Author Archives: admin


First gene therapy for prevalent pathologies in neurology receives FDA IND clearance – EG 427 initiating first-in-human clinical study

Paris, France, June 24, 2024 – EG 427, a biotechnology company leading the development of pinpoint DNA medicines for prevalent diseases in neurology based on its unique non-replicative HSV-1 vector platform, announces today that it has received Investigational New Drug (IND) clearance from the U.S. Food and Drug Administration (FDA) for EG110A, a gene therapy for the treatment of Neurogenic Detrusor Overactivity (NDO) in Spinal Cord Injury (SCI) patients. The phase 1b/2a study is being initiated in 2 leading US institutions.

View original post here:
First gene therapy for prevalent pathologies in neurology receives FDA IND clearance - EG 427 initiating first-in-human clinical study

$2.9M research grant funds technology for MS stem cell therapy – Multiple Sclerosis News Today

The National Institute of Neurological Disorders and Stroke has awarded a $2.9 million, five-year grant to a research project that aims to advance a new technology that could improve stem cell therapies for multiple sclerosis (MS) and other neurological disorders.

The work we plan to undertake has significant implications for regenerative medicine, as it has the potential to develop novel strategies to enhance stem cell delivery for treatment of devastating neurological diseases that remain intractable to current treatments, Stelios Andreadis, PhD, director of the University at Buffalos Cell, Gene and Tissue Engineering Center and one of the projects leaders, said in a university press release.

Fraser Sim, PhD, a professor at the universitys Jacobs School of Medicine and Biomedical Sciences and the director of its neuroscience program, will co-lead the project. This project is a wonderful example of collaborative science, Sim said. Neither of us could do this work alone.

In MS, inflammation in the brain and spinal cord causes damage to myelin, a fatty substance that wraps around nerve fibers and helps them send electrical signals. Myelin damage disrupts neurological signaling, which ultimately gives rise to MS symptoms.

Stem cell therapies for MS and other neurological disorders are gaining increasing interest from researchers. Stem cells are a special class of cells that are able to grow into other types of cells.

The basic aim of stem cell therapy in MS is to introduce stem cells that could make new nervous system cells, such as neurons (nerve cells) and myelin-making cells like oligodendrocyes and Schwann cells.

In order to be used as a therapy, the stem cells need to be injected into a patients brain. In experiments, this has usually been done by simply suspending the cells in a saline solution and injecting them through a syringe.

But emerging data suggest that the physical stress of being suspended in liquid and then squeezed through the needle tends to damage the cells, and as a result, the vast majority of stem cells end up dying soon after they are injected.

Most researchers have just accepted the fact that a lot of cells will die when you transplant them, Sim said. The new project aims to change this.

The researchers are working to develop shear-thinning hydrogels (STHs) to aid in stem cell injections. STHs normally have a gel-like consistency, but become more fluid when pressure is applied for example, when squeezed through a syringe. The general idea is that STHs can help cushion and protect stem cells during injection.

They change their viscosity in response to shear stress, and they can turn back into gel form when the force is removed, after the injection, Andreadis said. The fast transition from solid-like to fluid-like behavior, with increasing shear rate, is essential for successful injection and cell protection. STHs have emerged as promising candidates for the injection of Schwann cells and oligodendrocytes, he said.

In addition to cushioning the cells, the STHs can also be tailored to help promote the cells survival once inside the brain.

With the hydrogel, we can introduce different factors that will allow the cells to overcome the [suppressive] environment thats present in MS lesions, Sim said. We think this will improve the outcome of cell therapy over the vanilla approach using cells in a saline solution.

The researchers have already conducted proof-of-principle experiments of STHs in mice genetically engineered to be unable to make myelin, mimicking a rare progressive neurodegenerative condition called Pelizaeus-Merzbacher disease.

Transplanting human cells with STHs into the animals brains significantly improved the survival of the transplanted cells and enhanced nerve repair in the brain 12 weeks post-implantation, Andreadis said.

Those results will be published in full soon, the university said.

In the newly funded project, the researchers will test STHs in larger animals, aiming to determine the number of cells needed for a brain thats closer in size to a human brain and assess whether the cells are going to the intended parts of the brain.

This is a great opportunity to marry biomaterials science and engineering with neuroscience to develop a therapeutic strategy that can, hopefully, be brought to the clinic to treat devastating diseases and conditions such as MS, Andreadis said. While there is currently no cure, we would like to develop a successful therapy that can limit the diseases development and improve quality of life for MS patients and others who are suffering from neurological disorders.

Go here to read the rest:
$2.9M research grant funds technology for MS stem cell therapy - Multiple Sclerosis News Today

Stem Cell Therapy Market to Triple, Reaching USD 52.1 Billion by 2034 at a 12.1% of CAGR – PharmiWeb.com

Stem Cell Therapy Market

The stem cell therapy market is on the brink of explosive growth, with a compound annual growth rate (CAGR) of 12.1% projected over the next decade. Starting at an estimated value of USD 16.7 billion in 2024, the market is expected to surge to an impressive USD 52.1 billion by 2034.

This significant expansion reflects the increasing adoption of stem cell therapies, driven by their potential to revolutionize treatment for a wide range of conditions. From regenerative medicine to chronic disease management, stem cell therapy is unlocking new possibilities in medical science.

As research continues to advance and clinical applications expand, the stem cell therapy market is set to play a pivotal role in transforming healthcare and improving patient outcomes worldwide. This remarkable growth trajectory underscores the importance of continued investment and innovation in this cutting-edge field.

Get your PDF Sample Report: https://www.futuremarketinsights.com/reports/sample/rep-gb-1087

Key Highlights:

Competitive Landscape

The market is very competitive because there are many top biotech and pharmaceutical companies in it. It is distinguished by fierce rivalry, quick technical progress, and a significant amount of R&D activity focused on creating cutting-edge stem cell treatments. Businesses are making significant investments in R&D projects with the goal of creating innovative stem cell treatments for a variety of illnesses.

Recent Development in the Stem Cell Therapy Market

A strategic partnership was established in 2020 between Cipla and Stempeutics to launch Stempucel, a revolutionary stem cell therapy for the management of critical limb ischemia. The partnership aims to increase their market share in this quickly developing industry and capitalize on the rising demand for stem cell therapy. Millions of individuals worldwide suffer from critical limb ischemia, a crippling illness for which the introduction of Stempucel is predicted to change the course of therapy.

