Author Archives: admin


Harvard Bioscience Announces New Credit Facility

HOLLISTON, Mass., Dec. 22, 2020 (GLOBE NEWSWIRE) -- Harvard Bioscience, Inc. (Nasdaq: HBIO) (“Harvard Bioscience”) today announced the refinancing of its debt with the closing of a new $65 million credit facility (the “Refinancing”). Proceeds from the new facility will be used to retire existing debt and pay related fees and expenses. The Refinancing significantly reduces borrowing costs while increasing operating flexibility through less restrictive financial covenants and access to higher levels of revolver borrowings.

Original post:
Harvard Bioscience Announces New Credit Facility

Supernus Announces Positive Results from Phase III Study for SPN-812 in Adults with ADHD

ROCKVILLE, Md., Dec. 22, 2020 (GLOBE NEWSWIRE) -- Supernus Pharmaceuticals, Inc. (Nasdaq: SUPN), a pharmaceutical company focused on developing and commercializing products for the treatment of central nervous system diseases, today announced positive topline results from a Phase III study of SPN-812 in adults (P306) for the treatment of attention deficit hyperactivity disorder (ADHD).

See the original post:
Supernus Announces Positive Results from Phase III Study for SPN-812 in Adults with ADHD

Sorrento Announces It Has Submitted An Emergency Use Authorization (EUA) Application to the FDA for COVI-STIX™ Rapid Test for the Detection of…

SAN DIEGO, Dec. 22, 2020 (GLOBE NEWSWIRE) -- Sorrento Therapeutics, Inc. (Nasdaq: SRNE, "Sorrento") today announced that an Emergency Use Authorization (EUA) Application has been submitted to the US Food and Drug Administration for its COVI-STIX rapid diagnostic test for the detection of the SARS-CoV-2 virus nucleocapsid antigen in nasal samples of patients.

View post:
Sorrento Announces It Has Submitted An Emergency Use Authorization (EUA) Application to the FDA for COVI-STIX™ Rapid Test for the Detection of...

Lui Franciosi of Franciosi Consulting Launches YouTube Channel

VANCOUVER, British Columbia, Dec. 22, 2020 (GLOBE NEWSWIRE) -- Lui Franciosi is proud to announce the launch of his new YouTube channel. As a pharmacologist and former executive in the pharmaceutical industry, Dr. Franciosi’s videos will focus on topics related to health and pharma care, as well as topics related to entrepreneurship, seniors care and COVID-19.

Read the original:
Lui Franciosi of Franciosi Consulting Launches YouTube Channel

Ocugen Inc. Announces Plan to Adjourn Annual Meeting of Stockholders, Modify Proposal Regarding Increase in Number of Authorized Shares

Annual Meeting to be adjourned solely with respect to Item 2, and Item 2 to be modified to decrease the proposed aggregate number of shares of common stock that the Company would be authorized to issue from 500,000,000 shares to 400,000,000 shares Annual Meeting to be adjourned solely with respect to Item 2, and Item 2 to be modified to decrease the proposed aggregate number of shares of common stock that the Company would be authorized to issue from 500,000,000 shares to 400,000,000 shares

Original post:
Ocugen Inc. Announces Plan to Adjourn Annual Meeting of Stockholders, Modify Proposal Regarding Increase in Number of Authorized Shares

Medicine by Design symposium highlights importance of convergence in regenerative medicine and human health – News@UofT

Researchersarepoised to makeunprecedentedbreakthroughsinhuman health thanks toadvancesin biomedical and computational sciencesthathave drivencritical tools and technologiessuch as genetic engineering,synthetic biology, andartificial intelligence.

Thats the messageDr. VictorDzau, president oftheU.S.National Academy ofMedicine, delivered to Medicine by Designs fifthannual symposium on Dec. 7 and 8.

Thevirtual event, whichattracted more than 500 registrants from across North America, focused on the theme of better science throughconvergence theintegration of approaches from engineering, science, medicine and other fields to expand knowledge and spark innovation.

