Author Archives: admin


Regenerative Medicine Market with Report In Depth Industry Analysis on Trends, Growth, Opportunities and Forecast till 2026 – Illadel Graff Supply

The latest report on Regenerative Medicine market collated by Market Study Report, LLC, delivers facts and numbers regarding the market size, geographical landscape and profit forecast of the Regenerative Medicine market. In addition, the report focuses on major obstacles and the latest growth plans adopted by leading companies in this business.

Request a sample Report of Regenerative Medicine Market at: https://www.marketstudyreport.com/request-a-sample/1695290?utm_source=illadelink&utm_medium=RV

The Regenerative Medicine Market is anticipated to reach over USD 79.23 billion by 2026 according to a new research. In 2017, the cell therapy dominated the global Regenerative Medicine market, in terms of revenue. North America is expected to be the leading contributor to the global market revenue in 2017.

The regenerative medicine market is primarily driven by the increasing number of individuals suffering from cancer, rising need to monitor and treating these chronic diseases in the limited time. Furthermore, stringent government policies, proper reimbursement policies, and increasing government healthcare expenditure for developing healthcare infrastructure to also boost the market growth in coming years. Also, rising number of organ transplantation, and increasing number of products in pipeline that are waiting for approval create major opportunity for the regenerative medicines in the coming years. However, some of the ethical and religious concerns for the use of stem cells, and lack of proper regulatory for the approval of various drugs would impede the market growth during the forecast period.

Enquiry about Regenerative Medicine market report before Buying at: https://www.marketstudyreport.com/enquiry-before-buying/1695290?utm_source=illadelink&utm_medium=RV

North America generated the highest revenue in the Regenerative Medicine market in 2017, and is expected to be the leading region globally during the forecast period. Increasing number of patients suffering from chronic diseases, improved healthcare infrastructure and health facilities, accessibility of healthcare facilities, are the primary factors driving the market growth in this region. While, Asia Pacific to be the fastest growing region in the coming years. The growth in this region is majorly attributed to the developing healthcare infrastructure of the countries like India, & China, and rising awareness for the use of regenerative medicines as an effective treatment option for chronic diseases.

Regenerative medicine is a branch of medicine that regrows, and repairs the damaged cells in the human body. These medicines include the use of stem cells, tissue engineering, that further helps in developing new organ that function smoothly. These medicines have the caliber of developing an entire organ as these cells are multipotent. The cells are majorly isolated from bone marrow, and umbilical cord blood.

Purchase full report of Regenerative Medicine market at: https://www.marketstudyreport.com/securecheckout/paymenta/1695290?utm_source=illadelink&utm_medium=RV?msfpaycode=sumsf

The key players operating in the Regenerative Medicine market include Organogenesis Inc., Vericel Corporation, Osiris Therapeutics, Inc., Stryker Corporation, and NuVasive, Inc., Medtronic Plc., Acelity, Cook Biotech Inc., Integra LifeSciences, and C.R. Bard. These companies launch new products and collaborate with other market leaders to innovate and launch new products to meet the increasing needs and requirements of consumers.

Regenerative Medicine Market share byMajor regions included:

United States North America Asia Pacific Europe Middle East & Africa

Table of Contents

1. Overview and Scope 1.1. Research goal & scope 1.2. Research assumptions 1.3. Research Methodology 1.3.1. Primary data sources 1.3.2. Secondary data sources 1.4. Key take-away 1.5. Stakeholders 2. Executive Summary 2.1. Market Definition 2.2. Market Segmentation 3. Regenerative Medicine Market Insights 3.1. Regenerative Medicine Industry snapshot 3.2. Regenerative Medicine Ecosystem analysis 3.3. Regenerative Medicine Market Dynamics 3.3.1. Regenerative Medicine Market Forces 3.3.1.1. Regenerative Medicine Market Driver Analysis 3.3.1.2. Regenerative Medicine Market Restraint/Challenges analysis 3.3.1.3. Regenerative Medicine Market Opportunity Analysis 3.4. Industry analysis Porters five force 3.4.1. Bargaining power of supplier 3.4.2. Bargaining power of buyer 3.4.3. Threat of substitute 3.4.4. Threat of new entrant 3.4.5. Degree of competition 3.5. Regenerative Medicine Market PEST Analysis 3.6. Regenerative Medicine Market Value Chain Analysis 3.7. Regenerative Medicine Industry Trends 3.8. Competitive Ranking Analysis 4. Regenerative Medicine Market Size and Forecast by Therapy Type, 2018-2026 4.1. Key Findings 4.2. Tissue engineering 4.3. Cell Therapy 4.4. Immunotherapy 4.5. Gene Therapy 5. Regenerative Medicine Market Size and Forecast by Product Type, 2018-2026 5.1. Key Findings 5.2. Acellular Products 5.3. Cellular Products

About Us:

Marketstudyreport.com allows you to manage and control all corporate research purchases to consolidate billing and vendor management. You can eliminate duplicate purchases and customize your content and license management.

Contact Us:

Market Study Report LLC

Phone: 1-302-273-0910

US Toll Free: 1-866-764-2150

Email:sales@marketstudyreport.com

Read the original post:
Regenerative Medicine Market with Report In Depth Industry Analysis on Trends, Growth, Opportunities and Forecast till 2026 - Illadel Graff Supply

Leading Human Immunology and Infectious Disease Experts to Join UM School of Medicines Institute of Human Virology – Newswise

Newswise Baltimore, MD, November 12, 2020 Robert C. Gallo, MD, the Homer & Martha Gudelsky Distinguished Professor in Medicine at the University of Maryland School of Medicine (UMSOM) and Co-Founder & Director of the UMSOMs Institute of Human Virology (IHV), announced today that a team of leading scientists in human immunology, virology and stem cell biology, led by Lishan Su, PhD joined IHV on October 1 with academic appointments in the UMSOM Department of Pharmacology. As part of the Maryland E-Nnovation Initiative Fund (MEIF) to recruit top research faculty and a donation to IHV from the Charles Gordon Estate, Dr. Su has been named the Charles Gordon Smith Endowed Professor for HIV Research. Dr. Su will also head IHVs Division of Virology, Pathogenesis and Cancer.

