Author Archives: admin


Stem Cells Market 2020 Is Growing with Highest Size, Share of Top Key Players in the Industry and Forecast Survey Till 2024 – Zenit News

Final Report will add the analysis of the impact of COVID-19 on this industry.

The report provides the forecast of the Stem Cells Market for the next four years which assist Stem Cells industry analyst for building and developing business strategies. The Stem Cells market report contains industry top manufacturers discussion based on the companys profiles, financial analysis, overview, market revenue, and opportunities by top geographical regions.

Get a Sample Copy of the Report at- https://www.industryresearch.co/enquiry/request-sample/14325305

The Stem Cells Market Report is an in-depth assessment of current state of industry and estimates forecast based on actual facts and figures. The Stem Cells Market report provides analysis based on segmentations, market potential, influential trends, and the challenges that the market is facing during this COIVD- 19 pandemic. The data (tables, figures, statistics, numbers) about the Stem Cells market are taken from trustworthy sources such as websites, yearly reports of the enterprises, journals, and others and were tested and validated by the expert`s.

To Understand How COVID-19 Impact is Covered in this Report Click Here

This research consists of market segmentation by Types, Application and Stem Cells market division based on geographical locations. Report also segmented by top vendors provides data about company introduction, product specification and major types analysis, production market performance, sales market performance and contact information:

By Market Players: Osiris Therapeutics, Inc., Cytori Therapeutics, Inc., BrainStorm Cell Therapeutics Inc., U.S. Stem Cell, Inc., Takara Bio Inc., BioTime Inc., Cellular Engineering Technologies Inc., Astellas Pharma Inc., Caladrius Biosciences, Inc., STEMCELL Technologies Inc.

By Product Adult Stem Cell, Human Embryonic Stem Cell, Induced Pluripotent Stem Cell

By Source Autologous, Allogeneic,

By Application Regenerative Medicine, Drug Discovery and Development,

By End User Therapeutic Companies, Cell and Tissue Banks, Tools and Reagent Companies, Service Companies,

Regional Analysis Covers: USA, Europe, China, India, Southeast Asia, Japan, South America, South Africa, Others.

The Stem Cells market research report is a resource, which provides current as well as upcoming technical and financial details of the industry. The detailed study in this report enables CEOs, traders, investors, and dealers to realize the market in a better way and based on that data make knowledgeable decisions.

Inquire or Share Your Questions If Any Before the Purchasing This Report- https://www.industryresearch.co/enquiry/pre-order-enquiry/14325305

Points Covered in the Stem Cells Market Report:

Who are Key Manufacturers: Major market players that are concerned within the market like manufacturers, raw material suppliers, equipment suppliers, end users, traders, distributors and etc.

Data regarding Key Companies: Stem Cells Capability, production, price, revenue, cost, gross, profit margin, sales volume, sales revenue, consumption, growth rate, import, export, supply, future strategies, and also the technological developments.

Segmentation Analysis: Stem Cells Information and data by manufacturer, by region, by type, by application and etc. The report contains the SWOT analysis of the market.

Important Questions Answered in Stem Cells Market Report:

Purchase This Report (Price 3500 USD for single user license) https://www.industryresearch.co/purchase/14325305

In short TOC of 2019-2024 Global and Regional Stem Cells Industry Production, Sales and Consumption Status and Prospects Professional Market Research Report

-Stem Cells overview includes Brief Introduction by Major Type, Application, Region

-Production analysis includes Capacity, Production, Capacity Utilization Rate, Ex-Factory Price, Revenue, Cost, Gross and Gross Margin Analysis

-Stem Cells Sales analysis contains Global Sales Volume, Sales Price and Sales Revenue Analysis

-Consumption of Stem Cells Market Analysis by Regional Market Performance and Market Share

-Stem Cells Regional Market Performance and Market Share

-New Project Investment Feasibility Analysis contains SWOT Analysis

Contact Info:

Name: Ajay More

Email: [emailprotected]

Organization: Industry Research Co.

Phone: +14242530807/+44203239 8187

Our Other Reports:

Novaluron Market Potential Risks and Comprehensive Competitive Strategy Analysis in Different Fields, Report 2020 to 2025

Global Dermatology Diagnostic Devices and Therapeutics Market Size 2020 to 2025 Report Includes Brief Analysis by Regions, Growth Key Factors, Demand, Business Share

High-Strength Epoxy Adhesives Market Size Insight Report 2020 to 2026 by Manufactures Types, End Users and Regions with COVID-19 Impact Analysis

High Chrome Mill Internals (Hcmis) Market 2020 Report with Rapidly Growing CAGR at 10.22% Industry Size, Share, Revenue and Outlook to 2025

Amniotic Membrane Market Size 2020 Industry Research, Share, Analysis, Demand, Growth, Segmentation, Manufacturers, Forecasts to 2026

Seam Tapes Market Outlook to 2026 Emerging Trends and Will Generate New Growth Opportunities Status

License Plate Capture Cameras Market Size 2020 Industry Research, Share, Analysis, Demand, Growth, Segmentation, Manufacturers, Forecasts to 2026

Radio Frequency Detector Market Size 2020 Global Industry Current Trends, Top Companies, Application, Growth Factors, Development and Forecast to 2026

Allergy Immunotherapy Market Size by Regional Production Volume, Consumption Volume, Revenue and Growth Rate to 2026

Global ESD Suppressors Market Size 2020 Company Overview, Growth and Forecast By 2026 Latest Research Report by Industry Research Co

Dry Honey Product Market Size, Cost Analysis, Revenue and Gross Margin Analysis with Its Important Types and Application to 2026

See the original post here:
Stem Cells Market 2020 Is Growing with Highest Size, Share of Top Key Players in the Industry and Forecast Survey Till 2024 - Zenit News

Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease – DocWire News

This article was originally published here

N Engl J Med. 2020 Oct 27. doi: 10.1056/NEJMoa2026834. Online ahead of print.

ABSTRACT

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders.

METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function.

RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweets syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation.

CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).

PMID:33108101 | DOI:10.1056/NEJMoa2026834

Go here to see the original:
Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease - DocWire News

Angelika Amon, cell biologist who pioneered research on chromosome imbalance, dies at 53 – MIT News

Angelika Amon, professor of biology and a member of the Koch Institute for Integrative Cancer Research, died on Oct. 29 at age 53, following a two-and-a-half-year battle with ovarian cancer.

"Known for her piercing scientific insight and infectious enthusiasm for the deepest questions of science, Professor Amon built an extraordinary career and in the process, a devoted community of colleagues, students and friends," MIT President L. Rafael Reif wrote in a letter to the MIT community.

Angelika was a force of nature and a highly valued member of our community, reflects Tyler Jacks, the David H. Koch Professor of Biology at MIT and director of the Koch Institute. Her intellect and wit were equally sharp, and she brought unmatched passion to everything she did. Through her groundbreaking research, her mentorship of so many, her teaching, and a host of other contributions, Angelika has made an incredible impact on the world one that will last long into the future.

A pioneer in cell biology

From the earliest stages of her career, Amon made profound contributions to our understanding of the fundamental biology of the cell, deciphering the regulatory networks that govern cell division and proliferation in yeast, mice, and mammalian organoids, and shedding light on the causes of chromosome mis-segregation and its consequences for human diseases.

Human cells have 23 pairs of chromosomes, but as they divide they can make errors that lead to too many or too few chromosomes, resulting in aneuploidy. Amons meticulous and rigorous experiments, first in yeast and then in mammalian cells, helped to uncover the biological consequences of having too many chromosomes. Her studies determined that extra chromosomes significantly impact the composition of the cell, causing stress in important processes such as protein folding and metabolism, and leading to additional mistakes that could drive cancer. Although stress resulting from aneuploidy affects cells ability to survive and proliferate, cancer cells which are nearly universally aneuploid can grow uncontrollably. Amon showed that aneuploidy disrupts cells usual error-repair systems, allowing genetic mutations to quickly accumulate.

Aneuploidy is usually fatal, but in some instances extra copies of specific chromosomes can lead to conditions such as Down syndrome and developmental disorders including those known as Patau and Edwards syndromes. This led Amon to work to understand how these negative effects result in some of the health problems associated specifically with Down syndrome, such as acute lymphoblastic leukemia. Her expertise in this area led her to be named co-director of the recently established Alana Down Syndrome Center at MIT.

Angelikas intellect and research were as astonishing as her bravery and her spirit. Her labs fundamental work on aneuploidy was integral to our establishment of the center, say Li-Huei Tsai, the Picower Professor of Neuroscience and co-director of the Alana Down Syndrome Center. Her exploration of the myriad consequences of aneuploidy for human health was vitally important and will continue to guide scientific and medical research.

