conclusion 14. Appendix

If you have any questions on this report, please reach out to us @ https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/691?utm_source=Pallavi

About Us :

Contact Us :

Ryan Johnson Account Manager Global 3131 McKinney Ave Ste 600, Dallas, TX 75204, U.S.A Phone No.: USA: +1 972-362 -8199 / +91 9665341414

Read the original here:
Impacts of COVID 19 on Stem Cell Therapy Market 2020 Size, Demand, Opportunities & Forecast To 2026 - Factory Gate

Efficacy and safety of mesenchymal stem cells for the treatment of patients infected with COVID-19: a systematic review and meta-analysis protocol -…

This article was originally published here

BMJ Open. 2020 Dec 18;10(12):e042085. doi: 10.1136/bmjopen-2020-042085.

ABSTRACT

INTRODUCTION: To date, no specific antivirus drugs or vaccines have been available to prevent or treat the COVID-19 pandemic. Mesenchymal stem cell (MSC) therapy may be a promising therapeutic approach that reduces the high mortality in critical cases. This protocol is proposed for a systematic review and meta-analysis that aims to evaluate the efficacy and safety of MSC therapy on patients with COVID-19.

METHODS AND ANALYSIS: Ten databases including PubMed, EMBASE, Cochrane Library, CINAHL, Web of Science, Chinese National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP), Wanfang database, China Biomedical Literature Database (CBM) and Chinese Biomedical Literature Service System (SinoMed) will be searched from inception to 1 December 2020. All published randomised controlled trials, clinical controlled trials and case series that meet the prespecified eligibility criteria will be included. The primary outcomes include mortality, incidence and severity of adverse events, respiratory improvement, days from ventilator, duration of fever, progression rate from mild or moderate to severe, improvement of such serious symptoms as difficulty breathing or shortness of breath, chest pain or pressure, and loss of speech or movement, biomarkers of laboratory examination and changes in CT. The secondary outcomes include dexamethasone doses and quality of life. Two reviewers will independently perform study selection, data extraction and assessment of bias risk. Data synthesis will be conducted using RevMan software (V.5.3.5). If necessary, subgroup and sensitivity analysis will be performed. Grading of Recommendations Assessment, Development and Evaluation system will be used to assess the strength of evidence.

ETHICS AND DISSEMINATION: Ethical approval is not necessary since no individual patient or privacy data have been collected. The results of this review will be disseminated in a peer-reviewed journal or an academic conference presentation.

PROSPERO REGISTRATION NUMBER: CRD42020190079.

PMID:33371042 | DOI:10.1136/bmjopen-2020-042085

Original post:
Efficacy and safety of mesenchymal stem cells for the treatment of patients infected with COVID-19: a systematic review and meta-analysis protocol -...

Global Stem Cell Therapy Market Industry 2021 In-depth Market Analysis and Recent Developments, Share, Revenue and Forecast 2025 | Anterogen Co. Inc….

The market study on the global Stem Cell Therapy market published by Adroit Market Research exhibits the important aspects that are estimated to shape the growth of the global Stem Cell Therapy market over the forecast period. The market for Stem Cell Therapy is growing with a significant grow rate and is considered to achieve notable revenue by the end of 2025. In addition to this, the research provides a detailed analysis of the market value & forecast, covering the different segments and geographies.

The latest study indicates that the Global Stem Cell Therapy Market is expected to register a lucrative annual growth rate during the predicted time period. The report also showcases important information related to the assessment that the market retains and an in-depth analysis of the Global Stem Cell Therapy Market along with several growth opportunities. Readers of the report are expected to receive useful guidelines on how to make your companys presence known in the market, thereby increasing its share in the coming years.

Get Exclusive Sample of Report on Stem Cell Therapy market is available @ https://www.adroitmarketresearch.com/contacts/request-sample/691?utm_source=Pallavi

Market dynamics including drivers, restraints, Stem Cell Therapy market challenges, opportunities, influence factors, and trends are especially focused upon to give a clear understanding of the global Stem Cell Therapy market. The research study includes segmental analysis where important type, application, and regional segments are studied in quite some detail. It also includes Stem Cell Therapy market channel, distributor, and customer analysis, manufacturing cost analysis, company profiles, market analysis by application, production, revenue, and price trend analysis by type, production and consumption analysis by region, and various other market studies. Our researchers have used top-of-the-line primary and secondary research techniques to prepare the Stem Cell Therapy report.

The report covers the competitive landscape of the global Stem Cell Therapy market. It states the market state of all the prominent vendors in the market. It is very important for the vendors to provide customers with new and improved product/ services in order to gain their loyalty. The up-to-date, complete product knowledge, end users, industry growth will drive the profitability and revenue. Stem Cell Therapy report studies the current state of the market to analyze the future opportunities and risks. Stem Cell Therapy report provides a 360-degree global market state. Potential consumers, market values, and the future scope for the Stem Cell Therapy market are explained thoroughly to the users in this report. The key players of Stem Cell Therapy industry, their product portfolio, market share, industry profiles is studied in this report.

Browse the complete report Along with TOC @ https://www.adroitmarketresearch.com/industry-reports/stem-cell-therapy-market?utm_source=Pallavi

Stem Cell Therapy Market Segmentation Type Analysis of Stem Cell Therapy Market:

Based on cell source, the market has been segmented into,

Adipose Tissue-Derived Mesenchymal SCs Bone Marrow-Derived Mesenchymal SCs Embryonic SCs Other Sources

Applications Analysis of Stem Cell Therapy Market:

Based on therapeutic application, the market has been segmented into,

Musculoskeletal Disorders Wounds & Injuries Cardiovascular Diseases Gastrointestinal Diseases Immune System Diseases Other Applications

Regional Description On the basis of region, the market has been segmented into Americas, Europe, Asia Pacific (APAC), and the Middle East and Africa (MEA). Regional segmentation has been provided at a high level and a more detailed level in terms of a country-wise analysis of the market in each region. This regional analysis points out regions with highest consumptions and production rates and also provides a comparative study basis these factors. The revenues generated in these regions, the market growth rate and the compound annual growth rate percentage are also discussed in detail.

Some Points from Table of Content Global Stem Cell Therapy Market Report 2020 by Key Players, Types, Applications, Countries, Market Size, Forecast to 2027 Chapter 1 Report Overview Chapter 2 Global Market Growth Trends Chapter 3 Value Chain of Stem Cell Therapy Market Chapter 4 Players Profiles Chapter 5 Global Stem Cell Therapy Market Analysis by Regions Chapter 6 North America Stem Cell Therapy Market Analysis by Countries Chapter 7 Europe Stem Cell Therapy Market Analysis by Countries Chapter 8 Asia-Pacific Stem Cell Therapy Market Analysis by Countries Chapter 9 Middle East and Africa Stem Cell Therapy Market Analysis by Countries Chapter 10 South America Stem Cell Therapy Market Analysis by Countries Chapter 11 Global Stem Cell Therapy Market Segment by Types Chapter 12 Global Stem Cell Therapy Market Segment by Applications Chapter 13 Stem Cell Therapy Market Forecast by Regions (2020-2027) Chapter 14 Appendix

If you have any questions on this report, please reach out to us @ https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/691?utm_source=Pallavi

About Us :

Contact Us :

Ryan Johnson Account Manager Global 3131 McKinney Ave Ste 600, Dallas, TX 75204, U.S.A Phone No.: USA: +1 972-362 -8199 / +91 9665341414

Read the original:
Global Stem Cell Therapy Market Industry 2021 In-depth Market Analysis and Recent Developments, Share, Revenue and Forecast 2025 | Anterogen Co. Inc....