The team will include a 12-person Laboratory of Viral Pathogenesis and Immunotherapy with two faculty appointments as well as major public and private sector research funding.

Dr. Gallo made the announcement in conjunction with University of Maryland School of Medicine Dean E. Albert Reece, MD, PhD, MBA and Margaret M. McCarthy PhD, James & Carolyn Frenkil Deans Professor, Chair of the Department of Pharmacology.

Dr. Su is one of the most successful active basic researchers in America, said Dr. Gallo, who is also Co-Founder and Chairman of the International Scientific Leadership Board of the Global Virus Network. His research is groundbreaking, and we are so pleased to have him join IHV and lead our Division of Infectious Agents and Cancer, which under his sound leadership, will flourish.

Dr. McCarthy added:Dr. Sus continuing ground-breaking work in HIV and Hepatitis B will be a huge asset to the Department of Pharmacology. I look forward to working with him on advances that could open the door to new therapeutics.

Dr. Su was a faculty member in the Lineberger Comprehensive Cancer Center and Professor in the Department of Microbiology & Immunology at University of North Carolina-Chapel Hill since 1996. He received his BS degree in Microbiology from Shandong University, his PhD degree in Virology from Harvard University, and did his post-doctoral training in Stem Cell Biology & Immunology at Stanford University. He worked as a senior research scientist at SyStemix/Sandoz (Novartis), focusing on HIV-1 pathogenesis and stem cell-based gene therapy in humanized mice and in patients.

I am excited to continue and expand my research programs at the Institute of Human Virology (IHV), said Dr. Su. I have long been impressed by the Baltimore-DC area's research centers with great basic and clinical research programs. IHV, co-founded and directed by Dr. Robert Gallo, is one of the first research institutes in the U.S. to integrate basic science, population studies and clinical trials to understanding and treating human virus-induced diseases. The Department of Pharmacology, headed by Dr. Margaret McCarthy, in the University of Maryland School of Medicine, has been outstanding in developing novel therapeutics including breast cancer drugs. I look forward to working with my new colleagues at IHV and the Department of Pharmacology, and across the University of Maryland School of Medicine, to expand and translate my research programs to treating human inflammatory diseases including virus infection and cancer.

Dr. Su has extensive research experience in human immunology, virology and stem cell biology. Dr. Su made important contributions to several areas of human immunology and infectious diseases, particularly in studying human immuno-pathology of chronic virus infections. His lab at UNC-Chapel Hill published important findings in identifying novel virological and immunological mechanisms of HIV-1 pathogenesis. Furthermore, his lab established humanized mouse models with both human immune and human liver cells that support HCV or HBV infection, human immune responses and human liver fibrosis. In recent years, Dr. Sus group discovered, and focused on, the pDC-interferon axis in the immuno-pathogenesis and therapy of chronic HIV & HBV infections. The group also started investigation of the pDC-IFN axis in tumor microenvironments and in cancer immune therapy.

Im so pleased to welcome Dr. Su to our faculty. His work advances the mission of the School of Medicine, which is to provide important new knowledge in the area of immunology and chronic disease to discover new approaches for treatments, said Dean Reece, who is also University Executive Vice President for Medical Affairs and the John Z. and Akiko K. Bowers Distinguished Professor. Dr. Sus stellar research capabilities will provide vital opportunities for collaboration across our Institutes and Departments.

About the Institute of Human Virology

Formed in 1996 as a partnership between the State of Maryland, the City of Baltimore, the University System of Maryland and the University of Maryland Medical System, IHV is an institute of the University of Maryland School of Medicine and is home to some of the most globally-recognized and world-renowned experts in all of virology. The IHV combines the disciplines of basic research, epidemiology and clinical research in a concerted effort to speed the discovery of diagnostics and therapeutics for a wide variety of chronic and deadly viral and immune disorders - most notably, HIV the virus that causes AIDS. For more information,www.ihv.organd follow us on Twitter @IHVmaryland.

About the University of Maryland School of Medicine

The University of Maryland School of Medicine was chartered in 1807 and is the first public medical school in the United States and continues today as an innovative leader in accelerating innovation and discovery in medicine. The School of Medicine is the founding school of the University of Maryland and is an integral part of the 11-campus University System of Maryland. Located on the University of Marylands Baltimore campus, the School of Medicine works closely with the University of Maryland Medical Center to provide a research-intensive, academic and clinically based education. With 43 academic departments, centers and institutes and a faculty of more than 3,000 physicians and research scientists plus more than $400 million in extramural funding, the School is regarded as one of the leading biomedical research institutions in the U.S. with top-tier faculty and programs in cancer, brain science, surgery and transplantation, trauma and emergency medicine, vaccine development and human genomics, among other centers of excellence. The School is not only concerned with the health of the citizens of Maryland and the nation, but also has a global vision, with research and treatment facilities in more than 30 countries around the world. For more information, visitwww.medschool.umaryland.edu.

View post:
Leading Human Immunology and Infectious Disease Experts to Join UM School of Medicines Institute of Human Virology - Newswise

UB researcher narrows time window for administering specific treatment to infants with Krabbe disease – UB Now: News and views for UB faculty and…

A team of UB researchers has published a paper in Nature Communications that is helping to define the best time to give a specific treatment to infants born with Krabbe disease (KD). This treatment has been found to prolong life for these infants for as long as a few years.

The paper was published online in Nature Communication Oct. 23.

Daesung Shin, assistant professor in the Department of Biotechnical and Clinical Laboratory Sciences and the Neuroscience Program, both in the Jacobs School of Medicine and Biomedical Sciences at UB, is the lead investigator. He also conducts research at UBs Hunter James Kelly Research Institute.

KD is an inherited disorder that destroys myelin, the protective coating of nerve cells in the brain and throughout the nervous system. In most cases, signs and symptoms of Krabbe disease develop in babies before 6 months of age, and the disease usually results in death by age 2. When it develops in older children and adults, the course of the disease can vary greatly.

