Author Archives: admin


Neural Stem Cell Market Research Report on Opportunities, Drivers and Threats Outlook, Covid-19 Impact by 2026 | Futuristic Reports – The Think…

An innovative research study has been offered by Futuristic Reports, offering a comprehensive analysis of the Global Neural Stem Cell Market where users can get an advantage from the comprehensive market research report with all the essential useful information. This is the newest report, covering the existing COVID-19 impact on the Neural Stem Cell market. It has fetched along with numerous changes in market conditions. This segment also provides the Neural Stem Cell scope of different applications and types that can potentially influence the future market. The comprehensive statistics are based on current trends and historical milestones.

This report also delivers an analysis of production volume about the global Neural Stem Cell market and each type from 2020 to 2026. The Neural Stem Cell report explicitly features the market share, company profiles, regional viewpoint, product portfolio, recent developments, newest strategic analysis, key players in the market, deals, circulation chain, manufacturing, production, and newest market entrants. The existing Neural Stem Cell market players, brand value, popular products, demand and supply, and other significant factors identified with the market help players will better understand the market scenario.

Get Exclusive Sample Copy on Neural Stem Cell Market at: https://www.futuristicreports.com/request-sample/60295

Impact of COVID-19 on Neural Stem Cell Market

The report also contains the effect of the ongoing worldwide pandemic, i.e., COVID-19, on the Neural Stem Cell Market and what the future holds for it. It offers an analysis of the impacts of the epidemic on the international market. The epidemic has immediately interrupted the requirement and supply series. The Neural Stem Cell report also assesses the economic effect on firms and economic demands. Futuristic Reports has accumulated advice from several delegates of this Neural Stem Cell business and has engaged from the secondary and primary research to extend the customers with strategies and data to combat industry struggles throughout and after the COVID-19 pandemic.

Some of the key players operating in this market include:

(STEMCELL Technologies, R&D Systems, Thermo Fisher Scientific, Neuralstem, ReNeuron Limited, Asterias Biotherapeutics, NeuroGeneration, Axol Bio, NeuroNova AB, Lonza, StemCells)

Based on Product Type, Neural Stem Cell market report displays the production, profits, cost, and market segment and growth rate of each type, covers:

Type 1 Type 2 Type 3 Type 4 Type 5

Based on end users/applications, the Neural Stem Cell market report focuses on the status and viewpoint for major applications/end users, sales volume, market share, and growth rate for each application. This can be divided into:

Medical care Hospital Laboratory

Grab Your Report at an Impressive Discount! Please click here: https://www.futuristicreports.com/check-discount/60295

The report offers a comprehensive assessment of the progression and other Neural Stem Cell market features in significant regions, including South Korea, Taiwan, North America, Europe, Canada, Germany, France, Southeast Asia, Mexico, and Brazil, Pacific, and Latin America. U.S., U.K., Italy, Russia, China, Japan, etc.

Features the following key factors:

Some of the Key Questions Answered in this Report:

Inquire More About This Report @ https://www.futuristicreports.com/send-an-enquiry/60295

Our Other Reports:

Global School Notebook Market Research Report

Global Reciprocating PD Pumps Market Research Report

Global Printed Circuit Boards (PCB) Market Research Report

Global Radiation Monitoring Market Research Report

Futuristic Reports

Name: Mark Rivera Tel: +1-408-520-9037 Email: [emailprotected]

See original here:
Neural Stem Cell Market Research Report on Opportunities, Drivers and Threats Outlook, Covid-19 Impact by 2026 | Futuristic Reports - The Think...

Stem Cell Therapies Market 2020 Revenue, Opportunity, Forecast and Value Chain 2028 – PharmiWeb.com

Future Market Insights (FMI) presents its new, comprehensive study on the global Stem Cell Therapies market spanning from 2020-2030. Researches at FMI have no left no stone unturned in bestowing readers a comprehensive view of the market, by studying the drivers, trends, challenges, and restraints. Backed by historical data and projected data, the report breaks down the vast study into numerous geographies and end-use segments, among others to condense the research.

Analysts at FMI have employed in-depth analysis to offer a lucid understanding of the market and the factors shaping its growth trajectory. Ranging from macro socio-economic factors to micro geography-specific trends, the research has taken into consideration every facet that is likely to play a vital role in the growth of the market in the years to come. Presenting a plethora of valuable information, the report will serve as an effective tool, guiding the market players in making fruitful decisions in the forthcoming years.

Request a Sample Report with Table of Contents and Figures@https://www.futuremarketinsights.com/reports/sample/rep-gb-1087

Impact of COVID-19 on Stem Cell Therapies Market

The unforeseen outbreak of COVID-19, which swiftly metamorphosed into the pandemic of unexpected proportions, has shifted the worlds focus towards the healthcare sector. National governments are closely working with healthcare institutions and pharmaceutical companies to provide effective treatment to patients suffering with the infection. As a result, there has been a reorientation of medical priorities across healthcare institutions with treatment for COVID-19 patients being the utmost priority. This is sure to impact the growth of the Stem Cell Therapies market through the pandemic period.

FMIs report includes a dedicated section expounding both the short-term and long-term impact of the pandemic on the Stem Cell Therapies market. The study is shaped to bolster stakeholders in making the right decisions to mitigate challenges and leverage opportunities through the pandemic.

