Author Archives: admin


Global Precision Medicine Market 2020 Overview By Size, Share, Trends, Growth Factors and Leading Players With Detailed Analysis of Industry Structure…

DBMR has added a new report titled Global Precision Medicine Market with analysis provides the insights which bring marketplace clearly into the focus and thus help organizations make better decisions. This Global Precision Medicine Market research report understands the current and future of the market in both developed and emerging markets. The report assists in realigning the business strategies by highlighting the business priorities. It throws light on the segment expected to dominate the industry and market. It forecast the regions expected to witness the fastest growth. This report is a collection of pragmatic information, quantitative and qualitative estimation by industry experts, the contribution from industry across the value chain. Furthermore, the report also provides the qualitative results of diverse market factors on its geographies and Segments.

Global Precision Medicine Market to grow with a substantial CAGR in the forecast period of 2019-2026. Growing prevalence of cancer worldwide and accelerating demand of novel therapies to prevent of cancer related disorders are the key factors for lucrative growth of market

Global Precision Medicine Market By Application (Diagnostics, Therapeutics and Others), Technologies (Pharmacogenomics, Point-of-Care Testing, Stem Cell Therapy, Pharmacoproteomics and Others), Indication (Oncology, Central Nervous System (CNS) Disorders, Immunology Disorders, Respiratory Disorders, Others), Drugs (Alectinib, Osimertinib, Mepolizumab,Aripiprazole lauroxil and Others), Route of Administration (Oral,Injectable), End- Users (Hospitals, Homecare, Specialty Clinics, Others), Geography (North America, South America, Europe, Asia-Pacific, Middle East and Africa) Industry Trends and Forecast to 2026

Download Free PDF Sample Copy of Report@ http://databridgemarketresearch.com/request-a-sample/?dbmr=global-precision-medicine-market

Competitive Analysis:

The precision medicine market is highly fragmented and is based on new product launches and clinical results of products. Hence the major players have used various strategies such as new product launches, clinical trials, market initiatives, high expense on research and development, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of mass spectrometry market for global, Europe, North America, Asia Pacific and South America.

Market Definition:

Precision medicines is also known as personalized medicines is an innovative approach to the patient care for disease treatment, diagnosis and prevention base on the persons individual genes. It allows doctors or physicians to select treatment option based on the patients genetic understanding of their disease.

According to the data published in PerMedCoalition, it was estimated that the USFDA has approved 25 novels personalized medicines in the year of 2018. These growing approvals annually by the regulatory authorities and rise in oncology and CNS disorders worldwide are the key factors for market growth.

Talk to The Author of Report @ http://databridgemarketresearch.com/speak-to-analyst/?dbmr=global-precision-medicine-market

Market Drivers

Market Restraints

Key Developments in the Market:

Competitive Analysis:

Global precision medicine market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of global precision medicine market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

Key Market Players:

Few of the major competitors currently working in the global precision medicine market are Neon Therapeutics, Moderna, Inc, Merck & Co., Inc, Bayer AG, PERSONALIS INC, GENOCEA BIOSCIENCES, INC., F. Hoffmann-La Roche Ltd, CureVac AG, CELLDEX THERAPEUTICS, BIONTECH SE, Advaxis, Inc, GlaxoSmithKline plc, Bioven International Sdn Bhd, Agenus Inc., Immatics Biotechnologies GmbH, Immunovative Therapies, Bristol-Myers Squibb Company, Gritstone Oncology, NantKwest, Inc among others.

Get a Detail TOC @ http://databridgemarketresearch.com/toc/?dbmr=global-precision-medicine-market

Market Segmentation:

By technology:- big data analytics, bioinformatics, gene sequencing, drug discovery, companion diagnostics, and others.

By application:- oncology, hematology, infectious diseases, cardiology, neurology, endocrinology, pulmonary diseases, ophthalmology, metabolic diseases, pharmagenomics, and others.

On the basis of end-users:- pharmaceuticals, biotechnology, diagnostic companies, laboratories, and healthcare it specialist.

On the basis of geography:- North America & South America, Europe, Asia-Pacific, and Middle East & Africa. U.S., Canada, Germany, France, U.K., Netherlands, Switzerland, Turkey, Russia, China, India, South Korea, Japan, Australia, Singapore, Saudi Arabia, South Africa, and Brazil among others.

In 2017, North America is expected to dominate the market.

About Data Bridge Market Research:

Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:Corporatesales@databridgemarketresearch.com

Read the rest here:
Global Precision Medicine Market 2020 Overview By Size, Share, Trends, Growth Factors and Leading Players With Detailed Analysis of Industry Structure...

More than 250 articles and a book later, the Valley Doctor bids adieu – San Lorenzo Valley Press-Banner

After 25 years in Scotts Valley urgent care, followed by 12 years as a health columnist at the Press Banner, Dr. Terry Hollenbeck is leaving this publication to focus on his health and family.

The Valley Doctor leaves with these words of advice: Take the pandemic seriously. Wearing masks, social distancing, and not gathering will be as important to end the pandemic as the vaccines.

Born in Milwaukee, Hollenbeck moved to California in 1971 after graduating with an MD from the Medical College of Wisconsin. Beginning his medical career as an intern at Santa Clara Valley Medical Center, the doctor said he expected a short stay in San Jose.

