Author Archives: admin


New DARZALEX (daratumumab) Data from GRIFFIN Study Show Deeper and Longer Responses in Patients with Newly Diagnosed Multiple Myeloma – PRNewswire

HORSHAM, Pa., Dec. 7, 2020 /PRNewswire/ --The Janssen Pharmaceutical Companies of Johnson & Johnson announced new data from the randomized Phase 2 GRIFFIN study showing that the addition of DARZALEX (daratumumab) to lenalidomide (Revlimid), bortezomib (VELCADE) and dexamethasone (D-RVd), followed by DARZALEXplus lenalidomide (D-R) maintenance therapy, resulted in deeper and improved responses, including minimal residual disease (MRD) negativity, compared to RVd followed by R alone in newly diagnosed, stem cell transplant-eligible patients with multiple myeloma.1These data investigating the use of DARZALEX in combination with RVd, which were shared in separate oral and poster presentations at the American Society of Hematology (ASH) 2020 Annual Meeting, provide further evidence that this regimen may provide greater efficacy for transplant-eligible, newly diagnosed multiple myeloma(NDMM) than standard therapy. The oral presentation (Abstract #549) shared longer-term follow-up data, and the poster presentation (Abstract #3243) featured additional data from the safety run-in cohort.1,2

"The long-term GRIFFIN data show that maintenance therapy with DARZALEX in combination with lenalidomide (D-R) resulted in deeper responses compared to R alone in patients with multiple myeloma who are newly diagnosed and transplant-eligible," said Peter Voorhees, M.D., Atrium Health's Levine Cancer Institute and GRIFFIN study investigator. "These data indicate that the addition of DARZALEX to RVd followed by R maintenance results in improved response rates and depth of response during induction, consolidation and maintenance treatment cycles."

Key Findings from GRIFFIN (Abstract #549):The GRIFFIN oral presentation featured updated safety and efficacy data based onlonger follow-up for D-RVd and evaluated the potential role of D-R for maintenance therapy in patients with NDMM.1

Key Findings from GRIFFIN (Abstract #3243):The poster presentation shared final results of the safety run-in cohort (n=16 patients) from the GRIFFIN study. Theseadditional data showed that maintenance therapy with DARZALEX and lenalidomide (D-R) improved both the sCR rate and MRD negativity rate in patients with NDMMwho underwent D-RVd induction, autologous stem cell transplant (ASCT) and D-RVd consolidation. This deepening of responses was associated with durable remissions, and no new safety signals were observed with maintenance therapy.2

"We continue to be encouraged by the GRIFFIN data showing deeper and improved responses in patients with newly diagnosed, ASCT-eligible multiple myeloma," said Andree Amelsberg, M.D., MBA, Vice President, Oncology Medical Affairs, Janssen Scientific Affairs, LLC. "These data show promising results for patients with newly diagnosed multiple myeloma, and we remain committed to exploring the full potential of DARZALEX and DARZALEX FASPRO."

About the GRIFFIN Study4The Phase 2 GRIFFIN (NCT02874742) study has enrolled and treated more than 200 adults ages 18-70 years with NDMM and who are eligible for high-dose therapy/ASCT.

In the safety run-in cohort, patients received 25 mg of lenalidomide orally on Days 1-14; 1.3 mg/m2 of bortezomib subcutaneously on Days 1, 4, 8 and 11; and 20 mg of dexamethasone on Days 1, 2, 8, 9, 15 and 16, every 21 days during the induction and consolidation phases (Cycles 1-6). DARZALEX 16 mg/kg IV was given on Days 1, 8 and 15 of Cycles 1-4 and on Day 1 of Cycles 5-6.

During maintenance phase (Cycles 7-32), patients received 10 mg daily of lenalidomide (15 mg beginning at Cycle 10 if tolerated) on Days 1-21 every 28 days and DARZALEX 16 mg/kg IV every 56 days; this was amended to every 28 days based upon emerging clinical pharmacokinetic data demonstrating improved target saturation with every-4-week maintenance dosing. Maintenance therapy with lenalidomide may be continued beyond Cycle 32 in both arms, per local standard of care.

In the subsequent randomized Phase 2 portion of the study, approximately 200 patients were randomized and received treatment with RVd, induction and consolidation, ASCT and maintenance therapy with lenalidomide; or DARZALEX and RVd, ASCT and maintenance therapy with DARZALEX and lenalidomide.

About DARZALEXJanssen is committed to exploring the potential of DARZALEX (daratumumab) for patients with multiple myeloma across the spectrum of the disease. DARZALEX has been approved in eight indications, three of which are in the frontline setting, including newly diagnosed patients who are transplant eligible and ineligible.

DARZALEX has become a backbone therapy in the treatment of multiple myeloma, having been used in the treatment of more than 150,000 patients worldwide and more than 68,000 patients in the U.S. alone since its U.S. FDA approval in 2015. DARZALEX is the first CD38-directed antibody approved globally to treat multiple myeloma.

CD38 is a surface protein that is present in high numbers on multiple myeloma cells, regardless of the stage of disease.3 DARZALEX binds to CD38 and inhibits tumor cell growth causing myeloma cell death.4 DARZALEX may also have an effect on normal cells.5 Data across eight Phase 3 clinical trials, in both the frontline and relapsed settings, have shown that DARZALEX-based regimens resulted in significant improvement in progression-free survival and/or overall survival.5,6,7,8,9,10,11,12

About Multiple MyelomaMultiple myeloma is an incurable blood cancer that affects a type of white blood cell called plasma cells, which are found in the bone marrow.13,14When damaged, these plasma cells rapidly spread and replace normal cells with tumors in the bone marrow. In 2020, it is estimated that more than 32,000 people will be diagnosed and close to 13,000 will die from the disease in the U.S.15 While some patients with multiple myeloma have no symptoms, most patients are diagnosed due to symptoms, which can include bone fracture or pain, low red blood cell counts, tiredness, high calcium levels, kidney problems or infections.15

DARZALEXINDICATIONS

DARZALEX(daratumumab) is indicated for the treatment of adult patients with multiple myeloma:

DARZALEXIMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

DARZALEX is contraindicated in patients with a history of severe hypersensitivity (eg, anaphylactic reactions) to daratumumab or any of the components of the formulation.

WARNINGS AND PRECAUTIONS

Infusion-Related Reactions

DARZALEX can cause severe and/or serious infusion-related reactions including anaphylactic reactions. In clinical trials (monotherapy and combination: N=2066), infusion-related reactions occurred in 37% of patients with the Week1 (16mg/kg) infusion, 2% with the Week2 infusion, and cumulatively 6% with subsequent infusions. Less than 1% of patients had a Grade3/4 infusion-related reaction at Week 2 or subsequent infusions. The median time to onset was 1.5hours (range: 0 to 73hours). Nearly all reactions occurred during infusion or within 4hours of completing DARZALEX. Severe reactions have occurred, including bronchospasm, hypoxia, dyspnea, hypertension, laryngeal edema, and pulmonary edema. Signs and symptoms may include respiratory symptoms, such as nasal congestion, cough, throat irritation, as well as chills, vomiting, and nausea. Less common symptoms were wheezing, allergic rhinitis, pyrexia, chest discomfort, pruritus, and hypotension.

When DARZALEX dosing was interrupted in the setting of ASCT (CASSIOPEIA) for a median of 3.75months (range: 2.4 to 6.9months), upon re-initiation of DARZALEX, the incidence of infusion-related reactions was 11% for the first infusion following ASCT. Infusion-related reactions occurring at re-initiation of DARZALEX following ASCT were consistent in terms of symptoms and severity (Grade 3 or 4: <1%) with those reported in previous studies at Week 2 or subsequent infusions. In EQUULEUS, patients receiving combination treatment (n=97) were administered the first 16mg/kg dose at Week 1 split over two days, ie, 8mg/kg on Day1 and Day2, respectively. The incidence of any grade infusion-related reactions was 42%, with 36% of patients experiencing infusion-related reactions on Day1 of Week1, 4% on Day2 of Week1, and 8% with subsequent infusions.

Pre-medicate patients with antihistamines, antipyretics, and corticosteroids. Frequently monitor patients during the entire infusion. Interrupt DARZALEX infusion for reactions of any severity and institute medical management as needed. Permanently discontinue DARZALEX therapy if an anaphylactic reaction or life-threatening (Grade 4) reaction occurs and institute appropriate emergency care. For patients with Grade 1, 2, or 3 reactions, reduce the infusion rate when re-starting the infusion.

To reduce the risk of delayed infusion-related reactions, administer oral corticosteroids to all patients following DARZALEX infusions. Patients with a history of chronic obstructive pulmonary disease may require additional post-infusion medications to manage respiratory complications. Consider prescribing short- and long-acting bronchodilators and inhaled corticosteroids for patients with chronic obstructive pulmonary disease.

Interference With Serological Testing

Daratumumab binds to CD38 on red blood cells (RBCs) and results in a positive Indirect Antiglobulin Test (Indirect Coombs test). Daratumumab-mediated positive Indirect Antiglobulin Test may persist for up to 6months after the last daratumumab infusion. Daratumumab bound to RBCs masks detection of antibodies to minor antigens in the patient's serum. The determination of a patient's ABO and Rh blood type is not impacted. Notify blood transfusion centers of this interference with serological testing and inform blood banks that a patient has received DARZALEX. Type and screen patients prior to starting DARZALEX.

Neutropenia and Thrombocytopenia

DARZALEX may increase neutropenia and thrombocytopenia induced by background therapy. Monitor complete blood cell counts periodically during treatment according to manufacturer's prescribing information for background therapies. Monitor patients with neutropenia for signs of infection. Consider withholding DARZALEX until recovery of neutrophils or for recovery of platelets.

