Immunicum AB (publ) Announces Completion of Patient Recruitment for Phase Ib Portion of ILIAD Combination Clinical Trial
Press Release
ARESTAT™ formulated product progressing into clinical trial ARESTAT™ formulated product progressing into clinical trial
Go here to see the original:
Arecor's Partner Inhibrx Exercises Its Option to License a New Formulation Developed by Arecor in Accordance With the Terms of Formulation Development...
Glycotope announces licensing agreement with ONK Therapeutics for humanized GlycoBody targeting TA-MUC1
Publication of Supplementary Prospectus
See the article here:
Publication of Supplementary Prospectus
Eliminating one of the convertible notes represents a significant milestone for Global WholeHealth Partners Corp.
See more here:
Global WholeHealth Partners Corp (OTC: GWHP) Has Paid Off One of Its Outstanding Convertible Notes
- Single Trial to be Conducted in Patients with Fragile X Syndrome to Confirm Positive Results Seen in the Population of Responders in the CONNECT-FX Trial -
More:
Zynerba Pharmaceuticals Provides Regulatory Update on Zygel™ in Fragile X Syndrome
BERWYN, Pa., Dec. 17, 2020 (GLOBE NEWSWIRE) -- Annovis Bio Inc. (NYSE American: ANVS), a clinical-stage drug platform company addressing Alzheimer’s disease (AD), Parkinson’s disease (PD) and other neurodegenerative diseases, today announced an interview with its CEO, Maria Maccecchini, Ph.D., will air on The RedChip Money Report television program. The RedChip Money Report airs in 100 million homes on Sundays at 6 p.m. local time in every country in Europe on Bloomberg International.
Read more:
Annovis Bio Interview to Air on Bloomberg International on the RedChip Money Report
Avery Therapeutics is projected to be one of the first companies in the US to seek approval for a clinical trial using iPSC-derived technology for heart failure. The goal of this collaboration is to develop a new off-the-shelf treatment to improve the quality of life of patients suffering from heart failure, a debilitating disease that affects tens of millions of people worldwide.
The iPSCs are manufactured at I Peace's state-of-the-art GMP facility in Kyoto, Japan, under comprehensive validation programs of the facility, equipment, and processes including donor recruiting, screening, blood draw, iPSC generation, storage, and distribution. I Peace has obtained a US-based independent institutional review board (IRB) approval for its process of donor sourcing for commercial-use iPSCs. The facility is designed to be PMDA and USFDA compliant.
As Avery Therapeutics expects to expand the application of its regenerative medicine technology to various types of heart diseases and beyond, iPSCs are the key enabling technology for quality and future scalability. This agreement provides a solid foundation to improve the welfare of those suffering from diseases through advancement of tissue-engineered therapeutics.
"We are thrilled to announce this collaboration with I Peace. It is a big step forward in the development of novel cell-based therapeutics for unmet medical needs. Through this collaboration, I Peace brings deep iPSC development and manufacturing expertise to enable Avery's proprietary MyCardia cell delivery platform technology. Together we hope to positively impact millions of patients worldwide in the near future," Said Jordan Lancaster, PhD, Avery Therapeutics' CEO.
This agreement reflects an innovative collaboration involving multiple locations internationally and marks a significant milestone for both I Peace, Inc. and Avery Therapeutics to pursue one of the first US clinical trials using iPSC technology in the area of heart diseases. Koji Tanabe, PhD, founder and CEO of I Peace stated: "By combining I Peace's proprietary clinical grade iPSC technology and Avery's tissue engineering technology, we can bring the regenerative medicine dream closer to reality. We are very excited by Avery's technology and look forward to continue working together."
About I Peace, Inc
I Peace, Inc. is a global supplier of clinical and research grade iPSCs. It was founded in 2015 in Palo Alto, California, USA by Dr. Tanabe, who earned his doctorate at Kyoto University under Nobel laureate Dr. Shinya Yamanaka. I Peace's mission is to alleviate the suffering of diseased patients and help healthy people maintain a high quality of life by making cell therapy accessible to all. I Peace's state-of-the-art GMP facility and proprietary manufacturing platform enables the fully-automated mass production of discrete iPSCs from multiple donors in a single room. Increasing the available number of clinical-grade iPSC lines allows I Peace customers to take differentiation propensity into account to select the most appropriate iPSC line for their clinical research at significantly reduced cost. I Peace aims to create iPSCs for every individual that become their stem cell for life.
Founder, CEO: Koji Tanabe Since: 2015 Head Quarter: Palo Alto, California Japan subsidiary: I Peace, Ltd. (Kyoto, Japan) Cell Manufacturing Facility: Kyoto, Japan Web: https://www.ipeace.com
About Avery Therapeutics
Avery Therapeutics is a company developing advanced therapies for patients suffering from cardiovascular diseases. Avery's lead candidate is an allogeneic tissue engineered cardiac graft, MyCardia in development for treatment of chronic heart failure. Using Avery's proprietary manufacturing process MyCardia can be manufactured at scale, cryopreserved, and shipped ready to use. Avery is leveraging its proprietary tissue platform to pursue other cardiovascular indications. For more information visit: AveryThera.com. Follow Avery Therapeutics on LinkedInand Twitter. Since: 2016 Headquarter: Tucson, AZ Website: https://www.AveryThera.com
SOURCE I Peace, Inc.
Go here to see the original:
I Peace, Inc. and Avery Therapeutics announce collaboration to bring iPSC derived cell therapy for heart failure to the clinic - PRNewswire
Credit: Jean-Louis Paulin on Unsplash.
Read Time:
Over two million babies, children, and adults in the United States are living with congenital heart disease--a range of birth defects affecting the heart's structure or function. Now, researchers at Gladstone Institutes and UC San Francisco (UCSF) have made inroads into understanding how a broad network of genes and proteins go awry in a subset of congenital heart diseases.