I thought, If Im going to be away from Milwaukee for a year, I may as well enjoy California for a bit, he said. I never went back. California has a way of grabbing hold of you.

Hollenbeck was hired by the County of Santa Clara as the chief jail physician. Like many recent graduates, Hollenbeck felt idealistic, well trained, and enjoyed my work.

If I could bring some needed good care to the jail population, I thought Id give a try, he said.

He worked in San Jose for two years, before receiving an opportunity to try emergency care. From 1974-1980, Hollenbeck staffed the Emergency Room at the Santa Clara Valley Medical Center, until he felt it was time for a change.

I have to admit, I got burnt out in the emergency room, with hectic pace and working nights, he said.

He changed his pace greatly for the next two years. He joined the Christian Medical Society, learned Spanish, headed to Honduras, and set up a one-room clinic with the help of Miskito natives.

I grew up with stories about my great uncles career as a medical missionary in Africa. It fascinated me, he said. I really enjoyed that experience. There was no electricity, running water, or cars. Once a week, a plane would bring more supplies and that was it. Going up river in a dugout canoe to see a sick person was magicalBut, after two years I was lonely. There were few english speakers in the area and I missed family and friends.

Hollenbeck returned to California in the beginning of the 80s and joined Doctors on Duty as a medical director for four years.

Urgent care had just become a specialty, and I thought, That sounds good, like emergency care, but less hectic, he said. You can sleep at night.

Soon after, the Santa Cruz Medical Clinic, now a part of the Palo Alto Medical Foundation, began a satellite clinic in Scotts Valley. Hollenbeck found his perfect niche as a member of their urgent care staff for 25 years.

I loved working in Scotts Valley, he said. The people and staff were wonderful.

In 2012 Hollenbeck began his newest career as a Press Banner columnist. Since then, hes written over 250 columns and published a book, House Calls: Guidance on common medical topics from your Doctor-Next-Door.

Ive always tried to write my articles as if I were in the room with patients, hearing their complaints, giving a physical exam, and coming up with treatments Im prejudiced, of course, but I think every household needs this book to run the gamut of medical issues, he said.

In 2013, Hollenbeck and his family received unpleasant news: he was diagnosed with a blood cancer.

For the past seven years, Hollenbeck has received various treatments for his multiple myeloma, including chemotherapy, radiation and a stem cell transplant. He said he and his loved ones look ahead bravely with hope.

Now that Ive gone through the traditional treatments, were not sure what lies ahead, he said. Im hopeful that we can find other treatments and keep going.

In the meantime, hes relaxing at home with family. Hollenbeck sees the silver lining of the pandemic as a chance to spend more quality time with his loved ones.

My wife is the music educator for Scotts Valley Middle School and High School, he said. She has been working from home, so Ive been able to spend a lot of good quality time with her and shes been a fantastic caregiver for me.

Hes also been overjoyed to spend time with his grandson.

I feel so fortunate to live long enough to meet my grandson, he said.

Continued here:
More than 250 articles and a book later, the Valley Doctor bids adieu - San Lorenzo Valley Press-Banner

New Models in Organoids Market Open New Vistas in Stem Cell Research for Cancer, Global Valuation to Reach US$ 12.8 Bn by 2030: TMR – PRNewswire

ALBANY, N.Y., Jan. 12, 2021 /PRNewswire/ -- Organoids are stem cell-derived 3D culture systems and are usually derived from induced pluripotent stem cells (iPSCs) and multipotent adult tissue stem cells (ASCs). The technologies in the organoids market have emerged as a novel culture used for human disease modelling. Their amazing capability in recapitulating in vivo anatomy and physiology of organs is utilized to open new paradigms in cell biology areas such as in gene therapy, regenerative medicine, and cancer research. Most prominently, researchers and industry players have harnessed the potential of organoids in regenerative medicine and tissue engineering.

Advent of new methods in generating 3D structures are opening new vistas in human disease modelling, particularly in virology. The utilization of these in drug discovery and personalized medicine will transform medical care in years to come. Europe and North America have emerged as the new hotspots for patient-derived human organoid studies in the global organoids market.

Request for Analysis of COVID-19 Impact on Organoids Market https://www.transparencymarketresearch.com/covid19.php

The revenue of global organoid market is projected to climb from US$ 1.7 Bn in 2019 to touch the mark of US$ 12.8 Bn by 2030.

Key Findings of Organoids Market

In the backdrop of the need for new approaches of studying the pathogenesis of currently emerging Covid-19, organoids market is replete with incredible revenue potential for stakeholders. Researchers are relentlessly working toward new organoids approaches for understanding tissue tropism of SARS-CoV-2. In the last few years, the strides in the organoids market has unarguably expanded the armamentarium of virologists studying infectious diseases. A case in point was Zika virus infection.

Patient-derived human organoids are increasingly being leveraged upon by researchers to open new avenues in tissue engineering and regenerative medicine. These 3D-based cultures have been able to overcome the limitations of 2D cancer-derived cell lines, notably in bladder, colorectal, brain, and liver cancer. There is demand for new patient-derived cell lines for cancer sample biobanking. Integrating biobanking with tumor modelling has undoubtedly expanded the avenue in cancer care. This is also expanding the avenue for precision medicine, the relevance of which is gather traction in patient care.