Interference With Determination of Complete Response

Daratumumab is a human IgG kappa monoclonal antibody that can be detected on both the serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for the clinical monitoring of endogenous M-protein. This interference can impact the determination of complete response and of disease progression in some patients with IgG kappa myeloma protein.

Embryo-Fetal Toxicity

Based on the mechanism of action, DARZALEX can cause fetal harm when administered to a pregnant woman. DARZALEX may cause depletion of fetal immune cells and decreased bone density. Advise pregnant women of the potential risk to a fetus. Advise females with reproductive potential to use effective contraception during treatment with DARZALEX and for 3 months after the last dose.

The combination of DARZALEX with lenalidomide, pomalidomide, or thalidomide is contraindicated in pregnant women, because lenalidomide, pomalidomide, and thalidomide may cause birth defects and death of the unborn child. Refer to the lenalidomide, pomalidomide, or thalidomide prescribing information on use during pregnancy.

ADVERSE REACTIONS

The most frequently reported adverse reactions (incidence 20%) were: upper respiratory infection, neutropenia, infusionrelated reactions, thrombocytopenia, diarrhea, constipation, anemia, peripheral sensory neuropathy, fatigue, peripheral edema, nausea, cough, pyrexia, dyspnea, and asthenia. The most common hematologic laboratory abnormalities (40%) with DARZALEX are: neutropenia, lymphopenia, thrombocytopenia, leukopenia, and anemia.

Please click hereto see the full Prescribing Information.

DARZALEX FASPRO INDICATIONS DARZALEXFASPRO is indicated for the treatment of adult patients with multiple myeloma:

DARZALEX FASPROIMPORTANT SAFETY INFORMATIONCONTRAINDICATIONS

DARZALEX FASPRO(daratumumab and hyaluronidase-fihi) is contraindicated in patients with a history of severe hypersensitivity to daratumumab, hyaluronidase or any of the components of the formulation.

WARNINGS AND PRECAUTIONS

Hypersensitivity and Other Administration Reactions

Both systemic administration-related reactions, including severe or life-threatening reactions, and local injection-site reactions can occur with DARZALEX FASPRO.

Systemic Reactions

In a pooled safety population of 490patients who received DARZALEX FASPROas monotherapy or in combination, 11% of patients experienced a systemic administration-related reaction (Grade 2: 3.9%, Grade 3: 1.4%). Systemic administration-related reactions occurred in 10% of patients with the first injection, 0.2% with the second injection, and cumulatively 0.8% with subsequent injections. The median time to onset was 3.7hours (range: 9minutes to 3.5days). Of the 84systemic administration-related reactions that occurred in 52patients, 73(87%) occurred on the day of DARZALEX FASPROadministration. Delayed systemic administration-related reactions have occurred in less than 1% of the patients.

Severe reactions included hypoxia, dyspnea, hypertension and tachycardia. Other signs and symptoms of systemic administration-related reactions may include respiratory symptoms, such as bronchospasm, nasal congestion, cough, throat irritation, allergic rhinitis, and wheezing, as well as anaphylactic reaction, pyrexia, chest pain, pruritis, chills, vomiting, nausea, and hypotension.

Pre-medicate patients with histamine-1 receptor antagonist, acetaminophen and corticosteroids. Monitor patients for systemic administration-related reactions, especially following the first and second injections. For anaphylactic reaction or life-threatening (Grade 4) administration-related reactions, immediately and permanently discontinue DARZALEX FASPRO.Consider administering corticosteroids and other medications after the administration of DARZALEX FASPROdepending on dosing regimen and medical history to minimize the risk of delayed (defined as occurring the day after administration) systemic administration-related reactions.

Local Reactions

In this pooled safety population, injection-site reactions occurred in 8% of patients, including Grade2 reactions in 0.6%. The most frequent (>1%) injection-site reaction was injection site erythema. These local reactions occurred a median of 7minutes (range: 0minutes to 4.7days) after starting administration of DARZALEX FASPRO. Monitor for local reactions and consider symptomatic management.

NeutropeniaDaratumumab may increase neutropenia induced by background therapy. Monitor complete blood cell counts periodically during treatment according to manufacturer's prescribing information for background therapies. Monitor patients with neutropenia for signs of infection. Consider withholding DARZALEX FASPROuntil recovery of neutrophils. In lower body weight patients receiving DARZALEX FASPROhigher rates of Grade 3-4 neutropenia were observed.

ThrombocytopeniaDaratumumab may increase thrombocytopenia induced by background therapy. Monitor complete blood cell counts periodically during treatment according to manufacturer's prescribing information for background therapies. Consider withholding DARZALEX FASPROuntil recovery of platelets.

Embryo-Fetal ToxicityBased on the mechanism of action, DARZALEX FASPROcan cause fetal harm when administered to a pregnant woman. DARZALEX FASPROmay cause depletion of fetal immune cells and decreased bone density. Advise pregnant women of the potential risk to a fetus. Advise females with reproductive potential to use effective contraception during treatment with DARZALEX FASPROand for 3months after the last dose.

The combination of DARZALEX FASPROwith lenalidomide is contraindicated in pregnant women, because lenalidomide may cause birth defects and death of the unborn child. Refer to the lenalidomide prescribing information on use during pregnancy.

Interference with Serological TestingDaratumumab binds to CD38 on red blood cells (RBCs) and results in a positive Indirect Antiglobulin Test (Indirect Coombs test). Daratumumab-mediated positive indirect antiglobulin test may persist for up to 6months after the last daratumumab administration. Daratumumab bound to RBCs masks detection of antibodies to minor antigens in the patient's serum. The determination of a patient's ABO and Rh blood type are not impacted.

Notify blood transfusion centers of this interference with serological testing and inform blood banks that a patient has received DARZALEX FASPRO.Type and screen patients prior to starting DARZALEX FASPRO.

Interference with Determination of Complete Response

Daratumumab is a human IgG kappa monoclonal antibody that can be detected on both the serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for the clinical monitoring of endogenous M-protein. This interference can impact the determination of complete response and of disease progression in some DARZALEX FASPROtreated patients with IgG kappa myeloma protein.

ADVERSE REACTIONSThe most common adverse reaction (20%) with DARZALEX FASPROmonotherapy is: upper respiratory tract infection. The most common adverse reactions with combination therapy (20% for any combination) include fatigue, nausea, diarrhea, dyspnea, insomnia, pyrexia, cough, muscle spasms, back pain, vomiting, upper respiratory tract infection, peripheral sensory neuropathy, constipation, and pneumonia.

The most common hematology laboratory abnormalities (40%) with DARZALEX FASPROare decreased leukocytes, decreased lymphocytes, decreased neutrophils, decreased platelets, and decreased hemoglobin.

Please see full Prescribing Information atwww.DARZALEX.com.

About the Janssen Pharmaceutical Companies of Johnson & Johnson At Janssen, we're creating a future where disease is a thing of the past. We're the Pharmaceutical Companies of Johnson & Johnson, working tirelessly to make that future a reality for patients everywhere by fighting sickness with science, improving access with ingenuity, and healing hopelessness with heart. We focus on areas of medicine where we can make the biggest difference: Cardiovascular & Metabolism, Immunology, Infectious Diseases & Vaccines, Neuroscience, Oncology, and Pulmonary Hypertension.

Learn more at http://www.janssen.com. Follow us at http://www.twitter.com/JanssenGlobal and http://www.twitter.com/JanssenUS. Janssen Research & Development, LLC, Janssen Scientific Affairs, LLC and Janssen Biotech, Inc. are part of the Janssen Pharmaceutical Companies of Johnson & Johnson.

Cautions Concerning Forward-Looking StatementsThis press release contains "forward-looking statements" as defined in the Private Securities Litigation Reform Act of 1995 regarding DARZALEX. The reader is cautioned not to rely on these forward-looking statements. These statements are based on current expectations of future events. If underlying assumptions prove inaccurate or known or unknown risks or uncertainties materialize, actual results could vary materially from the expectations and projections of Janssen Biotech, Inc., Janssen Research & Development, LLC, or any of the other Janssen Pharmaceutical Companies, and/or Johnson & Johnson. Risks and uncertainties include, but are not limited to: challenges and uncertainties inherent in product research and development, including the uncertainty of clinical success and of obtaining regulatory approvals; uncertainty of commercial success; manufacturing difficulties and delays; competition, including technological advances, new products and patents attained by competitors; challenges to patents; product efficacy or safety concerns resulting in product recalls or regulatory action; changes in behavior and spending patterns of purchasers of health care products and services; changes to applicable laws and regulations, including global health care reforms; and trends toward health care cost containment. A further list and descriptions of these risks, uncertainties and other factors can be found in Johnson & Johnson's Annual Report on Form 10-K for the fiscal year ended December 29, 2019, including in the sections captioned "Cautionary Note Regarding Forward-Looking Statements" and "Item 1A. Risk Factors," and in the company's most recently filed Quarterly Report on Form 10-Q, and the company's subsequent filings with the Securities and Exchange Commission. Copies of these filings are available online at http://www.sec.gov, http://www.jnj.comor on request from Johnson & Johnson. None of the Janssen Pharmaceutical Companies nor Johnson & Johnson undertakes to update any forward-looking statement as a result of new information or future events or developments.