Customization Available: https://www.futuremarketinsights.com/customization-available/REP-GB-1087

Key Market Players:

Key Market Segmentation:

By Therapy:

By Source:

By Application:

By End Use:

By Region:

In-Depth Market Overview: Purchase Now to Access: https://www.futuremarketinsights.com/checkout/1087

About Future Market Insights (FMI)

Future Market Insights, Inc. (ESOMAR certified, recipient of the Stevie Award, and a member of the Greater New York Chamber of Commerce) offers profound insights into the driving factors that are boosting demand in the market. FMI stands as the leading global provider of market intelligence, advisory services, consulting, and events for the Packaging, Food and Beverage, Consumer Technology, Healthcare, Industrial, and Chemicals markets. With a vast team of over 400 analysts worldwide, FMI provides global, regional, and local expertise on diverse domains and industry trends across more than 110 countries.

Contact Us:

Future Market Insights Inc. Christiana Corporate, 200 Continental Drive, Suite 401, Newark, Delaware 19713, USA T: +1-845-579-5705

For Sales Enquiries:sales@futuremarketinsights.com Website:https://www.futuremarketinsights.com LinkedIn|Twitter|Blogs|YouTube

More here:
Stem Cell Therapy Market to Triple, Reaching USD 52.1 Billion by 2034 at a 12.1% of CAGR - PharmiWeb.com

Conor McGregor Fears Stem Cell Treatment Worsened UFC 303 Injury Setback: ‘My Toe Is Sore’ – LowKick MMA

Former two-weight champion, Conor McGregor has revealed he underwent treatment to address his toe fractured which ruled him from UFC 303 this weekend, through the use of stem cells which he has now theorized may have worsened his injury.

McGregor, a former undisputed lightweight champion and featherweight titleholder, has been sidelined for the last three years from the Octagon suffering a fractured left tibia and fibula in a first round doctors stoppage TKO loss to former interim gold holder, Dustin Poirier.

And slated to make his return at UFC 303 next weekend during International Fight Week, McGregor withdrew from his welterweight fight with Michael Chandler, citing a gut-wrenching fractured toe which is expected to sideline him for a potential period of two months.

Already planning his comeback as he eyes an August return to action, ex-two-weight kingpin, McGregor revealed he underwent stem cell treatment to address his toe injury, however, admits hes not sure it has worked to the best of its ability.

They put stem cells Ive done everything that they asked they put stem cells into me, took it from my back and put it in my foot, 20mg (milligrams) from my own back from the bone marrow in, Conor McGregor told Severe MMA. Right into the [toe] break.

But my f*cking toe is sore, mate, Conor McGregor explained. And I dont know if the stem cells into the break was the right move. I dont think its the swelling anymore I think its just the fluids or stem cells in my toe. So, Im like, Am I going to have a f*cking swollen toe all the time now?

Still planning to make a summer outing despite uncertainty from UFC CEO, Dana White, McGregor confirmed he would still chase a fight with the above-mentioned, Chandler in his immediate return to active competition.

Do you think Conor McGregor can fight this year?

See original here:
Conor McGregor Fears Stem Cell Treatment Worsened UFC 303 Injury Setback: 'My Toe Is Sore' - LowKick MMA

Experts: Don’t believe everyone who is hawking stem cells – The Times of Northwest Indiana

The mailings promised Life Without Pain! via stem cell injections or IVs administered in a patients own home. The allure was obvious: more than 20% of U.S. adults suffer from chronic pain.

A court exhibit from a lawsuit filed by Iowa Attorney General Brenna Bird is seen on a laptop computer May 8 in Urbandale, Iowa.

The flyers invited Iowans to free dinners across the state. Afterward, sales people traveled to potential customers homes for high-pressure pitches disguised as pre-screenings, according to prosecutors. More than 250 people signed up, paying $3,200 to $20,000 each for a total of $1.5 million. For this, a nurse practitioner came to their homes to administer injections and IVs filled with stem cells derived from umbilical cords.

Yet experts and regulators have alternately labeled such treatments as ripoffs, scams or simply unproven. In some cases, studies have documented real harm.

Last fall, Iowas attorney general sued two proprietors responsible for the mailings in her state, naming a Minnesota man who hosts a Christian entrepreneurship podcast and his Florida business partner for allegedly deceiving consumers, many of them elderly.

In bringing the lawsuit, Iowa joined attorneys general in New York, North Dakota, Georgia, Nebraska, Arkansas and Washington state who have sued businesses alleging they fraudulently promoted unproven stem cell treatments.

Stem cells have long fascinated researchers because of their ability to reproduce and, in some cases, transform into other cell types. Because of this, they are thought to hold the potential for treating many diseases and injuries.

But the FDA has approved only a handful of such therapies, and only for certain forms of blood cancer and immune system disorders. Stem cells are considered experimental for most uses, despite being marketed as a treatment for everything from autism and emphysema to sports injuries.

The FDA has repeatedly warned Americans to be wary of businesses hawking unapproved, unproven and costly stem cell therapies, which occasionally have caused blindness, bacterial infections and tumors.

In a 2020 notice, the agency expressed concern about patients being misled about products that are illegally marketed, have not been shown to be safe or effective, and, in some cases, may have significant safety issues.

Dr. Jeffrey Goldberg, chair of ophthalmology at the Byers Eye Institute at Stanford University, whose work has documented vision loss in some patients treated with cells removed from patients' own bodies, processed and reinjected, lamented that people are "desperately willing to shell out large sums of money for unproven and in some cases, explicitly sort of sham, so-called therapeutics.

Since August 2017, the FDA has issued about 30 warning letters regarding the unproven treatments.

Experts, including Dr. Paul Knoepfler, a stem cell researcher at the University of California at Davis, and Leigh Turner, a bioethicist at the University of California, Irvine, are among those who have raised alarm that such federal action is too little to regulate a U.S. industry which Turner estimated in 2021 topped 2,700 clinics.

Because states can seek substantial fines against wayward operators, Turner said their legal actions offer promise.

"If you look at them collectively, they might over time start to have an impact, he said.

The FDA offers training to attorneys general pursuing such cases. Dr. Peter Marks, director of the FDAs Center for Biologics Evaluation and Research, said federal regulators partner with state law enforcers in a shared mission.

Iowa Attorney General Brenna Bird speaks during a town hall campaign event for Republican presidential candidate Nikki Haley on May 17, 2023, in Ankeny, Iowa.

That puts people like Iowa Attorney General Brenna Bird on the front lines.

Last year, Bird brought the case over mailers offering Iowans a pain-free life, naming the now dissolved Biologics Health and Summit Partners Group, which operated under the name Summit Health Centers, as defendants. The state also sued the companies' proprietors: Rylee Meek, of Prior Lake, Minnesota, and Scott Thomas, of Thonotosassa, Florida.