Request Brochure of Organoids Market Report - https://www.transparencymarketresearch.com/brochure.php

Over the years, the organoid market has made some remarkable strides on the back of collaborations between researchers in universities and medical experts in healthcare institutes. Next-gen organoid development for Covid-19 is a case in point where there has been surge in research funding. Giant leaps made by genome editing systems have expanded the avenue in genome engineering of human stem cells. This will test new methods of generating human organoid models. Another researcher directions attracting investments are in development of cerebral organoids for neurological diseases.

Organoids Market: Key Driving Factors and Promising Avenues

Purchase the Organoids Market Report- https://www.transparencymarketresearch.com/checkout.php

Organoids Market: Competitive Dynamics

Explore Transparency Market Research's award-winning coverage of the global Healthcare Industry:

Gene Therapy Market:https://www.transparencymarketresearch.com/gene-therapy-market.html

Genome Editing Market:https://www.transparencymarketresearch.com/genome-editing-market.html

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through adhoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key tohelp enterprises reach right decision."

Browse More Upcoming Reports by Transparency Market Research:https://www.transparencymarketresearch.com/upcoming.htm

Contact

Mr. Rohit Bhisey Transparency Market Research State Tower, 90 State Street, Suite 700, Albany NY - 12207 United States USA - Canada Toll Free: 866-552-3453 Email: [emailprotected] Press Release Source:https://www.transparencymarketresearch.com/pressrelease/organoids-market.htm Website: https://www.transparencymarketresearch.com/

SOURCE Transparency Market Research

Read this article:
New Models in Organoids Market Open New Vistas in Stem Cell Research for Cancer, Global Valuation to Reach US$ 12.8 Bn by 2030: TMR - PRNewswire

Health Canada Approves ONUREG (azacitidine tablets), First Maintenance Therapy for Patients in Remission from Acute Myeloid Leukemia – Canada NewsWire

AML is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure, and is the most common form of acute leukemia in adults, accounting for approximately 80 per cent of adult cases.2,3,4 An estimated 40-60 per cent of patients aged 60 years and older and 60-80 per cent of patients under 60 years old will obtain complete remission through induction chemotherapy (IC); however, 50 per cent will relapse within a year.5,6 Once a relapse occurs, long-term survival averages at six months.7 In 2015, an estimated 1,235 Canadians were diagnosed with AML and the overall incidence rate in Canada is 3.46/100,000 people.8,9

"While the majority of patients with AML achieve a complete remission with intensive chemotherapy, many remission patients will experience disease relapse, especially if they were not eligible for a stem cell transplant. Until now, there has been no established standard of care for Canadians who are in remission from AML, but are not eligible for a stem cell transplant," noted Dr. Andre Schuh, Princess Margaret Cancer Centre, Toronto. "The approval of ONUREG is significant because it gives transplant ineligible patients with AML in remission a new treatment option that may improve their survival".

ONUREG is a nucleoside metabolic inhibitor that is taken orally and works by preventing cancer cells from growing. ONUREG becomes incorporated into the building blocks of cells (deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)), which interferes with the production of new DNA and RNA. This is thought to kill cancerous cells in leukemia.10

"The approval of ONUREG is an extension of our ongoing commitment to Canadians living with blood cancer," said Al Reba, General Manager, Bristol Myers Squibb Canada. "We are proud that this therapy will help to fill a significant need for Canadians living in remission from AML and hope that it will have a positive impact on their everyday life."

Health Canada's approval of ONUREG is based upon findings from the QUAZAR AML-001 clinical trial. The QUAZAR study, a double-blind, randomized, placebo-controlled, multicenter Phase III study, involved adult patients 55 years or older living with AML. In the study, patients were randomized to Onureg or placebo within four months of achieving first CR/CRi following intensive induction chemotherapy and were not eligible for a stem cell transplant.11In the study, results showed the median overall survival (OS) was significantly longer with ONUREG versus placebo: 24.7 months versus 14.8 months [HR 0.69 (95% CI: 0.55, 0.86); p=0.0009], indicating a 31 per cent reduction in the risk of death in the ONUREG arm. Relapse-free survival (RFS), the key secondary endpoint in the study, supports the OS results. The median RFS was 10.2 months for ONUREG versus 4.8 months for placebo [HR 0.65 (95% CI: 0.52, 0.81); p=0.0001].12

About Bristol Myers Squibb CanadaBristol Myers Squibb Canada Co. is an indirect wholly-owned subsidiary of Bristol Myers Squibb Company, a global biopharmaceutical company whose mission is to discover, develop and deliver innovative medicines that help patients prevail over serious diseases. For more information about Bristol Myers Squibb global operations, visitwww.bms.com. Bristol Myers Squibb Canada Co. delivers innovative medicines for serious diseases to Canadian patients in the areas of cardiovascular health, oncology, and immunoscience. Bristol Myers Squibb Canada Co. employs close to 400 people across the country. For more information, please visitwww.bms.com/ca.

About Bristol Myers SquibbBristol Myers Squibb is a global biopharmaceutical company whose mission is to discover, develop and deliver innovative medicines that help patients prevail over serious diseases. For more information about Bristol Myers Squibb, visit us atBMS.comor follow us on LinkedIn, Twitter, YouTube, Facebookand Instagram.