The progressive neurologic disorder is caused by a deficiency of galactosylceramidase (GALC). GALC is an enzyme that breaks down galactosylceramide, an important component of myelin, which ensures the rapid transmission of nerve impulses.

Although there is no cure for KD, hematopoietic stem cell therapy (HSCT), a therapy that makes blood cells, reduces neurologic deterioration and improves developmental advances. These benefits are dependent on the severity of the disease at the time the stem cells are transplanted, and are only beneficial if delivered at a clinically defined pre-symptomatic time point before symptoms appear.

Even though it is widely accepted that early treatment is essential for the most positive outcome, the precise therapeutic window for treatment and what happens during this early time have never been elucidated, Shin says.

To address that issue, his team used mutations to create a novel mouse model of KD.

We engineered an inducible knockout mouse for the GALC gene deletion in specific cells at specific times, which provided us with the opportunity to directly ask when and where GALC enzyme is required for brain development, Shin explains.

We were particularly interested in the role of early developmental GALC function, he says. Our study not only revealed a key developmental process that requires GALC in the perinatal period, but also demonstrated that temporal GALC expression is likely a major contributor to brainstem development.

The researchers found that by increasing GALC levels at or before this newly defined perinatal period they could improve the effectiveness of therapeutic interventions for KD.

For the first time, our work showed the mechanistic evidence to explain why treatment must occur so early, with the defined critical postnatal period at days 4-6 in mice, and demonstrated that temporal GALC expression during this time is a major contributor to brainstem development, Shin says. Augmenting GALC levels at or prior to this newly defined period would likely improve the efficacy of therapeutic interventions for Krabbe patients.

While the time scale between mice and humans is considerably different, the sequence of key events in brain maturation between the two is consistent, he notes. It was estimated that the mouse nervous system at postnatal days 4-6 corresponds to a gestational age of 32 weeks in humans. Therefore, we anticipate that if our result is correct, then in utero treatments at, or prior to, 32 weeks should have better outcomes than conventional postnatal treatment for Krabbe babies.

Shin says his team will further identify which cell type needs to be targeted with therapy.

This work will directly impact the design of novel treatment options for KD patients, he says, noting that KD studies are at the basis of research on other, more common neurodegenerative diseases, such as multiple sclerosis and Parkinsons disease. Therefore, the teams work will have implications beyond KD.

Co-authors on the research were Nadav I. Weinstock, MD-PhD student, and Conlan Kreher, former masters student, both of the HJKRI and the Department of Biochemistry in the Jacobs School; Jacob Favret, research technician in the Department of Biotechnical and Clinical Laboratory Sciences; Lawrence Wrabetz and M. Laura Feltri, both co-directors of the HJKRI and members of the departments of Biochemistry and Neurology, as well as the Neuroscience Program.

Duc Nguyen and Ernesto R. Bongarzone of the Department of Anatomy and Cell Biology in the College of Medicine at the University of Illinois at Chicago also participated in the research.

The project was initiated with the support from Empire State development fund for HJKRI, and further developed and finalized by the R01, R56 and R03 grants from National Institutes for Health-National Institute for Neurological Disorders and Stroke awarded to Shin.

More:
UB researcher narrows time window for administering specific treatment to infants with Krabbe disease - UB Now: News and views for UB faculty and...

FibroGenesis Announces the Filing of its 250th Patent for Fibroblast Cell Therapy Platform – PRNewswire

World Leader in Fibroblast Technology Advances Intellectual Property Position with their 250th Patent Filed Today.

"Our scientific team is creating new opportunities for this "super cell," commented Tom Ichim, Ph.D., Chief Scientific Officer of FibroGenesis. "Internal data and emerging third party validation, shows our proprietary universal donor fibroblast-based product outperforms existing approaches. Our broad intellectual property establishes FibroGenesis as the gatekeeper for anyone entering this space."

"As we continue to organically expand our intellectual property portfolio, we are humbled by the equally expanding clinical capabilities of this unique cell source," said Pete O'Heeron, Chief Executive Officer, FibroGenesis. "Our new clinical programs are providing evidence of a cell source superior to stem cells and our proprietary position gives us the protection to continue our growth."

About FibroGenesis

Based in Houston, Texas, FibroGenesis, is a regenerative medicine company developing an innovative solution for chronic disease treatment using human dermal fibroblasts. Currently, FibroGenesis holds 250 U.S. and international issued patents/patents pending across a variety of clinical pathways, including Disc Degeneration, Multiple Sclerosis, Parkinson's, Chronic Traumatic Encephalopathy, Cancer, Diabetes, Liver Failure and Heart Failure. Funded entirely by angel investors, FibroGenesis represents the next generation of medical advancement in cell therapy.

Visit http://www.Fibro-Genesis.com.

SOURCE FibroGenesis

http://www.Fibro-Genesis.com

Original post:
FibroGenesis Announces the Filing of its 250th Patent for Fibroblast Cell Therapy Platform - PRNewswire

FROM THE LABS: Hispanic Heritage Spotlight: Interview with Dr. Nino Rainusso – Baylor College of Medicine News

From the Labs sat down with Dr. Nino Rainusso, assistant professor of pediatrics hematology/oncology and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. Dr. Rainusso shared what inspired him to become a pediatric oncologist, his experience finding a research position in a Baylor lab and something few know about him.

I was born and raised in Per where I attended medical school at Universidad Peruana Cayetano Heredia. Early in my training I realized that if I wanted to better understand the medical conditions of my patients, I had to be involved in biomedical research. I wanted to become a physician-scientist in the field of pediatric neurology. This changed when I met my wife. Her brother had neuroblastoma, a common pediatric cancer that frequently develops in nerves associated with the adrenal glands located on top of the kidneys. When he died of the cancer, my career took a different path. Instead of spending my life as a pediatric neurologist, I became a pediatric oncologist.

During my rotations in medical school, I saw that doctors were exceptionally good at providing medical care for their patients but didnt have time to do research. That motivated me to come to the U.S. where I would have opportunities to continue my career as a physician-scientist.