1 Kaufman, JL et al. Daratumumab (DARA) Plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients with Transplant-eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of GRIFFIN After 12 Months of Maintenance Therapy. Abstract #549. To be presented at 2020 American Society of Hematology Annual Meeting. 2Voorhees, PM et al. Daratumumab (DARA) Plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients with Transplant-eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Efficacy and Safety Analysis of the Safety Run-in Population of GRIFFIN. Abstract #3243. To be presented at 2020 American Society of Hematology Annual Meeting. 3Janssen Research & Development, LLC. Study Comparing Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone (D-RVd) Versus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Subjects With Newly Diagnosed Multiple Myeloma In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2016 August 22]. Available at: https://clinicaltrials.gov/ct2/show/NCT02874742 Identifier: NCT02874742. 4Fedele G et al. CD38 Ligation in Peripheral Blood Mononuclear Cells of Myeloma Patients Induces Release of Protumorigenic IL-6 and Impaired Secretion of IFN Cytokines and Proliferation. Mediators Inflamm. 2013;564687. 5Janssen Research & Development, LLC. A Study Comparing Daratumumab, Lenalidomide, and Dexamethasone With Lenalidomide and Dexamethasone in Relapsed or Refractory Multiple Myeloma. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24]. Available at: https://clinicaltrials.gov/ct2/show/NCT02076009?term=mmy3003&rank=1 Identifier: NCT02136134. 6Janssen Research & Development, LLC. Addition of Daratumumab to Combination of Bortezomib and Dexamethasone in Participants With Relapsed or Refractory Multiple Myeloma. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24]. Available at: https://clinicaltrials.gov/ct2/show/NCT02136134?term=mmy3004&rank=1 Identifier: NCT02076009. 7Janssen Research & Development, LLC. A Study to Evaluate Daratumumab in Transplant Eligible Participants With Previously Untreated Multiple Myeloma (Cassiopeia). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24]. Available at: https://clinicaltrials.gov/ct2/show/NCT02541383?term=mmy3006 Identifier: NCT02541383. 8Janssen Research & Development, LLC. A Study of Combination of Daratumumab and Velcade (Bortezomib) Melphalan-Prednisone (DVMP) Compared to Velcade Melphalan-Prednisone (VMP) in Participants With Previously Untreated Multiple Myeloma In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24]. Available at: https://clinicaltrials.gov/ct2/show/NCT02195479?term=mmy3007&rank=1 Identifier: NCT02195479. 9 Janssen Research & Development, LLC. Study Comparing Daratumumab, Lenalidomide, and Dexamethasone With Lenalidomide and Dexamethasone in Participants With Previously Untreated Multiple Myeloma. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24]. Available at: https://clinicaltrials.gov/ct2/show/NCT02252172?term=mmy3008&rank=1 Identifier: NCT02252172. 10Janssen Research & Development, LLC. A Study of VELCADE (Bortezomib) Melphalan-Prednisone (VMP) Compared to Daratumumab in Combination With VMP (D-VMP), in Participants With Previously Untreated Multiple Myeloma Who Are Ineligible for High-Dose Therapy (Asia Pacific Region). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24]. Available at: https://clinicaltrials.gov/ct2/show/NCT03217812?term=MMY3011&rank=1 Identifier: NCT03217812. 11European Myeloma Network. Compare Progression Free Survival Btw Daratumumab/Pomalidomide/Dexamethasone vs Pomalidomide/Dexamethasone (EMN14). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24] Available at: https://clinicaltrials.gov/ct2/show/NCT03180736?term=MMY3013&rank=2 Identifier: NCT03180736. 12Amgen. Study of Carfilzomib, Daratumumab and Dexamethasone for Patients With Relapsed and/or Refractory Multiple Myeloma. (CANDOR). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 July 24] Available at: https://clinicaltrials.gov/ct2/show/NCT03158688?term=NCT03158688&rank=1 Identifier: NCT03158688. 13Kumar, SK et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012 Jan; 26(1):149-57. 14American Cancer Society. "What Is Multiple Myeloma?" Available at: http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-what-is-multiple-myeloma. Accessed June 2019. 15American Cancer Society. "Key Statistics About Multiple Myeloma." Available at: https://www.cancer.org/cancer/multiple-myeloma/about/key-statistics.html. Accessed January 2020.

Media contacts:Bernadette King Phone: +1 215-778-3027

Satu Glawe Phone: +49 172-294-6264

Investor Relations: Jennifer McIntyre Phone: +1 732-524-3922

U.S. Medical Inquiries:+1 800-526-7736

SOURCE The Janssen Pharmaceutical Companies of Johnson & Johnson

More here:
New DARZALEX (daratumumab) Data from GRIFFIN Study Show Deeper and Longer Responses in Patients with Newly Diagnosed Multiple Myeloma - PRNewswire

CRISPR Therapeutics and Vertex Present New Data for Investigational CRISPR/Cas9 Gene-Editing Therapy, CTX001 at American Society of Hematology Annual…

December 05, 2020 12:30 ET | Source: CRISPR Therapeutics AG

- Beta thalassemia: All seven patients were transfusion independent with 3 to 18 months of follow-up after CTX001 infusion -

- Sickle cell disease: All three patients were free of vaso-occlusive crises with 3 to 15 months of follow-up after CTX001 infusion -

- Nineteen patients have been dosed with CTX001 across both programs -

- The New England Journal of Medicine publishes CTX001 manuscript containing the first report of investigational use of CRISPR/Cas9-based gene editing to treat inherited diseases in humans -

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, Dec. 05, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced new data on a total of 10 patients treated with the investigational CRISPR/Cas9-based gene-editing therapy, CTX001, that show a consistent and sustained response to treatment. All seven patients with transfusion-dependent beta thalassemia (TDT), including three who have either a severe or b0/b0 genotype, were transfusion independent at last follow-up and all three patients with sickle cell disease (SCD) were free of vaso-occlusive crises (VOCs) from CTX001 infusion through last follow-up. These data will be presented during the Scientific Plenary at the annual ASH Meeting and Exposition on December 6, 2020. A summary of the results from the CLIMB-111 and CLIMB-121 Phase 1/2 clinical studies is provided below.

The companies also announced that The New England Journal of Medicine (NEJM) has published an independently peer-reviewed article entitled CRISPR-Cas9 Gene Editing for Sickle Cell Disease and Thalassemia. The article includes detailed information on the first patient with TDT enrolled in CLIMB-111 and the first patient with severe SCD enrolled in CLIMB-121, at 18 and 15 months of follow-up, respectively.

CTX001 is being investigated in these two ongoing Phase 1/2 clinical trials as a potential one-time curative therapy for patients suffering from TDT and severe SCD.

We are pleased with the data presented at ASH, which demonstrate potential benefit and durability among a larger population of patients with transfusion-dependent beta thalassemia and sickle cell disease, said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. Additionally, the NEJM case study is the first peer-reviewed journal publication for our CRISPR/Cas9 gene therapy, CTX001. Together this is further validation of the potential of CTX001 to become a best-in-class therapy. We plan to continue the rapid advancement of our clinical trials to bring these much-needed therapies to patients.

These are the first published results from CRISPR/Cas9 therapy in people with a genetic disease and represent an important milestone in medicine and for our collaboration with CRISPR Therapeutics. Most importantly, these data represent a critical step in our effort to bring transformative and potentially curative therapies to patients, said Reshma Kewalramani, M.D., Chief Executive Officer and President, Vertex. With clinical proof-of-concept for both beta thalassemia and sickle cell disease and 19 patients dosed, we look forward to continued efforts to bring our investigational treatment to patients living with TDT and SCD as quickly as we can.

Our vision with this approach is to use the patients own stem cells to provide a transformative treatment for these diseases, something almost unimaginable a few years ago, said Dr. Haydar Frangoul, M.D., Medical Director of Pediatric Hematology and Oncology at Sarah Cannon Research Institute, HCA Healthcares TriStar Centennial Medical Center. With these data in 10 patients, we can see the potential to fulfill this vision. With more data and longer duration of follow-up, we will hopefully confirm that we have a durable therapy that may transform the lives of many patients.

CLIMB-111 Trial in TDT: Updated Results A total of 13 patients with TDT have been dosed with CTX001, including eight additional patients since the last update in June 2020.

The seven patients with TDT reported at ASH are patients who had reached at least three months of follow-up after CTX001 dosing and therefore could be assessed for initial safety and efficacy. All seven patients showed a similar pattern of response, with rapid and sustained increases in total hemoglobin, fetal hemoglobin and transfusion independence at last analysis.

All seven patients were transfusion independent with follow-up ranging from three to 18 months after CTX001 infusion, with normal to near normal total hemoglobin levels at last visit, including total hemoglobin from 9.7 to 14.1 g/dL and fetal hemoglobin from 40.9% to 97.7%.

Bone marrow allelic editing data collected from four patients with six months of follow-up and from one patient with 12 months of follow-up after CTX001 infusion demonstrated a durable effect.

The safety data from all seven patients were generally consistent with an autologous stem cell transplant and myeloablative conditioning. There were four serious adverse events (SAEs) considered related or possibly related to CTX001 reported in one patient: headache, hemophagocytic lymphohistiocytosis (HLH), acute respiratory distress syndrome and idiopathic pneumonia syndrome. All four SAEs occurred in the context of HLH and have resolved. The majority of non-serious adverse events were considered mild to moderate.

CLIMB-121 Trial in Severe SCD: Updated Results A total of six patients with SCD have been dosed with CTX001, including four additional patients since the last update in June 2020.

The three patients reported at ASH are patients who had reached at least three months of follow-up after CTX001 dosing and therefore could be assessed for initial safety and efficacy. All three patients showed a similar pattern of response, with rapid and sustained increases in total hemoglobin and fetal hemoglobin, as well as elimination of VOCs through last analysis.

All three patients remained VOC-free with follow-up ranging from three to 15 months after CTX001 infusion and had hemoglobin levels in the normal to near normal range at last visit, including total hemoglobin from 11.5 to 13.2 g/dL and fetal hemoglobin levels from 31.3% to 48.0%.