Neither man claims to have any medical training. Yet over a series of free dinners across Iowa, attendees listened to their presentations about how stem cells could ostensibly repair damage linked to back or joint pain. The claims came despite an FDA warning that no such product has been approved to treat any orthopedic condition.

One testimonial featured a woman quoted as saying she had multiple sclerosis, fibromyalgia, degenerative joint problems and scoliosis. It implied the treatment worked so well she was able to stop using a walker and taking opioids. Prosecutors say that left people believing stem cells are effective at treating all the conditions listed.

The company offered packages ranging from 5 million cells to up to 60 million to fix customers' ailments. Iowas lawsuit described the practices as scattershot, for-profit experimentations.

Research has shown dead cells are often injected, Knoepfler said.

The Iowa case is still in the discovery stage, with the trial set for March 2025.

Meek and Thomas did not return multiple text and email messages from The Associated Press. Nor did their attorney, Nathan Russell, though he did rebut many of the allegations in court filings, including that the promotional information was deceptive or misleading. The filing stressed that Meek and Thomas always emphasized they were not doctors.

Instead, Meek promoted himself as the $100 million man and touted his business prowess on his Kings Council podcast. His and Thomas book, Intentional Influence in Sales: The Power of Persuasion with Neuro-linguistic Programming, is described as a way to get people to think the way you want them to think, without them even realizing it.

Nearly a quarter of Americans struggle with symptoms of depression, according to the latest Centers for Disease Control and Prevention data from an October 2023 survey. That number is down from 2020 to 2021, when the COVID-19 pandemic exacerbated mental health conditions for millions of Americans.

Like other forms of mental illness, depression impacts groups of people differently depending on their unique backgrounds and experiences. While depression is among the most common forms of mental illness, some portions of the U.S. are seeing rates of depression fall faster than others.

Northwell Health partnered with Stacker to look at which groups of people are the most likely to feel depressed, using data from the CDC.

Signs someone may have depression include an inability to focus, thoughts of death or suicide, hopelessness, and low self-worth, as well as changes in appetite and sleep patterns, according to the World Health Organization.

Depression can be transitorybrought on by the loss of a loved one or other difficult life eventsor chronic, such as for those who live with bipolar disorder. The latest data on depression rates suggest some of the uptick in depression during COVID-19 may have been more of the former.

Depression has lingered at elevated levels for some communities, including young people and those who identify as part of the LGBTQ+ community.

Americans ages 18 to 29 years old report the highest levels of depression, with those 30 to 49 years old showing the next highest levels, according to the CDC. Rates of depression taper off even more as Americans clear the age of 60.

Higher reported rates of depression in young people could partially be attributed to the way each generation views mental illness. Members of Gen Z, those born between 1997 and 2012, have been more open to talking about mental illness and seeking therapy, for example, than older generations who came of age at a time when mental health disorders were heavily stigmatized in media and popular culture.

Surveys have found that discrimination is often cited as a significant source of stress; Black and Hispanic adults, specifically, report higher levels of stress from discrimination compared to their white peers.

When it comes to depression rates, a similar trend appears. Hispanic, multiracial, and Black Americans report elevated rates of depression compared to white Americans, according to the latest survey data the CDC collected in late 2023.

Furthermore, LGBTQ+ Americans have reported higher levels of stress and mental illness compared to straight, cisgender people. Transgender individuals are also more than six times as likely to attempt suicide, according to a Swedish study published in The American Journal of Psychiatryone of the only studies to compile such data for an entire country over a 10-year period.

The current rates of depression among more vulnerable groups are particularly concerning at a time when mental health professionals are struggling to meet a higher demand for mental health care services.

Story editing byShannon Luders-Manuel. Copy editing by Tim Bruns.

This story originally appeared on Northwell Health and was produced and distributed in partnership with Stacker Studio.

Get local news delivered to your inbox!

Read the original:
Experts: Don't believe everyone who is hawking stem cells - The Times of Northwest Indiana

Experts: Don’t believe everyone who is hawking stem cells – Lake Geneva Regional News

The mailings promised Life Without Pain! via stem cell injections or IVs administered in a patients own home. The allure was obvious: more than 20% of U.S. adults suffer from chronic pain.

A court exhibit from a lawsuit filed by Iowa Attorney General Brenna Bird is seen on a laptop computer May 8 in Urbandale, Iowa.

The flyers invited Iowans to free dinners across the state. Afterward, sales people traveled to potential customers homes for high-pressure pitches disguised as pre-screenings, according to prosecutors. More than 250 people signed up, paying $3,200 to $20,000 each for a total of $1.5 million. For this, a nurse practitioner came to their homes to administer injections and IVs filled with stem cells derived from umbilical cords.

Yet experts and regulators have alternately labeled such treatments as ripoffs, scams or simply unproven. In some cases, studies have documented real harm.

Last fall, Iowas attorney general sued two proprietors responsible for the mailings in her state, naming a Minnesota man who hosts a Christian entrepreneurship podcast and his Florida business partner for allegedly deceiving consumers, many of them elderly.

In bringing the lawsuit, Iowa joined attorneys general in New York, North Dakota, Georgia, Nebraska, Arkansas and Washington state who have sued businesses alleging they fraudulently promoted unproven stem cell treatments.

Stem cells have long fascinated researchers because of their ability to reproduce and, in some cases, transform into other cell types. Because of this, they are thought to hold the potential for treating many diseases and injuries.

But the FDA has approved only a handful of such therapies, and only for certain forms of blood cancer and immune system disorders. Stem cells are considered experimental for most uses, despite being marketed as a treatment for everything from autism and emphysema to sports injuries.

The FDA has repeatedly warned Americans to be wary of businesses hawking unapproved, unproven and costly stem cell therapies, which occasionally have caused blindness, bacterial infections and tumors.

In a 2020 notice, the agency expressed concern about patients being misled about products that are illegally marketed, have not been shown to be safe or effective, and, in some cases, may have significant safety issues.

Dr. Jeffrey Goldberg, chair of ophthalmology at the Byers Eye Institute at Stanford University, whose work has documented vision loss in some patients treated with cells removed from patients' own bodies, processed and reinjected, lamented that people are "desperately willing to shell out large sums of money for unproven and in some cases, explicitly sort of sham, so-called therapeutics.

Since August 2017, the FDA has issued about 30 warning letters regarding the unproven treatments.

Experts, including Dr. Paul Knoepfler, a stem cell researcher at the University of California at Davis, and Leigh Turner, a bioethicist at the University of California, Irvine, are among those who have raised alarm that such federal action is too little to regulate a U.S. industry which Turner estimated in 2021 topped 2,700 clinics.