I think for younger people, there is really not a more exciting time, in my opinion, to do research than now, because we can really see that some of the initial concepts that people have about health and medicinecan be realizedand truly transform the way we do health andmedicine.

In his talk, Dzau focused on the National Academy of MedicinesHealthy Longevity Global Challenge,an international competition that aims to catalyze transformative ideas and breakthroughs that will extend human healthand lifespan.

That program is one of the inspirations for Medicine by DesignsGrand Questions Program, which seeks to fund bold research that promises dramatically better health outcomes by changing the future of regenerative medicine.

Through our Grand Questions Program, we are thinking about what comes next and how to overcome fundamental problems in regenerative medicine,saidMichael Sefton, executive director of Medicine by Design andUniversity Professorin the department of chemical engineering and applied chemistry and theInstitute of Biomedical Engineeringat the University of Toronto.

We have a broad definition of regenerativemedicine, andpreventing degeneration can be as important as the next cell therapy.

Sefton pointed out that the symposium theme of better science through convergencefocusedon a key aspect of Medicine by Design:That we combine campus and hospital investigators, transformative science and translational elements, junior and senior investigators, and local and international collaborators, to address fundamental problems in regenerative medicine.

Thesymposium also featured a talk byRobert Langer, David H. KochInstitute Professorin the department of chemical engineeringat the Massachusetts Institute of Technology. The most highly cited engineer in history, he spoke about lessons helearnedfromhisscientific and business successes and how he decidedto be his own champion after facing criticism for his novel ideas early in his career.

If you try to do things whether its convergence, or things that a lot of people disagree with you have tohang in there, Langer said.Having good intellectual property has been key toraising the funds to do these things, and medicine is an incredibly expensive thing.

And finally, you really need teams that are super driven, and I think these startup companies have been a wonderful way to do this.

The symposium was organized around four sessions: translation, inflammation, biomaterials andimmunoengineering.Invited speakers from across North AmericaincludedKim Warren(AVROBIO),Kenneth Walsh(University of Virginia),Sarah Heilshorn(Stanford University)andMegan Levings(University of British Columbia).

All speakers fromU of T and its partnerhospitals were lead investigators on Medicine by Designs multi-disciplinary, multi-institution team projects. They included:John Dick,Clinton RobbinsandShaf Keshavjee(University Health Network (UHN));Molly Shoichet(department of chemical engineering and applied chemistry and Institute of Biomedical Engineering);Juan CarlosZiga-Pflcker(Sunnybrook Health Sciences Centre);andAndras Nagy(Sinai Health System).

Ted Sargent, vice-president of research and innovation, and strategic initiatives,and a University Professor in the Edward S. Rogers Sr. department of electrical and computer engineering,opened the symposium by congratulatingMedicine by Design on its successful mid-term review, which was conducted in early 2020 by a panel of international experts and theCanada First Research Excellence Fund(CFREF), which funds Medicine by Design.

Medicine by Design has amplified existing areas ofexcellenceatU of Tandour partner hospitals (Toronto Academic Health Sciences Network),and pushed the boundaries of regenerative medicine to tackle cell-based therapies, strategies for endogenous repair and the use of a stem cell lens to target the triggers of disease,Sargent said. In fact, Medicine by Design is such a compelling collaborative, cross-disciplinary initiative that itis a template fora new class of initiatives at the University ofToronto theInstitutional Strategic Initiativesportfolio whosepurpose is to mobilize ambitious,groundbreaking, collaborative, multi-institutional research networks that tackleimportantresearch problems, buildmajorexternal partnershipsboth with industry and emerging companies as well as with global academic peers;and foster societal impact.

They support the pursuit of grand challenges and bold ideas across disciplinary boundaries,further elevate U of Ts profile in high priority research areas of strategic importance,and enable us to realize transformational impacts on issues of major societal import.