Bone marrow allelic editing data collected from one patient with six months of follow-up and from one patient with 12 months of follow-up after CTX001 infusion demonstrated a durable effect.

The safety data from all three patients were generally consistent with an autologous stem cell transplant and myeloablative conditioning. There were no SAEs considered related to CTX001, and the majority of non-serious adverse events were considered mild to moderate.

About CTX001 CTX001 is an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD, in which a patients hematopoietic stem cells are edited to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for patients with TDT and reduce painful and debilitating sickle crises for patients with SCD.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT), Fast Track, Orphan Drug, and Rare Pediatric Disease designations from the U.S. Food and Drug Administration (FDA) for both TDT and SCD. CTX001 has also been granted Orphan Drug Designation from the European Commission for both TDT and SCD, as well as Priority Medicines (PRIME) designation from the European Medicines Agency (EMA) for SCD.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex. Among gene-editing approaches being investigated/evaluated for TDT and SCD, CTX001 is the furthest advanced in clinical development.

About CLIMB-111 The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121 The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About the Gene-Editing Process in These Trials Patients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the CRISPR-Vertex Collaboration CRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first potential treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR Therapeutics CRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking Statement This press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the safety, efficacy and clinical progress of CRISPR Therapeutics various clinical programs including CTX001; (ii) the status of clinical trials (including, without limitation, the expected timing of data releases) related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the data that are being presented in this press release, at the annual ASH Meeting and Exposition, and in the NEJM article; (iii) the expected benefits of CRISPR Therapeutics collaborations; and (iv) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, existing and prospective investors are cautioned that forward-looking statements are inherently uncertain, are neither promises nor guarantees and not to place undue reliance on such statements, which speak only as of the date they are made. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: that preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) may not be indicative of final or future trial results; that CTX001 clinical trial results may not be favorable or may not support registration or further development; potential impacts due to the coronavirus pandemic, such as to the timing and progress of clinical trials; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology; and those risks and uncertainties described under the heading Risk Factors in CRISPR Therapeutics most recent annual report on Form 10-K, quarterly report on Form 10-Q, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

CRISPR THERAPEUTICS word mark and design logo and CTX001 are trademarks and registered trademarks of CRISPR Therapeutics AG. All other trademarks and registered trademarks are the property of their respective owners.

About Vertex Vertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 11 consecutive years on Science magazine's Top Employers list and a best place to work for LGBTQ equality by the Human Rights Campaign. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking Statements This press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Dr. Samarth Kulkarni, Dr. Reshma Kewalramani and Dr. Haydar Frangoul in this press release and statements regarding the expectations and plans to present data at the annual ASH Meeting and Exposition, the development, including expected timeline for development, updated data on patients treated to date and new data on additional patients, and the potential benefits and curative therapy of CTX001, our plans and expectations for our clinical trials and clinical trial sites, including statements regarding patient enrollment, and the status of our clinical trials of our product candidates under development by us and our collaborators, including activities at the clinical trial sites and potential outcomes. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from a limited number of patients may not be indicative of final clinical trial results, that data from the company's development programs, including its programs with its collaborators, may not support registration or further development of its compounds due to safety, efficacy, or other reasons, that the COVID-19 pandemic may impact the status or progress of our clinical trials and clinical trial sites and the clinical trials and clinical trial sites of our collaborators, including patient enrollment, and other risks listed under the heading Risk Factors in Vertex's most recent annual report and subsequent quarterly reports filed with the Securities and Exchange Commission at http://www.sec.gov and available through the company's website at http://www.vrtx.com. You should not place undue reliance on these statements or the scientific data presented. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

CRISPR Therapeutics Investor Contact: Susan Kim, +1 617-307-7503 susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact: Rachel Eides WCG on behalf of CRISPR +1 617-337-4167 reides@wcgworld.com

Vertex Pharmaceuticals Incorporated Investors: Michael Partridge, +1 617-341-6108 or Zach Barber, +1 617-341-6470 or Brenda Eustace, +1 617-341-6187

Media: mediainfo@vrtx.com or U.S.: +1 617-341-6992 or Heather Nichols: +1 617-839-3607 or International: +44 20 3204 5275

Read more here:
CRISPR Therapeutics and Vertex Present New Data for Investigational CRISPR/Cas9 Gene-Editing Therapy, CTX001 at American Society of Hematology Annual...

Genetic engineering transformed stem cells into working mini-livers that extended the life of mice with liver disease – Albany Times Union

Mo Ebrahimkhani,University of Pittsburgh

Dec. 7, 2020Updated: Dec. 7, 2020 2:02p.m.

(The Conversation is an independent and nonprofit source of news, analysis and commentary from academic experts.)

(THE CONVERSATION) Takeaways

-

Scientists have made progress growing human liver in the lab.

-

The challenge has been to direct stems cells to grow into a mature, functioning adult organ.

-

This study shows that stem cells can be programmed, using genetic engineering, to grow from immature cells into mature tissue.

-

When a tiny lab-grown liver was transplanted into mice with liver disease, it extended the lives of the sick animals.

Imagine if researchers could program stem cells, which have the potential to grow into all cell types in the body, so that they could generate an entire human organ. This would allow scientists to manufacture tissues for testing drugs and reduce the demand for transplant organs by having new ones grown directly from a patients cells.

Im a researcher working in this new field called synthetic biology focused on creating new biological parts and redesigning existing biological systems. In a new paper, my colleagues and I showed progress in one of the key challenges with lab-grown organs figuring out the genes necessary to produce the variety of mature cells needed to construct a functioning liver.

Induced pluripotent stem cells, a subgroup of stem cells, are capable of producing cells that can build entire organs in the human body. But they can do this job only if they receive the right quantity of growth signals at the right time from their environment. If this happens, they eventually give rise to different cell types that can assemble and mature in the form of human organs and tissues.

The tissues researchers generate from pluripotent stem cells can provide a unique source for personalized medicine from transplantation to novel drug discovery.

But unfortunately, synthetic tissues from stem cells are not always suitable for transplant or drug testing because they contain unwanted cells from other tissues, or lack the tissue maturity and a complete network of blood vessels necessary for bringing oxygen and nutrients needed to nurture an organ. That is why having a framework to assess whether these lab-grown cells and tissues are doing their job, and how to make them more like human organs, is critical.

Inspired by this challenge, I was determined to establish a synthetic biology method to read and write, or program, tissue development. I am trying to do this using the genetic language of stem cells, similar to what is used by nature to form human organs.

Tissues and organs made by genetic designs

I am a researcher specializing in synthetic biology and biological engineering at the Pittsburgh Liver Research Center and McGowan Institute for Regenerative Medicine, where the goals are to use engineering approaches to analyze and build novel biological systems and solve human health problems. My lab combines synthetic biology and regenerative medicine in a new field that strives to replace, regrow or repair diseased organs or tissues.

I chose to focus on growing new human livers because this organ is vital for controlling most levels of chemicals like proteins or sugar in the blood. The liver also breaks down harmful chemicals and metabolizes many drugs in our body. But the liver tissue is also vulnerable and can be damaged and destroyed by many diseases, such as hepatitis or fatty liver disease. There is a shortage of donor organs, which limits liver transplantation.

To make synthetic organs and tissues, scientists need to be able to control stem cells so that they can form into different types of cells, such as liver cells and blood vessel cells. The goal is to mature these stem cells into miniorgans, or organoids, containing blood vessels and the correct adult cell types that would be found in a natural organ.

One way to orchestrate maturation of synthetic tissues is to determine the list of genes needed to induce a group of stem cells to grow, mature and evolve into a complete and functioning organ. To derive this list I worked with Patrick Cahan and Samira Kiani to first use computational analysis to identify genes involved in transforming a group of stem cells into a mature functioning liver. Then our team led by two of my students Jeremy Velazquez and Ryan LeGraw used genetic engineering to alter specific genes we had identified and used them to help build and mature human liver tissues from stem cells.

The tissue is grown from a layer of genetically engineered stem cells in a petri dish. The function of genetic programs together with nutrients is to orchestrate formation of liver organoids over the course of 15 to 17 days.

Liver in a dish

I and my colleagues first compared the active genes in fetal liver organoids we had grown in the lab with those in adult human livers using a computational analysis to get a list of genes needed for driving fetal liver organoids to mature into adult organs.

We then used genetic engineering to tweak genes and the resulting proteins that the stem cells needed to mature further toward an adult liver. In the course of about 17 days we generated tiny several millimeters in width but more mature liver tissues with a range of cells typically found in livers in the third trimester of human pregnancies.

Like a mature human liver, these synthetic livers were able to store, synthesize and metabolize nutrients. Though our lab-grown livers were small, we are hopeful that we can scale them up in the future. While they share many similar features with adult livers, they arent perfect and our team still has work to do. For example, we still need to improve the capacity of the liver tissue to metabolize a variety of drugs. We also need to make it safer and more efficacious for eventual application in humans.

[Deep knowledge, daily. Sign up for The Conversations newsletter.]

Our study demonstrates the ability of these lab livers to mature and develop a functional network of blood vessels in just two and a half weeks. We believe this approach can pave the path for the manufacture of other organs with vasculature via genetic programming.

The liver organoids provide several key features of an adult human liver such as production of key blood proteins and regulation of bile a chemical important for digestion of food.

When we implanted the lab-grown liver tissues into mice suffering from liver disease, it increased the life span. We named our organoids designer organoids, as they are generated via a genetic design.

This article is republished from The Conversation under a Creative Commons license. Read the original article here: https://theconversation.com/genetic-engineering-transformed-stem-cells-into-working-mini-livers-that-extended-the-life-of-mice-with-liver-disease-151089.