After I completed my residency in general pediatrics at the University of Illinois at Chicago, I was accepted at Baylor for my fellowship in pediatric oncology. I dove into research in the second and third years. Having many patients with different types of tumors for which the treatment outcome has not significantly changed for the last 30 years meant that there was a wealth of research opportunities. One day, I attended a talk about cancer stem cells that inspired me to apply that approach to pediatric solid tumors.

I joined Dr. Jeff Rosens lab at Baylor. I liked his lab for its open-minded environment and collaborative atmosphere that many Baylor labs have.

I was not sure about what his response would be when I proposed to work in his group.

He has spent his entire life doing research in breast cancer and I, with little lab experience under my belt, was proposing to do research in osteosarcoma stem cells. Osteosarcoma is the most common bone cancer in children and young adults. I was expecting that he would try to change my mind, but instead he said, OK, welcome! I loved it! I am very grateful that I ended up working in Jeffs lab. He has been a wonderful mentor, and I learned a lot working in his group.

When it was time for me to have my own lab, I joined Dr. Jason Yusteins group at Texas Childrens Cancer & Hematology Centers. We took a new approach to study osteosarcoma. One limitation of studying this condition is working with cell lines, which do not seem to recapitulate most of the characteristics of tumors in patients.

We decided to generate patient-derived tumor xenografts models of pediatric sarcomas where the tissue from a patients tumor is implanted into immunosuppressed mice. These tumors closely resemble the characteristics of the original tumor allowing to have better understanding of cancer biology and to evaluate novel therapies.

We collaborate with other investigators to test new treatments such us immunotherapy in these xenograft models, which may put us a step closer to bringing more effective therapies to patients. I believe that our research would not be possible without the participation of multiple colleagues at Texas Childrens Hospital and the nurturing scientific environment provided by Baylor College of Medicine.

My close friends Alicia and Miguel are superb science teachers in a high school that serves economically disadvantaged communities.

Their schools have many dropouts and one of the reasons seems to be lack of opportunities for students to know what they could become.

Most students, not only Hispanics, are not aware of what scientists do or what a research lab looks like.

One idea could be to sponsor science fairs in these schools and award prizes that also include student tours of Baylor or Texas Childrens lab facilities. Students also need to be aware of scholarships they could apply for to pursue a higher education.

Finally, academic institutions and researchers may also participate in school talks to promote a better understanding of science and its direct repercussions in our daily life and to reduce the mistrust in science, which is a growing topic of significant concern.

I am a Star Wars fan so my office has many items from a galaxy far, far away.

By Ana Mara Rodrguez, Ph.D.

See the rest here:
FROM THE LABS: Hispanic Heritage Spotlight: Interview with Dr. Nino Rainusso - Baylor College of Medicine News

Protective protein could help keep blood young and healthy – New Atlas

A new study led by the University of Edinburgh and Queen Mary University of London has identified a protein that plays a crucial role in protecting the bodys blood stem cells from damage during infection, a finding that could lead to new ways to slow down the aging process.

Hematopoietic stem cells (HSCs) are found in bone marrow, and from there they produce other blood and immune cells. When an infection strikes the body, HSCs are known to ramp up production to fight it off but thats raised some questions for scientists in the past. In particular, how do they protect themselves from damage while working overtime?

We know that inflammatory pathways induced by infection force blood stem cells to rapidly produce immune cells to help combat infections, says Kamil Kranc, corresponding author of the study. However, these pathways can eventually exhaust stem cells or cause their premature aging, and it is important to understand how this can be stopped.

In the new study, the researchers identified a protein called YTHDF2 that seems to be responsible for this important job. When an infection arises, the HSCs produce far more immune cells, but at the same time that triggers inflammatory processes that can damage the stem cells. The study found that the YTHDF2 protein regulates genes that control those inflammatory processes, protecting the stem cells from premature aging.

To investigate the role of YTHDF2, the team engineered mice to be deficient in the protein, then administered a chemical that acts like a viral infection. Sure enough, the mices HSCs appeared to suffer chronic inflammation, altering the production of different blood cell types. Interestingly, the blood of these young animals began to resemble that of much older mice.

The new study seems to agree with previous reports that blood transfusions from young animals to older ones can improve the health of the recipient, and even slow the progression of diseases like Alzheimer's. As such, the team says that future work could investigate whether manipulating levels of YTHDF2 may be a potential anti-aging treatment.

The research was published in the Journal of Experimental Medicine.

Source: University of Edinburgh

Continue reading here:
Protective protein could help keep blood young and healthy - New Atlas

Global Contract Cell and Gene Therapy Manufacturing Market 2020-2026: Automation Deployed to Contain Cost of Goods Sold and Vector Manufacturing…

November 12, 2020 07:48 ET | Source: Research and Markets

Dublin, Nov. 12, 2020 (GLOBE NEWSWIRE) -- The "Global Contract Cell and Gene Therapy Manufacturing Market 2020-2026 - Supply Chain Optimization and Decentralized Manufacturing to Expand the Industry" report has been added to ResearchAndMarkets.com's offering.

This research service focuses on the critical role being played by CDMOs in not only supporting new product research and development but also in creating standardized manufacturing protocols.

Additionally, the study explores different cross-sections of the market and discusses market dynamics for autologous and allogeneic solutions for cell and gene therapies and for products being manufactured for clinical trial use and for commercial markets. The variability in market dynamics, manufacturing protocols, and business models across cross-sections is high. Therefore, the study also covers the emergence of non-traditional CDMOs that have thrived as a result of this variability.

The cell and gene therapy segment is one of the fastest growing segments in the biopharmaceutical space. While the science behind the therapy has grown by leaps and bounds on the back of decades worth of research, manufacturing has unfortunately lagged behind.

To fully harness the curative potential of these therapies and ensure greater reach and affordability to patients, it is imperative that aggressive investments in manufacturing technology and capacity are made today. Investments in manufacturing technology advancements including automation, single-use technologies, and GMP-in-a-box, will not only enable operational efficiency gains but also reduce project costs, generating benefits which can be transferred directly to the patients.