Because states can seek substantial fines against wayward operators, Turner said their legal actions offer promise.

"If you look at them collectively, they might over time start to have an impact, he said.

The FDA offers training to attorneys general pursuing such cases. Dr. Peter Marks, director of the FDAs Center for Biologics Evaluation and Research, said federal regulators partner with state law enforcers in a shared mission.

Iowa Attorney General Brenna Bird speaks during a town hall campaign event for Republican presidential candidate Nikki Haley on May 17, 2023, in Ankeny, Iowa.

That puts people like Iowa Attorney General Brenna Bird on the front lines.

Last year, Bird brought the case over mailers offering Iowans a pain-free life, naming the now dissolved Biologics Health and Summit Partners Group, which operated under the name Summit Health Centers, as defendants. The state also sued the companies' proprietors: Rylee Meek, of Prior Lake, Minnesota, and Scott Thomas, of Thonotosassa, Florida.

Neither man claims to have any medical training. Yet over a series of free dinners across Iowa, attendees listened to their presentations about how stem cells could ostensibly repair damage linked to back or joint pain. The claims came despite an FDA warning that no such product has been approved to treat any orthopedic condition.

One testimonial featured a woman quoted as saying she had multiple sclerosis, fibromyalgia, degenerative joint problems and scoliosis. It implied the treatment worked so well she was able to stop using a walker and taking opioids. Prosecutors say that left people believing stem cells are effective at treating all the conditions listed.

The company offered packages ranging from 5 million cells to up to 60 million to fix customers' ailments. Iowas lawsuit described the practices as scattershot, for-profit experimentations.

Research has shown dead cells are often injected, Knoepfler said.

The Iowa case is still in the discovery stage, with the trial set for March 2025.

Meek and Thomas did not return multiple text and email messages from The Associated Press. Nor did their attorney, Nathan Russell, though he did rebut many of the allegations in court filings, including that the promotional information was deceptive or misleading. The filing stressed that Meek and Thomas always emphasized they were not doctors.

Instead, Meek promoted himself as the $100 million man and touted his business prowess on his Kings Council podcast. His and Thomas book, Intentional Influence in Sales: The Power of Persuasion with Neuro-linguistic Programming, is described as a way to get people to think the way you want them to think, without them even realizing it.

Nearly a quarter of Americans struggle with symptoms of depression, according to the latest Centers for Disease Control and Prevention data from an October 2023 survey. That number is down from 2020 to 2021, when the COVID-19 pandemic exacerbated mental health conditions for millions of Americans.

Like other forms of mental illness, depression impacts groups of people differently depending on their unique backgrounds and experiences. While depression is among the most common forms of mental illness, some portions of the U.S. are seeing rates of depression fall faster than others.

Northwell Health partnered with Stacker to look at which groups of people are the most likely to feel depressed, using data from the CDC.

Signs someone may have depression include an inability to focus, thoughts of death or suicide, hopelessness, and low self-worth, as well as changes in appetite and sleep patterns, according to the World Health Organization.

Depression can be transitorybrought on by the loss of a loved one or other difficult life eventsor chronic, such as for those who live with bipolar disorder. The latest data on depression rates suggest some of the uptick in depression during COVID-19 may have been more of the former.

Depression has lingered at elevated levels for some communities, including young people and those who identify as part of the LGBTQ+ community.

Americans ages 18 to 29 years old report the highest levels of depression, with those 30 to 49 years old showing the next highest levels, according to the CDC. Rates of depression taper off even more as Americans clear the age of 60.

Higher reported rates of depression in young people could partially be attributed to the way each generation views mental illness. Members of Gen Z, those born between 1997 and 2012, have been more open to talking about mental illness and seeking therapy, for example, than older generations who came of age at a time when mental health disorders were heavily stigmatized in media and popular culture.

Surveys have found that discrimination is often cited as a significant source of stress; Black and Hispanic adults, specifically, report higher levels of stress from discrimination compared to their white peers.

When it comes to depression rates, a similar trend appears. Hispanic, multiracial, and Black Americans report elevated rates of depression compared to white Americans, according to the latest survey data the CDC collected in late 2023.

Furthermore, LGBTQ+ Americans have reported higher levels of stress and mental illness compared to straight, cisgender people. Transgender individuals are also more than six times as likely to attempt suicide, according to a Swedish study published in The American Journal of Psychiatryone of the only studies to compile such data for an entire country over a 10-year period.

The current rates of depression among more vulnerable groups are particularly concerning at a time when mental health professionals are struggling to meet a higher demand for mental health care services.

Story editing byShannon Luders-Manuel. Copy editing by Tim Bruns.

This story originally appeared on Northwell Health and was produced and distributed in partnership with Stacker Studio.

Get local news delivered to your inbox!

See the rest here:
Experts: Don't believe everyone who is hawking stem cells - Lake Geneva Regional News

Harnessing benefits of stem cells for heart regeneration – Full Circle

Mehdi Nikkhah, an associate professor of biomedical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, and his collaborators at Mayo Clinic in Arizona have been awarded a $2.7 million grant by the National Institutes of Health to research how stem cell engineering and tissue regeneration can aid in heart attack recovery.

The research will be conducted in collaboration with Wuqiang Zhu, a cardiovascular researcher and professor of biomedical engineering at Mayo Clinic.

Nikkhah and Zhu are exploring stem cell transplantation to repair and possibly regenerate damaged myocardium, or heart tissue. Their work is focused on the development of a new class of engineered heart tissues with the use of human induced pluripotent stem cells, or hiPSCs, and has resulted in two published papers in ACS Biomaterials.

A heart attack, medically termed as a myocardial infarction, occurs when a coronary artery that sends blood and oxygen to the heart becomes obstructed. This blockage is often the result of an accumulation of fatty cholesterol-containing deposits, known as plaques, within the hearts arteries.

When these plaques rupture, a cascade of events is initiated, leading to the formation of a blood clot. These blood clots can obstruct the artery, impeding blood flow to the heart muscle, thus triggering a heart attack.

When someone has a heart attack, a portion of muscle tissue on the left ventricle, which pumps the blood throughout the whole body, is damaged, Nikkhah says. Over time, the other parts of the heart have to take on more workload, consequently leading to catastrophic heart failure.

A team of biomedical engineers in the School of Biological and Health Systems Engineering, part of the Fulton Schools, and medical researchers at Mayo Clinic in Arizona are taking a novel step forward in using stem cell technology and regenerative medicine to aid in heart attack recovery.

Nikkhah is developing engineered heart tissues, or EHTs, with electrical properties to simulate the contraction function typically found within the native hearts tissue.