Why Choose Future Market Insights?

Stem Cell Therapies Market: Segmentation

To simply the gargantuan study, the report is segregated on the basis of different segments.

Based on application:

Based on End User:

The aforementioned segments are studied with respect to each individual region, considering the region-specific trends, drivers and restraints.

Ask an Analyst @https://www.futuremarketinsights.com/askus/rep-gb-1087

Stem Cell Therapies Market: Competition Analysis

The study bestows valuable insights into the competitive landscape of the global Stem Cell Therapies market, by studying numerous players, their growth strategies, and key developments. The report dwells deep and studies different facets such as product launches, production methodologies, and steps adopted by players to make processes cost-effective, among others, are expected to influence their individual standpoint. Understanding the prevailing trends and strategies on the supply-side empowers players to foster their plan of action accordingly to progress on a remunerative path. Key players covered in the research include

Key Questions Answered in FMIs Stem Cell Therapies Market Report

About Us:

Future Market Insights (FMI) is a leading market intelligence and consulting firm. We deliver syndicated research reports, custom research reports and consulting services which are personalized in nature. FMI delivers a complete packaged solution, which combines current market intelligence, statistical anecdotes, technology inputs, valuable growth insights and an aerial view of the competitive framework and future market trends.

Contact Us:

Mr. Abhishek Budholiya 616 Corporate Way, Suite 2-9018, Valley Cottage, NY 10989, United States T: +1-347-918-3531 F: +1-845-579-5705 T (UK): + 44 (0) 20 7692 8790 Press Office: Press@futuremarketinsights.com Blog: Market Research Blog Website: https:www.futuremarketinsights.com

Here is the original post:
Stem Cell Therapies Market 2020 Revenue, Opportunity, Forecast and Value Chain 2028 - PharmiWeb.com

Baby Gets Early Stem Cell Transplant to Treat Rare Disease Thanks to Newborn Screening – University of Michigan Health System News

At birth, Minette looked perfectly healthy, and her parents took their 7 pound, 9- ounce, brown-eyed baby girl home thinking all was well.

But her newborn screening test revealed something different.

The results indicated Minette had a rare lysosomal storage disease known as mucopolysaccharidosis type I, or MPS-1. Babies usually dont show any symptoms at birth, but the condition is progressively debilitating, eventually causing permanent damage to mental development, organ function and physical abilities.

LISTEN UP: Add the new Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily updates on iTunes, Google Play and Stitcher.

And at nine days old in January, 2019, after a series of tests run by the newborn screen follow up team in pediatric genetics at Michigan Medicine C.S. Mott Childrens Hospital, Minette was officially diagnosed with MPS-1.

There were no signs of this disease during pregnancy or after her birth, says her mother Samantha Mejia, of West Bloomfield, Mich.

It was so important that we identified it early so she could get treatment that would give her a better chance of living a more normal life.

MPS-1 means the body is missing or does not have enough of an enzyme needed to break down long chains of sugar molecules (glycosaminoglycans) within structures called lysosomes. Lysosomes are essentially the bodys recycling centers large molecules go in and come out small enough so the body can use them.

Like Podcasts? Add the Michigan Medicine News Break oniTunes or anywhere you listen to podcasts.

When these molecules cant be broken down, they build up in the cell, causing many organs and tissues of the body to become enlarged, damaged and unable to work properly. Some children may develop mild to moderate mental impairment or learning difficulties, respiratory problems, sleep apnea and heart disease.

In severe cases like Minettes, children stop developing between ages 2-4, which is followed by progressive mental decline including loss of physical abilities and language skills.

MPS-1 was added to the Michigan newborn screen in August, 2017 just a little more than a year before Minette was born joining a list of more than 50 disorders that can now be detected through a simple blood test after birth.

Prior to being added to the newborn screen, many children were often diagnosed between ages one-and-a-half and three years old because they start losing developmental milestones or begin showing certain facial features as a result of glycosaminoglycans storage, such as thickened nostrils, lips or ears.

The clinical diagnosis of MPS-1 is often delayed because the symptoms tend to be non-specific early on. Newborn screening is crucial for making an early diagnosis and initiating treatment, which significantly alters the long term outcomes for patients, says Rachel Fisher, pediatric genetic counselor at Mott and a lysosomal storage disorder newborn screen coordinator for the state of Michigan.

Because of Minettes early diagnosis, her Mott care teams could quickly take next steps for treatment. She started enzyme therapy within six weeks, and at three months of age underwent four days of chemotherapy before ultimately getting a hematopoietic stem cell transplant to help replace the enzyme her body was missing.

See the article here:
Baby Gets Early Stem Cell Transplant to Treat Rare Disease Thanks to Newborn Screening - University of Michigan Health System News

Stem Cell and Regenerative Therapy Market Report to Describe Major Companies and Their Strategies (2019-2024) – PRnews Leader

Theglobal stem cell and regenerative medicines marketshould grow from $21.8 billion in 2019 to reach $55.0 billion by 2024 at a compound annual growth rate (CAGR) of 20.4% for the period of 2019-2024.