References

_________________________

1 ONUREG Product Monograph, January 2021.

2 Saultz JN, Garzon R. J Clin Med 2016;5:33.

3Leukemia & Lymphoma Society of Canada. Acute Myeloid Leukemia. Available from https://www.llscanada.org/sites/default/files/National/CANADA/Pdf/InfoBooklets/AML%20Fact%20Sheet%2012-2019.pdf. Accessed December 11, 2020.

4De Kouchkovsky I, Abdul-Hay M. Blood Cancer J 2016;e441:DOI:10.1038/bcj.2016.50.

5Dohner et al. Blood. 2017;129(4):42447.

6SEER Cancer Statistics, 2007-2013.

7Xu J, et al. Medicine (Baltimore) 2018;97:e12102.

8Statistics Canada. Population estimates on July 1st, by age and sex. Available from https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710000501&pickMembers%5B0%5D=1.1&pickMembers%5B1%5D=2.1&cubeTimeFrame.startYear=2015&cubeTimeFrame.endYear=2016&referencePeriods=20150101%2C20160101. Accessed December 11, 2020.

9Shysh et al. BMS Public Health (2018) 18:94.

10ONUREG Product Monograph, January 2021.

11ONUREG Product Monograph, January 2021.

12 ONUREG Product Monograph, January 2021.

SOURCE Bristol Myers Squibb Canada Co.

For further information: For media requests, please contact: Rachel Yates, Lead, Corporate Affairs, Bristol Myers Squibb Canada, [emailprotected]; Alannah Nugent, Account Executive, Health, Edelman, [emailprotected]

Original post:
Health Canada Approves ONUREG (azacitidine tablets), First Maintenance Therapy for Patients in Remission from Acute Myeloid Leukemia - Canada NewsWire

Induced Pluripotent Stem Cells Market to Grow with an Impressive CAGR – Farming Sector

The global market for induced pluripotent stem cells (iPSCs) reached $2.1 billion in 2016. The market should reach $3.6 billion in 2021, increasing at a compound annual growth rate (CAGR) of 11.6% from 2016 through 2021.

Report Scope:

This study is focused on the market side of iPSCs rather than its technical side. Different market segments for this emerging market are covered. For example, application-based market segments include academic research, drug development and toxicity testing, and regenerative medicine; product function-based market segments include molecular and cellular engineering, cellular reprogramming, cell culture, cell differentiation and cell analysis; iPSC-derived cell-type-based market segments include cardiomyocytes, hepatocytes, neurons, endothelia cells and other cell types; geography-based market segments include the U.S., Europe, Asia-Pacific and Rest of World. Research and market trends are also analyzed by studying the funding, patent publications and research publications in the field.

Get PDF Sample for the Report:https://www.trendsmarketresearch.com/report/sample/12035

Report Includes:

An overview of the global market for induced pluripotent stem cells. Analyses of global market trends with data from 2015 and 2016, and projections of compound annual growth rates (CAGRs) through 2021. Information on induced pluripotent stem cell research products, defined as all research tools including but not limited to: induced pluripotent stem cells and various differentiated cells derived from induced pluripotent stem cells; various related assays and kits, culture media and medium components, such as serum, growth factors and inhibitors, antibodies, enzymes, and many others that can be applied for the specific purpose of executing induced pluripotent stem cell research. Discussion of important manufacturers, technologies, and factors influencing market demand, such as the driving forces and limiting factors of induced pluripotent stem cell market growth. Profiles of major players in the industry.

Report Summary

Its been over 10 years since the discovery of induced pluripotent stem cell (iPSC) technology. The market has gradually become an important part of the life sciences industry during recent years. Particularly for the past five years, the global market for iPSCs has experienced a rapid growth. The market was estimated at $1.7 billion in 2015 and over $2 billion in 2016, with an average 18% growth. The overall iPSC market is forecast to continue its relatively rapid growth and reach over $3.6 billion in 2021, with an estimated compound annual growth rate (CAGR) of 11.6% from 2016 through 2021.

You can Buy This Report from Here @https://www.trendsmarketresearch.com/checkout/12037/Single

Key Drivers for Market Growth

This report has identified several key drivers for the rapidly growing market: iPSC shold promising hope for therapeutic solutions for diseases without ethical issues. A series of technical breakthroughs were made in recent years for improving cellular reprogramming, differentiation and large-scale production of GMP- grade iPSCs derived cells toward clinical usability. The pharmaceutical industry needs better cell sources such as iPSC-derived functional cells for drug toxicity testing and drug screening. The U.S. government has been encouraging the marketing of stem cells, including iPSCs. The U.S. Food and Drug Administration (FDA) has been authorized to provide orphan drug designations for many of the therapies developed for rare diseases such as Parkinsons and Huntingtons using stem cells. The provisions of grants from organizations, such as the National Institutes of Health (NIH) and the California Institute for Regenerative Medicine (CIRM) have been encouraging for the research institutes to venture into iPSC research. Rapidly growing medical tourism and contract research outsourcing drives the Asia-Pacific stem cell market. Cellular reprogramming, including iPSC technology, was awarded the 2012 Nobel Prize. The first human iPSC clinical trial started in August 2014, and the recent report of the first macular degeneration patient treated with the sheets of retinal pigmented epithelial cells made from iPSCs was encouraging. iPSC technology is developing into a platform for precision and personalized medicine, which is experiencing rapid growth globally. New biotechnologies such as genome editing technology are advancing iPSCs into more and better uses.