The symposium also offered an opportunity for almost 45trainees to present their research during a poster session.KerstinKaufmann, a post-doctoral fellow in the laboratory ofJohn Dick(Princess Margaret Cancer Centre,UHN), won first place.JonathanLabriola, apost-doctoral fellowinSachdev Sidhuslab(Donnelly Centre for Cellular and Biomolecular Research, U of T), placed second, whileSabihaHacibekiroglu, a post-doctoral fellow in the lab ofAndras Nagy(Lunenfeld-Tanenbaum Research Institute, UHN)placed third.The awards were sponsored by STEMCELL Technologies.

YasamanAghazadeh,a post-doctoral fellow in the labsofCristina Nostro(McEwen Stem Cell Institute, UHN)andSara Nunes Vasconcelos(Toronto General Hospital Research Institute,UHN),won theCCRMTranslation Awardfor the poster with the greatest translational potential.AndAi Tian, a post-doctoral fellow fromJulien Muffatslab (The Hospital for Sick Children), won thePeoples Choice Award, a new award this year that wasdetermined byvotingby symposium attendeesand sponsored byBlueRockTherapeutics.

Funded by a $114-million grant from CFREF, Medicine by Design brings together more than 145principal investigators at the University of Toronto and its affiliated hospitals to work at the convergence of engineering,medicineand science. It builds on decades of made-in-Canada excellence in regenerative medicine dating back to the discovery of stem cells in the early 1960s by Toronto researchers James Till andErnest McCulloch.

Regenerative medicine uses stem cells to replace diseased tissues and organs, creating therapies in which cells are the biological product. Regenerative medicine can also mean triggering stem cells that are already present in the human body to repair damaged tissues or to modulate immune responses. Increasingly, regenerative medicine researchers are using a stem cell lens to identify critical interactions or defects that prepare the ground for disease, paving the way for new approaches to preventing disease before it starts.

(Photo of Robert Langer by Jason Alden)

More:
Medicine by Design symposium highlights importance of convergence in regenerative medicine and human health - News@UofT

2020 in Neuroscience, Longevity, and AIand What’s to Come – Singularity Hub

Covid-19 sucked most of the oxygen out of science this year. But we still had brilliant wins.

The pandemic couldnt bring rockets or humans down: multiple missions blasted off to the red planet in the summer of Mars. Two astronauts launched to the International Space Stationand made it safely backin a game-changer for commercial space travel. NASA released dozens of findings on how space travel changes our bodies, paving the way to keep us healthy in orbitor one day, on Mars and beyond.

Back on Earth, scientists scoured mud ponds and fished out a teeny-tiny CRISPR enzyme that packs a massive punch for genome editing. AI and neuroscience became even more entwinedsometimes literally. Biological neurons got hooked up to two silicon-based artificial neurons, across multiple countries, into a fully-functional biohybrid neural network. Others tapped dopaminethe main messenger for the brains reward systemto unite electricity and chemical computing into a semi-living computer. While still largely a curiosity, these studies take brain-inspired computers to another level by seamlessly incorporating living neurons into AI hardware. Now imagine similar circuits inside the brainNeuralink sure is.

More abstractly, biological and artificial brains further fed into each other in our understandingand craftingof intelligence. This year, scientists found mini-computers in the input tree-like branches of neurons. Like entire neural networks, these cables were capable of performing complex logical calculations, suggesting our brain cells are far brainier than we previously thoughtsomething AI can learn from. On the flip side, a hotshot algorithm inspired by the brain called reinforcement learning pushed neuroscientists to re-examine how we respond to feedback as we learn. AI also helped build the most dynamic brain atlas to date, a living map that can continuously incorporate new data and capture individual differences.

As we leave 2020 behind, two main themes percolate in my mind, not just for what theyve accomplished, but as indicators of what lies ahead. These are the trends Ill be keeping my eyes on in the coming year.

Why we age is extremely complex. So are methods that try to prevent age-related diseases, or slow the aging process itself. This nth-dimensional complexity almost dictates that longevity research needs to self-segregate into lanes.