Another major focus of research in the Amon lab has been on the relationship between how cells grow, divide, and age. Among other insights, this work has revealed that once cells reach a certain large size, they lose the ability to proliferate and are unable to reenter the cell cycle. Further, this growth contributes to senescence, an irreversible cell cycle arrest, and tissue aging. In related work, Amon has investigated the relationships between stem cell size, stem cell function, and tissue age. Her labs studies have found that in hematopoetic stem cells, small size is important to cells ability to function and proliferate in fact, she posted recent findings on bioRxiv earlier this week and have been examining the same questions in epithelial cells as well.

Amon lab experiments delved deep into the mechanics of the biology, trying to understand the mechanisms behind their observations. To support this work, she established research collaborations to leverage approaches and technologies developed by her colleagues at the Koch Institute, including sophisticated intestinal organoid and mouse models developed by the Yilmaz Laboratory, and a microfluidic device developed by the Manalis Laboratory for measuring physical characteristics of single cells.

The thrill of discovery

Born in 1967, Amon grew up in Vienna, Austria, in a family of six. Playing outside all day with her three younger siblings, she developed an early love of biology and animals. She could not remember a time when she was not interested in biology, initially wanting to become a zoologist. But in high school, she saw an old black-and-white film from the 1950s about chromosome segregation, and found the moment that the sister chromatids split apart breathtaking. She knew then that she wanted to study the inner workings of the cell and decided to focus on genetics at the University of Vienna in Austria.

After receiving her BS, Amon continued her doctoral work there under Professor Kim Nasmyth at the Research Institute of Molecular Pathology, earning her PhD in 1993. From the outset, she made important contributions to the field of cell cycle dynamics. Her work on yeast genetics in the Nasmyth laboratory led to major discoveries about how one stage of the cell cycle sets up for the next, revealing that cyclins, proteins that accumulate within cells as they enter mitosis, must be broken down before cells pass from mitosis to G1, a period of cell growth.

Towards the end of her doctorate, Amon became interested in fruitfly genetics and read the work of Ruth Lehmann, then a faculty member at MIT and a member of the Whitehead Institute. Impressed by the elegance of Lehmanns genetic approach, she applied and was accepted to her lab. In 1994, Amon arrived in the United States, not knowing that it would become her permanent home or that she would eventually become a professor.

While Amons love affair with fruitfly genetics would prove short, her promise was immediately apparent to Lehmann, now director of the Whitehead Institute. I will never forget picking Angelika up from the airport when she was flying in from Vienna to join my lab. Despite the long trip, she was just so full of energy, ready to talk science, says Lehmann. She had read all the papers in the new field and cut through the results to hit equally on the main points.

But as Amon frequently was fond of saying, yeast will spoil you. Lehmann explains that because they grow so fast and there are so many tools, your brain is the only limitation. I tried to convince her of the beauty and advantages of my slower-growing favorite organism. But in the end, yeast won and Angelika went on to establish a remarkable body of work, starting with her many contributions to how cells divide and more recently to discover a cellular aneuploidy program.

In 1996, after Lehmann had left for New York Universitys Skirball Institute, Amon was invited to become a Whitehead Fellow, a prestigious program that offers recent PhDs resources and mentorship to undertake their own investigations. Her work on the question of how yeast cells progress through the cell cycle and partition their chromosomes would be instrumental in establishing her as one of the worlds leading geneticists. While at Whitehead, her lab made key findings centered around the role of an enzyme called Cdc14 in prompting cells to exit mitosis, including that the enzyme is sequestered in a cellular compartment called the nucleolus and must be released before the cell can exit.

I was one of those blessed to share with her a eureka moment, as she would call it, says Rosella Visintin, a postdoc in Amons lab at the time of the discovery and now an assistant professor at the European School of Molecular Medicine in Milan. She had so many. Most of us are lucky to get just one, and I was one of the lucky ones. Ill never forget her smile and scream neither will the entire Whitehead Institute when she saw for the first time Cdc14 localization: You did it, you did it, you figured it out! Passion, excitement, joy everything was in that scream.

In 1999, Amons work as a Whitehead Fellow earned her a faculty position in the MIT Department of Biology and the MIT Center for Cancer Research, the predecessor to the Koch Institute. A full professor since 2007, she also became the Kathleen and Curtis Marble Professor in Cancer Research, associate director of the Paul F. Glenn Center for Biology of Aging Research at MIT, a member of the Ludwig Center for Molecular Oncology at MIT, and an investigator of the Howard Hughes Medical Institute.

Her pathbreaking research was recognized by several awards and honors, including the 2003 National Science Foundation Alan T. Waterman Award, the 2007 Paul Marks Prize for Cancer Research, the 2008 National Academy of Sciences (NAS) Award in Molecular Biology, and the 2013 Ernst Jung Prize for Medicine. In 2019, she won the Breakthrough Prize in Life Sciences and the Vilcek Prize in Biomedical Science, and was named to the Carnegie Corporation of New Yorks annual list of Great Immigrants, Great Americans. This year, she was given the Human Frontier Science Program Nakasone Award. She was also a member of the NAS and the American Academy of Arts and Sciences.

Lighting the way forward

Amons perseverance, deep curiosity, and enthusiasm for discovery served her well in her roles as teacher, mentor, and colleague. She has worked with many labs across the world and developed a deep network of scientific collaboration and friendships. She was a sought-after speaker for seminars and the many conferences she attended. In over 20 years as a professor at MIT, she has mentored more than 80 postdocs, graduate students, and undergraduates, and received the School of Sciences undergraduate teaching prize.

Angelika was an amazing, energetic, passionate, and creative scientist, an outstanding mentor to many, and an excellent teacher, says Alan Grossman, the Praecis Professor of Biology and head of MITs Department of Biology. Her impact and legacy will live on and be perpetuated by all those she touched.

Angelika existed in a league of her own, explains Kristin Knouse, one of Amons former graduate students and a current Whitehead Fellow. She had the energy and excitement of someone who picked up a pipette for the first time, but the brilliance and wisdom of someone who had been doing it for decades. Her infectious energy and brilliant mind were matched by a boundless heart and tenacious grit. She could glance at any data and immediately deliver a sharp insight that would never have crossed any other mind. Her positive attributes were infectious, and any interaction with her, no matter how transient, assuredly left you feeling better about yourself and your science.

Taking great delight in helping young scientists find their own eureka moments, Amon was a fearless advocate for science and the rights of women and minorities and inspired others to fight as well. She was not afraid to speak out in support of the research and causes she believed strongly in. She was a role model for young female scientists and spent countless hours mentoring and guiding them in a male-dominated field. While she graciously accepted awards for women in science, including the Vanderbilt Prize and the Women in Cell Biology Senior Award, she questioned the value of prizes focused on women as women, rather than on their scientific contributions.

Angelika Amon was an inspiring leader, notes Lehmann, not only by her trailblazing science but also by her fearlessness to call out sexism and other -isms in our community. Her captivating laugh and unwavering mentorship and guidance will be missed by students and faculty alike. MIT and the science community have lost an exemplary leader, mentor, friend, and mensch.

Amons wide-ranging curiosity led her to consider new ideas beyond her own field. In recent years, she has developed a love for dinosaurs and fossils, and often mentioned that she would like to study terraforming, which she considered essential for a human success to life on other planets.

It was always amazing to talk with Angelika about science, because her interests were so deep and so broad, her intellect so sharp, and her enthusiasm so infectious, remembers Vivian Siegel, a lecturer in the Department of Biology and friend since Amons postdoctoral days. Beyond her own work in the lab, she was fascinated by so many things, including dinosaurs dreaming of taking her daughters on a dig lichen, and even life on Mars.

Angelika was brilliant; she illuminated science and scientists, says Frank Solomon, professor of biology and member of the Koch Institute. And she was intense; she warmed the people around her, and expanded what it means to be a friend.

Amon is survived by her husband Johannes Weis, and her daughters Theresa and Clara Weis, and her three siblings and their families.

View original post here:
Angelika Amon, cell biologist who pioneered research on chromosome imbalance, dies at 53 - MIT News

Stem Cell Banking Market Size 2020, Share, Global Trends, Comprehensive Research Study, Development Status – PRnews Leader

Data Bridge Market Research released the research report ofGlobal Stem Cell Banking Market Size, Share, Industry Trends, Demand Analysis Report by 2027, offers a detailed overview of the factors influencing the global business scope. Global Stem Cell Banking Market research report shows the latest market insights with upcoming trends and breakdown of the products and services. The report provides key statistics on the market status, size, share, growth factors of the Global Stem Cell Banking. This report begins with a basic introduction of 2020 market segmentation, future scenario, Stem Cell Banking industry growth rate, and industrial opportunities to 2027. The report forecasts innovative applications of the market on the basis of these estimations. Company profile encompasses parameters such as company synopsis, commercial synopsis, work strategy and planning, SWOT analysis and present developments.