He is integrating the EHTs with gold nanorods to enhance electrical conductivity among stem cells. Gold is a suitable material because it is conductive and non-toxic to human cells, making the nanorods safe for medical research and translational studies.

In the lab, Nikkhahs team mixes the gold nanorods with a biocompatible hydrogel to form a tissue construct a patch of stem cells to rejuvenate damaged cardiac muscle tissue, offering a promising outcome for heart regeneration.

After we generate the patch, we get the engineered hiPSCs from Dr. Zhus lab at Mayo Clinic, Nikkhah says. They seed the cells on the patch and look at their biological characterization, including cell proliferation, cell viability and gene expression analysis, to see how the cells respond to the conductive hydrogel.

We have successfully used hiPSC-derived cardiomyocytes and cardiac fibroblasts to create beating heart tissues, Nikkhah says. After the tissue maturation, we transfer the patch to Dr. Zhus lab to be implanted into an animal model.

The successful integration and proliferation of these cells can lead to the formation of new, healthy heart tissue, potentially reversing the damage caused by the heart attack and enhancing the recovery process.

Reprogrammed human stem cells have nearly limitless potential because they can be differentiated into various cell types. That means hiPSCs can also be used to construct capillaries and blood vessels, which are essential for restoring adequate blood flow and oxygen supply to the damaged areas of the heart.

This process involves the differentiation of hiPSCs into endothelial cells, which form the lining of blood vessels, thereby facilitating the reconstruction of the hearts vascular network.

Michelle Jang, a graduate student in Nikkhahs lab, is currently studying EHTs to improve cell maturation and observe its electrical properties.

My engagement in this project showed a deep interest in how biomedical engineering technology and biology intersect to create new therapeutic possibilities in the field of regenerative medicine, Jang says. Im excited to see how my current research will further evolve and potentially contribute valuable insights to biomedical research.

Using these techniques, Nikkhah and Zhu can observe the capacity of programmed cells to regenerate damaged heart tissue. With continued advancement in regenerative medicine, there is potential for significant positive impact on outcomes for patients suffering from heart attacks.

Sources:

Read the original here:
Harnessing benefits of stem cells for heart regeneration - Full Circle

Embryonic Brain Overgrowth Dictates Autism Severity, New Research Suggests – University of California San Diego

In remarkable parallel, the more overgrowth a BCO demonstrated, the more overgrowth was found in social regions of the profound autism childs brain and the lower the childs attention to social stimuli. These differences were clear when compared against norms of hundreds and thousands of toddlers studied by the UC San Diego Autism Center of Excellence. Whats more, BCOs from toddlers with profound autism grew too fast as well as too big.

The bigger the brain, the better isnt necessarily true, agreed Alysson Muotri, Ph.D., director of the Sanford Stem Cell Institutes Integrated Space Stem Cell Orbital Research Center at the university. Muotri and Courchesne collaborated on the study, with Muotri contributing his proprietary BCO-development protocol that he recently shared via publication in Nature Protocols, as well as his expertise in BCO measurement.

Because the most important symptoms of profound autism and mild autism are experienced in the social affective and communication domains, but to different degrees of severity, the differences in the embryonic origins of these two subtypes of autism urgently need to be understood, Courchesne said. That understanding can only come from studies like ours, which reveals the underlying neurobiological causes of their social challenges and when they begin.

One potential cause of BCO overgrowth was identified by study collaborator Mirian A.F. Hayashi, Ph.D., professor of pharmacology at the Federal University of So Paulo in Brazil, and her Ph.D. student Joo Nani. They discovered that the protein/enzyme NDEL1, which regulates growth of the embryonic brain, was reduced in BCOs of those with autism. The lower the expression, the more enlarged the BCOs grew.

Determining that NDEL1 was not functioning properly was a key discovery, Muotri said.

Courchesne, Muotri and Hayashi now hope to pinpoint additional molecular causes of brain overgrowth in autism discoveries that could lead to the development of therapies that ease social and intellectual functioning for those with the condition.

Co-authors of the study include Vani Taluja, Sanaz Nazari, Caitlin M. Aamodt, Karen Pierce, Kuaikuai Duan, Sunny Stophaeros, Linda Lopez, Cynthia Carter Barnes, Jaden Troxel, Kathleen Campbell, Tianyun Wang, Kendra Hoekzema, Evan E. Eichler, Wirla Pontes, Sandra Sanchez Sanchez, Michael V. Lombardo and Janaina S. de Souza.

Funding: This work was supported by grants from the National Institute of Deafness and Communication Disorders, the National Institutes of Health, the California Institute for Regenerative Medicine and the Hartwell Foundation. We thank the parents of the toddlers in San Diego whose stem cells were reprogrammed to BCOs.

Disclosures: Muotri is a co-founder and has equity interest in TISMOO, a company dedicated to genetic analysis and human brain organogenesis, focusing on therapeutic applications customized for autism spectrum disorders and other neurological disorders origin genetics. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies. Eichler is a scientific advisory board member of Variant Bio, Inc. The other authors have no conflicts of interest to declare.

The UCSD Autism Center of Excellence is a world leader in autism research. It has made pioneering discoveries that enable early detection and treatment of autism in infants and toddlers through innovative behavior and eye tracking tests. The Centers groundbreaking discoveries on the developmental neurobiology of autism have led to fundamental knowledge of the molecular, cellular, and brain growth and function causes of autism.

The Sanford Stem Cell Institute (SSCI) is a global leader in regenerative medicine and a hub for stem cell science and innovation in space. SSCI aims to catalyze critical basic research discoveries, translational advances and clinical progress terrestrially and in space to develop and deliver novel therapeutics to patients. The SSCI is directed by Catriona Jamieson, M.D., Ph.D., a leading physician-scientist in cancer stem cell biology whose research explores the fundamental question of how space alters cancer progression.

Continue reading here:
Embryonic Brain Overgrowth Dictates Autism Severity, New Research Suggests - University of California San Diego

Stem Cells Market Driven by Tech Integration and Innovation – openPR

The global stem cells market is witnessing unprecedented growth, driven by advancements in medical research and increasing acceptance of stem cell therapies. This report delves into the key highlights of the market, analyzing trends, investments, and future prospects that are shaping this dynamic sector.

Market Revenue and Growth Projections

The global stem cells market is on a robust growth trajectory. By 2032, the market is projected to increase by an impressive USD 37.8 billion. This substantial growth is underpinned by a compound annual growth rate (CAGR) of 11.3% from 2023 to 2032. Such a significant CAGR indicates strong market confidence and the potential for continued expansion as more breakthroughs in stem cell research and applications emerge.