Report Scope:

The scope of this report is broad and covers various type of product available in the stem cell and regenerative medicines market and potential application sectors across various industries. The current report offers a detailed analysis of the stem cell and regenerative medicines market.

The report highlights the current and future market potential of stem cell and regenerative medicines and provides a detailed analysis of the competitive environment, recent development, merger and acquisition, drivers, restraints, and technology background in the market. The report also covers market projections through 2024.

Get Access to sample pages @https://www.trendsmarketresearch.com/report/sample/11723

The report details market shares of stem cell and regenerative medicines based on products, application, and geography. Based on product the market is segmented into therapeutic products, cell banking, tools and reagents. The therapeutics products segments include cell therapy, tissue engineering and gene therapy. By application, the market is segmented into oncology, cardiovascular disorders, dermatology, orthopedic applications, central nervous system disorders, diabetes, others

The market is segmented by geography into the following regions: North America, Europe, Asia-Pacific, South America, and the Middle East and Africa. The report presents detailed analyses of major countries such as the U.S., Canada, Mexico, Germany, the U.K. France, Japan, China and India. For market estimates, data is provided for 2018 as the base year, with forecasts for 2019 through 2024. Estimated values are based on product manufacturers total revenues. Projected and forecasted revenue values are in constant U.S. dollars, unadjusted for inflation.

Report Includes:

28 data tables An overview of global markets for stem cell and regenerative medicines Analyses of global market trends, with data from 2018, estimates for 2019, and projections of compound annual growth rates (CAGRs) through 2024 Details of historic background and description of embryonic and adult stem cells Information on stem cell banking and stem cell research A look at the growing research & development activities in regenerative medicine Coverage of ethical issues in stem cell research & regulatory constraints on biopharmaceuticals Comprehensive company profiles of key players in the market, including Aldagen Inc., Caladrius Biosciences Inc., Daiichi Sankyo Co. Ltd., Gamida Cell Ltd. and Novartis AG

Summary

The global market for stem cell and regenerative medicines was valued at REDACTED billion in 2018. The market is expected to grow at a compound annual growth rate (CAGR) of REDACTED to reach approximately REDACTED billion by 2024. Growth of the global market is attributed to the factors such as growingprevalence of cancer, technological advancement in product, growing adoption of novel therapeuticssuch as cell therapy, gene therapy in treatment of chronic diseases and increasing investment fromprivate players in cell-based therapies.

In the global market, North America held the highest market share in 2018. The Asia-Pacific region is anticipated to grow at the highest CAGR during the forecast period. The growing government funding for regenerative medicines in research institutes along with the growing number of clinical trials based on cell-based therapy and investment in R&D activities is expected to supplement the growth of the stem cell and regenerative market in Asia-Pacific region during the forecast period.

Reasons for Doing This Study

Global stem cell and regenerative medicines market comprises of various products for novel therapeutics that are adopted across various applications. New advancement and product launches have influenced the stem cell and regenerative medicines market and it is expected to grow in the near future. The biopharmaceutical companies are investing significantly in cell-based therapeutics. The government organizations are funding research and development activities related to stem cell research. These factors are impacting the stem cell and regenerative medicines market positively and augmenting the demand of stem cell and regenerative therapy among different application segments. The market is impacted through adoption of stem cell therapy. The key players in the market are investing in development of innovative products. The stem cell therapy market is likely to grow during the forecast period owing to growing investment from private companies, increasing in regulatory approval of stem cell-based therapeutics for treatment of chronic diseases and growth in commercial applications of regenerative medicine.

Products based on stem cells do not yet form an established market, but unlike some other potential applications of bioscience, stem cell technology has already produced many significant products in important therapeutic areas. The potential scope of the stem cell market is now becoming clear, and it is appropriate to review the technology, see its current practical applications, evaluate the participating companies and look to its future.

The report provides the reader with a background on stem cell and regenerative therapy, analyzes the current factors influencing the market, provides decision-makers the tools that inform decisions about expansion and penetration in this market.

Continue reading here:
Stem Cell and Regenerative Therapy Market Report to Describe Major Companies and Their Strategies (2019-2024) - PRnews Leader

Catalent and BrainStorm Cell Therapeutics Announce Partnership for the Manufacture of Mesenchymal Stem Cell Platform Therapy NurOwn – GlobeNewswire

October 22, 2020 09:00 ET | Source: BrainStorm Cell Therapeutics Inc.; Catalent

SOMERSET, N.J. and NEW YORK, Oct. 22, 2020 (GLOBE NEWSWIRE) -- Catalent (NYSE: CTLT), the leading global provider of advanced delivery technologies, development, and manufacturing solutions for drugs, biologics, cell and gene therapies, and consumer health products, and BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of cellular therapies for neurodegenerative diseases, today announced an agreement for the manufacture of NurOwn, BrainStorms autologous cellular therapy being investigated for the treatment of amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or motor neuron disease.

NurOwn induces mesenchymal stem cells (MSCs) to secrete high levels of neurotrophic factors (NTFs) known to promote the survival of neurons and neuroprotection. The therapy has received Fast Track status from the U.S. FDA for ALS and has also been granted Orphan Drug Status for ALS by both the FDA and the European Medicines Agency. BrainStorm is currently completing a 200-patient, double-blind, placebo-controlled, repeat-dosing NurOwn Phase 3 study in the U.S.