"We now have a better understanding of what genes are improperly deployed in some cases of congenital heart disease," says Benoit Bruneau, PhD, director of the Gladstone Institute of Cardiovascular Disease and a senior author of the new study. "Eventually, this might help us get a handle on how to modulate genetic networks to prevent or treat the disease."
Congenital heart disease encompasses a wide variety of heart defects, ranging from mild structural problems that cause no symptoms to severe malformations that disrupt or block the normal flow of blood through the heart. A handful of genetic mutations have been implicated in contributing to congenital heart disease; the first to be identified was in a gene known as TBX5. The TBX5 protein is a transcription factor--it controls the expression of dozens of others genes, giving it far-reaching effects.
Bruneau has spent the last 20 years studying the effect of TBX5 mutations on developing heart cells, mostly conducting research in mice. In the new study published inDevelopmental Cell, he and his colleagues turned instead to human cells, using novel approaches to follow what happens in individual cells when TBX5 is mutated.
"This is really the first time we've been able to study this genetic mutation in a human context," says Bruneau, who is also a professor in the Department of Pediatrics at UCSF. "The mouse heart is a good proxy for the human heart, but it's not exactly the same, so it's important to be able to carry out these experiments in human cells."
The scientists began with human induced pluripotent stem cells (iPS cells), which have been reprogrammed to an embryonic-like state, giving them--like embryonic stem cells--the ability to become nearly every cell type in the body.
Then, Bruneau's group used CRISPR-Cas9 gene-editing technology to mutate TBX5 in the cells and began coaxing the iPS cells to become heart cells. As the cells became more like heart cells, the researchers used a method called single-cell RNA sequencing to track how the TBX5 mutation changed which genes were switched on and off in tens of thousands of individual cells.
The experiment revealed many genes that were expressed at higher or lower levels in cells with mutated TBX5. Importantly, not all cells responded to the TBX5 mutation in the same way; some had drastic changes in gene expression while other were less affected. This diversity, the researchers say, reflects the fact that the heart is composed of many different cell types.
"It makes sense that some are more affected than others, but this is the first experimental data in human cells to show that diversity," says Bruneau.
Bruneau's team then collaborated with computational researchers to analyze how the impacted genes and proteins were related to each other. The new data let them sketch out a complex and interconnected network of molecules that work together during heart development.
"We've not only provided a list of genes that are implicated in congenital heart disease, but we've offered context in terms of how those genes are connected," says Irfan Kathiriya, MD, PhD, a pediatric cardiac anesthesiologist at UCSF Benioff Children's Hospital, an associate professor in the Department of Anesthesia and Perioperative Care at UCSF, a visiting scientist at Gladstone, and the first author of the study.
Several genes fell into known pathways already associated with heart development or congenital heart disease. Some genes were among those directly regulated by TBX5's function as a transcription factor, while others were affected in a less direct way, the study revealed. In addition, many of the altered genes were relevant to heart function in patients with congenital heart disease as they control the rhythm and relaxation of the heart, and defects in these genes are often found together with the structural defects.
The new paper doesn't point toward any individual drug target that can reverse a congenital heart disease after birth, but a better understanding of the network involved in healthy heart formation, as well as congenital heart disease may lead to ways to prevent the defects, the researchers say. In the same way that folate taken by pregnant women is known to help prevent neural tube defects, there may be a compound that can help ensure that the network of genes and proteins related to congenital heart disease stays balanced during embryonic development.
"Our new data reveal that the genes are really all part of one network--complex but singular--which needs to stay balanced during heart development," says Bruneau. "That means if we can figure out a balancing factor that keeps this network functioning, we might be able to help prevent congenital heart defects."
Reference: Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Developmental Cell. 2020. doi:10.1016/j.devcel.2020.11.020.
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Read more here:
Network of Genes Involved in Congenital Heart Disease Identified - Technology Networks
Get Sample Copy Of This Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-induced-pluripotent-market
Few of the major competitors currently working in the induced pluripotent market areBristol-Myers Squibb Company; CELGENE CORPORATION; Astellas Pharma Inc.; Thermo Fisher Scientific; Cell Applications, Inc.; Axol Bioscience Ltd.; Organogenesis Holdings; Merck KGaA; FUJIFILM Holdings Corporation; Fate Therapeutics; KCI Licensing, Inc.; Japan Tissue Engineering Co., Ltd.; Vericel; ViaCyte, Inc.; STEMCELL Technologies Inc.; Horizon Discovery Group plc; Lonza; Takara Bio Inc.; Promega Corporation and QIAGEN.
Key Developments in the Market:
Market Drivers
Market Restraints
Get Full Table Of content @ https://www.databridgemarketresearch.com/toc/?dbmr=global-induced-pluripotent-market
Summary of the report
Segmentation: Global Induced Pluripotent Market
By Product Category
By Cell Type
By Application
By End-User
By Geography
Inquiry For Customize Report With Discount at :https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-induced-pluripotent-market
Potentials held by the report
AboutData Bridge Market Research
An absolute way to forecast what future holds is to comprehend the trend today!
Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.
Data bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune. We ponder into the heterogeneous markets in accord with our clients needs and scoop out the best possible solutions and detailed information about the market trends. Data Bridge delve into the markets across Asia, North America, South America, Africa to name few.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.
Contact: Data Bridge Market Research Tel: +1-888-387-2818 Email:Corporatesales@databridgemarketresearch.com
Read the original here:
Global Induced Pluripotent Market 2020-26 Steering Forces Heading Towards Impressive CAGR With CELGENE CORPORATION; Astellas Pharma Inc.; Thermo...