Download Sample Report Copy of This Report from Here: https://www.acumenresearchandconsulting.com/request-sample/300

Regional Market Leaders

In 2022, North America dominated the global stem cells market, commanding over 43% of the market share. This leadership position is largely attributed to the extensive research infrastructure, significant funding, and early adoption of advanced medical technologies in the region. The presence of leading research institutions and biotechnology companies in North America further consolidates its market dominance.

Investment in Stem Cell Research

A critical driver of the stem cells market is the substantial investment in research and development. In 2019, the US National Institutes of Health (NIH) invested over $1.5 billion in stem cell research, making it the largest funder globally. This level of investment underscores the importance of stem cells in medical research and the commitment of the US government to advancing this field. The NIH's funding supports a wide range of projects, from basic science to clinical trials, thereby fostering innovation and accelerating the translation of research findings into clinical applications.

Increase in Clinical Trials

The number of clinical trials utilizing stem cells has been steadily increasing over the past decade. By 2020, there were over 5,000 active stem cell trials worldwide. This surge in clinical trials is indicative of the growing confidence in stem cell therapies and their potential to revolutionize medical treatments. Clinical trials are essential for evaluating the safety and efficacy of new therapies, and the high number of ongoing trials suggests a vibrant and active research community working towards bringing new stem cell-based treatments to market.

Therapeutic Potential of Stem Cells

Stem cells hold immense potential for treating a variety of diseases and injuries. According to the NIH, stem cells could be instrumental in treating conditions such as cancer, diabetes, heart disease, and Parkinson's disease. This wide-ranging therapeutic potential is one of the key factors driving investment and research in the field. Stem cells' ability to differentiate into various cell types makes them versatile tools in regenerative medicine, offering hope for treatments that can repair or replace damaged tissues and organs.

Rising Awareness and Acceptance

Another significant factor contributing to the growth of the stem cells market is the rising awareness and acceptance of stem cell therapies. As more research validates the efficacy and safety of these treatments, public and professional acceptance is increasing. This growing acceptance is crucial for market expansion, as it encourages more patients to seek stem cell therapies and more healthcare providers to offer these innovative treatments.

Stem Cells Market Segmentation

Stem Cells Market By Product Adult Stem Cells o Dental Stem Cells o Neuronal Stem Cells o Adipose-derived Stem Cells o Mesenchymal Stem Cells o Dedifferentiated fat (DFAT) Cells o HematopoieticStem Cells o Umbilical Cord Stem Cells o Other ASC's Human Embryonic Stem Cells Very Small Embryonic Like Stem Cells Induced Pluripotent Stem Cells

Stem Cells Market By Application Regenerative Medicine o Oncology o Hematology o Neurology o Injuries o Liver Disorder o Incontinence o Diabetes o Orthopedics o Others Drug Discovery and development

Stem Cells Market By Technology Cryopreservation Cell Acquisition o Bone Marrow Harvest o Apheresis o Umbilical Blood Cord Cell production o Isolation o Therapeutic Cloning o In-Vitro fertilization o Cell Culture Expansion and Sub-Culture

Stem Cells Market By Therapy Autologous Stem Cell Therapy Allogenic Stem Cell Therapy

Future Prospects and Challenges

Looking ahead, the future of the stem cells market appears promising, with continued growth anticipated. However, the market also faces several challenges. Regulatory hurdles, ethical concerns, and the high cost of stem cell therapies are significant barriers that need to be addressed. The regulatory landscape for stem cell treatments is complex and varies significantly across different countries, which can slow down the approval and commercialization of new therapies. Ethical issues related to the use of embryonic stem cells also pose challenges, although the development of induced pluripotent stem cells (iPSCs) has mitigated some of these concerns.

Moreover, the high cost of developing and administering stem cell therapies can limit their accessibility. Ensuring that these therapies are affordable and accessible to a broad patient population will be crucial for the long-term success of the market.

Stem Cells Market Table of Content:

CHAPTER 1. Industry Overview of Stem Cells Market CHAPTER 2. Research Approach CHAPTER 3. Market Dynamics And Competition Analysis CHAPTER 4. Manufacturing Plant Analysis CHAPTER 5. Stem Cells Market By Product CHAPTER 6. Stem Cells Market By Application CHAPTER 7. Stem Cells Market By Technology CHAPTER 8. Stem Cells Market By Therapy CHAPTER 9. North America Stem Cells Market By Country CHAPTER 10. Europe Stem Cells Market By Country CHAPTER 11. Asia Pacific Stem Cells Market By Country CHAPTER 12. Latin America Stem Cells Market By Country CHAPTER 13. Middle East & Africa Stem Cells Market By Country CHAPTER 14. Player Analysis Of Stem Cells Market CHAPTER 15. Company Profile

Conclusion

In conclusion, the global stem cells market is set for significant growth, driven by substantial investments, increasing clinical trials, and the expanding therapeutic potential of stem cells. North America remains at the forefront of this market, supported by strong research funding and infrastructure. While the market faces challenges, particularly in regulatory and ethical domains, the overall outlook is positive. Continued advancements in research and increasing acceptance of stem cell therapies promise to unlock new possibilities in medical treatment, potentially transforming the landscape of healthcare in the coming decades.

Ask Query Here: Richard@acumenresearchandconsulting.com or sales@acumenresearchandconsulting.com

To Purchase this Premium Report@ https://www.acumenresearchandconsulting.com/buy-now/0/300

201, Vaidehi-Saaket, Baner - Pashan Link Rd, Pashan, Pune, Maharashtra 411021

Acumen Research and Consulting (ARC) is a global provider of market intelligence and consulting services to information technology, investment, telecommunication, manufacturing, and consumer technology markets. ARC helps investment communities, IT professionals, and business executives to make fact based decisions on technology purchases and develop firm growth strategies to sustain market competition. With the team size of 100+ Analysts and collective industry experience of more than 200 years, Acumen Research and Consulting assures to deliver a combination of industry knowledge along with global and country level expertise.

This release was published on openPR.