Read more from the original source:
Genetic engineering transformed stem cells into working mini-livers that extended the life of mice with liver disease - Albany Times Union

Researchers Trace the Origin of Blood Cancer to Early Childhood, Decades before Diagnosis – PRNewswire

WASHINGTON, Dec. 8, 2020 /PRNewswire/ --Genetic mutations linked with cancer can occur during childhood or even before birth and proliferate in the body for many years before causing cancer symptoms, according to a new study. The study, which traced the genetic origins of a blood cancer in 10 individuals, suggests there may be untapped opportunities to detect cancer warning signs much earlier and potentially intervene to prevent or slow cancer development.

"Our preliminary findings show these cancer driver mutations were often acquired in childhood, many decades before the cancer diagnosis," said senior study authorJyoti Nangalia, MD,of the Wellcome Sanger Institute and University of Cambridge. "Our results finally answer the common question posed by patients, 'How long has this cancer been growing?' as we were able to study how these particular cancers developed over the entire lifetime of individual patients."

The researchers analyzed bone marrow and blood samples from 10 people with Philadelphia-negative myeloproliferative neoplasms, a type of cancer that causes stem cells in the bone marrow to produce too many blood cells. In the majority of patients, this cancer is driven by a genetic mutation called JAK2V617F. By assessing JAK2V617F, other cancer-linked mutations and hundreds of thousands of other mutations that a person naturally acquires throughout life, the researchers were able to trace the ancestry of different blood cells and estimate the time at which each patient acquired JAK2V617F and other important mutations.

They determined that, in these 10 patients, the first cancer-linked mutations emerged as early as a few weeks after the start of life and up to the first decade of childhood despite clinical disease presenting many decades later in life.

"We were not expecting this," said Dr. Nangalia. "In fact, in one patient, the JAK2 mutation was acquired more than 50 years before their diagnosis."

While it is often assumed that most cancers are diagnosed within a few years of their emergence, the findings point to a more gradual, lifelong process in which a single cell acquires a cancer-linked mutation early in life and then slowly grows over decades, ultimately leading to cancer.

"Some of these cancer-linked mutations are found in healthy individuals as we get older, suggesting that aging causes them," said Dr. Nangalia. "However, aging per se doesn't drive such growth it simply takes a long time for the clones to grow." Sometimes, the growing clones pick up additional cancer-linked mutations along the way, accelerating their growth, researchers found.

"For these patients, we calculated how many of these cancer clones would have been present in the past, and our results suggest that these clones may have been detectable up to 10 to 40 years before diagnosis," said Dr. Nangalia. "In addition to detecting the mutations, the rate at which the mutated clones grew was also very important in determining whether, and when, cancer develops." The findings suggest that genetic testing could help identify people at risk for cancer much earlier than current methods allow, according to researchers.

The next steps would be to understand the factors that influence the different rates of cancer growth and determine whether there could be ways to intervene and slow the growth of cells with cancer-linked mutations. The researchers say their method for pinpointing the origin of this blood cancer could also be applied to other mutations and other blood cancers. "Understanding the timelines of development of different cancers is critical for efforts aimed at early cancer detection and prevention," said Dr. Nangalia.

Jyoti Nangalia, MBBChir,Wellcome Sanger Institute and University of Cambridge, will present this study during the Late-Breaking Abstracts session on Tuesday, December 8 at 7:00 a.m. Pacific time on the ASH annual meeting virtual platform.

For the complete annual meeting program and abstracts, visit http://www.hematology.org/annual-meeting. Follow ASH and #ASH20 on Twitter, Instagram, LinkedIn, and Facebook for the most up-to-date information about the 2020 ASH Annual Meeting.

The American Society of Hematology (ASH) (www.hematology.org) is the world's largest professional society of hematologists dedicated to furthering the understanding, diagnosis, treatment, and prevention of disorders affecting the blood. For more than 60 years, the Society has led the development of hematology as a discipline by promoting research, patient care, education, training, and advocacy in hematology. ASH publishes Blood (www.bloodjournal.org), the most cited peer-reviewed publication in the field, and Blood Advances (www.bloodadvances.org), an online, peer-reviewed open-access journal.

SOURCE American Society of Hematology

http://www.hematology.org

Go here to read the rest:
Researchers Trace the Origin of Blood Cancer to Early Childhood, Decades before Diagnosis - PRNewswire

Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach – BioSpace

HAMBURG, GERMANY / ACCESSWIRE / December 9, 2020 / Evotec SE (Frankfurt Stock Exchange: EVT, MDAX/TecDAX, ISIN: DE0005664809) and the life science company Sartorius announced today that they have entered into a partnership with the recently established Curexsys GmbH, a Goettingen, Germany-based technology leader specialising in the emerging field of therapeutic exosomes.

Curexsys delivers a proprietary isolation technology for exosomes based on a traceless immune-affinity process. This process is different from commonly used antibody-based processes and enables the company to overcome a key hurdle in exosome preparation, i.e. remaining antibodies in the final preparation. Curexsys is founded by Herbert Stadler, a serial biotech entrepreneur, and Jens Gruber, a former group leader of Medical RNA Biology who is going to lead Curexsys as Chief Scientific Officer.

Under the terms of the agreement, Evotec and Curexsys will collaborate with the production of Human Mesenchymal Stem Cells ("MSCs"), which serve as a source for exosomes. These are small vesicles that are naturally released from a cell. They contain proteins, nucleic acids and metabolites, which carry information from secreting to receiving cells. Exosomes have immunomodulatory and anti-inflammatory effects, which makes them a promising novel approach for innovative regenerative therapies, as therapeutics in age-related conditions, but also for diagnostic purposes. Curexsys aims to develop targeted approaches for a variety of diseases, initially focusing on Sicca Syndrome, commonly known as "dry eye", an inflammatory condition affecting 14% to 17% of the adult population for whom there is currently no effective treatment available.

The collaboration combines Evotec's industry-leading induced Pluripotent Stem Cell ("iPSC") platform with Curexsys' proprietary technology to selectively isolate exosomes. Sartorius will support Curexsys to set up a GMP-compliant and scalable manufacturing platform.

Furthermore, Evotec and Sartorius have formed a consortium to jointly invest in Curexsys' 8.2 m seed financing round with Evotec acquiring an equity stake of approx. 37% in Curexsys and Sartorius of approx. 21%.

Dr Cord Dohrmann, Chief Scientific Officer of Evotec, commented: "Therapeutic exosomes hold significant promise for regenerative medicine and beyond. Steadily increasing evidence suggests that exosomes derived from stem cells can aid tissue repair and engineering vesicles could carry drugs to diseased tissues. These efforts have been held back by a dearth of standardised methods to isolate and study vesicles. Combining Evotec's industrial-grade iPSC and PanOmics platforms with Curexsys' proprietary exosome isolation technology and Sartorius' ability to translate these into a fully GMP-compliant process is a unique opportunity to build the leading exosome company in the industry."

Dr Ren Faber, Head of Sartorius' Bioprocess Solutions Division, said: "With our integrated portfolio of manufacturing solutions Sartorius is the 'go-to' partner for developers of such new modalities when it comes to implementing GMP-compliant, flexible production processes. We are very much looking forward to contributing our proven and scalable technology platform to Curexsys process and help them achieve their next milestones faster."

Dr Jens Gruber, Chief Scientific Officer of Curexsys, added: "We are very happy that we were able to form such a consortium with industry leaders in their field. This unique constellation gives Curexsys an optimal starting position to advance our technologies for highly specific isolation of exosomes and to rapidly approach therapeutic applications."

About Exosomes and Curexsys Exosomes are extracellular, nanoscale vesicles that are actively secreted from cells to transfer information to neighbouring cells and distant tissues. Exosomes carry information of secreting to receiving cells utilising proteins, nucleic acids and metabolites. MSC-derived exosomes function as paracrine mediators that limit inflammation, reprogram immune cells, and activate endogenous repair pathways, recapitulating to a large extent the therapeutic effects of parental MSCs. Exosomes hold potential as diagnostics, as therapeutics and cosmeceuticals. More than 100 clinical trials involving exosomes are currently ongoing, demonstrating their broad therapeutic potential.

Curexsys is a Goettingen, Germany-based start-up company founded by molecular biologist Dr Jens Gruber and the biochemist and serial entrepreneur Dr Herbert Stadler. With a scalable and semi-automated proprietary system for traceless immune-affinity cell sorting, Curexsys aims to become the leading supplier for clinical grade exosomes in regenerative medicine and anti-aging therapies.

About Evotec and iPSC Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from adult cells. Pluripotent stem cells hold great promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.

Evotec has built an industrialised iPSC infrastructure that represents one of the largest and most sophisticated iPSC platforms in the industry. Evotec's iPSC platform has been developed over the last years with the goal to industrialise iPSC-based drug screening in terms of throughput, reproducibility and robustness to reach the highest industrial standards, and to use iPSC-based cells in cell therapy approaches via the Company's proprietary EVOcells platform.

ABOUT SARTORIUS The Sartorius Group is a leading international partner of life science research and the biopharmaceutical industry. With innovative laboratory instruments and consumables, the Group's Lab Products & Services Division concentrates on serving the needs of laboratories performing research and quality control at pharma and biopharma companies and those of academic research institutes. The Bioprocess Solutions Division with its broad product portfolio focusing on single-use solutions helps customers to manufacture biotech medications and vaccines safely and efficiently. The Group has been annually growing by double digits on average and has been regularly expanding its portfolio by acquisitions of complementary technologies. In fiscal 2019, the company earned sales revenue of some 1.83 billion euros. At the end of 2019, more than 9,000 people were employed at the Group's approximately 60 manufacturing and sales sites, serving customers around the globe.