As part of its commitment, Catalent will undertake the transfer of the manufacturing process to, and provide future CGMP clinical supply of NurOwn from, its new, 32,000 square-foot cell therapy manufacturing facility in Houston, Texas. On completion of the clinical trials and in anticipation of potential approval of NurOwn, the companies will look to extend the partnership to include commercial supply from the Houston facility.

We are proud to have a partner in Catalent whose excellence in manufacturing quality therapies will support commercial supply of NurOwn, said Chaim Lebovits, Chief Executive Officer of BrainStorm Cell Therapeutics. We know that ALS patients are in urgent need of a new treatment option. If NurOwn is successful in the current clinical trials, this agreement will be integral to ensuring rapid access for patients.

Manja Boerman, Ph.D., President, Catalent Cell & Gene Therapy, said, Our experience in cell therapy development, and the manufacturing capabilities that our newly constructed, state-of-the-art facility in Houston offers, position us to best support BrainStorm, with its leading therapeutic candidate for ALS treatment. We look forward to partnering with BrainStorm and providing our stem cell manufacturing expertise as we work to optimize production and streamline the products path towards commercial launch.

About Catalent Cell & Gene Therapy

With deep experience in viral vector scale-up and production, Catalent Cell & Gene Therapy is a full-service partner for adeno-associated virus (AAV) and lentiviral vectors, and CAR-T immunotherapies. When it acquired MaSTherCell, Catalent added expertise in autologous and allogeneic cell therapy development and manufacturing to position it as a premier technology, development and manufacturing partner for innovators across the entire field of advanced biotherapeutics. Catalent has a global cell and gene therapy network of dedicated, large-scale clinical and commercial manufacturing facilities, and fill-finish and packaging capabilities located in both the U.S. and Europe. An experienced partner, Catalent Cell & Gene Therapy has worked with industry leaders across 70+ clinical and commercial programs.

About Catalent

Catalent is the leading global provider of advanced delivery technologies, development, and manufacturing solutions for drugs, biologics, cell and gene therapies, and consumer health products. With over 85 years serving the industry, Catalent has proven expertise in bringing more customer products to market faster, enhancing product performance and ensuring reliable global clinical and commercial product supply. Catalent employs approximately 14,000 people, including around 2,400 scientists and technicians, at more than 45 facilities, and in fiscal year 2020 generated over $3 billion in annual revenue. Catalent is headquartered in Somerset, New Jersey. For more information, visit http://www.catalent.com

More products. Better treatments. Reliably supplied.

About NurOwn

NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also received U.S. FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began in March 2019.

About BrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS). The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) completed enrollment inAugust 2020. For more information, visit the company's website at http://www.brainstorm-cell.com.

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

Media Contacts:

See the original post here:
Catalent and BrainStorm Cell Therapeutics Announce Partnership for the Manufacture of Mesenchymal Stem Cell Platform Therapy NurOwn - GlobeNewswire

Be Biopharma debuts with $52M to advance engineered B-cell therapies – FierceBiotech

You may have heard of T cells, but Aleks Radovic-Moreno, Ph.D., Be Biopharmas co-founder, president and director, is betting on B cells as the future of cell therapies.

Our mission is to develop what we see as a new class of cell medicines that have a broad new pharmacology, he said of B cells potential. We think it's a big new white space that's enabled by the rich biology of these cells.

The Cambridge, Massachusetts-based company is capitalizingearly on research by scientists at the University of Washington School of Medicine. With a $52 million series A round in the bank, it'smaking a beeline for the clinic.

Box will discuss how your life sciences organization can continue to propel therapies & devices through the value chain with faster and even more secure site monitoring and auditing.

Why the enthusiasm around B cells? The wayRadovic-Moreno sees it, they'rethe cellular gadget, if you will, that's really good at making large amounts of protein, and they also traffic to where you want them to go."

When we think about it from a drug development standpoint, now you have a system that can make a protein that you want in high quantities in places where you want it to be made, he added.

B cells may also be useful for targeting specific tissues and modulating microenvironments, or [talking] to the cells that are nearby, he said.

One of the biggest challenges to bringing Be Bio to fruition was making the products themselves. Theyre harder to engineer than other cell types thanksto their intrinsic biology, Radovic-Moreno said. Theyre also hard to make correctly and in large quantities, challenges the company only recently overcame.

Those two are the final two bottlenecks that were preventing B cells from being a viable stem cell therapy modality, he said.

RELATED: Q32 debuts with $46M to 'rebalance' innate and adaptive immunity

The applications of B cells include everything from autoimmune diseases to cancer and monogenic disorders, which are caused by variation in a single gene. B-cell therapy could eliminate the need for patients with monogenic disorders who are missing proteins to get biweekly four-hour infusions.

And that's not all. It couldalso eliminate the need for bone marrow transplants in these patients, as well asthe need for a pre-therapy round of chemotherapy, otherwise known as conditioning. For cancer patients who need conditioningahead of a stem cell treatment, the regimencan be deadly up to 10% of the time.

That's extraordinary if you think about a therapy killing patients 10% of the time, Radovic-Moreno said.