A large part of this growth in the cell and gene therapy product pipeline is being driven by small and mid-sized biotechs that depend on CDMOs to mitigate product development risks and diffuse infrastructure investments to be able to build future products pipeline.

The study also provides a comprehensive and critical analysis of nationally coordinated efforts towards infrastructure development and the rise of academic institutes and hospitals in meeting not only the demand from clinics, but also the demand of the commercial market.

The study also analyses the growth of specialist CDMOs focusing on vectors and plasmids, for instance. This captures the regional outlook for growth based on the currently installed capacities as well as the pipeline investments being made towards expansion. Lastly, the study tracks growth opportunities across the entire product development spectrum from supply chain to upstream and downstream manufacturing.

Key Topics Covered:

1. Strategic Imperatives

2. Growth Opportunity Analysis - CGT CDMO Market

3. Growth Opportunity Universe - CGT CDMO Market

4. Next Steps

For more information about this report visit https://www.researchandmarkets.com/r/3obb4f

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Formats available:

Read the rest here:
Global Contract Cell and Gene Therapy Manufacturing Market 2020-2026: Automation Deployed to Contain Cost of Goods Sold and Vector Manufacturing...

Gene Therapy Market Size Is Estimated to Grow at a CAGR of 40.7% By 2025 | Sales Statistics, Future Trends, Business Overview and COVID-19 Impact…

Gene Therapy Market Size, Growth and Share Analysis By Product (Kymriah, Luxturna, Yescarta, Zolgensma, Strimvelis, Zynteglo, Others), By Indication (Oncology, Genetic Diseases, Others) and By End-User (Hospitals & Clinics, Specialty Treatment Centers, Others) Forecast to 2025

Gene Therapy Market Synopsis

The GlobalGene Therapy Marketsize was recorded at a value of USD 524 million in 2018 and is touted to register a CAGR of 40.7%. Global gene therapy market growth in gene therapy is due to various factors such as a strong drug pipeline, increased investment by key players and a high prevalence of target disease, as well as demand for innovative drugs. Over recent years, the number of applications for gene therapy has risen, including the treatment of numerous rare and incurable disorders such as cancer, and genetic diseases inherited. With an advent in the number of molecules being tested across different clinical trials, the count is dominated by the trials intended to develop cancer therapies.

Research and development is driving global gene therapy alongside increased investment in product development. Growing policy funding for gene therapy studies, ethical approval of gene therapy for cancer treatment, and increasing incidence of cancer often fuel demand development for gene therapy. In addition, rapid and significant progress in the arena of molecular and cellular biology, driven by technological advances in genomics and gene-editing tools, has contributed to a growing number of approved gene therapies and an expanding pipeline.

Request Free Sample Copy of the report "Gene Therapy Market Research Report - Global Forecast till 2025" at: https://www.marketresearchfuture.com/sample_request/8399

Yet high cost of drug production and stringent regulatory regulations are likely to limit the expansion of the global demand for gene therapy. Today the global gene therapy market is dominated by many industry players. The key players are involved in product launches and strategic collaborations to strengthen their market positions.

Gene Therapy Market Segmental Analysis

The globalgene therapy markethas been segmented based on product, indication, and end user.

The product-based gene therapy market was divided up into kymriah, luxturna, yescarta, zolgensma, strimvelis, zynteglo, imlygic, and others.

The global gene therapy market is segmented into oncology, genetic diseases / disorders and others based on indication. The oncology sector is expected to have the largest market share and to be the fastest developing sector due to the high prevalence of cancer and robust pipeline for cancer gene therapy.

Segmentation by end users in the gene therapy market has been done into hospitals & clinics, specialist care centers, and more. Thanks to an growing number of clinics, the group Clinics & Clinics is expected to have the highest gene therapy market share. Hospitals are also generally the first choice for treating diseases.

Gene Therapy Market Regional Analysis

Region wise, the gene therapy market is analyzed across North America, Europe, Asia-Pacific, and LAMEA. North America accounted for the largest market share of gene therapy in 2018, and this pattern is predicted to continue throughout the projected period due to high cancer incidence, high disposable income and increased support for gene therapy-related R&D activities.

Asia-Pacific, however, is expected to record the highest growth over the forecast period, owing to an advent in the number of people prone to various chronic diseases. However, the approval and introduction of gene therapy drugs will have a positive effect on the growth of the gene therapy market in developing countries , such as Japan, Australia and New Zealand.

Browse Detailed TOC with COVID-19 Impact Analysis at:https://www.marketresearchfuture.com/reports/gene-therapy-market-8399

Increase in support for cell therapy and gene therapy companies through European countries including the UK. Europe 's economy is expected to expand at a lucrative pace. In addition, European companies are committed to expanding the distribution of goods globally by gaining approval from multiple regulatory bodies.

Gene Therapy Market Competitive Dashboard

Some of the eminent players in the globalgene therapy marketare Novartis AG (Switzerland), Amgen, Inc. (US), Spark Therapeutics, Inc. (US), CEVEC (Germany), Gilead Sciences, Inc. (US), uniQure N.V. (Netherlands), Orchard Therapeutics plc (UK), Bristol-Myers Squibb Company (US), Celgene Corporation (US), Thermo Fisher Scientific Inc. (US), and Lonza (Switzerland).

Browse More Related Research Reports at:

ThemHealth marketsize will grow at a CAGR of 36.5% and touch USD 21.71 Billion by 2022

About Market Research Future:

At Market Research Future (MRFR), we enable our customers to unravel the complexity of various industries through our Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), & Consulting Services. MRFR team have supreme objective to provide the optimum quality market research and intelligence services to our clients.

Media Contact Company Name: Market Research Future Contact Person: Abhishek Sawant Email: Send Email Phone: +1 646 845 9312 Address:Market Research Future Office No. 528, Amanora Chambers Magarpatta Road, Hadapsar City: Pune State: Maharashtra Country: India Website: https://www.marketresearchfuture.com/reports/gene-therapy-market-8399

Read this article:
Gene Therapy Market Size Is Estimated to Grow at a CAGR of 40.7% By 2025 | Sales Statistics, Future Trends, Business Overview and COVID-19 Impact...