This report identifies key revenue segments for the iPSC market from various aspects. The applicationbased segments include the research, drug development and clinical markets; the product functionbased segments include molecular and cellular engineering, cellular reprogramming, cell culture, cell differentiation and cell analysis. The current major revenue segment is the drug development and toxicity testing sector, but the market for regenerative medicine is the fastest growing one. The market for clinical applications is not fully established, but the market for the translational medicine research of iPSC is also growing very quickly.

Read the original here:
Induced Pluripotent Stem Cells Market to Grow with an Impressive CAGR - Farming Sector

Accelerating cell-based therapies by providing safe therapeutic MSC products – BioSpace

TORONTO, Jan. 8, 2021 /CNW/ -panCELLa's intent to develop therapeutic products in the mesenchymal stem cell (MSC) and pancreatic islet space has recently led to the creation of Implant Therapeutics.

Implant Therapeutics, under the guidance of Dr. Mahendra Rao, is engineering iPSC-MSC cells containing panCELLa's FailSafe and induced Allogeneic Cell Tolerance (iACT Stealth Cell) technologies. These iPSC MSC cells are hypo-immunogenic and are an ideal choice for bone, cartilage and tendon replacement strategies combining the advantages of allogeneic and autologous cells as well as allowing them to be used as ex-vivo gene therapy vehicles.

Implant is pleased to announce a definitive cross licensing agreement with RxCell. The collaboration will allow both companies to rapidly move forward in their respective fields with enhanced technology platforms, access to cGMP grade iPSC lines and the ability to generate a wide variety of therapeutic grade products.

"RxCell's hypo-immunogenic cell platform complements our cloaking platform and allows us to develop novel tissue-specific hypo-immunogenic cell lines" said Dr. Andras Nagy, the inventor of the cloaking technology otherwise known as panCELLa's iACT (Stealth Cells). Dr. Zeng added that she was particularly pleased to have access to cGMP grade engineered Master Cell Banks that utilized Sigma/Merck CRISPR-based technology to incorporate the safe harbor technology.

Dr. Rao CEO of Implant Therapeutics added "I believe that the MSC platform developed by the two companies combines the proven power of MSC with the engineering expertise of panCELLa and this will make RxCell and Implant leaders in their respective fields."

About Implant Therapeutics

Implant provides hypoimmunogenic and safe harbor engineered IPSC derived cellsin order to deliver the ultimate therapeutic MSC products. To learn more, visit https://www.implant-rx.com/

About panCELLa

Founded in 2015, panCELLa is a privately-held early-stage biotechnology firm based on the innovative technology developed in Dr. Andras Nagy's lab at the Sinai Health System (SHS). panCELLa has created platforms that allow for the development of safe, universal, "off-the-shelf" cell lines. To learn more, visit https://pancella.com.

About RxCell

RxCell is a biotechnology company focused on therapeutic applications of induced pluripotent stem cells (iPSC). We have developed several therapeutic grade iPSC line seed banks and are in the process of manufacturing a large Master Cell Bank to support our activities. To learn more, visit https://www.rxcellinc.com/

SOURCE panCELLa Inc.

Read this article:
Accelerating cell-based therapies by providing safe therapeutic MSC products - BioSpace

Exacis Biotherapeutics Announces Its Launch and mRNA Technology In-Licensing For Targeted CAR-NK And CAR-T Cell Cancer Therapies | DNA RNA and Cells |…

Details Category: DNA RNA and Cells Published on Friday, 08 January 2021 07:36 Hits: 379

-- Focuses on immuno-oncology

-- Creates innovative, engineered T and NK cells from induced pluripotent stem cells (iPSC)

-- In-licenses mRNA technologies developed by Factor Bioscience

-- Uses mRNA-based approach to create cell therapies - avoids viruses and DNA

-- Names key executives including Gregory Fiore, MD, as Chief Executive Officer

CAMBRIDGE, MA, USA I January 6, 2021 I Exacis Biotherapeutics, Inc., a development-stageimmuno-oncology company working to harness the immune system to cure cancer,today announcedits formation along with completion of in-licensing of certain technologies from Factor Bioscience, a leading cell sciences company. The exclusive license allows Exacis to create allogeneic engineered T and NK cells from induced pluripotent stem cells (iPSC). Exacis'next generation approachavoids useof DNA andviruses by usingmRNA.The technologies will be used for generatingiPSC and for performing genetic editing to create stealthed, allogeneic cell products, termed ExaCAR-Tor ExaCAR-NKcells.

Exacis also announcedthe addition of key members to its leadership team, Scientific Advisory Board and Board of Directors. Gregory Fiore, MD,a Harvard trained physician, seasoned pharmaceutical executiveand serial entrepreneur, has been named Chief Executive Officer.Dr. Fiore is joined on the management team by co-founder and Head of Discovery and Development, James Pan, PhD,an entrepreneur andbiologics expert. DimitriosGoundis, PhD, formerly CEO of MaxiVAX, a private Swiss immuno-oncology company, joins Exacis as the Chief Business Officer.