Download Sample (350 Pages PDF) Report: To Know the Impact of COVID-19 on this[emailprotected]https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-stem-cell-banking-market

Stem Cell Banking Market Scenario

Growing usages of sensors in the clinics and home applications, growing awareness among the patients for monitoring and diagnosing of the disease, huge investment in research and development of devices based on sensors will likely to accelerate the growth of the Stem Cell Banking market in the forecast period of 2020-2027. On the other hand, collaboration among key market players for development of advanced and sophisticated Stem Cell Banking is further going to boost various opportunities that will lead to the growth of the Stem Cell Banking market in the above mentioned forecast period.

Slow penetration rate of advanced medical systems/smart medical and development of compatible Stem Cell Banking is likely to restrain the growth of the Stem Cell Banking market in the above mentioned forecast period. The adherence to stringent regulatory processes and requirement of undergoing testing for product approvals and vulnerability of connected medical devices in terms of patient data leakages is going to pose a serious challenge for the market.

Global Stem Cell Banking Market Research Reportalso provides the latest companies data and industry future trends, allowing you to identify the products and end users driving profits growth and productivity. The Market report lists the most important competitors and provides the insights strategic industry Analysis of the key factors influencing the market. The report includes the forecasts, investigation and discussion of significant industry trends, market volume, market share estimates and profiles of the leading industry Players. Global Stem Cell Banking Industry Market Research Report is providing exclusive vital statistics, information, data, trends and competitive landscape details.

According to this reportGlobal Stem Cell Banking Marketwill rise from Covid-19 crisis at moderate growth rate during 2020 to 2027. Stem Cell Banking Market includes comprehensive information derived from depth study on Stem Cell Banking Industry historical and forecast market data. Global Stem Cell Banking Market Size to Expand moderately as the new developments in Stem Cell Banking and Impact of COVID19 over the forecast period 2020 to 2027.

TO UNDERSTAND HOW COVID-19 IMPACT IS COVERED IN THIS REPORT GET FREECOVID-19 SAMPLE@https://www.databridgemarketresearch.com/covid-19-impact/global-stem-cell-banking-market

Stem Cell Banking Market report provides depth analysis of the market impact and new opportunities created by theCOVID19/CORONAVirus pandemic. Report covers Stem Cell Banking Market report is helpful for strategists, marketers and senior management, And Key Players in Stem Cell Banking Industry.

The Segments and Sub-Section of Stem Cell Banking Market are shown below:

By Source (Placental Stem Cells (PSCs), Human Embryo-Derived Stem Cells (hESCs), Bone Marrow-Derived Stem Cells (BMSCs), o Dental Pulp-Derived Stem Cells (DPSCS), Adipose Tissue-Derived Stem Cells (ADSCs) and Other Stem Cell Sources)

By Application (Personalized Storage, Clinical, Research), Service Type (Sample Collection and Transportation, Sample Processing, Sample Analysis, Sample Preservation and Storage)

Top Key Manufactures or Players (this may not be a complete list and extra companies can be added upon request):

Complete Report is Available (Including Full TOC, List of Tables & Figures, Graphs, and Chart) @https://www.databridgemarketresearch.com/toc/?dbmr=global-stem-cell-banking-market

Scope of Report:

The Market report lists the most important competitors and provides the insights strategic industry Analysis of the key factors influencing the market. This report will help you to establish a landscape of industrial development and characteristics of the Stem Cell Banking market. The Global Stem Cell Banking market analysis is provided for the international markets including development trends, competitive landscape analysis, and key regions development status. Development policies and plans are discussed as well as manufacturing processes and cost structures are also analyzed. This report also states import/export consumption, supply and demand Figures, price, cost, revenue and gross margins.

According to the Regional Segmentation the Stem Cell Banking Market provides the Information covers following regions:

The key countries in each region are taken into consideration as well, such as United States, Canada, Mexico, Brazil, Argentina, Colombia, Chile, South Africa, Nigeria, Tunisia, Morocco, Germany, United Kingdom (UK), the Netherlands, Spain, Italy, Belgium, Austria, Turkey, Russia, France, Poland, Israel, United Arab Emirates, Qatar, Saudi Arabia, China, Japan, Taiwan, South Korea, Singapore, India, Australia and New Zealand etc.

Market Drivers

Increasing rate of diseases such as cancers, skin diseases and others

Public awareness associated to the therapeutic prospective of stem cells

Growing number of hematopoietic stem cell transplantations (HSCTs)

Increasing birth rate worldwide

Market Restraint

High operating cost for the therapy is one reason which hinders the market

Intense competition among the stem cell companies

Sometimes the changes are made from government such as legal regulations

For More Information or Query or Customization Before Buying,[emailprotected]https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-stem-cell-banking-market

This Stem Cell Banking Market Research/analysis Report Contains Answers to your following Questions

Order a Copy of this Stem Cell Banking Market[emailprotected]https://www.databridgemarketresearch.com/checkout/buy/singleuser/global-stem-cell-banking-market

With tables and figures helping analyze worldwide Global Stem Cell Banking market, this research provides key statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market.

Strategic Points Covered in Table of Content of Global Stem Cell Banking Market:

Chapter 1: Introduction, market driving force product Objective of Study and Research Scope the Stem Cell Banking market

Chapter 2: Exclusive Summary the basic information of the Stem Cell Banking Market.

Chapter 3: Displaying the Market Dynamics- Drivers, Trends and Challenges of the Stem Cell Banking

Chapter 4: Presenting the Stem Cell Banking Market Factor Analysis Porters Five Forces, Supply/Value Chain, PESTEL analysis, Market Entropy, Patent/Trademark Analysis.

Chapter 5: Displaying market size by Type, End User and Region 2010-2019

Chapter 6: Evaluating the leading manufacturers of the Stem Cell Banking market which consists of its Competitive Landscape, Peer Group Analysis, BCG Matrix & Company Profile

Chapter 7: To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries (2020-2027).

Chapter 8 & 9: Displaying the Appendix, Methodology and Data Source

Finally, Stem Cell Banking Market is a valuable source of guidance for individuals and companies in decision framework.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

Our Other Reports:

Heparin Market Size, Share, Industry Growth, Trends, Development, Revenue, Demand and Forecast to 2027 | Says DBMR Analyst

Anticoagulation Therapy Market 2020 Global Industry Growth, Size, Share, Trends, COVID-19 Impact Analysis, and Forecasts Report|Teva Pharmaceutical Industries, Novartis AG, Eisai Co, Pfizer, Sanofi, F. Hoffmann-La Roche Ltd

Empty Capsules Market 2020 Industry 2020 Global Size, Share, Growth, Trends, 20Company Profiles and 2027 Future Market Analysis| SavoiurCaps, ACG, Comed Chemicals Limited, NATURAL CAPSULES LIMITED, Medi-Caps Ltd

Cancer Monoclonal Antibodies Market 2020-Global Industry Growth, Size, Trends, COVID-19 Impact Analysis, Insights and Forecast 2027| Abbvie, Pfizer, Amgen, Novartis AG, Genentech

Healthcare Nutrition Market Trends, Growth, Industry Share, Size, Top Leaders-Medtrition, Baxter, B. Braun Melsungen AG, Mead Johnson & Company, LLC., Otsuka Pharmaceutical Co., Ltd and COVID-19 Impact Analysis 2027

AboutData Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today! Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:

DBMR

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Mail:[emailprotected]

See the article here:
Stem Cell Banking Market Size 2020, Share, Global Trends, Comprehensive Research Study, Development Status - PRnews Leader

Opinion: Proposition 14 Could Save the Life of Someone You Love – Times of San Diego

Share This Article: Embryonic stem cells. Image by Prue Talbot / UC Riverside By Dr. Larry Goldstein

A yes vote on Proposition 14 is crucial to continue the pace of medical research and our states journey to save lives. For millions of Californians who live with a chronic disease or condition, and who need new therapies, this may be their last hope. Advancing medical progress to fight devastating and life-threatening diseases and conditions is an urgent matter now.

Support Times of San Diego's growth with a small monthly contribution

Proposition 14 will continue funding for the California Institute for Regenerative Medicine, the states stem cell research funding institute. This institute is advancing medical discoveries and treatments for dozens of life-threatening or chronic diseases and conditions, including cancer, diabetes, heart disease, Alzheimers, Parkinsons, COVID-19 and more.

It is important to understand that the federal government and the private sector wont adequately fund the development of many important stem cell therapies. While the federal government has a strong focus on early lab research, it has also effectively banned funding of many important types of stem cell research and is threatening to ban more. On the other end, private funders have different priorities when it comes to funding medical research they almost exclusively invest in late-stage clinical trials where they can profit faster at lower financial risk.

There is a glaring funding gap between early lab work and late-stage clinical trials known as The Valley of Death that often ends promising stem cell research. With the sole mission of advancing the most promising treatments and cures, the institute bridges this critical gap, ensuring that potential life-changing therapies are not left stranded. The institutes unique approach is driving our state to achieve more progress, much faster, than we could have imagined.