Beyond pushing Be'spipeline toward the clinic, the new fundingfrom Atlas Venture, RA Capital Management, Alta Partners, Longwood Fund and other investorswill bankroll potential partnerships and build out the company's team.

The most important thing is to build a great company, hire the best people. We want to be the best B-cell engineers in the world and in history, Radovic-Moreno said. We want to fully capitalize on the timing of this, given that it's a very kind of unusual place to be in this time and age of biotech, where you're sitting right in front of this massive blue wave, big blue ocean of possibilities so big.

Here is the original post:
Be Biopharma debuts with $52M to advance engineered B-cell therapies - FierceBiotech

Orchard Therapeutics CEO Bobby Gaspar, M.D., Ph.D., Appointed to the Alliance for Regenerative Medicine’s 2021 Board of Directors – GlobeNewswire

October 22, 2020 07:00 ET | Source: Orchard Therapeutics (Europe) Limited

BOSTONandLONDON, Oct. 22, 2020 (GLOBE NEWSWIRE) -- Orchard Therapeutics(Nasdaq: ORTX), a global gene therapy leader, today announced that the companys chief executive officer, Bobby Gaspar, M.D., Ph.D., has been appointed to the Alliance for Regenerative Medicines (ARM) 2021 board of directors. In collaboration with the executive committee and board of directors, Dr. Gaspar will provide guidance supporting formation and implementation of ARMs strategic priorities and focus areas over the coming year.

I am honored to join the Alliance for Regenerative Medicines board at this pivotal time for cell and gene therapies, said Bobby Gaspar, CEO of Orchard. As more one-time, potentially curative medicines move toward commercialization, its imperative that we work together to meet the needs and challenges of a society accustomed to using chronic therapies to treat diseases. I look forward to collaborating with industry peers toward our common goal of bringing innovative treatment options to patients and families.

ARM is the leading international multi-stakeholder advocacy organization for the cell and gene therapy sector, promoting legislative, regulatory, and reimbursement initiatives to facilitate access to life-giving advances in regenerative medicine worldwide.

We are pleased to welcome Bobby Gaspar as one of the accomplished executives joining the 2021 ARM board of directors, said Janet Lambert, CEO of ARM. As scientists, commercial leaders, and regulatory experts, the new members of the board will be instrumental in helping ARM and its members deliver transformative and potentially curative cell and gene therapies to patients around the world.

About Orchard Orchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene Therapy in Milan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters in London and U.S. headquarters in Boston. For more information, please visit http://www.orchard-tx.com, and follow us on Twitter and LinkedIn.

Availability of Other Information About Orchard Investors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (Twitter andLinkedIn), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

Forward-Looking Statements This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, and the therapeutic potential of Orchards product candidates, including the product candidate or candidates referred to in this release. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation: the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development and commercial programs; the risk that any one or more of Orchards product candidates, including the product candidate or candidates referred to in this release, will not be approved, successfully developed or commercialized; the risk of cessation or delay of any of Orchards ongoing or planned clinical trials; the risk that Orchard may not successfully recruit or enroll a sufficient number of patients for its clinical trials; the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates; the delay of any of Orchards regulatory submissions; the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates or the receipt of restricted marketing approvals; and the risk of delays in Orchards ability to commercialize its product candidates, if approved. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedJune 30, 2020, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Contacts

Investors Renee Leck Director, Investor Relations +1 862-242-0764 Renee.Leck@orchard-tx.com

Media Molly Cameron Manager, Corporate Communications +1 978-339-3378 media@orchard-tx.com

Visit link:
Orchard Therapeutics CEO Bobby Gaspar, M.D., Ph.D., Appointed to the Alliance for Regenerative Medicine's 2021 Board of Directors - GlobeNewswire

The Induced Pluripotent Stem Cells Market To Mark Robustness In The Form Of A Robust CAGR – KYT24

Market Report Summary

For Full Information -> Click Here

Read Full Press Release Below

The healthcare industry has been focusing on excessive research and development in the last couple of decades to ensure that the need to address issues related to the availability of drugs and treatments for certain chronic diseases is effectively met. Healthcare researchers and scientists at the Li Ka Shing Faculty of Medicine of the Hong Kong University have successfully demonstrated the utilization of human induced pluripotent stem cells or hiPSCs from the skin cells of the patient for testing therapeutic drugs.

The success of this research suggests that scientists have crossed one more hurdle towards using stem cells in precision medicine for the treatment of patients suffering from sporadic hereditary diseases. iPSCs are the new generation approach towards the prevention and treatment of diseases that takes into account patients on an individual basis considering their genetic makeup, lifestyle, and environment. Along with the capacity to transform into different body cell types and same genetic composition of the donors, hiPSCs have surfaced as a promising cell source to screen and test drugs.

Get Sample Copy of Report @ https://www.persistencemarketresearch.com/samples/17968

Company Profile

Get To Know Methodology of Report @ https://www.persistencemarketresearch.com/methodology/17968

In the present research, hiPSC was synthesized from patients suffering from a rare form of hereditary cardiomyopathy owing to the mutations in Lamin A/C related cardiomyopathy in their distinct families. The affected individuals suffer from sudden death, stroke, and heart failure at a very young age. As on date, there is no exact treatment available for this condition.