Take probing the biological mechanisms that drive aging. For example, our cells energy factory spews out bullet-like molecules that damage the cell. The genome becomes unstable. Cells turn zombie-like. Working stem cells vanish. Tissue regeneration suffers. Scientists often spend entire careers understanding one facet of a single hallmark of aging, or hunting for age-related genes. The lucky ones come up with ways to combat that one foefor example, senolytics, a family of drugs that wipe out zombie cells to protect against age-related diseases.

But aging hallmarks dont rear their heads in isolation. They work together. An increasing trend is to unveil the how of their interactions workcrosstalk, in science-speakwith hopes of multiple birds with one stone.

This year, longevity researchers crossed lanes.

One study, for example, took a stem cell playbook to rejuvenate eyesight in aged mice with vision loss. They focused on a prominent aging hallmark: epigenetics. Our DNA is dotted with thousands of chemical marks. As we age, these marks accumulate. Using gene therapy, the team introduced three superstar genes into the eyes of aged mice to revert those marks and reprogram cells to a younger state. Youve probably heard of those genes: theyre three of the four factors used to revert adult skin cells into a stem-cell-like state, or iPSCs (induced pluripotent stem cells). Resetting the epigenetic clock was so powerful it improved visual acuity in old mice, and the team has now licensed the tech to Life Biosciences in Boston to further develop for humans.

Another study combined three main puzzle pieces in agingzombie cells, inflammation, and malfunctioning mitochondriainto a full picture, with the surprise ending that senolytics has multiple anti-aging powers in cells. Talk about killing two birds with one stone. Finally, one team (which I was a part of) combined two promising approaches for brain rejuvenationexercise and young bloodto begin pushing the limits of reigniting faltering memory and cognition due to aging.

Longevity research has long been fragmented, but its starting to coalesce into a multidisciplinary field. These crossovers are just the start of a rising trajectory to combat the multi-headed Hydra thats aging. More will come.

If youre looking for a sign that AI is leaving the digital realm of Atari games and heading into the real world, this year was it.

In biotech, theres no doubt of AIs promise in drug discovery or medical diagnoses. In late 2019, a team used deep learning and generative modelssimilar to AlphaGo, the DeepMind algorithm that trounced humans at Go and wiped the Atari libraryto conjure over 30,000 new drug molecules, a feat chemists could only dream of. This year, the viral hurricane thats Covid-19 further unleashed AI-based drug discovery, such as screening existing drugs for candidates that may work against the virus, or newlydesigned chemicals to fight off SARS-CoV-2 infectionthe virus that causes Covid-19.

For now, we dont yet have an AI-designed drug on the market, an ultimate test for the technologys promise. However, although AI wasnt able to make a splash in our current pandemic battle, the scene is set for tackling the next oneand drug discovery as a whole.

In contrast, AI-based medical diagnosis had a resounding win. This year, the FDA approved a software that uses AI to provide real-time guidance for ultrasound imaging for the heart, essentially allowing those without specialized training to perform the test. The approval brings a total of 29 FDA-approved AI-based medical technologies to date. Even as the debate on trust, ethics, and responsibility for AI doctors cranked up in temperature, the Pandoras box has been opened.

Medicine aside, deep learning further honed its craft in a variety of fields. The neuroscience-AI marriage is one for the ages with no signs of fracture. Outside the brain, AI also gave synthetic biology a leg up by parsing the interactions between genes and genetic networksa mind-bending, enormously complex problem previously only achieved through trial and error. With help from AI, synthetic biologists can predict how changes to one gene in a cell could affect others, and in turn, the cells biochemistry and behavior. Bottom line: it makes designing new biological circuits, such as getting yeast to pump out green fuels or artificially hoppy beer, much easier.