Exacis was launched by Factor Bioscience with an exclusive license to its intellectual property for developing targeted, allogeneic cell therapies for cancer treatment. Factor CEO Matthew Angel, PhD,is the Chair of Exacis'Scientific Advisory Board and is joined on the SAB by Factor Co-Founder Christopher Rohde, PhD, Eric Westin, MD,and Gunnar Kaufmann, PhD. Exacis' Board of Directors is chaired by Mark Corrigan,MD, a highly successfuldrug developer,biotechnology CEO and Board Chairperson.

Commenting on the new endeavor, Dr. Fiore said, "This is a wonderful opportunity to create innovative, next-generation NK and T cell therapies to improve outcomes and experiences for patients with challenging liquid and solid tumors."

Exacis' Board Chairman Corrigan added, "The ground- breaking science Exacis has in-licensed, along with the team we are building, provide a strong foundation for developing successful targeted cell therapies for the treatment of cancer."

Exacis has secured initial seed funding and is seeking to raise Series A funding in early 2021. The company has initiated discussions with several potential development collaborators.

About Exacis Biotherapeutics

Exacis is a development stage biotechnology company focused on harnessing the human immune system to cure cancerby engineering off-the-shelf NK and T cell therapies aimed at liquid and solid tumors.Exacis was founded in 2020 with an exclusive license to a broad suite of patents covering the use oftechnologies developed by Factor Biosciences.

About Factor Bioscience

Founded in 2011, Factor Bioscience develops technologies for engineering cells to advance the study and treatment of disease. It actively licenses its technologies to entities wishing to conduct commercial research, sell tools, reagents and other products, perform commercial services for third parties, and develop human and veterinary therapeutics. Factor Bioscience is privately held and is headquartered in Cambridge, MA.

About T and Natural Killer (NK) Cell Therapies

T and NK cells are types of human immune cells that are ableto recognize and destroy cancer cells and can be modified through genetic engineering to target specific tumors.

SOURCE: Exacis Biotherapeutics

See the original post here:
Exacis Biotherapeutics Announces Its Launch and mRNA Technology In-Licensing For Targeted CAR-NK And CAR-T Cell Cancer Therapies | DNA RNA and Cells |...

Environmental Factor – January 2021: Intramural Papers of the Month – Environmental Factor Newsletter

Intramural Papers

Intramural By Sanya Mehta, Victoria Placentra, Saniya Rattan, Nancy Urbano, Qing Xu

Researchers in the Division of the National Toxicology Program (DNTP) examined the long-term use of hydroxyurea (HU) therapy, the most effective strategy for managing sickle cell anemia, a genetic disorder of the blood. HU effectively increases healthy fetal hemoglobin production, but through a mechanism that is harmful to cells. The use of HU and its adverse side-effects are well-managed in adults. However, the U.S. Food and Drug Administration only recently approved HU for use in children and data is limited for understanding the impact the drug may have on child development.

The scientists conducted critical preliminary studies to identify appropriate doses for evaluating long-term effects. They assessed HU kinetics, or the movement of the chemical in the body, during critical periods of rodent development. HU was administered to pregnant rats from late gestation through lactation and to their offspring for 34 days after birth. Decreased body weight and adverse clinical observations, such as hair loss, appeared in offspring receiving at least 75 milligrams per kilogram per day. Data revealed gestational transfer of HU, but minimal lactational transfer. There was no difference in the half-life of HU between age and sex, but systemic exposure decreased with increasing age. (SM)

Citation:Huang MC, Turner KJ, Vallant M, Robinson VG, Lu Y, Price CJ, Fennell TR, Silinski MA, Waidyanatha S, Ryan KR, Black SR, Fernando RA, McIntyre BS. 2020. Tolerability and age-dependent toxicokinetics following perinatal hydroxyurea treatment in Sprague Dawley rats. J Appl Toxicol; doi:10.1002/jat.4087 [Online 25 November 2020].

Individual heterogeneity, or genetic variability, can substantially affect reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), according to NIEHS scientists and their collaborators. iPSCs are stem cells that are derived from differentiated cells, such as fibroblasts, and they can both self-renew and are pluripotent, meaning they can be differentiated into other cell-types. In a previous publication, the research team obtained fibroblasts tissue cells from healthy, diverse donors and observed that each persons fibroblasts had consistent differences in the ability to be reprogrammed to iPSCs. Ancestry was identified as a large contributing factor. In this publication, the research team identified genes and pathways that may be responsible for the observed differences.

Using 72 dermal fibroblast-iPSCs from self-identified African Americans and white Americans, the researchers found ancestry-dependent and ancestry-independent genes associated with reprogramming efficiency. These include genes involved in intracellular transport regulation, protein localization, and cytoskeletal organization, as well as dynamic biological processes like cancer and wound healing. The findings suggest that the heterogeneity of an individual can influence iPSC reprogramming, and the scientists suggested that these genes will provide insights into ancestry-dependent regulation of cell fate and reprogramming. (NU)

Citation:Bisogno LS, Yang J, Bennett BD, Ward JM, Mackey LC, Annab LA, Bushel PR, Singhal S, Schurman SH, Byun JS, Napoles AM, Perez-Stable EJ, Fargo DC, Gardner K, Archer TK. 2020. Ancestry-dependent gene expression correlates with reprogramming to pluripotency and multiple dynamic biological processes. Sci Adv 6(47):eabc3851.