This team in Hong Kong tested a drug named PTC124 to suppress specific genetic mutations in other genetic diseases into the iPSC transformed heart muscle cells. While this technology is being considered as a breakthrough in clinical stem cell research, the team at Hong Kong University is collaborating with drug companies regarding its clinical application.

The unique properties of iPS cells provides extensive potential to several biopharmaceutical applications. iPSCs are also used in toxicology testing, high throughput, disease modeling, and target identification. This type of stem cell has the potential to transform drug discovery by offering physiologically relevant cells for tool discovery, compound identification, and target validation.

A new report by Persistence Market Research (PMR) states that the globalinduced pluripotent stem or iPS cell marketis expected to witness a strong CAGR of 7.0% from 2018 to 2026. In 2017, the market was worth US$ 1,254.0 Mn and is expected to reach US$ 2,299.5 Mn by the end of the forecast period in 2026.

Access Full Report @ https://www.persistencemarketresearch.com/checkout/17968

Customization to be the Key Focus of Market Players

Due to the evolving needs of the research community, the demand for specialized cell lines have increased to a certain point where most vendors offering these products cannot depend solely on sales from catalog products. The quality of the products and lead time can determine the choices while requesting custom solutions at the same time. Companies usually focus on establishing a strong distribution network for enabling products to reach customers from the manufacturing units in a short time period.

Entry of Multiple Small Players to be Witnessed in the Coming Years

Several leading players have their presence in the global market; however, many specialized products and services are provided by small and regional vendors. By targeting their marketing strategies towards research institutes and small biotechnology companies, these new players have swiftly established their presence in the market.

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Ashish Kolte Persistence Market Research Address 305 Broadway, 7th FloorNew York City, NY 10007 United States U.S. Ph. +1-646-568-7751 USA-Canada Toll-free +1 800-961-0353 Sales[emailprotected] Website https://www.persistencemarketresearch.com

Go here to read the rest:
The Induced Pluripotent Stem Cells Market To Mark Robustness In The Form Of A Robust CAGR - KYT24

Kobe Hospital Trials Transplant to Reverse Blindness A First in the World – JAPAN Forward

Kobe City Eye Hospital in Hyogo Prefecture announced on October 16 that it had performed the worlds first clinical trial transplant to reverse blindness. The transplant was performed in early October on a woman in her 60s from the Kansai region who had lost most of her eyesight.

The roughly two-hour surgery wrapped up as scheduled without the patient experiencing complications. It involved light responding photoreceptor cells that were taken from induced pluripotent stem cells (iPS cells).

The patient in this case suffered from pigmentary retinal degeneration, a rare eye disease. The surgery was successful and the patient is said to be in good condition.

Regeneration of the photoreceptor cells connected to the central nervous system had been a long-awaited dream come true. Although its a small step, I am touched and relieved that we were able to safely step forward, said Yasuo Kurimoto, who performed the operation.

I would be happy if it could provide hope to those waiting to receive the same treatment, the female patient was quoted as saying after the surgery.

In the clinical trial, iPS cells that form the source of photoreceptor cells were generated from a healthy donor. The visual cells were then cultivated into a sheet with a diameter of one millimeter, and transplanted in three slices into the retina of the patients eye.

The aim is for the cells to develop into healthy photoreceptor cells so that the patients eyesight will improve and she will be able to sense light. The team will observe the procedures safety and effectiveness over a one-year period.

So far, two instances in which iPS cells were transplanted to treat eye disorders in regenerative clinical trials have been conducted. However, this was the first time that visual cells were regenerated in order to treat the core of vision.

Pigmentary retinal degeneration is a progressive disease that narrows vision and leads to vision loss and blindness as the photoreceptor cells of the retina gradually die. It is a genetic disorder for which there is no treatment up to now.

With the implementation of photoreceptor cell transplants using iPS cells, the treatment of blindness through regenerative medicine has taken a giant step forward.

Although transplants for patients with untreatable eye diseases have been conducted in the past, this was a groundbreaking procedure because it challenged the regrowth of the core of the vision system.

In the past, clinical study surgeries on regenerative medicine for the eye using iPS cells had included transplanting pigment epithelial cells in order to nourish the retina, as well as transplants of corneal cells that could act as lenses for the eye. However, neither transplants involved cells that generated vision itself.

Photoreceptor cells are considered the source of vision, as they convert light stimuli into electrical signals that produce information about the colors and shapes of objects we see. The information is then transmitted to the brain through the optic nerve. Without properly functioning photoreceptor cells, it would be impossible to see.

Directly connected to the central nervous system, photoreceptor cells, which have limited regenerative ability on their own, rarely recover naturally once the cells are damaged. That is why there is no fundamental treatment for pigmentary retinal degeneration, which loses the photoreceptor cells in the retina.

According to the Japan Ophthalmologists Association, there are an estimated 187,000 people in Japan with vision loss. If iPS cell-based regenerative medicine is realized, those who have lost their sight due to photoreceptor damage will be able to recover from blindness and at least see light again.

However, this time, the teams primary purpose for the surgery was to verify the fundamental safety and effectiveness of the procedure. The transplanted photoreceptor cells only take up a few percent of the area of the retina. Thus, the patients vision will not drastically improve in a short time.