But the coup de grce against AI as an overhyped technology is DeepMinds decimation of a 50-year-long challenge in biology. With a performance that shocked experts, DeepMinds AlphaFold was able to predict a proteins 3D structure from its amino acid sequencethe individual components of a proteinmatching the current gold standard. As the workhorses of our bodies, proteins dictate life. AlphaFold, in a sense, solved a huge chunk of the biology of life, with implications for both drug discovery and synthetic biology.

One more scientific brilliance this year is the use of light in neuroscience and tissue engineering. One study, for example, used lasers to directly print a human ear-like structure under the skin of mice, without a single surgical cut. Another used light to incept smell in mice, artificially programming an entirely new, never-seen-in-nature perception of a scent directly into their brains. Yet another study combined lasers with virtual reality to dissect how our brains process space and navigation, mentally transporting a mouse to a virtual location linked to a reward. To cap it off, scientists found a new way to use light to control the brain through the skull without surgerythough as of now, youll still need gene therapy. Given the implications of unauthorized mind control, thats probably less of a bug and more of a feature.

Were nearing the frustratingly slow, but sure, dying gasp of Covid-19. The pandemic defined 2020, but science kept hustling along. I cant wait to share what might come in the next year with youmay it be revolutionary, potentially terrifying, utterly bizarre* or oddly heart-warming.

* For example, Why wild giant pandas frequently roll in horse manure. Yes thats the actual title of a study. Yes, its a great read. And yes, its hilarious but has a point.

Image Credit: Greyson Joralemon on Unsplash

Read the original:
2020 in Neuroscience, Longevity, and AIand What's to Come - Singularity Hub

Adipose Tissue-Derived Stem Cells (ADSCS) Market Size Is Expected To Generate Huge Profits and Competitive Outlook – The Courier

Data Bridge Market Research Added A New Report on Adipose Tissue-Derived Stem Cells (ADSCS) Market That Provides A Comprehensive Review of This Industry with Respect to The Driving Forces Influencing The Adipose Tissue-Derived Stem Cells (ADSCS) Market Size. Comprising the Current and Future Trends Defining the Dynamics of This Industry Vertical, This Report Also Incorporates The Regional Landscape Of Adipose Tissue-Derived Stem Cells (ADSCS) Market In Tandem With Its Competitive Terrain.

Adipose Tissue-Derived Stem Cells (ADSCS) Market Insight:

Adipose tissue-derived stem cells (ADSCS) market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to account grow at a CAGR of 6.1% in the above-mentioned forecast period. The accelerating application of adipose tissue-derived stem cells (ADSCS) in the regenerative medicines research, development of cell linage, tissue engendering, bone and cartilage regeneration are driving the exponential growth of adipose tissue-derived stem cells (ADSCS) market during the forecast period of 2020 to 2027.

Request a Free Sample Of This Premium Report Titled Adipose Tissue-Derived Stem Cells (ADSCS) Market at@https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-adipose-tissue-derived-stem-cells-adscs-market

Market Segment by Manufacturers, this report covers:

Antria Inc., CELGENE CORPORATION, pluristem, Tissue Genesis, Cytori Therapeutics Inc., PRECIGEN, Mesoblast Ltd, CORESTEM, Inc, among other domestic and global players.

Analysis and discussion of important industry trends, market size, and market share estimates are also covered in this Adipose Tissue-Derived Stem Cells (ADSCS) Market report. The report also analyses various inhibitors as well as motivators of the market in both quantitative and qualitative manners to provide accurate information to the end-users. This report is very useful to all sizes of business which makes it simpler to make informed decisions regarding different facets of the industry. The Adipose Tissue-Derived Stem Cells (ADSCS) Market report acts as a window to the industry which gives a description of what market definition, classifications, applications, engagements and market trends are.