See the article here:
Stem Cells Market Driven by Tech Integration and Innovation - openPR

Vedolizumab for the prevention of intestinal acute GVHD after allogeneic hematopoietic stem cell transplantation: a … – Nature.com

Patients

Patients eligible for the study were aged 12 years, weighed 30kg and had an Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 2 if aged 18 years34 and Karnofsky or Lansky PS60% if aged 16 years or 12 to <16 years35, respectively (see Supplementary Tables 5 and 6 for details of PS scoring systems). All patients were to receive either peripheral blood or bone marrow allo-HSCT for hematologic malignancy from unrelated donors who were 8 of 8 or 7 of 8 human leukocyte antigen (HLA)-matched (a single allele mismatch at HLA-A, HLA-B and HLA-C, and HLA-DRB1 was permitted). A total of 441 patients were screened for eligibility. After screening, 343 patients were randomly assigned 1:1 to receive vedolizumab (174 patients) or placebo (169 patients) treatment. Randomization was stratified by age (patients aged 18 years or aged 12 to <18 years); HLA match (8 of 8 versus 7 of 8); conditioning regimen intensity (myeloablative conditioning (MAC) versus reduced intensity conditioning (RIC)); and anti-thymocyte globulin (ATG) use (with versus without ATG). Patients received either vedolizumab 300mg or placebo intravenously on day 1 and days +13, +41, +69, +97, +125 and +153 after allo-HSCT in addition to standard GVHD prophylaxis (CNI plus methotrexate or mycophenolate mofetil). Nine patients did not receive study treatment, five were randomized to vedolizumab and four were randomized to placebo treatment.

Of 334 patients who received 1 dose of study treatment (analyzed for safety study end points), 333 also received allo-HSCT (analyzed for efficacy study end points), 168 in the vedolizumab group and 165 in the placebo group. For patients discontinuing the study, reasons for discontinuation included death (26 out of 57 patients in the vedolizumab group and 34 out of 71 in the placebo group), withdrawal by the patient (16 versus 18) and adverse events (AEs; 6 versus 5) (Fig. 1). Median (range) exposure to treatment was 40.0 (18.142.1) weeks for vedolizumab and 39.7 (18.142.3) weeks for placebo. In the vedolizumab group, patients received a mean (s.d.) of 5.4 (2.1) and median (range) 7.0 (17) treatment doses; 52.7% of patients in the vedolizumab group received all seven doses. A mean (s.d.) of 5.1 (2.3) and median (range) 7.0 (17) doses were received in the placebo group; 50.9% of patients in this group received all seven doses. Patient numbers were reduced to 60% of the planned sample size of 558 because of early enrollment termination owing to the impact of COVID-19 on recruitment. Consequently, more patients (n=137, 41.1%) received ATG at baseline than the 25% planned.

Discontinuation of the study refers to all patients who discontinued before the end of the long-term follow-up safety survey period of the study, 6 months after the last dose of study treatment. Withdrawn by physician is noted as reason other. Patients included in the analysis for efficacy end points per protocol were those who received 1 dose of study treatment and also received allo-HSCT. One patient was randomized to receive vedolizumab but did not receive allo-HSCT; per protocol, this patient was not included in the analysis of efficacy end points but was included in the analysis of safety end points.

Patient and transplant characteristics were balanced between treatment groups (Table 1 and Extended Data Table 1). The median age was 55.0 years (range, 1674 years; 1 aged <18 years) and 62.8% were male. The most frequent underlying malignancies were acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and acute lymphoid leukemia (ALL). The conditioning regimen intensity was either MAC (52.4% in the vedolizumab group versus 53.9% in the placebo group) or RIC. GVHD prophylaxis (with or without ATG) was tacrolimus (TAC)+methotrexate (MTX; 42.3% versus 50.3%) or TAC+mycophenolate mofetil (MMF; 3.0% versus 3.0%); cyclosporine (CYS)+MTX (30.4% versus 23.0%) or CYS+MMF (14.3% versus 12.1%). The proportion of patients who received ATG prophylaxis was balanced between treatment groups: 42.3% (n=71) in the vedolizumab group versus 40.0% (n=66) in the placebo group; 57.7% versus 60.0% did not receive ATG.

Neutrophil engraftment occurred in 165 patients in the vedolizumab treatment group and 160 patients in the placebo group. The median (range) time to neutrophil engraftment was 16.0 (835) days in the vedolizumab group and 15.0 (831) days in the placebo group. Platelet engraftment occurred in 159 patients in the vedolizumab group and 148 patients in the placebo group. The median (range) time to platelet engraftment was 18.0 (1136) days in the vedolizumab group and 17.0 (0233) days in the placebo group.

The primary study end point was lower-GI aGVHD-free survival by day +180 after allo-HSCT. There were 24 (14.3%) patients in the vedolizumab group with an event of lower-GI aGVHD or death by day +180 after allo-HSCT compared to 47 (28.5%) patients in the placebo group (Fig. 2a). The frequency of lower-GI aGVHD by maximum clinical stage (see Supplementary Table 1 for a description of clinical staging of aGVHD9) is shown in Fig. 2b for each treatment group, with four cases of stage 24 lower-GI aGVHD in the vedolizumab group compared to 14 cases observed in those who received placebo. The KaplanMeier (KM) estimate for lower-GI aGVHD-free survival by day +180 was 85.5% (95% confidence interval (CI) 79.290.1) for the vedolizumab group and 70.9% (63.277.2) for the placebo group (Fig. 2c). The risk of a lower-GI aGVHD event or death by day +180 after allo-HSCT was 55% less in the vedolizumab group compared to the placebo group (hazard ratio (HR) 0.45, 95% CI 0.270.73; P<0.001). Results were consistent for sensitivity analyses of the primary end point (Table 2), including events occurring within a 7-day time frame at day +187 after allo-HSCT, stratified log-rank tests by randomization stratification factors, analysis with corrected stratification information, competing risk analysis and an analysis excluding aGVHD events graded stage 0 or unknown. By day +180 after allo-HSCT, 23 patients (13.7%) in the vedolizumab group versus 43 (26.1%) in the placebo group had an event of death or lower-GI aGVHD (when aGVHD events graded stage 0 or unknown were excluded) (HR 0.47, 95% CI 0.280.78; P=0.0029). In subgroup analyses of the primary end point (Fig. 2d and Extended Data Fig. 1), HRs consistently favored vedolizumab over placebo regardless of HLA match, conditioning regimen intensity, use of ATG or stem-cell source (bone marrow or peripheral blood). The overall incidence of upper-GI aGVHD, skin aGVHD and aGVHD in the liver by day +180 after allo-HSCT was similar between treatment groups (Supplementary Table 7).