Homology Medicines Announces Presentation of Positive Data from the Dose-Escalation Phase of the pheNIX Gene Therapy Trial for Adults with PKU -…

November 06, 2020 11:40 ET | Source: Homology Medicines, Inc.

- Marked Reductions in Phe Observed at Two Doses -

- Achieved Goal with Plans to Advance to Randomized, Concurrently Controlled Expansion Phase of Trial -

- Webcast / Conference Call Today, November 6 at 4:30 p.m. ET -

BEDFORD, Mass., Nov. 06, 2020 (GLOBE NEWSWIRE) -- Homology Medicines, Inc. (Nasdaq: FIXX), a genetic medicines company, announced today the presentation of positive data from the dose-escalation portion of the Phase 1/2 gene therapy pheNIX clinical trial for adults with phenylketonuria (PKU). The results showed that product candidate HMI-102 was generally well-tolerated, and resulted in marked reductions in phenylalanine (Phe) and the Phe-to-tyrosine (Tyr) ratio (Phe/Tyr ratio) at two doses. Phe is a registrable endpoint in PKU, and the Phe/Tyr ratio is a clinically relevant diagnostic measurement for PKU. With these positive results, Homology is progressing to the randomized, concurrently controlled expansion phase of the trial, which has the potential to be converted to a registrational trial.

The data were presented today in an oral presentation by Olaf Bodamer, M.D., Ph.D., FACMG, FAAP, Park Gerald Chair in Genetics & Genomics and Associate Chief of Genetics & Genomics at Boston Childrens Hospital, and principal investigator of the pheNIX trial, during the New England Consortium of Metabolic Programs (NECMP) annual meeting, which is focused on new research in metabolic disorders. NECMP includes metabolic clinics, healthcare providers, patient organizations and others dedicated to increasing knowledge of metabolic disorders and improving delivery of healthcare to patients.

This is the first-ever PKU gene therapy clinical trial, and I am excited to share these data with the PKU community as I believe they demonstrate the potential of HMI-102 to treat the underlying genetic cause and reduce the therapeutic burden for patients and their families, stated Dr. Bodamer. PKU is a challenging condition, and a treatment that establishes normal metabolism could change the prognosis for patients with this rare genetic disorder. We look forward to participating in the next phase of the study.

We are pleased to have met the goals of the dose-escalation portion of the trial, which were evaluation of safety and efficacy of a single I.V. administration of HMI-102 and dose determination for the expansion phase of the trial, stated Gabe Cohn, M.D., Chief Medical Officer of Homology Medicines. Even as many patients self-liberalized their diets, there were patients at the mid- and high-doses with plasma Phe values below 360 mol/L and/or 600 mol/L, and one of these patients achieved a Phe level within the normal range. This is the first time a genetic medicines approach has achieved these results in patients with PKU. We have learned a tremendous amount in the dose-escalation phase and are applying these learnings to the expansion phase of the trial, which we anticipate initiating in early 2021.

Dr. Cohn continued, We greatly appreciate the PKU community of patients, clinicians and caregivers who have participated in this first phase of the pheNIX trial, and we look forward to working together during the next phase.

As of the data cutoff date of October 19, 2020, six patients in the dose-escalation phase of the pheNIX trial had received gene therapy product candidate HMI-102 across three dose cohorts (low-dose Cohort 1, n=2; mid-dose Cohort 2, n=2; high-dose Cohort 3, n=2). Cohorts included males and females, with an age range of 21-49 and time in study ranging from 13 weeks to 52 weeks (end of study).

Safety Observations HMI-102 was generally well-tolerated, and there were no treatment-related serious adverse events (SAEs). There were no clinically significant changes in ECG or vital signs and no clinical signs of complement activation. The Grade 1 and 3* alanine aminotransferases (ALTs) observed in Cohorts 2 and 3, which is common in AAV-based gene therapy, were managed with increased steroids when necessary. The patients who experienced Grade 3 ALTs had pre-existing underlying immune conditions. An independent data monitoring committee, which provided guidance throughout the pheNIX trial, concluded that there were no safety concerns related to bilirubin, and that ALT elevations may be associated with reduced efficacy.

Updates to the expansion phase of the pheNIX trial, including key learnings related to patient selection, monitoring and steroid regimen, are being incorporated.

Efficacy Observations

Cohort 1 (Low-Dose) Through 52 weeks, patients in Cohort 1 continued to show no meaningful reductions in Phe.

Cohorts 2 and 3 (Mid- and High-Dose) The mean percent change from baseline in Phe observed in patients in Cohorts 2 and 3 were significant, compared to Cohort 1**. These Phe reductions occurred while patients self-liberalized their diets.

Through 48 weeks, one patient in Cohort 2 had Phe levels of <360 mol/L and/or <600 mol/L*** at multiple timepoints and had reached a minimum Phe level of 42 mol/L, compared with a baseline level of 1,010 mol/L. Through 13 weeks, one patient in Cohort 3 had a Phe level <360 mol/L and several Phe levels <600 mol/L at multiple timepoints and had reached a minimum Phe level of 303 mol/L, compared with a baseline level of 1,060 mol/L.

In Cohorts 2 and 3, Phe reductions were greater among patients with Grade 1 ALTs compared to patients with Grade 3 ALTs****; ALT elevations were managed with increased steroids when necessary. It appears higher ALT elevations may limit therapeutic activity, but can be managed with a modified steroid regimen, which is being incorporated into the expansion phase.

Expansion Phase Based on the safety and efficacy results observed in the dose-escalation phase, Homology is advancing to the randomized, concurrently controlled, dose expansion phase of the pheNIX trial, which has the potential to be converted to a registrational trial.