SARTORIUS CONTACT Petra Kirchhoff Head of Corporate Communications and Investor Relations +49 (0)551.308.3684 petra.kirchhoff@sartorius.com http://www.sartorius.com

ABOUT EVOTEC SE Evotec is a drug discovery alliance and development partnership company focused on rapidly progressing innovative product approaches with leading pharmaceutical and biotechnology companies, academics, patient advocacy groups and venture capitalists. We operate worldwide and our more than 3,400 employees provide the highest quality stand-alone and integrated drug discovery and development solutions. We cover all activities from target-to-clinic to meet the industry's need for innovation and efficiency in drug discovery and development (EVT Execute). The Company has established a unique position by assembling top-class scientific experts and integrating state-of-the-art technologies as well as substantial experience and expertise in key therapeutic areas including neuronal diseases, diabetes and complications of diabetes, pain and inflammation, oncology, infectious diseases, respiratory diseases, fibrosis, rare diseases and women's health. On this basis, Evotec has built a broad and deep pipeline of more than 100 co-owned product opportunities at clinical, pre-clinical and discovery stages (EVT Innovate). Evotec has established multiple long-term alliances with partners including Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CHDI, Novartis, Novo Nordisk, Pfizer, Sanofi, Takeda, UCB and others. For additional information please go to http://www.evotec.com and follow us on Twitter @Evotec.

FORWARD LOOKING STATEMENTS Information set forth in this press release contains forward-looking statements, which involve a number of risks and uncertainties. The forward-looking statements contained herein represent the judgement of Evotec as of the date of this press release. Such forward-looking statements are neither promises nor guarantees, but are subject to a variety of risks and uncertainties, many of which are beyond our control, and which could cause actual results to differ materially from those contemplated in these forward-looking statements. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in our expectations or any change in events, conditions or circumstances on which any such statement is based.

SOURCE: Evotec AG via EQS Newswire

View source version on accesswire.com: https://www.accesswire.com/620112/Evotec-and-Sartorius-Partner-with-Start-Up-Curexsys-on-IPSC-Based-Therapeutic-Exosome-Approach

Follow this link:
Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace

Multiple gene edits and computer simulations could help treat rare genetic diseases – University of Wisconsin-Madison

The lab of KrisSaha at the University of WisconsinMadison has developed an innovative combination of gene-editing tools and computational simulations that can be used to develop new strategies for editing genes associated with genetic disorders.

In proof-of-concept experiments, the labs researchers efficiently corrected multiple mutations responsible for a rare metabolic disorder, known as Pompe disease, in cells containing the disease-causing errors. They also used computer simulations to design the ideal gene-editing approach for treating human patients, a boon for rare disorders like Pompe disease that lack useful animal models.

Their promising platform advances the CRISPR genome-editing field and could lead to effective treatments for many diseases, not just Pompe disease.

The exact mutations seen in the Pompe patients are not in an existing animal model, so we cannot do all of the preclinical studies that we would like to do in order to evaluate the safety and efficacy of different genome editing strategies, says Saha, a professor of biomedical engineering at UWMadisons Wisconsin Institute for Discovery. We need a way to think about how we go from patient material to a therapy without having to build an animal model, a process that takes months to years and hundreds of thousands of dollars.

The lab of Kris Saha (standing) has developed an innovative combination of gene-editing tools and computational simulations that can be used to develop new strategies for editing genes associated with genetic disorders. Photo: Stephanie Precourt

Sahas team published its findings Dec. 8 in the journal Nature Communications.

In the first few months of life, an infant with Pompe disease becomes weaker and weaker as glycogen builds up in their muscles, their cells unable to break the complex sugar down. Multiple mutations in a gene calledGAAprevent their cells from correctly producing the proteins needed to make lysosomes, which turn glycogen into glucose, the fuel that powers cells. Left untreated, most patients with Pompe die within a year.

Developing effective therapies for such diseases can be difficult for a number of reasons. First, diseases like Pompe have no animal models in which to test treatments, a typical step in therapy development. And diseases like Pompe and many other inherited diseases are autosomal recessive, which means that mutations are present on both copies of a chromosome. Two sets of mutations require two successful gene-repair events for maximum effect. Further complicating the matter is the fact that many diseases are polygenic, resulting from mutations in two or more genes or multiple mutations spread across a single gene, as is the case for Pompe disease.

The Saha labs new approach uses precise gene-editing tools to edit both faulty alleles simultaneously within individual cells to restore function. In its new report, the research team used induced pluripotent stem cells derived from Pompe patients to reproduce the exactGAAmutations that cause the disease and to approximate the resulting tissue pathology.

To fix these Pompe mutations, the lab turned to a specially designed, ultra-precise genome-editing system described in aprevious studyled by Jared Carlson-Stevermer, who was at the time a graduate student in Sahas group. That report established an up to 18-fold increase in precision of gene edits by combining a DNA repair template with the cutting machinery of CRISPR in one particle.

In the current study, the researchers used the method to fix two mutations at once in Pompe-derived cells. By doing so, the researchers improved cell function dramatically, bringing lysosome protein production up to the level of healthy cells without any major adverse effects, which sometimes emerge from gene editing.

The research advances the CRISPR genome-editing field and could lead to effective treatments for many diseases.

But treating cells in the laboratory, while providing crucial insight, is not the same as creating a therapy for patients. A critical step in developing treatments usually involves testing on animal models to evaluate efficacy and safety, a major obstacle for Pompe disease and other genetic conditions that lack viable animal models.

To determine the best therapeutic strategy for polygenic diseases evaluating different doses, delivery mechanisms and timing, risks and other factors the research team instead built a computational model that allows it to predict the outcomes of various conditions.

This allows us to survey a wider scope of many different gene therapies during the design of a strategy, says coauthor Amritava Das, a postdoctoral associate at the Morgridge Institute for Research. The computational approach is critical when you dont have an animal model that resembles the human disease.

After pumping close to a million simulation conditions through the computational model, Das, Carlson-Stevermer and Saha have gained key insights about the delivery of gene editors into the livers of human infants with Pompe disease without having to subject a single patient to experimental treatments. And those insights establish that the multiple-correction genome-editing approach tested in stem cells may be an effective treatment for Pompe and other polygenic recessive disorders.

The computational model, which can be easily adapted for other polygenic conditions, is a big step for the development of therapies for diseases like Pompe and lays the groundwork for a bridge from laboratory studies to the clinic. And as more measurements are added to the model, it will gain more predictive power.

Its a very broad, adaptable platform, Das says about the combined stem cell model and computational tool, and a very different way of thinking about gene therapy.

This work was supported by the National Science Foundation (CBET-1350178, CBET-1645123), the National Institutes of Health (1R35GM119644-01), the Environmental Protection Agency (EPA-G2013 STAR-L1), the University of Wisconsin Carbone Cancer Center (P30 CA014520), the Wisconsin Alumni Research Foundation, and the Wisconsin Institute for Discovery.

Share via Facebook

Share via Twitter

Share via Linked In

Share via Email

Read the original:
Multiple gene edits and computer simulations could help treat rare genetic diseases - University of Wisconsin-Madison

Cytovia Therapeutics announces plans to initiate in 2021 Clinical Development of Universal iPSC NK Cell Therapy for Hematological and Solid Tumors -…

December 08, 2020 09:04 ET | Source: Cytovia Therapeutics

CAMBRIDGE, Mass., Dec. 08, 2020 (GLOBE NEWSWIRE) -- Cytovia Therapeutics, an emerging NK cell therapeutics company, announced today that it plans to file with the FDAin 2021an Investigational New Drug (IND) application and initiate clinical trials in hematological and solid tumors with its Universal iPSC NK cell therapy (U-iNK).

Cytovia's CEO, Dr. Daniel Teper commented: "Cytovia is among a select group of biotech companies developing Gene Edited iPSC NK and CAR NK cell therapeutics. We are aiming to be, in 2021, the second company to initiate clinical trials with an iPSC NK product. We are enthusiastic about the potential of U-iNK to prevent relapse in Acute Myeloid Leukemia, and in combination with PD1/ PDL-1 inhibitors and our own NK engager bispecific antibodies, to improve outcomes in solid tumors starting with hepatocellular carcinoma."

Cytovia will participate in the RBC Capital Markets Healthcare Private Company Conference on December 15-16, 2020. Daniel Teper, PharmD, CEO, Wei Li, PhD, CSO and Kaouthar Lbiati, MD, VP, Product Strategy will take part in a Fireside chat with RBC's Senior Analyst, Gregory Renza, MD, on December 16, 2020 at 10am ET. A link to the discussion will be available on Cytovias website and social media channels.

About Cytovia TherapeuticsCytovia Therapeutics Inc is an emerging biotechnology company that aims to accelerate patient access to transformational immunotherapies, addressing several of the most challenging unmet medical needs in cancer. Cytovia focuses on Natural Killer (NK) cell biology and is leveraging multiple advanced patented technologies, including an induced pluripotent stem cell (iPSC) platform for CAR (Chimeric Antigen Receptors) NK cell therapy, next-generation precision gene-editing to enhance targeting of NK cells, and NK engager multi-functional antibodies. Our initial product portfolio focuses on both hematological malignancies such as multiple myeloma and solid tumors including hepatocellular carcinoma and glioblastoma. The company partners with the University of California San Francisco (UCSF), the New York Stem Cell Foundation (NYSCF), the Hebrew University of Jerusalem, INSERM, and CytoImmune Therapeutics.