Patients waiting for the procedure will have high expectations, but the safety and effectiveness of the treatment must be carefully examined before it can be put to practical use. There is hope now, but it will take some time before everyone can have access to the procedure.

Located inside the eyeball, photoreceptors are image-forming cells that make up the retina and play a central role in vision. Arranged in thin layers, the cells are capable of absorbing light that reaches the retina and then convert it into an electrical signal that is sent to the brain as information conveying the color or shape that is being viewed.

There are more than 100 million photoreceptors in each eye, but when a failure occurs, the vision is impaired and may lead to blindness if the condition becomes severe.

(Read the related articles in Japanese here and here.)

Author: Juichiro Ito

Read the original here:
Kobe Hospital Trials Transplant to Reverse Blindness A First in the World - JAPAN Forward

COVID-19 can affect the heart – Science Magazine

The family of seven known human coronaviruses are known for their impact on the respiratory tract, not the heart. However, the most recent coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked tropism for the heart and can lead to myocarditis (inflammation of the heart), necrosis of its cells, mimicking of a heart attack, arrhythmias, and acute or protracted heart failure (muscle dysfunction). These complications, which at times are the only features of coronavirus disease 2019 (COVID-19) clinical presentation, have occurred even in cases with mild symptoms and in people who did not experience any symptoms. Recent findings of heart involvement in young athletes, including sudden death, have raised concerns about the current limits of our knowledge and potentially high risk and occult prevalence of COVID-19 heart manifestations.

The four common cold human coronavirusesHCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1have not been associated with heart abnormalities. There were isolated reports of patients with Middle East respiratory syndrome (MERS; caused by MERS-CoV) with myocarditis and a limited number of case series of cardiac disease in patients with SARS (caused by SARS-CoV) (1). Therefore, a distinct feature of SARS-CoV-2 is its more extensive cardiac involvement, which may also be a consequence of the pandemic and the exposure of tens of millions of people to the virus.

What appears to structurally differentiate SARS-CoV-2 from SARS is a furin polybasic site that, when cleaved, broadens the types of cells (tropism) that the virus can infect (2). The virus targets the angiotensin-converting enzyme 2 (ACE2) receptor throughout the body, facilitating cell entry by way of its spike protein, along with the cooperation of the cellular serine protease transmembrane protease serine 2 (TMPRSS2), heparan sulfate, and other proteases (3). The heart is one of the many organs with high expression of ACE2. Moreover, the affinity of SARS-CoV-2 to ACE2 is significantly greater than that of SARS (4). The tropism to other organs beyond the lungs has been studied from autopsy specimens: SARS-CoV-2 genomic RNA was highest in the lungs, but the heart, kidney, and liver also showed substantial amounts, and copies of the virus were detected in the heart from 16 of 22 patients who died (5). In an autopsy series of 39 patients dying from COVID-19, the virus was not detectable in the myocardium in 38% of patients, whereas 31% had a high viral load above 1000 copies in the heart (6).

Accordingly, SARS-CoV-2 infection can damage the heart both directly and indirectly (see the figure). SARS-CoV-2 exhibited a striking ability to infect cardiomyocytes derived from induced pluripotent stem cells (iPSCs) in vitro, leading to a distinctive pattern of heart muscle cell fragmentation, with complete dissolution of the contractile machinery (7). Some of these findings were verified from patient autopsy specimens. In another iPSC study, SARS-CoV-2 infection led to apoptosis and cessation of beating within 72 hours of exposure (8). Besides directly infecting heart muscle cells, viral entry has been documented in the endothelial cells that line the blood vessels to the heart and multiple vascular beds. A secondary immune response to the infected heart and endothelial cells (endothelitis) is just one dimension of many potential indirect effects. These include dysregulation of the renin-angiotensin-aldosterone system that modulates blood pressure, and activation of a proinflammatory response involving platelets, neutrophils, macrophages, and lymphocytes, with release of cytokines and a prothrombotic state. A propensity for clotting, both in the microvasculature and large vessels, has been reported in multiple autopsy series and in young COVID-19 patients with strokes.

There is a diverse spectrum of cardiovascular manifestations, ranging from limited necrosis of heart cells (causing injury), to myocarditis, to cardiogenic shock (an often fatal inability to pump sufficient blood). Cardiac injury, as reflected by concentrations of troponin (a cardiac musclespecific enzyme) in the blood, is common with COVID-19, occurring in at least one in five hospitalized patients and more than half of those with preexisting heart conditions. Such myocardial injury is a risk factor for in-hospital mortality, and troponin concentration correlates with risk of mortality. Furthermore, patients with higher troponin amounts have markers of increased inflammation [including C-reactive protein, interleukin-6 (IL-6), ferritin, lactate dehydrogenase (LDH), and high neutrophil count] and heart dysfunction (amino-terminal pro-Btype natriuretic peptide) (9).

More worrisome than the pattern of limited injury is myocarditis: diffuse inflammation of the heart, usually representing a variable admixture of injury and the inflammatory response to the injury that can extend throughout the three layers of the human heart to the pericardium (which surrounds the heart). Unlike SARS-associated myocarditis, which did not exhibit lymphocyte infiltration, this immune and inflammatory response is a typical finding at autopsy after SARS-CoV-2 infections. Involvement of myocytes, which orchestrate electrical conduction, can result in conduction block and malignant ventricular arrhythmias, both of which can lead to cardiac arrest.