All cohorts in the dose-escalation phase showed an acceptable safety profile and certain patients in Cohorts 2 and 3 showed marked Phe reductions. Based on these collective data, Homology has selected two doses for the expansion phase: the mid-dose from Cohort 2 and a dose between the doses in Cohorts 2 and 3. The Company believes the latter dose has the potential to improve Phe reductions while reducing steroid exposure that was required at the high-dose. The Company believes that advancing two doses in parallel provides the potential to convert to a registrational trial quickly with the optimal dose as the expansion phase does not include staggered dosing between patients.

Webcast/Conference Call Homology management and Dr. Bodamer will host a conference call and webcast today, Friday, November 6 at 4:30 p.m. ET. The webcast will be accessible on Homologys website in the Investors section, and the webcast replay will be available on the website for 90 days following the presentation. To access using the conference call line, dial (866) 244-8091 (U.S./Canada toll-free) or (602) 563-8623, with Conference ID 7394503.

About HMI-102 HMI-102 is an investigational gene therapy in clinical development for the treatment of phenylketonuria (PKU) in adults. HMI-102 is designed to encode the PAH gene, which is mutated in people with PKU, delivered via the liver-tropic AAVHSC15 vector. Homology has received Fast Track Designation and orphan drug designation for HMI-102 from the U.S. Food and Drug Administration (FDA), and orphan drug designation from the European Medicines Agency (EMA).

About Phenylketonuria (PKU) PKU is a rare inborn error of metabolism caused by a mutation in thePAHgene. PKU results in a loss of function of the enzyme phenylalanine hydroxylase, which is responsible for the metabolism of phenylalanine (Phe), an amino acid obtained exclusively from the diet. If left untreated, toxic levels of Phe can accumulate in the blood and result in progressive and severe neurological impairment. Currently, there are no treatment options for PKU that target the underlying genetic cause of the disease. According to the National PKU Alliance, PKU affects nearly 16,500 people in the U.S. with approximately 350 newborns diagnosed each year. The worldwide prevalence of PKU is estimated to be 50,000 people.

About Homology Medicines, Inc. Homology Medicines, Inc. is a genetic medicines company dedicated to transforming the lives of patients suffering from rare genetic diseases with significant unmet medical needs by curing the underlying cause of the disease. Homologys proprietary platform is designed to utilize its human hematopoietic stem cell-derived adeno-associated virus vectors (AAVHSCs) to precisely and efficiently deliver genetic medicinesin vivoeither through a gene therapy or nuclease-free gene editing modality across a broad range of genetic disorders. Homology has a management team with a successful track record of discovering, developing and commercializing therapeutics with a particular focus on rare diseases, and intellectual property covering its suite of 15 AAVHSCs. Homology believes that its compelling preclinical data, scientific expertise, product development strategy, manufacturing capabilities and intellectual property position it as a leader in the development of genetic medicines. For more information, please visitwww.homologymedicines.com.

Forward-Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including without limitation statements regarding our expectations surrounding the potential, safety, efficacy, and regulatory and clinical progress of our product candidates; plans and timing surrounding the Phase 1/2 pheNIX trial, including the expansion phase and the potential for conversion to a registrational trial; our position as a leader in the development of genetic medicines; and our participation in upcoming presentations and conferences. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, the following: the impact of the COVID-19 pandemic on our business and operations, including our preclinical studies and clinical trials, and on general economic conditions; we have and expect to continue to incur significant losses; our need for additional funding, which may not be available; failure to identify additional product candidates and develop or commercialize marketable products; the early stage of our development efforts; potential unforeseen events during clinical trials could cause delays or other adverse consequences; risks relating to the capabilities of our manufacturing facility; risks relating to the regulatory approval process; interim, topline and preliminary data may change as more patient data become available, and are subject to audit and verification procedures that could result in material changes in the final data; our product candidates may cause serious adverse side effects; inability to maintain our collaborations, or the failure of these collaborations; our reliance on third parties; failure to obtain U.S. or international marketing approval; ongoing regulatory obligations; effects of significant competition; unfavorable pricing regulations, third-party reimbursement practices or healthcare reform initiatives; product liability lawsuits; failure to attract, retain and motivate qualified personnel; the possibility of system failures or security breaches; risks relating to intellectual property and significant costs as a result of operating as a public company. These and other important factors discussed under the caption Risk Factors in our Quarterly Report on Form 10-Q for the quarterly period endedJune 30, 2020and our other filings with theSECcould cause actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent managements estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.

*ALT Grades based on Common Terminology Criteria for Adverse Events (CTCAE) Version 5 **P<0.004; Post-hoc comparison of Cohort 1 vs Cohorts 2&3 using repeated measures MANOVA/regression analysis ***U.S. and EU PKU treatment guidelines described in: Vockley J et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genetics in Medicine 2014;16: 188-200. van Spronsen FJ et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 2017; 5: 74356. ****P<0.05; Post-hoc comparison of Patients 3&6 vs Patients 4&5 using repeated measures MANOVA/regression analysis

Company Contacts Theresa McNeely Chief Communications Officer and Patient Advocate tmcneely@homologymedicines.com 781-301-7277

Media Contact: Cara Mayfield Senior Director, Patient Advocacy and Corporate Communications cmayfield@homologymedicines.com 781-691-3510

Read the original here:
Homology Medicines Announces Presentation of Positive Data from the Dose-Escalation Phase of the pheNIX Gene Therapy Trial for Adults with PKU -...

Magnetic Resonance Imaging Market Growth Estimation, Future Insights, Applications, Key Players, Size Analysis, COVID-19 Impact and MRI Industry…

Magnetic Resonance Imaging (MRI) Market Trends, Growth and Size Analysis By Type (Open MRI and Close MRI), Field Strength (High-Field MRI Systems), Disease Application (Brain and Neurological MRI), and End-Users (Hospitals & Clinics) Global Forecast Till 2023

Magnetic Resonance Imaging (MRI) Market Overview

Global magnetic resonance imaging market size valuation is expected to reach USD 5 Billion by 2023. The market would register a 3.5% CAGR during the assessment period (2018 to 2023), states MRFR in its recent MRI market research report.