Learn more atwww.cytoviatx.comand follow Cytovia Therapeutics on Social MediaFacebook,LinkedIn,Twitter, Youtube

For more information, please contact:

Cytovia Therapeutics, Inc SophieBadr Vice President, Corporate Affairs sophie.badre@cytoviatx.com Cell: 1 (929) 317 1565

Anna Baran-Djokovic Vice President, Investor Relations anna@cytoviatx.com VP Investor Relations Cell: +44 7521083006

The rest is here:
Cytovia Therapeutics announces plans to initiate in 2021 Clinical Development of Universal iPSC NK Cell Therapy for Hematological and Solid Tumors -...

Fate Therapeutics Reports Positive Interim Data from its Phase 1 Study of FT516 in Combination with Rituximab for B-cell Lymphoma – GlobeNewswire

December 04, 2020 16:01 ET | Source: Fate Therapeutics, Inc.

3 of 4 Patients Evaluable for Efficacy in Dose Escalation Cohorts 2 and 3 Show Objective Response, with 2 Patients Achieving Complete Response

No Observed Events of Any Grade of Cytokine Release Syndrome, Immune Effector Cell-Associated Neurotoxicity Syndrome, or Graft-vs-Host Disease

Six Doses of FT516 were Well-tolerated with No FT516-related Grade 3 or Greater Adverse Events Reported by Investigators

Management to Host Virtual Event Entitled The Power of hnCD16 Today at 4:30 PM Eastern Time

SAN DIEGO, Dec. 04, 2020 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, today announced positive interim data from the Companys dose escalation Phase 1 study of FT516 in combination with rituximab for patients with relapsed / refractory B-cell lymphoma. FT516 is the Companys universal, off-the-shelf natural killer (NK) cell product candidate derived from a clonal master induced pluripotent stem cell (iPSC) line engineered with a novel high-affinity, non-cleavable CD16 (hnCD16) Fc receptor, which is designed to maximize antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells.

We are highly encouraged by these Phase 1 data, which clearly demonstrate that off-the-shelf, iPSC-derived NK cells can drive complete responses for cancer patients and that our proprietary hnCD16 Fc receptor can effectively synergize with and enhance the mechanism of action of tumor-targeted antibodies, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. Importantly, the safety profile of FT516 continues to suggest multiple doses of iPSC-derived NK cells can be administered in the outpatient setting, and supports potential use across multiple lines of therapy, including as part of early-line CD20-targeted monoclonal antibody regimens, for the treatment of B-cell lymphoma.

As of a November 16, 2020 data cutoff, three patients in the second dose cohort of 90 million cells per dose and one patient in the third dose cohort of 300 million cells per dose were available for assessment of safety and efficacy. All four patients were heavily pre-treated, having received at least two prior rituximab-containing regimens. Each patient received two 30-day treatment cycles, with each cycle consisting of fludarabine and cyclophosphamide lympho-conditioning followed by three once-weekly doses of FT516, IL-2 cytokine support, and rituximab.

Safety Data All four relapsed / refractory patients were administered FT516 in an outpatient setting with no requirement for inpatient monitoring. No dose-limiting toxicities, and no cases of any grade of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or graft-versus-host disease, were observed. The multi-dose, two-cycle treatment regimen was well-tolerated with no FT516-related grade 3 or greater adverse events reported by investigators. In addition, no evidence of anti-product T- or B-cell mediated host-versus-product alloreactivity was detected, supporting the potential to safely administer up to six doses of FT516 in the outpatient setting without patient matching. All grade 3 or greater treatment emergent adverse events were not related to FT516 and were consistent with lympho-conditioning chemotherapy and underlying disease.

Activity Data Three of four relapsed / refractory patients achieved an objective response, including two complete responses (CR), following the second FT516 treatment cycle as assessed by PET-CT scan per Lugano 2014 criteria. A CR was achieved in one patient with diffuse large B-cell lymphoma (DLBCL) who was most recently refractory to a rituximab-containing treatment regimen, and a CR was achieved in one patient with follicular lymphoma (FL) who had previously been treated with four rituximab-containing treatment regimens. Notably, in one patient for which an interim tumor assessment showed a partial response following the first FT516 treatment cycle, the response deepened to a CR following administration of the second FT516 treatment cycle, suggesting that additional FT516 treatment cycles can confer clinical benefit.

M = million; CR = Complete Response; PR = Partial Response; PD = Progressive Disease As of November 16, 2020 database entry. Data subject to cleaning and source document verification. 1 Day 29 of the second FT516 treatment cycle as assessed per Lugano 2014 criteria

Dose escalation is continuing in the current dose cohort of 300 million cells per dose in combination with rituximab, and a fourth dose cohort of 900 million cells per dose in combination with rituximab is planned. The Company previously reported that two patients treated in the first dose cohort of 30 million cells per dose in combination with rituximab showed a protocol-defined response assessment of progressive disease. No events of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or graft-versus-host disease were observed in either patient.

About Fate Therapeutics iPSC Product Platform The Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 300 issued patents and 150 pending patent applications.

About FT516 FT516 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel high-affinity 158V, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies. CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells. ADCC is dependent on NK cells maintaining stable and effective expression of CD16, which has been shown to undergo considerable down-regulation in cancer patients. In addition, CD16 occurs in two variants, 158V or 158F, that elicit high or low binding affinity, respectively, to the Fc domain of IgG1 antibodies. Scientists from the Company have shown in a peer-reviewed publication (Blood. 2020;135(6):399-410) that hnCD16 iPSC-derived NK cells, compared to peripheral blood NK cells, elicit a more durable anti-tumor response and extend survival in combination with anti-CD20 monoclonal antibodies in an in vivo xenograft mouse model of human lymphoma. Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for the 158V variant, which is present in only about 15% of patients, have improved clinical outcomes. FT516 is being investigated in an open-label, multi-dose Phase 1 clinical trial as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-targeted monoclonal antibodies for the treatment of advanced B-cell lymphoma (NCT04023071). Additionally, FT516 is being investigated in an open-label, multi-dose Phase 1 clinical trial in combination with avelumab for the treatment of advanced solid tumor resistant to anti-PDL1 checkpoint inhibitor therapy (NCT04551885).

About Fate Therapeutics, Inc. Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for cancer and immune disorders. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology product candidates include natural killer (NK) cell and T-cell cancer immunotherapies, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens with chimeric antigen receptors (CARs). The Companys immuno-regulatory product candidates include ProTmune, a pharmacologically modulated, donor cell graft that is currently being evaluated in a Phase 2 clinical trial for the prevention of graft-versus-host disease, and a myeloid-derived suppressor cell immunotherapy for promoting immune tolerance in patients with immune disorders. Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking Statements This release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the safety and therapeutic potential of the Companys iPSC-derived NK cell product candidates, including FT516, its ongoing and planned clinical studies, and the expected clinical development plans for FT516. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that results observed in studies of its product candidates, including preclinical studies and clinical trials of any of its product candidates, will not be observed in ongoing or future studies involving these product candidates, the risk that the Company may cease or delay clinical development of any of its product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities on the initiation or conduct of clinical trials or to support regulatory approval, difficulties or delays in subject enrollment in current and planned clinical trials, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development), and the risk that its product candidates may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications.Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact: Christina Tartaglia Stern Investor Relations, Inc. 212.362.1200 christina@sternir.com

Go here to read the rest:
Fate Therapeutics Reports Positive Interim Data from its Phase 1 Study of FT516 in Combination with Rituximab for B-cell Lymphoma - GlobeNewswire

Constantly Growing Applications and Innovations to Push Sales of Amniotic Membrane Market Up To ~US$2.4 Bn by 2027, Observes TMR – PRNewswire

ALBANY, N.Y, Dec. 8, 2020 /PRNewswire/ -- Transparency Market Research has published a new research report that provides detailed information about the global amniotic membrane market. The research report tried to shed light on different growth factors, prominent growth challenges, key segments, geographical outlook, and vendor landscape of the global amniotic membrane market. According to the research report, the amniotic membrane market is projected to reach a valuation worth US$2.4 Bn by the end of 2027. Initially, the valuation of the global market was around US$980 Mn, in 2018. In order to achieve such huge surge in terms of revenue, the market is projected to showcase a massive CAGR of ~10% over the course of the given period of assessment ranging from 2019 to 2027.

Request for Analysis of COVID-19 Impact on Amniotic Membrane Market https://www.transparencymarketresearch.com/covid19.php

Global Amniotic Membrane Market Key Takeaways

Explore a report with detailed research, incisive insights, and in-depth country levels estimations. Gain business intelligence on global Amniotic Membrane Market by Product: Cryopreserved Amniotic Membrane, Lyophilization Amniotic Membrane; Application: Surgical Wounds, Ophthalmology, Others; End User: Hospitals, Ambulatory Surgical Centers, Specialized Clinics, and Research Centers & Laboratories at https://www.transparencymarketresearch.com/report-toc/42059

Global Amniotic Membrane Market Prominent Growth Drivers

Request Brochure of Amniotic Membrane Market Report - https://www.transparencymarketresearch.com/brochure.php

Global Amniotic Membrane Market Prominent Trends

Global Amniotic Membrane Market Geographical Outlook

Purchase the Amniotic Membrane Market Report- https://www.transparencymarketresearch.com/checkout.php

Global Amniotic Membrane Market Notable Players

Some of the notable names operating in the global amniotic membrane market are Amnio Technology, LLC, Katena Products, Inc., MiMedx, Skye Biologics, Inc., Integra LifeSciences, Applied Biologics, Human Regenerative Technologies, LLC, Tissue Tech, Osiris Therapeutics, Inc., and Stryker.