The institutes funding has catalyzed or funded more than 90 clinical trials, two FDA-approved cancer treatments, and nine new treatments that have been designated as breakthrough therapies and have been fast-tracked for FDA approval. These breakthroughs will potentially help patients with cancer, diabetes, kidney disease, blindness, spinal cord injuries and immunodeficiencies.

While most of the 90+ clinical trials are still underway, many lives appear to have already been saved or improved. Babies born without immune systems are now surviving as are cancer patients who have exhausted all other treatment options. The institute has funded projects to help patients with Type I Diabetes produce their own insulin, blind patients start to regain eyesight, and quadriplegics start to regain upper body function.

All of these treatments in the pipeline if and when approved will also lead to spin-off treatments because they are fundamentally changing our knowledge and approach to treating chronic diseases. For example, by saving the lives of babies born with fatal immune disorders, the new knowledge and technologies are now being applied to treat other types of disorders. Cancer therapies being developed are effectively treating a handful of cancers today, but the knowledge and technology created can be applied to treating many other forms of cancer.

If Californians do not pass Proposition 14, our journey ends here many discoveries could be left on the shelf, delaying lifesaving and life-changing treatments for years.

Furthermore, as our state recovers from the impacts of COVID-19, Proposition 14 will provide an economic stimulus it will generate additional tax revenue and create many new jobs, and it wont cost the state anything until 2026. At a time when the cost of treating chronic diseases is straining our state budget and California families, Proposition 14 seeks to fund crucial disease research at a cost of less than a fraction of 1% of what Californians spend on chronic disease annually.

Close to 100 patient advocate organizations, major chambers of commerce across the state, Gov. Gavin Newsom, federal, state and local elected officials and the University of California Regents support Proposition 14. They do so because of its promise for therapy development, new business creation, and long-term financial benefit to all Californians.

We should remember that one of Californias core strengths is innovation and creation new types of businesses, new types of scientific research, and new ways to treat chronic diseases, conditions and illnesses. We cant afford to turn our back on these important goals. Our future depends on it. I hope you join me in voting YES on Proposition 14.

Dr. Larry Goldstein is a distinguished professor on the staff of the Shiley-Marcos Alzheimers Disease Research Centerat UC San Diego.

Opinion: Proposition 14 Could Save the Life of Someone You Love was last modified: October 30th, 2020 by Editor

>> Subscribe to Times of San Diegos free daily email newsletter! Click here

Read the rest here:
Opinion: Proposition 14 Could Save the Life of Someone You Love - Times of San Diego

Outlook on the Regenerative Medicine Global Market to 2025 – Impact of COVID-19 on the Market – GlobeNewswire

October 30, 2020 07:58 ET | Source: Research and Markets

Dublin, Oct. 30, 2020 (GLOBE NEWSWIRE) -- The "Regenerative Medicine Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025" report has been added to ResearchAndMarkets.com's offering.

The global regenerative medicine market grew at a CAGR of around 16% during 2014-2019. Regenerative medicine refers to a branch of biomedical sciences aimed at restoring the structure and function of damaged tissues and organs. It involves the utilization of stem cells that are developed in laboratories and further implanted safely into the body for the regeneration of damaged bones, cartilage, blood vessels and organs. Cellular and acellular regenerative medicines are commonly used in various clinical therapeutic procedures, including cell, immunomodulation and tissue engineering therapies. They hold potential for the effective treatment of various chronic diseases, such as Alzheimer's, Parkinson's and cardiovascular disorders (CVDs), osteoporosis and spinal cord injuries.

The increasing prevalence of chronic medical ailments and genetic disorders across the globe is one of the key factors driving the growth of the market. Furthermore, the rising geriatric population, which is prone to various musculoskeletal, phonological, dermatological and cardiological disorders, is stimulating the market growth. In line with this, widespread adoption of organ transplantation is also contributing to the market growth. Regenerative medicine minimizes the risk of organ rejection by the body post-transplant and enhances the recovery speed of the patient.

Additionally, various technological advancements in cell-based therapies, such as the development of 3D bioprinting techniques and the adoption of artificial intelligence (AI) in the production of regenerative medicines, are acting as other growth-inducing factors. These advancements also aid in conducting efficient dermatological grafting procedures to treat chronic burns, bone defects and wounds on the skin. Other factors, including extensive research and development (R&D) activities in the field of medical sciences, along with improving healthcare infrastructure, are anticipated to drive the market further. Looking forward, the publisher expects the global regenerative medicine market to continue its strong growth during the next five years.

Key Market Segmentation:

The publisher provides an analysis of the key trends in each sub-segment of the global regenerative medicine market report, along with forecasts for growth at the global, regional and country level from 2020-2025. Our report has categorized the market based on region, type, application and end user.

Breakup by Type:

Breakup by Application:

Breakup by End User:

Breakup by Region:

Competitive Landscape:

The report has also analysed the competitive landscape of the market with some of the key players being Allergan PLC (AbbVie Inc.), Amgen Inc., Baxter International Inc., BD (Becton, Dickinson and Company), Integra Lifesciences Holdings Corporation, Medtronic plc, Mimedx Group Inc., Novartis AG, Osiris Therapeutics Inc. (Smith & Nephew plc) and Thermo Fisher Scientific Inc.

Key Questions Answered in This Report:

Key Topics Covered:

1 Preface

2 Scope and Methodology 2.1 Objectives of the Study 2.2 Stakeholders 2.3 Data Sources 2.3.1 Primary Sources 2.3.2 Secondary Sources 2.4 Market Estimation 2.4.1 Bottom-Up Approach 2.4.2 Top-Down Approach 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction 4.1 Overview 4.2 Key Industry Trends

5 Global Regenerative Medicine Market 5.1 Market Overview 5.2 Market Performance 5.3 Impact of COVID-19 5.4 Market Forecast

6 Market Breakup by Type 6.1 Stem Cell Therapy 6.1.1 Market Trends 6.1.2 Market Forecast 6.2 Biomaterial 6.2.1 Market Trends 6.2.2 Market Forecast 6.3 Tissue Engineering 6.3.1 Market Trends 6.3.2 Market Forecast 6.4 Others 6.4.1 Market Trends 6.4.2 Market Forecast

7 Market Breakup by Application 7.1 Bone Graft Substitutes 7.1.1 Market Trends 7.1.2 Market Forecast 7.2 Osteoarticular Diseases 7.2.1 Market Trends 7.2.2 Market Forecast 7.3 Dermatology 7.3.1 Market Trends 7.3.2 Market Forecast 7.4 Cardiovascular 7.4.1 Market Trends 7.4.2 Market Forecast 7.5 Central Nervous System 7.5.1 Market Trends 7.5.2 Market Forecast 7.6 Others 7.6.1 Market Trends 7.6.2 Market Forecast

8 Market Breakup by End User 8.1 Hospitals 8.1.1 Market Trends 8.1.2 Market Forecast 8.2 Specialty Clinics 8.2.1 Market Trends 8.2.2 Market Forecast 8.3 Others 8.3.1 Market Trends 8.3.2 Market Forecast

9 Market Breakup by Region 9.1 North America 9.1.1 United States 9.1.1.1 Market Trends 9.1.1.2 Market Forecast 9.1.2 Canada 9.1.2.1 Market Trends 9.1.2.2 Market Forecast 9.2 Asia Pacific 9.2.1 China 9.2.1.1 Market Trends 9.2.1.2 Market Forecast 9.2.2 Japan 9.2.2.1 Market Trends 9.2.2.2 Market Forecast 9.2.3 India 9.2.3.1 Market Trends 9.2.3.2 Market Forecast 9.2.4 South Korea 9.2.4.1 Market Trends 9.2.4.2 Market Forecast 9.2.5 Australia 9.2.5.1 Market Trends 9.2.5.2 Market Forecast 9.2.6 Indonesia 9.2.6.1 Market Trends 9.2.6.2 Market Forecast 9.2.7 Others 9.2.7.1 Market Trends 9.2.7.2 Market Forecast 9.3 Europe 9.3.1 Germany 9.3.1.1 Market Trends 9.3.1.2 Market Forecast 9.3.2 France 9.3.2.1 Market Trends 9.3.2.2 Market Forecast 9.3.3 United Kingdom 9.3.3.1 Market Trends 9.3.3.2 Market Forecast 9.3.4 Italy 9.3.4.1 Market Trends 9.3.4.2 Market Forecast 9.3.5 Spain 9.3.5.1 Market Trends 9.3.5.2 Market Forecast 9.3.6 Russia 9.3.6.1 Market Trends 9.3.6.2 Market Forecast 9.3.7 Others 9.3.7.1 Market Trends 9.3.7.2 Market Forecast 9.4 Latin America 9.4.1 Brazil 9.4.1.1 Market Trends 9.4.1.2 Market Forecast 9.4.2 Mexico 9.4.2.1 Market Trends 9.4.2.2 Market Forecast 9.4.3 Others 9.4.3.1 Market Trends 9.4.3.2 Market Forecast 9.5 Middle East and Africa 9.5.1 Market Trends 9.5.2 Market Breakup by Country 9.5.3 Market Forecast