The magnetic resonance imaging (MRI) market is growing pervasively and attributes to the increasing use of MRI systems to diagnose a myriad of diseases and disorders. Due to its various advantages, magnetic resonance imaging systems surpass the radiology imaging systems in terms of the adoption. Technological advances in molecular imaging and the growing demand for non-invasive diagnostic techniques positively impact MRI market growth.

The report defines all significant market aspects with experts opinions on current and historical data. The report also covers market statistics, investment opportunities, gross margins, competitive analysis, top business strategies, and a comprehensive assessment of the COVID 19 impacts on market growth. Moreover, increasing funding support for the development of MRI techniques escalates the market growth to furthered height. The market is estimated to witness several FDA approved launches of innovative products and approaches, which would multiply Magnetic Resonance Imaging Market share.

Request Free Sample Copy at: https://www.marketresearchfuture.com/sample_request/6194

Rising technological advancements are estimated to propel the growth of the market. The growing prevalence of myriads of chronic diseases and increasing awareness about the innovative diagnostics methods influence the growth of the market. Additional factors, such as high R & D investments made for developing efficient imaging solutions, foster the growth of the MRI market throughout the analysis period.

Conversely, stringent regulatory processes are projected to obstruct the growth of the market in the years to come. Also, high costs associated with MRI systems hamper market growth. Nevertheless, rising financial support programs would support the growth of the market throughout the predicted period, suiting to changing needs of healthcare professionals.

Global Magnetic Resonance Imaging Market Segmentation

By Type, the global magnetic resonance imaging market is segmented into Open MRI, Closed MRI, Standard Bore MRI, wide-bore MRI.

By Field Strength, the global magnetic resonance imaging market High-Field MRI Systems, 1.5t MRI Systems, 3t MRI Systems, Low-To-Mid-Field MRI Systems, Very-High-Field MRI Systems, and others.

By Disease Application, the global magnetic resonance imaging market Spine & Musculoskeletal MRI, Brain & Neurological MRI, Pelvic & Abdominal MRI, Breast MRI, Cardiovascular MRI, and others.

By End-Users, the global magnetic resonance imaging market Diagnostic Imaging Centers, Hospitals & Clinics, Research Laboratories, Pharmaceutical & Biotechnology Companies, and others.

Magnetic Resonance Imaging Market Regional Outlook

North America dominates the global magnetic resonance imaging (MRI) market. The largest MRI market share attributes to the strong presence of several industry players and technological advancements in molecular imaging. Besides, factors such as the increasing market demand for non-invasive imaging techniques and increasing funding foster regional market growth.

Additionally, well-established healthcare sectors in the region, alongside the rising healthcare spending and adoption of MRI systems in medical diagnostics, spur the diagnostic imaging services market growth. The US and Canada account for major shares in the North American MRI market.

Europe stands second in the global magnetic resonance imaging (MRI) market. The market growth is driven by the increasing funding to support preclinical researches from regulatory authorities in the diagnosis of various chronic diseases. Moreover, augmenting demand for innovative & easy to use imaging agents in the medical sector has been increasing the cardiac MRI market size. Furthermore, growing healthcare expenses, the resurging economy in the region, and spreading awareness about MRI systems modalities positively impact the regional market.

The Asia Pacific magnetic resonance imaging (MRI) market is growing rapidly. Factors such as rising numbers of biotechnology and pharmaceutical companies increase the size of the MRI market excellently. Besides, the growing penetration of imaging technology in the healthcare sector for medical imaging purposes fosters regional market growth.

MRI market Competitive Analysis

Highly competitive, the MRI market appears fragmented due to the presence of several notable players. To gain a larger competitive share in the market, players adopt strategies such as mergers & acquisitions, collaboration, expansion, and product & technology launch. Industry players make substantial investments to drive R&D and expansion plans. R & D investments help them better their imaging agents, and expansion investment helps them increase their global footprints.

Major Players:

Players leading the global Magnetic Resonance Imaging Market include Hitachi, Siemens AG, Canon Medical Systems, GE Healthcare, Philips, Toshiba Corporation, Toshiba Corporation, Xingaoyi, and Aurora Imaging Technologies, Inc., among others.

Browse Detailed TOC with COVID-19 Impact Analysis at: https://www.marketresearchfuture.com/reports/magnetic-resonance-imaging-market-6194

Industry/Innovation/Related News:

Axonics Modulation Technologies, Inc.(the US), a medical technology company, announced receiving the US FDA premarket approval supplement approval for its 3T full-body MRI conditional labeling Axonics r-SNM System. Axonics SNM devices are designed for the treatment of urinary and bowel dysfunction. This FDA approval allows Axonics to provide healthcare professionals with more choices in selecting the optimal MR scanner for their patients imaging needs.

FDA approved the Axonics r-SNM System with full-body conditional labeling for 1.5T MRI scanners. With this incremental approval for 3T scans, the Axonics device continues to be the only SNM system available in the US that is MRI compatible for both 1.5T and 3T full-body scans.

Browse More Healthcare Related Research Report at:

Global Gene Therapy Market size was recorded at a value of USD 524 million in 2018 and is touted to register a CAGR of 40.7%.

chronic disease management market size to grow at a significant CAGR of 14.5% between 2019 and 2025

The Global Insulin Pump Market size is expected to reach a valuation of 8,520.9 million USD with exhibiting a CAGR of 8.4% from 2017 to 2023

NOTE: Our team of researchers are studying Covid19 and its impact on various industry verticals and wherever required we will be considering covid19 footprints for a better analysis of markets and industries. Cordially get in touch for more details.

About Market Research Future:

At Market Research Future (MRFR), we enable our customers to unravel the complexity of various industries through our Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), & Consulting Services. MRFR team have supreme objective to provide the optimum quality market research and intelligence services to our clients.

Contact:

Akash Anand

Market Research Future

+1 646 845 9312

Email: [emailprotected]

Read more from the original source:
Magnetic Resonance Imaging Market Growth Estimation, Future Insights, Applications, Key Players, Size Analysis, COVID-19 Impact and MRI Industry...