Browse More Press Release- https://www.transparencymarketresearch.com/press-releases.htm

Global Amniotic Membrane Market: Segmentation

Amniotic Membrane Market by Product

Amniotic Membrane Market by Application

Amniotic Membrane Market by End User

Amniotic Membrane Market by Region

Explore Transparency Market Research's award-winning coverage of the global Healthcare Industry:

Genetic Testing Services Market: According to the report, the global genetic testing services market was valued at US$ 41.2 Bn in 2018 and is anticipated to expand at a CAGR of 7.3% from 2019 to 2027, high incidence & prevalence of chronic diseases such as autoimmune, oncology, infectious and others are propelling the growth of global market

Bioprocess Technology Market: According to the report, the global bioprocess technology market was valued at US$ 21.9 Bn in 2018 and is anticipated to expand at a CAGR of 7.9% from 2019 to 2027, The global bioprocess technology market is driven by increase in prevalence of chronic pain, and rise in demand for home monitoring.

Oligonucleotide Synthesis Market: According to the report, the global oligonucleotide synthesis market was valued at US$ 1,966.2 Mn in 2018 and is anticipated to expand at a CAGR of 9.5% from 2019 to 2027, increasing use of synthesized oligonucleotides in diagnostics and research applications, and Technological advancements in synthetic chemistry are projected to drive the global market

Browse Our Latest Reports- https://www.transparencymarketresearch.com/latest.htm

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through adhoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key tohelp enterprises reach right decision."

Browse More Upcoming Reports by Transparency Market Research:https://www.transparencymarketresearch.com/upcoming.htm

Contact

Mr. Rohit Bhisey Transparency Market Research State Tower, 90 State Street, Suite 700, Albany NY - 12207 United States USA - Canada Toll Free: 866-552-3453 Email: [emailprotected] Press Release Source:https://www.transparencymarketresearch.com/pressrelease/amniotic-membrane-market.htm Website: https://www.transparencymarketresearch.com/

SOURCE Transparency Market Research

See original here:
Constantly Growing Applications and Innovations to Push Sales of Amniotic Membrane Market Up To ~US$2.4 Bn by 2027, Observes TMR - PRNewswire

Stem cells: past, present, and future | Stem Cell Research …

Sukoyan MA, Vatolin SY, et al. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Embryo Dev. 1993;36(2):14858

Larijani B, Esfahani EN, Amini P, Nikbin B, Alimoghaddam K, Amiri S, Malekzadeh R, Yazdi NM, Ghodsi M, Dowlati Y, Sahraian MA, Ghavamzadeh A. Stem cell therapy in treatment of different diseases. Acta Medica Iranica. 2012:7996 https://www.ncbi.nlm.nih.gov/pubmed/22359076.

Sullivan S, Stacey GN, Akazawa C, et al. Quality guidelines for clinical-grade human induced pluripotent stem cell lines. Regenerative Med. 2018; https://doi.org/10.2217/rme-2018-0095.

Amps K, Andrews PW, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol. 2011;29(12):112144.

Google Scholar

Amit M, Itskovitz-Eldor J. Atlas of human pluripotent stem cells: derivation and culturing. New York: Humana Press; 2012.

Google Scholar

Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3:63746.

CAS PubMed Google Scholar

Kang MI. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J. Cell Biochem. 2007;102:22439.

CAS PubMed Google Scholar

Vaes B, Craeye D, Pinxteren J. Quality control during manufacture of a stem cell therapeutic. BioProcess Int. 2012;10:505.

Bloushtain-Qimron N. Epigenetic patterns of embryonic and adult stem cells. Cell Cycle. 2009;8:80917.

CAS PubMed Google Scholar

Brindley DA. Peak serum: implications of serum supply for cell therapy manufacturing. Regenerative Medicine. 2012;7:80917.

Google Scholar

Solter D, Knowles BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A. 1975;72:5099102.

CAS PubMed PubMed Central Google Scholar

Hoepfl G, Gassmann M, Desbaillets I. Differentiating embryonic stem cells into embryoid bodies. Methods Mole Biol. 2004;254:7998 https://doi.org/10.1385/1-59259-741-6:079.

Google Scholar

Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013;4(3):71. https://doi.org/10.1186/scrt222.

CAS Article PubMed PubMed Central Google Scholar

Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials. 2006;27(36):603242. https://doi.org/10.1016/j.biomaterials.2006.07.012.

CAS Article PubMed Google Scholar

Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of the visceral yolk sac, blood islands, and myocardium. J Embryol Exp Morphol. 1985;87:2745.

CAS PubMed Google Scholar

Kurosawa HY. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103:38998.

Heins N, Englund MC, Sjoblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells. 2004;22:36776.

Rosowski KA, Mertz AF, Norcross S, Dufresne ER, Horsley V. Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Sci Rep. 2015;5:Article number:14218.

PubMed Google Scholar

Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2:1137.

CAS PubMed Google Scholar

Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells. 2006;24:266976.

CAS PubMed Google Scholar

Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat Protoc. 2012;7:202940.

CAS PubMed PubMed Central Google Scholar

Ellerstrm C, Hyllner J, Strehl R. single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method. In: Turksen K, editor. Human embryonic stem cell protocols. Methods in molecular biology: Humana Press; 2009. p. 584.

Heng BC, Liu H, Ge Z, Cao T. Mechanical dissociation of human embryonic stem cell colonies by manual scraping after collagenase treatment is much more detrimental to cellular viability than is trypsinization with gentle pipetting. Biotechnol Appl Biochem. 2010;47(1):337.

Google Scholar

Ellerstrom C, Strehl R, Noaksson K, Hyllner J, Semb H. Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells. 2007;25:16906.

PubMed Google Scholar

Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, Freed WJ, Robins AJ, Rao MS, Schulz TC. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines deri. Stem Cells Dev. 2004;13:58597.

CAS PubMed Google Scholar

Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:6816.

CAS PubMed Google Scholar

Nie Y, Walsh P, Clarke DL, Rowley JA, Fellner T. Scalable passaging of adherent human pluripotent stem cells. 2014. https://doi.org/10.1371/journal.pone.0088012.

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:11457.

CAS PubMed Google Scholar

Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cellsexpress an immunogenic nonhuman sialic acid. Nat. Med. 2005;11:22832.

CAS PubMed Google Scholar

Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336(6200):68890. https://doi.org/10.1038/336688a0.

CAS Article PubMed Google Scholar

Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnol. 2001;19:9714. https://doi.org/10.1038/nbt1001-971.

CAS Article Google Scholar

Weathersbee PS, Pool TB, Ord T. Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J. Assist Reprod Genet. 1995;12:35460.

CAS PubMed Google Scholar

Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 2011;8:4249.

CAS PubMed PubMed Central Google Scholar

Sommer CA, Mostoslavsky G. Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Res Ther. 2010;1:26.

PubMed PubMed Central Google Scholar

Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):245761 https://doi.org/10.1242/dev.092551.

CAS PubMed Google Scholar

Shi D, Lu F, Wei Y, et al. Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 2007;77:28591. https://doi.org/10.1095/biolreprod.107.060210.

CAS Article PubMed Google Scholar

Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Development. 1962;10:62240 http://dev.biologists.org/content/10/4/622.

CAS Google Scholar

Kain K. The birth of cloning: an interview with John Gurdon. Dis Model Mech. 2009;2(12):910. https://doi.org/10.1242/dmm.002014.

Article PubMed Central Google Scholar

Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;24(51(6)):9871000.

Google Scholar

Quinlan AR, Boland MJ, Leibowitz ML, et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell. 2011;9(4):36673.

CAS PubMed PubMed Central Google Scholar

Maherali N, Sridharan R, Xie W, Utika LJ, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1:5570.

CAS PubMed Google Scholar

Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M. Incomplete DNA methylation underlines a transcriptional memory of somatic cells in human IPS cells. Nat Cell Biol. 2011;13:5419.

CAS PubMed PubMed Central Google Scholar

Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455:62732 https://doi.org/10.1038/nature07314.

CAS PubMed Google Scholar

Hilfiker A, Kasper C, Hass R, Haverich A. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg. 2011;396:48997.

PubMed Google Scholar

Zhang Wendy, Y., de Almeida Patricia, E., and Wu Joseph, C. Teratoma formation: a tool for monitoring pluripotency in stem cell research. StemBook, ed. The Stem Cell Research Community. June 12, 2012. https://doi.org/10.3824/stembook.1.53.1.

Narsinh KH, Sun N, Sanchez-Freire V, et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest. 2011;121(3):121721.

CAS PubMed PubMed Central Google Scholar

Gertow K, Przyborski S, Loring JF, Auerbach JM, Epifano O, Otonkoski T, Damjanov I, AhrlundRichter L. Isolation of human embryonic stem cell-derived teratomas for the assessment of pluripotency. Curr Protoc Stem Cell Biol. 2007, Chapter 1, Unit 1B 4. 3: 1B.4.1-1B.4.29.

Cooke MJ, Stojkovic M, Przyborski SA. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev. 2006;15(2):2549.

CAS PubMed Google Scholar

Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells. 2005;23:124250.

PubMed Google Scholar

Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, Gil Y, Berman-Zaken Y, Perlman TS, Geva N, Levy O, Arbell D, Simon A, Ben-Meir A, Shufaro Y, Laufer N, Reubinoff BE. Derivation of xeno-free and GMP-grade human embryonic stem cells- platforms for future clinical applications. PLoS One. 2012;7:e35325.

CAS PubMed PubMed Central Google Scholar

Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12:24352.

CAS PubMed Google Scholar

Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev. 2007;60(2):199214. https://doi.org/10.1016/j.addr.2007.08.036.

CAS Article PubMed PubMed Central Google Scholar

Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:11629.

CAS PubMed Google Scholar

Rao TP, Kuhl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106:1798806.

CAS PubMed Google Scholar

Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136:3699714.

CAS PubMed Google Scholar

Read more here:
Stem cells: past, present, and future | Stem Cell Research ...