10 SWOT Analysis 10.1 Overview 10.2 Strengths 10.3 Weaknesses 10.4 Opportunities 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis 12.1 Overview 12.2 Bargaining Power of Buyers 12.3 Bargaining Power of Suppliers 12.4 Degree of Competition 12.5 Threat of New Entrants 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape 14.1 Market Structure 14.2 Key Players 14.3 Profiles of Key Players 14.3.1 Allergan PLC (AbbVie Inc.) 14.3.1.1 Company Overview 14.3.1.2 Product Portfolio 14.3.1.3 Financials 14.3.1.4 SWOT Analysis 14.3.2 Amgen Inc. 14.3.2.1 Company Overview 14.3.2.2 Product Portfolio 14.3.2.3 Financials 14.3.2.4 SWOT Analysis 14.3.3 Baxter International Inc. 14.3.3.1 Company Overview 14.3.3.2 Product Portfolio 14.3.3.3 Financials 14.3.3.4 SWOT Analysis 14.3.4 BD (Becton, Dickinson and Company) 14.3.4.1 Company Overview 14.3.4.2 Product Portfolio 14.3.4.3 Financials 14.3.4.4 SWOT Analysis 14.3.5 Integra Lifesciences Holdings Corporation 14.3.5.1 Company Overview 14.3.5.2 Product Portfolio 14.3.5.3 Financials 14.3.5.4 SWOT Analysis 14.3.6 Medtronic Plc 14.3.6.1 Company Overview 14.3.6.2 Product Portfolio 14.3.6.3 Financials 14.3.6.4 SWOT Analysis 14.3.7 Mimedx Group Inc. 14.3.7.1 Company Overview 14.3.7.2 Product Portfolio 14.3.7.3 Financials 14.3.8 Novartis AG 14.3.8.1 Company Overview 14.3.8.2 Product Portfolio 14.3.8.3 Financials 14.3.8.4 SWOT Analysis 14.3.9 Osiris Therapeutics Inc. (Smith & Nephew plc) 14.3.9.1 Company Overview 14.3.9.2 Product Portfolio 14.3.10 Thermo Fisher Scientific Inc. 14.3.10.1 Company Overview 14.3.10.2 Product Portfolio 14.3.10.3 Financials 14.3.10.4 SWOT Analysis

For more information about this report visit https://www.researchandmarkets.com/r/ywnlq5

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Excerpt from:
Outlook on the Regenerative Medicine Global Market to 2025 - Impact of COVID-19 on the Market - GlobeNewswire

Comprehensive Report on Neural Stem Cells Market 2020 | Trends, Growth Demand, Opportunities & Forecast To 2026 | Cellular Dynamics International,…

Neural Stem Cells Market research report is the new statistical data source added by A2Z Market Research.

Neural Stem Cells Market is growing at a High CAGR during the forecast period 2020-2026. The increasing interest of the individuals in this industry is that the major reason for the expansion of this market.

Neural Stem Cells Market research is an intelligence report with meticulous efforts undertaken to study the right and valuable information. The data which has been looked upon is done considering both, the existing top players and the upcoming competitors. Business strategies of the key players and the new entering market industries are studied in detail. Well explained SWOT analysis, revenue share and contact information are shared in this report analysis.

Get the PDF Sample Copy (Including FULL TOC, Graphs and Tables) of this report @:

https://www.a2zmarketresearch.com/sample?reportId=327168

Note In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Top Key Players Profiled in this report are:

Cellular Dynamics International, Stemedica Cell Technologies Inc, Fibrocell Science Inc, Corestem Inc, Corning Inc., Celgene Corporation, Kangstem Biotech Ltd, Ge Healthcare, Biotime Inc, Thermo Fisher Vericel Corporation, Cellular Engineering Technologies Inc, Brainstorm Cell Therapeutics, Cytori Therapeutics, Becton Dickinson, Takara Holdings Inc.

The key questions answered in this report:

Various factors are responsible for the markets growth trajectory, which are studied at length in the report. In addition, the report lists down the restraints that are posing threat to the global Neural Stem Cells market. It also gauges the bargaining power of suppliers and buyers, threat from new entrants and product substitute, and the degree of competition prevailing in the market. The influence of the latest government guidelines is also analyzed in detail in the report. It studies the Neural Stem Cells markets trajectory between forecast periods.

Get up to 30% Discount on this Premium Report @:

https://www.a2zmarketresearch.com/discount?reportId=327168

Global Neural Stem Cells Market Segmentation:

Market Segmentation by Type:

Neural Crest Stem Cell(NC-SC) CNS Stem Cells(CNS-SC)

Market Segmentation by Application:

Neurodevelopmental Repair damaged nerve tissue Others

Regions Covered in the Global Neural Stem Cells Market Report 2020: The Middle East and Africa(GCC Countries and Egypt) North America(the United States, Mexico, and Canada) South America(Brazil etc.) Europe(Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific(Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

The report provides insights on the following pointers:

Table of Contents

Global Neural Stem Cells Market Research Report 2020 2026

Chapter 1 Neural Stem Cells Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Neural Stem Cells Market Forecast

Buy Exclusive Report @:

https://www.a2zmarketresearch.com/buy?reportId=327168

If you have any special requirements, please let us know and we will offer you the report as you want.

About A2Z Market Research:

The A2Z Market Research library provides syndication reports from market researchers around the world. Ready-to-buy syndication Market research studies will help you find the most relevant business intelligence.

Our Research Analyst Provides business insights and market research reports for large and small businesses.

The company helps clients build business policies and grow in that market area. A2Z Market Research is not only interested in industry reports dealing with telecommunications, healthcare, pharmaceuticals, financial services, energy, technology, real estate, logistics, F & B, media, etc. but also your company data, country profiles, trends, information and analysis on the sector of your interest.

Contact Us:

Roger Smith

1887 WHITNEY MESA DR HENDERSON, NV 89014

[emailprotected]

+1 775 237 4147

See the original post:
Comprehensive Report on Neural Stem Cells Market 2020 | Trends, Growth Demand, Opportunities & Forecast To 2026 | Cellular Dynamics International,...

Global Adipose Derived Stem Cell Therapy Market 2020 Leading Players, Industry Updates, Comprehensive Analysis and Forecast 2025 – re:Jerusalem

MarketsandResearch.biz has published the latest market research study on Global Adipose Derived Stem Cell Therapy Market 2020 by Company, Type and Application, Forecast to 2025 combines market essential details, definitions, categorization, professional market study, and analysis of significant features. The report estimates the global Adipose Derived Stem Cell Therapy market share, competition landscape, market share, growth rate, future trends. The report presents an introduction and structure of the market where the worldwide markets vital regional market demands are studied. Exhaustive investigation about current market trends, opportunities, challenges, and detailed competitive analysis of the industry players in the market has been given. The market report is segmented by, trends, latest analytics, top players, application usage, and various important geographical dividends.

NOTE: Our analysts monitoring the situation across the globe explains that the market will generate remunerative prospects for producers post COVID-19 crisis. The report aims to provide an additional illustration of the latest scenario, economic slowdown, and COVID-19 impact on the overall industry.

DOWNLOAD FREE SAMPLE REPORT: https://www.marketsandresearch.biz/sample-request/89396

Market Potential:

The report examines the performance of the market, comprehensive judgment of market state, ongoing trends, and finally the global competitive landscape. Major market vendors study has been forecasted to obtain the latest opportunities as there has been an increased emphasis on spending more on the work of research and development by many of the manufacturing companies. The global Adipose Derived Stem Cell Therapy market has gone through speedy business transformation by good customer relationships and competitive growth, significant changes within the market, and technological advancement in this market.

Moreover, the global Adipose Derived Stem Cell Therapy market report has analyzed sales, suppliers, advanced technology, production, the variable cost, types, sales, and market share for the approximate time from 2020 to 2025. The basic information, as well as the profiles, applications, and specifications of products market performance along with business overview, are offered. The report provides a detailed overview of the combative analysis, market trend, market size & share, market forecast, market demand, market sales & price on competing companies.