Adipose Tissue-Derived Stem Cells (ADSCS) Market Report Objectives:

Market Segment by Regions, regional analysis covers:

Get Free Table Of Contents of This Premium Research@ https://www.databridgemarketresearch.com/toc/?dbmr=global-adipose-tissue-derived-stem-cells-adscs-market

Major Points Covered in Adipose Tissue-Derived Stem Cells (ADSCS) Market Report:-

Reasons to Purchase this Report

Points Covered in Table of Content of Adipose Tissue-Derived Stem Cells (ADSCS) Market Report:

1.1 Market Overview and Scope. 1.2 Key Market Segments 1.3 Regulatory Scenario by Region/Country 1.4 Market Investment Scenario Strategic 1.5 Market Analysis by Type 1.5.1 Global Adipose Tissue-Derived Stem Cells (ADSCS) Market Share by Type 1.6 Market by Application 1.6.1 Global Adipose Tissue-Derived Stem Cells (ADSCS) Market Share by Application 1.7 Legal Adipose Tissue-Derived Stem Cells (ADSCS) Industry Development Trends under COVID-19 Outbreak 1.7.1 RegionCOVID-19 Status Overview 1.7.2 Influence of COVID-19 Outbreak on Adipose Tissue-Derived Stem Cells (ADSCS) Industry Development Global Market Growth Trends 2.1 Industry Trends 2.1.1 SWOT Analysis 2.1.2 Porters Five Forces Analysis 2.2 Potential Market and Growth Potential Analysis 2.3 Industry News and Policies by Regions 2.3.1 Industry News 2.3.2 Industry Policies 3 Value Chain ofAdipose Tissue-Derived Stem Cells (ADSCS) Market 3.1 Value Chain Status 3.2 Legal Adipose Tissue-Derived Stem Cells (ADSCS) Manufacturing Cost Structure Analysis 3.2.1 Production Process Analysis 3.2.2 Manufacturing Cost Structure of Adipose Tissue-Derived Stem Cells (ADSCS) 3.2.3 Labor Cost of Adipose Tissue-Derived Stem Cells (ADSCS) 3.3 Sales and Marketing Model Analysis 3.4 Downstream Major Customer Analysis (by Region) 4 Players Profiles 5 Global Adipose Tissue-Derived Stem Cells (ADSCS) Market Analysis by Regions

Continued

Have Any Query? Ask Our Expert at@https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-adipose-tissue-derived-stem-cells-adscs-market

Request a customized copy of Adipose Tissue-Derived Stem Cells (ADSCS) Market report:

We are grateful to you for reading our report. If you wish to find more details of the report or want customization, contact us. You can get a detailed of the entire research here. If you have any special requirements, please let us know and we will offer you the report as you want.

Contact:

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Corporatesales@databridgemarketresearch.com

See the rest here:
Adipose Tissue-Derived Stem Cells (ADSCS) Market Size Is Expected To Generate Huge Profits and Competitive Outlook - The Courier

Webinar on benefits of 3D cell culture techniques – SelectScience

Watch this on-demand webinar to find out more about the advantages and challenges of adopting 3D cell culturing

3D cell culture techniques have continued to receive attention, with many scientists curious about if it is now time to start transitioning from 2D to complete 3D cell culture techniques. 3D models hold remarkable promise for disease modeling, with the potential to help study tissue repair and drug responses.

In this on-demand SelectScience webinar, Carl Radosevich, Senior Manager, Scientific Applications and Collaborations, PHCbi, incubation product specialist, Holly Hattaway, also of PHCbi, and Jin Akagi, CEO of On-chip Biotechnologies explore the advances in 3D cell culturing for spheroids, compare 2D and 3D methods and their respective results, and discuss the options available to overcome the limitations associated with spheroid development. Also, find out how to enhance your research capabilities through safer cell sorting, uniquely designed 3D culturing vehicles and smart controls in incubation decontamination methodology.

Read on for highlights from the Q&A discussion at the end of the live webinar or register to watch the full webinar on demand>>

HH: The dual IR sensor enables the incubator to read CO2 in real time and respond in real time. Dual sensors allow you to have one that's self-calibrating to make sure that it's reading CO2 levels properly and it's not affected by any events like a door opening. Regardless of humidity and temperature, the CO2 should be brought back up in real time.