NIEHS researchers and their collaborators have developed tools to deliver diphosphoinositol polyphosphates (PP-InsPs) into cultured cells to study their actions. The PP-InsPs are multipurpose cell signaling molecules that regulate diverse biological processes. The few tools that exist to study PP-InsP activities in living cells require hours-long procedures and are plagued by the possibility of off-target effects, thereby compromising short-term studies.

Because the PP-InsPs are highly charged, they cannot enter cells. Therefore, the researchers masked the charge by encapsulating the PP-InsPs inside liposomes. These are minute spherical sacs of phospholipid molecules are similar to those found in cell membranes, except that the researchers used phospholipids that melt at 40 degrees Celsius (i.e., fractionally above body temperature). The liposomes also contain a dye that warms when exposed to biologically harmless red light. These liposomes are readily accumulated by the cells. Finally, the cells are briefly placed under red light for two to five minutes, causing the liposomes to heat, melt, and release their PP-InsP cargo.

To validate this new delivery method, the scientists developed a fluorescent PP-InsP analogue and monitored its release into cells. This new intracellular PP-InsP delivery method is adjustable and applicable to all PP-InsPs and analogs. (SR)

Citation:Wang Z, Jork N, Bittner T, Wang H, Jessen HJ, Shears SB. 2020. Rapid stimulation of cellular Pi uptake by the inositol pyrophosphate InsP8 induced by its photothermal release from lipid nanocarriers using a near infra-red light-emitting diode. Chem Sci 11:1026510278.

In a study of pregnant women in Bangladesh, taking vitamin D supplements was associated with nonsignificant increases in lead levels, but significant increases in cord blood levels of lead and cadmium, according to NIEHS researchers and their collaborators. Vitamin D is important for building healthy bones, but animal studies indicate it increases the absorption of toxic metals a body is exposed to, such as lead, cadmium, manganese, and mercury. The study was the first to examine the effect of prenatal vitamin D supplementation and blood metal levels in a randomized clinical trial.

In the study, 1,300 pregnant women were randomized into groups that received a placebo or weekly doses of either 4,200, 16,800, or 28,000 international units (IU) of vitamin D3.

Randomization occurred in the second trimester and supplementation or placebo were continued throughout pregnancy. At delivery, maternal blood and umbilical cord blood samples were collected, and researchers measured their cadmium, lead, mercury, and manganese levels using a technique called inductively coupled plasma mass spectrometry. The pregnant women who received vitamin D supplementation showed no significant increase in blood metal concentrations compared to the placebo group. However, they were more likely to have infants with higher cord blood lead levels and with detectable cadmium. The authors say further investigation is needed since there is no safe level of toxic metals for infants. (VP)

Citation:Jukic AMZ, Zuchniak A, Qamar H, Ahmed T, Mahmud AA, Roth DE. 2020. Vitamin D treatment during pregnancy and maternal and neonatal cord blood metal concentrations at delivery: Results of a randomized controlled trial in Bangladesh. Environ Health Perspect 128(11):117007.

NIEHS researchers and their collaborators have revealed that genetic factors contribute to development of hypothalamic amenorrhea (HA), a condition in which menstruation stops in women of reproductive age. The finding provides new insight into the development of HA and womens reproductive health.

Studies have shown that HA is more prevalent in women with excessive exercise, food restriction, or psychological stress. Both physical and emotional stressors could cause altered secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus in the brain. GnRH deficiency, in turn, impairs the synthesis of gonadotropins that are essential for reproduction and fertility and leads to hypogonadotropic hypogonadism (HH). Several rare, pathogenic sequence variants in genes that control the development or function of GnRH have been identified in individuals with a rare syndrome called isolated hypogonadotropic hypogonadism (IHH), an inherited form of HH. Due to the varied menstrual and hormonal response to similar stressors, this study investigated whether genetic variation influenced individual susceptibility to known risk factors for HA.

The researchers sequenced all the protein-coding regions of genes in women with HA and women in the control group. After comparing the frequency of rare variants in more than 50 IHH-associated genes, they found HA patients had a greater burden of variants than the control heathy women, confirming the genetic impact on the development of HA. (QX)

Citation:Delaney A, Burkholder AB, Lavender CA, Plummer L, Mericq V, Merino PM, Quinton R, Lewis KL, Meader BN, Albano A, Shaw ND, Welt CK, Martin KA, Seminara SB, Biesecker LG, Bailey-Wilson JE, Hall JE. 2020. Increased burden of rare sequence variants in GnRH-associated genes in women with hypothalamic amenorrhea. J Clin Endocrinol Metab; doi: 10.1210/clinem/dgaa609 [Online 1 September 2020].

(Sanya Mehta is an Intramural Research Training Award [IRTA] postbaccalaureate fellow in the NIEHS Matrix Biology Group. Victoria Placentra is an IRTA postbaccalaureate fellow in the NIEHS Mutagenesis and DNA Repair Regulation Group. Saniya Rattan, Ph.D., is an IRTA fellow in the NIEHS Reproductive Developmental Biology Group. Nancy Urbano is an IRTA postbaccalaureate fellow in the DNTP Predictive Toxicology and Screening Group. Qing Xu is a biologist in the NIEHS Metabolism, Genes, and Environment Group.)