Key strategic manufacturers included in this report: AlloCure, Mesoblast, Cellleris, Antria, Intrexon, Celgene Corporation, Tissue Genesis, Cytori Therapeutics, Corestem, Pluristem Therapeutics, Cyagen, BioRestorative Therapies, Lonza, Pluristem Therapeutics, Celltex Therapeutics Corporation, iXCells Biotechnologies

The market can be segmented into product types as: Autologous Stem Cells, Allogeneic Stem Cells

The market can be segmented into applications as: Therapeutic Application, Research Application

Geographically, this document is segmented into different chief territories, containing profits, sales, growth rate, and market share (percent) in the areas listed below: North America (United States, Canada and Mexico), Europe (Germany, France, UK, Russia and Italy), Asia-Pacific (China, Japan, Korea, India and Southeast Asia), South America (Brazil, Argentina, etc.), Middle East & Africa (Saudi Arabia, Egypt, Nigeria and South Africa)

ACCESS FULL REPORT: https://www.marketsandresearch.biz/report/89396/global-adipose-derived-stem-cell-therapy-market-2020-by-company-type-and-application-forecast-to-2025

On the basis of region, the global Adipose Derived Stem Cell Therapy is segmented into countries, with production, consumption, revenue (million USD), and market share and growth rate in these regions, from 2015 to 2025 (forecast). It contains the market data and forecasts, which is the most valuable component of market research studies and provides our clientele with the greatest competitive edge with top-level quality standards.

Reasons For Buying Market Report:

Customization of the Report:

This report can be customized to meet the clients requirements. Please connect with our sales team (sales@marketsandresearch.biz), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

Contact Us Mark Stone Head of Business Development Phone: +1-201-465-4211 Email: sales@marketsandresearch.biz Web: http://www.marketsandresearch.biz

Read more from the original source:
Global Adipose Derived Stem Cell Therapy Market 2020 Leading Players, Industry Updates, Comprehensive Analysis and Forecast 2025 - re:Jerusalem

Regenerative Medicine Market 2020 with Growth, Share, Demand, Global Production with Revenue Share, and Applications Forecast to 2024 – Aerospace…

The current market is also witnessing extensive R&D activities. Apart from the R&D activities being conducted by private players, there is significant involvement of academic institutions for conducting various research. Therefore, in the future, several new biotech and medtech companies are expected to come up, as the result of the current R&D endeavors across the world.

Inquire or Share Your Questions If Any Before the Purchasing This Report https://www.industryresearch.co/enquiry/pre-order-enquiry/14244620

Key Market Trends:

Dermatology is the Segment by Application that is Expected to be the Largest During the Forecast Period

Dermatology is estimated to have the largest share in revenue generation, and this high contribution is attributive to the presence of easy grafting techniques for dermatological wounds and diseases. Skin, being an organ with great cell replication characteristics, provides various types of stem cells from its different layers. Therefore, there are a broad range of products present, from patches to cure small injuries to matrix and grafts for chronic wounds and burns. Thus, the segment is expected to continue to dominate the market through to the forecast period.

The increasing number of accidents and bone defects is also expected to drive the regenerative medicine market. There are also several research studies that are being conducted on tissue engineering for the development of bone graft substitutes, with the help of regenerative medicine. So, with the new advances in bone graft, the market is expected to grow over the forecast period.

North America Holds the Largest Share and is Expected to Follow the Same Trend Over the Forecast Period

North America is estimated to have the largest share, in terms of revenue, owing to the presence of major players and rapid advances in technology, along with high investments in stem cell and oncology research. There is also an increasing prevalence of diseases, such as cancer and diabetes, which can now be cured by various stem cell therapies. Additionally, the awareness regarding the available stem cell procedures and therapies among people is rising, which in turn, is increasing the demand for the overall market.

Reason to buy Regenerative Medicine Market Report:

Purchase this Report (Price 4250 USD for a Single-User License) https://www.industryresearch.co/purchase/14244620

Detailed TOC of Regenerative Medicine Market 2020-2024:

1 INTRODUCTION 1.1 Study Deliverables 1.2 Study Assumptions 1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS 4.1 Market Overview 4.2 Market Drivers 4.2.1 Increasing Adoption of Stem Cell Technology 4.2.2 Technological Advancements in Regenerative Medicine 4.3 Market Restraints 4.3.1 Regulatory and Ethical Issues 4.3.2 High Cost of Treatments 4.4 Porters Five Forces Analysis 4.4.1 Threat of New Entrants 4.4.2 Bargaining Power of Buyers/Consumers 4.4.3 Bargaining Power of Suppliers 4.4.4 Threat of Substitute Products 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION 5.1 By Type of Technology 5.1.1 Stem Cell Therapy 5.1.2 Biomaterial 5.1.3 Tissue Engineering 5.1.4 Other Types of Technologies 5.2 By Application 5.2.1 Bone Graft Substitutes 5.2.2 Osteoarticular Diseases 5.2.3 Dermatology 5.2.4 Cardiovascular 5.2.5 Central Nervous System 5.2.6 Other Applications 5.3 Geography 5.3.1 North America 5.3.1.1 United States 5.3.1.2 Canada 5.3.1.3 Mexico 5.3.2 Europe 5.3.2.1 Germany 5.3.2.2 United Kingdom 5.3.2.3 France 5.3.2.4 Italy 5.3.2.5 Spain 5.3.2.6 Rest of Europe 5.3.3 Asia-Pacific 5.3.3.1 China 5.3.3.2 Japan 5.3.3.3 India 5.3.3.4 Australia 5.3.3.5 South Korea 5.3.3.6 Rest of Asia-Pacific 5.3.4 Middle East & Africa 5.3.4.1 GCC 5.3.4.2 South Africa 5.3.4.3 Rest of Middle East & Africa 5.3.5 South America 5.3.5.1 Brazil 5.3.5.2 Argentina 5.3.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE 6.1 Company Profiles 6.1.1 Allergan 6.1.2 Osiris Therapeutics 6.1.3 Integra Lifesciences 6.1.4 Cook Biotech Incorporated 6.1.5 Organogenesis Inc. 6.1.6 Baxter 6.1.7 Medtronic 6.1.8 Thermo Fisher Scientific 6.1.9 Sigma-Aldrich Co. 6.1.10 Becton Dickinson and Company

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

Contact Us:

Name: Ajay More

Phone: US +14242530807/ UK +44 20 3239 8187

Email: [emailprotected]

Our Other Reports:

Surgical Robotic Systems Market Size and Global Trends 2020 | Growth Factors, Competition Strategies, Revenue Analysis, Forthcoming Developments, and Business Share Forecast to 2026

Automotive Welding Motor Cores Market Growth Share and Development Analysis 2020 | Global Driving Factors by Manufacturers, CAGR Status with Size, Latest Challenges and Opportunities Forecast to 2026

Cold Pressed Black Seed Oil Market Business Growth Rate, Top Key Players with COVID-19 Outbreak, Regional Overview, Upcoming Trends, Industry Size & Share Forecast to 2026

Video Surveillance As A Service (Vsaas) Market Size Analysis 2020 with Business Boosting Technologies, Forthcoming Growth Rate, Top Regions, Key Players and Investments Opportunities Forecast to 2025

Switchgear And Switchboard Apparatus Market Size Analysis 2020 Global Industry Scope, Key Players, Top Regions, Current Industry Trend with Growth Rate, CAGR Status Forecast to 2026 | Report by Industry Research.co

Automatic Ammunition Handling System Market Size with Growth Status 2020 | Share and Gross Margin Analysis with COVID-19 Impact, Top Companies, Revenue, Business Development Plans Forecast to 2026

OPGW (Optical Ground Wire) Market Growth Share and Development Analysis 2020 | Global Driving Factors by Manufacturers, CAGR Status with Size, Latest Challenges and Opportunities Forecast to 2026

Passenger Vehicle Replacement Tire Market 2020: COVID-19 Impact on Industry Size and Share, Business Challenges, Future Growth and Revenue Expectations Forecast to 2025 | Report by Industry Research.co

Radiation Curable Coatings Market 2020 by Global Growth Prospects, Future Trends, Development Status, Opportunities, Leading Players with Regions Forecast to 2024

Negative Pressure Wound Therapy Market Size 2020 Top Leading Vendor Analysis by Business Growth Rate, Rapidly Growing Trends, Demand Status, COVID-19 Impact on Industry Share Forecast to 2024

Counter Current Swimming Systems Market Size Analysis by Latest Trends 2020 | Global Industry Growth Factors, Revenue, CAGR Status, Leading Key Players Update, Business Share by Regions Forecast to 2026

Permanent Rare Earth Magnets Market Size Analysis by Competitive Landscape 2020 SWOT Analysis, Top Key Players, Global Share, Revenue and Growth Analysis till 2026 | Industry Research.co

See original here:
Regenerative Medicine Market 2020 with Growth, Share, Demand, Global Production with Revenue Share, and Applications Forecast to 2024 - Aerospace...

Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia – GlobeNewswire

October 30, 2020 02:15 ET | Source: Novartis International AG

Basel, October 30, 2020 Novartis today announced the receipt of marketing authorization from Japans Ministry of Health, Labor and Welfare (MHLW) for Foundation for Biomedical Research and Innovation at Kobe ("FBRI") to manufacture and supply commercial Kymriah (tisagenlecleucel) for patients in Japan. This approval makes FBRI the first and only approved commercial manufacturing site for CAR-T cell therapy in Asia.