Along with such in-hospital arrythmias, there have been reports of increased out-of-hospital cardiac arrest and sudden death in multiple geographic regions of high COVID-19 spread, such as the 77% increase in Lombardy, Italy, compared with the prior year (10). There have been many reports of myocarditis simulating a heart attack, owing to the cluster of chest pain symptoms, an abnormal electrocardiogram, and increased cardiac-specific enzymes in the blood, even in patients as young as a 16-year-old boy. When there is extensive and diffuse heart muscle damage, heart failure, acute cor pulmonale (right heart failure and possible pulmonary emboli), and cardiogenic shock can occur.

COVID-19associated heart dysfunction can also be attributed to other pathways, including Takotsubo syndrome (also called stress cardiomyopathy), ischemia from endothelitis and related atherosclerotic plaque rupture with thrombosis, and the multisystem inflammatory syndrome of children (MIS-C). The underlying mechanism of stress cardiomyopathy is poorly understood but has markedly increased during the pandemic. MIS-C is thought to be immune-mediated and manifests with a spectrum of cardiovascular features, including vasculitis, coronary artery aneurysms, and cardiogenic shock. This syndrome is not exclusive to children because the same clinical features have been the subject of case reports in adults, such as in a 45-year-old man (11).

Recent series of COVID-19 patients undergoing magnetic resonance imaging (MRI) or echocardiography of the heart have provided some new insights about cardiac involvement (1214). In a cohort of 100 patients recovered from COVID-19, 78 had cardiac abnormalities, including 12 of 18 patients without any symptoms, and 60 had ongoing myocardial inflammation, which is consistent with myocarditis (12). The majority of more than 1200 patients in a large prospective cohort with COVID-19 had echocardiographic abnormalities (13). This raises concerns about whether there is far more prevalent heart involvement than has been anticipated, especially because at least 30 to 40% of SARS-CoV-2 infections occur without symptoms. Such individuals may have underlying cardiac pathology.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has the potential to directly and indirectly induce cardiac damage.

To date, there have been four small series of asymptomatic individuals with bona fide infections who underwent chest computed tomography (CT) scans to determine whether there were lung abnormalities consistent with COVID-19. Indeed, half of the asymptomatic people showed lung CT features that were seen in patients with symptoms. But so far, there have been minimal cardiac imaging studies in people who test positive for SARS-CoV-2 or are seropositive but without symptoms. Furthermore, the time course of resolution or persistence of any organ abnormalities after SARS-CoV-2 infection has not yet been reported. With a high proportion of silent infections despite concurrent evidence of internal organ damage, there is a fundamental and large hole in our knowledge base.

In contrast to people without symptoms, there is a substantial proportion of people who suffer a long-standing, often debilitating illness, called long-COVID. Typical symptoms include fatigue, difficulty in breathing, chest pain, and abnormal heart rhythm. An immunologic basis is likely but has yet to be determined. Nor have such patients undergone systematic cardiovascular assessment for possible myocarditis or other heart abnormalities, such as fibrosis, which could account for some of the enduring symptoms. It would not be surprising in the future for patients to present with cardiomyopathy of unknown etiology and test positive for SARS-CoV-2 antibodies. However, attributing such cardiomyopathy to the virus may be difficult given the high prevalence of infections, and ultimately a biopsy might be necessary to identify virus particles to support causality.

Cardiac involvement in athletes has further elevated the concerns. A 27-year-old professional basketball player, recovered from COVID-19, experienced sudden death during training. Several college athletes have been found to have myocarditis (14), including 4 of 26 (15%) in a prospective study from Ohio State University (15), along with one of major league baseball's top pitchers. Collectively, these young, healthy individuals had mild COVID-19 but were subsequently found to have unsuspected cardiac pathology. This same demographic groupyoung and healthyare the most common to lack symptoms after SARS-CoV-2 infections, which raises the question of how many athletes have occult cardiac disease? Systematic assessment of athletes who test positive for SARS-CoV-2, irrespective of symptoms, with suitable controls through some form of cardiac imaging and arrhythmia screening seems prudent until more is understood.

The most intriguing question that arises is why do certain individuals have a propensity for heart involvement after SARS-CoV-2 infection? Once recognized a few months into the pandemic, the expectation was that cardiac involvement would chiefly occur in patients with severe COVID-19. Clearly, it is more common than anticipated, but the true incidence is unknown. It is vital to determine what drives this pathogenesis. Whether it represents an individual's inflammatory response, an autoimmune phenomenon, or some other explanation needs to be clarified. Beyond preventing SARS-CoV-2 infections, the goal of averting cardiovascular involvement is paramount. The marked heterogeneity of COVID-19, ranging from lack of symptoms to fatality, is poorly understood. A newly emerged virus, widely circulating throughout the human population, with a panoply of disease manifestations, all too often occult, has made this especially daunting to unravel.

Acknowledgments: E.J.T. is supported by National Institutes of Health grant UL1 TR001114.

See the article here:
COVID-19 can affect the heart - Science Magazine