JA: Unfortunately, the dispenser itself doesn't have a fluorescence detector, it uses the brightfield camera to detect whether there is a cell or not. It can determine the size of the spheroid or the cell and it dispenses according to the sizes or the number that's been aspirated into the pipette tip. We designed it in a way where the purification steps will be involved before doing the distinction. For example, using our cell sorter to purify the sample.

JA: No, the instrument is unique in the way that you get to choose whatever media you'd like to use to sort your samples, including the spheroid. People often use culture medium to have optimal conditions. Your cells will be happy all the way from when you put it in, to when they come out. That's a unique feature of our instrument that is not something that's attainable using other conventional systems.

HH: That sounds like a question about oxygen-controlled incubators. When it comes to testing in conditions that have limiting factors involved, especially in cancer research and stem cell research, they've found that physiological oxygen levels are much lower than the levels of oxygen that are received in the incubator, (which is atmospheric, about 21%). This creates a hypoxic environment for cells. It doesn't necessarily hold true to in vivo environments. And by producing this more physiologically relevant environment, you can have more significantly in vivo-like results.

When you're dealing with a 3D spheroid cellular culture, you end up seeing these gradients of gases and oxygen. When you're considering the efficacy of drugs, you must consider the oxygen levels that are actually presented in vivo. There is a lot of research that is turning towards oxygen levels representing more physiologically relevant levels like about 5%, because that better represents the oxygen level that gets to the actual tissue in vivo.

HH: In the research I've found that addresses spheroid growth, they didn't report having to use extra antibodies or cytokines, and it could be dependent on your research. The most recent studies concerning stem cells, it's protocol specific, but they haven't needed to add anything. I have read some studies comparing the Matrigel to the 3D spheroid with the low-adhesion plates, they found that there's less intrusive signaling, there's less unwanted signaling from the biologically derived Matrigel. In the protocol, they haven't had to add any additional cytokines comparing it to a scaffolding type of 3D culture.

HH: Research using prime service plates specifically, they haven't needed to add any specific things like that for their culture. That's part of the reason the ULA plates, or the ultra-low attachment plates have been considered one of the easier ways to implement 3D culture in laboratory settings because you don't find these extra hormones or extra markers that need to be added necessarily that don't adhere to your normal protocol.

HH: We have a specialized formula of the H2O2 decontaminant that has been perfected for use in the square footing and the machinery of the incubator. It's enabled us to make it so that the sensors and everything in there just stays in place, but it's perfected under our H2O2 solution. Unfortunately, we cannot guarantee the same results using anything other than ours.

HH: All the well shapes have produced great optical clarity for experiments. What it depends on is what your culture seems to do the best in, and the attractiveness of these plates is that you don't have to transfer it to a different type of well shape, there's no transfer step needed. They all provide optical clarity and I haven't heard any specification for one of the shapes as far as optical clarity is concerned.

JA: The minimum is as low as 20 microliters and that's a lot smaller than many of the other instruments. The maximum will be one milliliter at a time. You can always continue to load more and more; you can carry on and keep on loading by stopping the run each time. In one single run, if you do not want to stop, one milliliter is the maximum.

JA: In some cases, people would like to culture 3D spheroids put them back into the body in these cases you would. In other cases, we like to simply culture them. We do recommend having them inside a biocontainment cabinet or a biosafety cabinet to keep them nice and clean, and if something happens, you can have everything contained. It depends on what kind of downstream application people would like to test.

JA: No, we do not have the concept of the nozzle anymore, because what we have is a continuous flow of liquid through a channel. Clogging could potentially happen at the intersection where we do all of our sorting, but we usually don't see them. If it does happen because the sample has something very gooey there or you get dust in there, we have a way to de-clog this easily. It's not like the conventional sorting process, where it has a nozzle and then the clog is a big issue.

Find out more about the latest advances in 3D cell culturing for spheroids: Watch this webinar on demand>>

Excerpt from:
Webinar on benefits of 3D cell culture techniques - SelectScience