Behind our efforts to reimagine medicine with CAR-T cell therapy lies a commitment to build a manufacturing network that brings treatment closer to patients, commented Steffen Lang, Global Head of Novartis Technical Operations. The expertise and infrastructure of FBRI, a world-leading manufacturing organization, allows us to bring CAR-T manufacturing to Asia. With the Japan MHLW commercial manufacturing approval, the recent capacity expansion in the US and our ongoing efforts to optimize and evolve our processes, we are well-positioned to deliver this potentially curative treatment option to more patients around the world.

Novartis has the largest geographical CAR-T cell therapy manufacturing network in the world, including seven CAR-T manufacturing facilities, across four continents. Commercial manufacturing for Kymriah now takes place at five sites globally including at the Morris Plains, New Jersey facility, where the US Food and Drug Administration (FDA) recently approved a further increase in manufacturing capacity.

Kymriah is the first-ever FDA-approved CAR-T cell therapy, and the first-ever CAR-T to be approved in two distinct indications. It is a one-time treatment designed to empower patients immune systems to fight their cancer. Kymriah is currently approved for the treatment of r/r pediatric and young adult (up to 25 years of age) acute lymphoblastic leukemia (ALL), and r/r adult diffuse large B-cell lymphoma (DLBCL)1. Kymriah, approved in both indications by the Japan MHLW in 2019, is currently the only CAR-T cell therapy approved in Asia. Clinical manufacturing began at FBRI in 2019 and will continue alongside commercial manufacturing.

Kymriah was developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, a strategic alliance between industry and academia, which was first-of-its-kind in CAR-T research and development.

About Novartis Commitment to Oncology Cell & Gene Novartis has a mission to reimagine medicine by bringing curative cell & gene therapies to patients worldwide. Novartis has a deep CAR-T pipeline and ongoing investment in manufacturing and supply chain process improvements. With active research underway to broaden the impact of cell and gene therapy in oncology, Novartis is going deeper in hematological malignancies, reaching patients with other cancer types and evaluating next-generation CAR-T cell therapies that focus on new targets and utilize new technologies.

Novartis was the first pharmaceutical company to significantly invest in pioneering CAR-T research and initiate global CAR-T trials. Kymriah, the first approved CAR-T cell therapy, developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, is the foundation of Novartis commitment to CAR-T cell therapy. Kymriah is currently approved for use in at least one indication in 26 countries and at more than 260 certified treatment centers, with the ambition for further expansion to help fulfill the ultimate goal of bringing CAR-T cell therapy to every patient in need.

The Novartis global CAR-T manufacturing footprint spans seven facilities, across four continents. This comprehensive, integrated footprint strengthens the flexibility, resilience and sustainability of the Novartis manufacturing and supply chain. Commercial and clinical trial manufacturing is now ongoing at Novartis-owned facilities in Stein, Switzerland, Les Ulis, France and Morris Plains, New Jersey, USA, as well as at the contract manufacturing sites at Fraunhofer-Institut for cell therapy and immunology (Fraunhofer-Institut fr Zelltherapie und Immunologie) facility in Leipzig, Germany, and now FBRI in Kobe, Japan. Manufacturing production at Cell Therapies in Australia and Cellular Biomedicine Group in China is forthcoming.

ImportantSafety information from the Kymriah SmPC

EU Name of the medicinal product:

Kymriah 1.2 x 106 6 x 108 cells dispersion for infusion

Important note: Before prescribing, consult full prescribing information.

Presentation: Cell dispersion for infusion in 1 or more bags for intravenous use (tisagenlecleucel).

Indications: Treatment of pediatric and young adult patients up to and including 25 years of age with B-cell acute lymphoblastic leukemia (ALL) that is refractory, in relapse posttransplant or in second or later relapse. Treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) after two or more lines of systemic therapy.

Dosage and administration:

B-cell patients: For patients 50 kg and below: 0.2 to 5.0 x 106 CAR-positive viable T-cells/kg body weight. For patients above 50 kg: 0.1 to 2.5 x 108 CAR-positive viable T-cells (non-weight based).

DLBCL Patients: 0.6 to 6.0108 CAR-positive viable T-cells (non-weight based).

Pretreatment conditioning (lymphodepleting chemotherapy): Lymphodepleting chemotherapy is recommended to be administered before Kymriah infusion unless the white blood cell (WBC) count within one week prior to infusion is 1,000 cells/L. The availability of Kymriah must be confirmed prior to starting the lymphodepleting regimen.

Precautions before handling or administering Kymriah: Kymriah contains genetically modified human blood cells. Healthcare professionals handling Kymriah should therefore take appropriate precautions (wearing gloves and glasses) to avoid potential transmission of infectious diseases.

Preparation for infusion The timing of thaw of Kymriah and infusion should be coordinated. Once Kymriah has been thawed and is at room temperature (20C 25C), it should be infused within 30minutes to maintain maximum product viability, including any interruption during the infusion.

Administration Kymriah should be administered as an intravenous infusion through latexfree intravenous tubing without a leukocyte depleting filter, at approximately 10 to 20mL per minute by gravity flow. If the volume of Kymriah to be administered is 20mL, intravenous push may be used as an alternative method of administration.

All contents of the infusion bag(s) should be infused.

Clinical assessment prior to infusion: Kymriah treatment should be delayed in some patient groups at risk (see Special warnings and precautions for use).

Monitoring after infusion: Patients should be monitored daily for the first 10 days following infusion for signs and symptoms of potential cytokine release syndrome, neurological events and other toxicities. Physicians should consider hospitalisation for the first 10 days post infusion or at the first signs/symptoms of CRS and/or neurological events. After the first 10 days following the infusion, the patient should be monitored at the physicians discretion. Patients should be instructed to remain within proximity of a qualified clinical facility for at least 4 weeks following infusion.

Elderly (above 65 years of age): Safety and efficacy have not been established in B-cell patients. No dose adjustment is required in patients over 65 years of age in DLBCL patients.

Paediatric patients: No formal studies have been performed in paediatric patients with B-cell ALL below 3 years of age. The safety and efficacy of Kymriah in children and adolescents below 18 years of age have not yet been established in DLBCL. No data are available.

Patients seropositive for hepatitis B virus (HBV), hepatitis C virus (HCV), or human immunodeficiency virus (HIV): There is no experience with manufacturing Kymriah for patients with a positive test for HIV, active HBV, or active HCV infection. Leukapheresis material from these patients will not be accepted for Kymriah manufacturing.

Contraindications: Hypersensitivity to the active substance or to any of the excipients of Kymriah. Contraindications of the lymphodepleting chemotherapy must be considered.

Warnings and precautions: Reasons to delay treatment: Due to the risks associated with Kymriah treatment, infusion should be delayed if a patient has any of the following conditions: Unresolved serious adverse reactions (especially pulmonary reactions, cardiac reactions or hypotension) from preceding chemotherapies, active uncontrolled infection, active graft versus host disease (GVHD), significant clinical worsening of leukaemia burden or rapid progression of lymphoma following lymphodepleting chemotherapy. Blood, organ, tissue and cell donation: Patients treated with Kymriah should not donate blood, organs, tissues or cells.