See the original post here:
Environmental Factor - January 2021: Intramural Papers of the Month - Environmental Factor Newsletter

Doctors Make Medical Breakthrough In Treating Severe Cases Of COVID – CBS San Francisco

MIAMI (CBSMiami) Doctors in South Florida say an experimental treatment involving stem cells has been incredibly successful in treating severe cases of COVID.

The study involved patients at Jackson Memorial Hospital and at the University Miami Tower. Many of them had acute respiratory distress syndrome (ARDS).

I think this could be a turning point, said Dr. Camillo Ricordi, director of the Cell Transplant Center at the University of Miami Miller School of Medicine.

According to Ricordi, the groundbreaking treatment uses stem cells from a babys umbilical cord.

The treatment has shown to safely reduce the risk of death and has made recovery time faster for some of the most ill patients.

We just published the study that using stem cells derived from the umbilical cord of a healthy newborn baby. We generally throw away the placenta that is discarded after birth. But we are using cells that are extracted and expand from that umbilical cord. That can generate and provide therapeutic doses for over 10,000 patients from a single umbilical cord. It is an amazing result, he said.

Ricordi, one of the lead researchers of the study, said treating coronavirus patients with these mesenchymal stem cells just made sense.

When the COVID pandemic exploded, I called our collaborators in China, saying, Why dont we try to use these cells in COVID? Because they have the same properties that help us fight autoimmune conditions, he explained.

The FDA approved to go forward with the trial.

In a double blind study, involving 24 patients with acute respiratory distress syndrome, each received two infusions given days apart of either the stem cells or placebo.

The physician nor the patient knew if someone received a cell or just an infusion of the solution of the cells, Ricordi said.

Researchers found the patient survival rate treated with the stem cells was 91%.

Ricordi said these stem cells have potential to restore normal immune response and also promote tissue regeneration.

When a person develops ARDS, their lungs develop severe inflammation and buildup fluid in their lungs.

Ricordi said ARDS patients usually undergo invasive procedures, but thats not the case with these stem cells.

These cells injected in the IV naturally go with a very simple procedure that does not require any invasive procedure. You can just direct the transfusion to the lung, he explained. The cells go to the lungs and it has just been an amazing kind of result and we are very excited to move to the next step.

Follow this link:
Doctors Make Medical Breakthrough In Treating Severe Cases Of COVID - CBS San Francisco

Mana joins the hectic fight against solid tumors with an ‘off-the-shelf’ candidate angling for an IND this year – Endpoints News

The hunt for effective therapies for solid tumors has heated up in early 2021 with a string of biotechs touting big investor checks and name-brand collaborations to chase those hard-to-treat lumps. Now, with one of its candidates already in the clinic for leukemia, Mana Therapeutics is taking a new round of funding to join the fray.

On Friday, Mana unveiled a $35 million Series A financing round that will help push the Boston-area biotechs lead candidate through a Phase I trial and could help the company secure an IND for an off-the-shelf allogeneic molecule targeting transplant-ineligible AML and solid tumors within the year.

The biotechs leading molecule, dubbed MANA-312, is already engaged in the Phase I study of patients with acute myeloid leukemia, myelodysplastic syndrome after undergoing an allogenic hematopoietic stem cell transplantation. Manas goal is to use its technology to create an inventory of off-the-shelf allogeneic products that can treat the majority of patients with certain targeted cancer indications using whats called a human leukocyte antigen matching system.

Its a different take on a similar line of attack for solid tumors: using the bodys natural immune system to educate healthy cells already in the body to target antigens on the surface of the tumors cancer cells without damaging the otherwise healthy cells. To do this, Mana uses an in-house platform called EDIFY, which it says leverages natural immune system pathways to educate T cells to target multiple cell surfaces and intracellular tumor-associated antigens.

Through multiple antigen targeting processes, the companys technology is designed to prevent the tumors immune escape, and it says the allogeneic method which uses healthy donor cells to create a master cell bank and is then used for specific therapies of attacking the solid cancer tumors could provide superior efficacy to single antigen and other cell therapy approaches.

MANA-312 also isnt the biotechs only candidate in the works. MANA-412 is a preclinical off-the-shelf allogeneic cell therapy for treating transplant-ineligible acute myeloid leukemia and solid tumors and could be ready for an IND filing by the end of the year, Mana said. The Series A round will help fund preclinical development for that candidate as well.

Mana was founded based on research and human proof-of-concept clinical trials conducted by Catherine Bollard of Childrens National Hospital and her colleagues at Johns Hopkins Medical Center. Those trials, in both solid and hematologic tumors, supported a strong safety profile, showed immunological anti-tumor activity and validated MANAs initial set of tumor antigens, the company said. Then Bollard co-founded the company with industry vet Marc Cohen. Ex-Gilead exec Martin Silverstein is the CEO.

The human proof-of-concept trials conducted by my team and colleagues showed potential for a nonengineered approach to educating T-cells to attack multiple tumor antigens, which MANA is expanding even further through refinement of the manufacturing process for an allogeneic product and application to a broader set of antigens in a variety of clinical indications and settings, Bollard said in a statement.

MANAs $35 million financing round was led by Cobro Ventures and Lightchain Capital and joined by LifeSci Venture Partners with other undisclosed investors.

Read more:
Mana joins the hectic fight against solid tumors with an 'off-the-shelf' candidate angling for an IND this year - Endpoints News