Active central nervous system (CNS) leukaemia or lymphoma: There is limited experience of use of Kymriah in patients with active CNS leukaemia and active CNS lymphoma. Therefore the risk/benefit of Kymriah has not been established in these populations. Risk of CRS: Occurred in almost all cases within 1 to 10 days post infusion with a median time to onset of 3 days and a median time to resolution of8 days. See full prescribing information for management algorithm of CRS. Risk of neurological events: Majority of events, in particular encephalopathy, confusional state or delirium, occurred within 8 weeks post infusion and were transient. The median time to onset of neurological events was 8 days in B-cell ALL and 6 days in DLBCL; the median time to resolution was 7 days for B-cell ALL and 13 days for DLBCL. Patients should be monitored for neurological events. Risk of infections: Delay start of therapy with Kymriah until active uncontrolled infections have resolved. As appropriate, administer prophylactic antibiotics and employ surveillance testing prior to and during treatment with Kymriah. Serious infections were observed in patients, some of which were life threatening or fatal. After Kymriah administration observe patient and ensure prompt management in case of signs of infection Risk of febrile neutropenia: Frequently observed after Kymriah infusion, may be concurrent with CRS. Appropriate management necessary. Risk of prolonged cytopenias: Appropriate management necessary. Prolonged cytopenia has been associated with increased risk of infections. Myeloid growth factors, particularly granulocyte macrophage colony stimulating factor (GM CSF), not recommended during the first 3 weeks after Kymriah infusion or until CRS has been resolved. Risk of secondary malignancies: Patients treated with Kymriah may develop secondary malignancies or recurrence of their cancer and should be monitored lifelong for secondary malignancies. Risk of hypogammaglobulinemia or agammaglobulinemia: Infection precautions, antibiotic prophylaxis and immunoglobulin replacement should be managed per age and standard guidelines. In patients with low immunoglobulin levels preemptive measures such as immunoglobulin replacement and rapid attention to signs and symptoms of infection should be implemented. Live vaccines: The safety of immunisation with live viral vaccines during or following Kymriah treatment was not studied. Vaccination with live virus vaccines is not recommended at least 6 weeks prior to the start of lymphodepleting chemotherapy, during Kymriah treatment, and until immune recovery following treatment with Kymriah. Risk of tumor lysis syndrome (TLS): Patients with elevated uric acid or high tumor burden should receive allopurinol or alternative prophylaxis prior to Kymriah infusion. Continued monitoring for TLS following Kymriah administration should also be performed. Concomitant disease: Patients with a history of active CNS disorder or inadequate renal, hepatic, pulmonary or cardiac function are likely to be more vulnerable to the consequences of the adverse reactions of Kymriah and require special attention. Prior stem cell transplantation: Kymriah infusion is not recommended within 4 months of undergoing an allogeneic stem cell transplant (SCT) because of potential risk of worsening GVHD. Leukapheresis for Kymriah manufacturing should be performed at least 12weeks after allogeneic SCT. Serological testing: There is currently no experience with manufacturing Kymriah for patients testing positive for HBV, HCV and HIV. Screening for HBV, HCV and HIV, must be performed before collection of cells for manufacturing. Hepatitis B virus (HBV) reactivation, can occur in patients treated with medicinal products directed against B cells and could result in fulminant hepatitis, hepatic failure and death. Prior treatment with anti CD19 therapy: There is limited experience with Kymriah in patients exposed to prior CD19 directed therapy. Kymriah is not recommended if the patient has relapsed with CD19 negative leukaemia after prior anti-CD19 therapy. Interference with serological testing: Due to limited and short spans of identical genetic information between the lentiviral vector used to create Kymriah and HIV, some commercial HIV nucleic acid tests (NAT) may give a false positive result. Sodium and potassium content: This medicinal product contains 24.3 to 121.5mg sodium per dose, equivalent to 1 to 6% of the WHO recommended maximum daily intake of 2g sodium for an adult. This medicinal product contains potassium, less than 1mmol (39mg) per dose, i.e. essentially potassium free. Content of dextran 40 and dimethyl sulfoxide (DMSO): Contains 11 mg dextran 40 and 82.5 mg dimethyl sulfoxide (DMSO) per mL. Each of these excipients are known to possibly cause anaphylactic reaction following parenteral administration. Patients not previously exposed to dextran and DMSO should be observed closely during the first minutes of the infusion period.

Interaction with other medicinal products and other forms of interaction

Live vaccines: The safety of immunisation with live viral vaccines during or following Kymriah treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during Kymriah treatment, and until immune recovery following treatment with Kymriah.

Fertility, pregnancy and lactation

Women of childbearing potential/Contraception in males and females: Pregnancy status for females of reproductive potential should be verified prior to starting treatment with Kymriah. Consider the need for effective contraception in patients who receive the lymphodepleting chemotherapy. There are insufficient exposure data to provide a recommendation concerning duration of contraception following treatment with Kymriah.

Pregnancy: There are no data from the use of Kymriah in pregnant women. It is not known whether Kymriah has the potential to be transferred to the foetus via the placenta and could cause foetal toxicity, including B cell lymphocytopenia. Kymriah is not recommended during pregnancy and in women of childbearing potential not using contraception. Pregnant women should be advised on the potential risks to the foetus. Pregnancy after Kymriah therapy should be discussed with the treating physician. Pregnant women who have received Kymriah may have hypogammaglobulinaemia. Assessment of immunoglobulin levels is indicated in newborns of mothers treated with Kymriah.

Breast feeding: It is unknown whether Kymriah cells are excreted in human milk, a risk to the breast fed infant cannot be excluded. Women who are breast feeding should be advised of the potential risk to the breast fed infant. Breast-feeding should be discussed with the treating physician.

Fertility: There are no data on the effect of Kymriah on fertility.

Effects on ability to drive and use machines Driving and engaging in hazardous activities in the 8 weeks following infusion should be refrained due to risks for altered or decreased consciousness or coordination.

Adverse drug reactions:

B-Cell ALL patients and DLBCL patients:

Very common (10%): Infections - pathogen unspecified, viral infections, bacterial infections, fungal infections, anaemia, haemorrhage, febrile neutropenia, neutropenia, thrombocytopenia, cytokine release syndrome, hypogammaglobulinaemia, decreased appetite, hypokalaemia, hypophosphataemia, hypomagnesaemia, hypocalcaemia, anxiety, delirium, sleep disorder, headache, encephalopathy, arrhythmia, hypotension, hypertension, cough, dyspnoea, hypoxia, diarrhoea, nausea, vomiting, constipation, abdominal pain, rash, arthralgia, acute kidney injury, pyrexia, fatigue, oedema, pain, chills, lymphocyte count decreased, white blood cell count decreased, haemoglobin decreased, neutrophil count decreased, platelet count decreased, aspartate aminotransferase increased.

Common (1 to 10%): Haemophagocytic lymphohistiocytosis, leukopenia, pancytopenia, coagulopathy, lymphopenia, infusion-related reactions, graft versus host disease, hypoalbuminaemia, hyperglycaemia, hyponatraemia, hyperuricaemia, fluid overload, hypercalcemia, tumor lysis syndrome, hyperkalaemia, hyperphosphataemia, hypernatraemia, hypermagnesaemia, dizziness, peripheral neuropathy, tremor, motor dysfunction, seizure, speech disorder, neuralgia, ataxia, visual impairment, cardiac failure, cardiac arrest, thrombosis, capillary leak syndrome, oropharyngeal pain, pulmonary oedema, nasal congestion, pleural effusion, tachypnea, acute respiratory distress syndrome, stomatitis, abdominal distension, dry mouth, ascites, hyperbilirubinaemia, pruritus, erythema, hyperhidrosis, night sweats, back pain, myalgia, muscolosceletal pain, influenza-like illness, asthenia, multiple organ dysfunction syndrome, alanine aminotransferase increased, blood bilirubin increased, weight decreased, serum ferritin increased, blood fibrinogen decreased, international normalized ratio increased, fibrin D dimer increased, activated partial thromboplastin time prolonged, blood alkaline phosphate increased, prothrombin time prolonged.

Uncommon: B-cell aplasia, ischaemic cerebral infarction, flushing, lung infiltration.

Packs and prices: Country-specific.

Legal classification: Country-specific.

Disclaimer This press release contains forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements can generally be identified by words such as potential, can, will, plan, may, could, would, expect, anticipate, seek, look forward, believe, committed, investigational, pipeline, launch, or similar terms, or by express or implied discussions regarding potential marketing approvals, new indications or labeling for the investigational or approved products described in this press release, or regarding potential future revenues from such products. You should not place undue reliance on these statements. Such forward-looking statements are based on our current beliefs and expectations regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that the investigational or approved products described in this press release will be submitted or approved for sale or for any additional indications or labeling in any market, or at any particular time. Nor can there be any guarantee that such products will be commercially successful in the future. In particular, our expectations regarding such products could be affected by, among other things, the uncertainties inherent in research and development, including clinical trial results and additional analysis of existing clinical data; regulatory actions or delays or government regulation generally; global trends toward health care cost containment, including government, payor and general public pricing and reimbursement pressures and requirements for increased pricing transparency; our ability to obtain or maintain proprietary intellectual property protection; the particular prescribing preferences of physicians and patients; general political, economic and business conditions, including the effects of and efforts to mitigate pandemic diseases such as COVID-19; safety, quality, data integrity or manufacturing issues; potential or actual data security and data privacy breaches, or disruptions of our information technology systems, and other risks and factors referred to in Novartis AGs current Form 20-F on file with the US Securities and Exchange Commission. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.

About Novartis Novartis is reimagining medicine to improve and extend peoples lives. As a leading global medicines company, we use innovative science and digital technologies to create transformative treatments in areas of great medical need. In our quest to find new medicines, we consistently rank among the worlds top companies investing in research and development. Novartis products reach nearly 800 million people globally and we are finding innovative ways to expand access to our latest treatments. About 110,000 people of more than 140 nationalities work at Novartis around the world. Find out more at https://www.novartis.com.

Novartis is on Twitter. Sign up to follow @Novartis at https://twitter.com/novartisnews For Novartis multimedia content, please visithttps://www.novartis.com/news/media-library For questions about the site or required registration, please contact media.relations@novartis.com

References

1.Kymriah (tisagenlecleucel) Summary of Product Characteristics (SmPC), 2018.

# # #

Novartis Media Relations E-mail: media.relations@novartis.com

Novartis Investor Relations Central investor relations line: +41 61 324 7944 E-mail: investor.relations@novartis.com

Continue reading here:
Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia - GlobeNewswire