Analysis included all randomized patients who received 1 dose of study treatment and received allo-HSCT. All statistical tests were two-sided. a, Graph shows number and proportion of patients with a lower-GI aGVHD event or death; censored for patients who had not had the lower-GI aGVHD event or died or had the event after a prespecified time, for example, last contact or day +180 after allo-HSCT, whichever occurred first. If a patient had a lower-GI aGVHD event and died due to any cause, including lower-GI aGVHD, the time to event was derived as the time to the first qualifying event (lower-GI aGVHD event). b, Frequency of lower-GI aGVHD by maximum clinical stages 04 by day +180 after allo-HSCT for patients in vedolizumab and placebo treatment groups and also the corresponding frequency of skin aGVHD and liver aGVHD in these treatment groups by maximum clinical stages 04 by day +180 after allo-HSCT. CI was based on the ClopperPearson method. c, KM estimate for the primary study end point lower-GI aGVHD-free survival from first study treatment (day 1) to lower-GI aGVHD event or death due to any cause. Red line shows the vedolizumab group; blue line shows the placebo group; open circles indicate censored patients. HR obtained via a Cox proportional hazards model with treatment group, stratified by randomization stratification factors: HLA match (7 of 8 or 8 of 8), conditioning regimen (MAC or RIC), ATG (with or without) and P value from a log-rank test (P=0.0009). d, Forest plot of prespecified subgroup analyses for the primary study end point of lower-GI aGVHD-free survival by day +180 after allo-HSCT: conditioning regimen MAC or RIC, with or without ATG, CNI TAC or CYS, HLA match, and stem cell source peripheral blood or bone marrow. HRs plotted with 95% CIs were obtained via a Cox proportional hazards model with treatment group stratified by randomization strata. Results for the remaining prespecified subgroup analyses are shown in Extended Data Fig. 1.

The KM estimates for the five key secondary end points analyzed at day +180 after allo-HSCT are shown in Fig. 3.

ae, KM estimates for the secondary efficacy end points. Analyses included all randomized patients who received 1 dose of study treatment and allo-HSCT. In the fixed-sequence hierarchical testing procedure, once 1 efficacy end point was not significant (P0.05), testing of subsequent end points was not performed. P values were obtained using a log-rank test unless otherwise stated. All statistical tests were two-sided. *P value is significant for vedolizumab versus placebo. HR and 95% CI values were obtained from a Cox proportional hazards model with treatment group stratified by randomization strata: HLA match (7 of 8 or 8 of 8), conditioning regimen (MAC or RIC) and ATG (with or without). Time to first documented lower-GI aGVHD, relapse of underlying malignancy or death from any cause. Sensitivity analysis, excluding lower-GI aGVHD events classified as clinical grade 0 or unknown. NRM was a competing risk in this competing risk sensitivity analysis; P value for comparison of vedolizumab with placebo was obtained by a Grays test. Time to first documented IBMTR grade CD aGVHD (any organ) or death from any cause. **Death and relapse were competing risks in this sensitivity analysis; an event was defined as IBMTR grade CD aGVHD (any organ) or death. P value was obtained by a Grays test. Death from first dose of study treatment without occurrence of a relapse. Relapse was a competing risk in this sensitivity analysis; NRM was the time from first study treatment to death without occurrence of a relapse; P value was obtained by a Grays test. Overall survival by day +180 was the analysis of the time from the first dose of study treatment to death from any cause. All deaths were defined as events in this analysis. Time to first documented IBMTR grade BD aGVHD (any organ) or death from any cause. Death and relapse were competing risks in this sensitivity analysis; an event was defined as IBMTR grade BD aGVHD (any organ) or death. P value was obtained by a Grays test.

There was a statistically significant difference favoring vedolizumab over placebo for lower-GI aGVHD-free and relapse of the underlying malignancy-free survival by day +180 after transplant. The KM estimated survival for this end point was 78.9% for the vedolizumab treatment group versus 65.4% for the placebo group. Events of lower-GI aGVHD, relapse or death for this end point occurred in 11, 18 and 6 patients, respectively from the vedolizumab group (total of 35, 20.8%) and 31, 13 and 12 (total of 56, 33.9%) in the placebo group (HR 0.56, 95% CI 0.370.86; P=0.0043). A statistically significant treatment difference favoring vedolizumab for this end point was also maintained after a sensitivity analysis excluding stage 0 and unknown lower-GI aGVHD events (HR 0.59, 95% CI 0.380.91; P=0.0130) (Fig. 3). The secondary end point of IBMTR grade CD aGVHD of any organ-free survival by day +180 (see Supplementary Table 3 for description of aGVHD severity grading using the IBMTR severity index), also demonstrated a statistical difference between vedolizumab and placebo treatment groups. The KM estimated survival for this end point was 78.9% for vedolizumab the treatment group versus 67.7% in the placebo group. Events of grade CD aGVHD of any organ or death counted for this end point occurred in 35 patients (20.8%) receiving vedolizumab versus 52 (31.5%) receiving placebo (HR 0.59, 95% CI 0.390.91; P=0.0204). In a competing risk analysis (death and relapse as competing risks), cumulative incidence of IBMTR grade CD aGVHD by day +180 was lower for the vedolizumab group (13.2%, 95% CI 8.618.8) than the placebo group (21.6%, 95% CI 15.628.2; P=0.0446) (Fig. 3). Secondary end point sensitivity analyses (Supplementary Table 8) and subgroup analyses (Extended Data Fig. 2) showed consistent results with decreased risk in the vedolizumab group compared to the placebo treatment group. The secondary end point of non-relapse mortality (NRM) by day +180 did not meet statistical significance, with 10 patients (6.0%) in the vedolizumab group and 19 (11.5%) in the placebo group (HR 0.48, 95% CI 0.221.04; P=0.0668) dying of non-relapse causes. Following the hierarchical statistical testing procedure, the subsequent fourth and fifth secondary end points were not tested for statistical significance. The KM estimate for the fourth secondary end point of overall survival was 89.7% for the vedolizumab treatment group and 84.4% in the placebo group. All-cause deaths by day +180 counted for this analysis occurred in 17 patients (10.1%) in the vedolizumab group and 25 (15.2%) in the placebo group (HR 0.63, 95% CI 0.341.17; P=0.1458). For the fifth secondary end point of IBMTR grade BD aGVHD of any organ-free survival by day +180, KM estimated survival was 66.4% for the vedolizumab treatment group and 52.3% in the placebo group. Grade BD aGVHD events in any organ counted for this end point occurred in 47 patients (28.0%) in the vedolizumab group and 64 (38.8%) in the placebo group with deaths also counted in 9 and 13 patients in the vedolizumab and placebo groups, respectively (HR 0.64, 95% CI 0.460.91; P=0.0105).

Results for the main exploratory end points at day +180 and day +365 after transplant are summarized (Extended Data Tables 3 and 4). The cumulative incidence of all chronic GVHD events by day +180 was 20.7% (95% CI 14.827.2) in the vedolizumab group versus 21.9% (95% CI 15.828.6) in the placebo group (death and relapse as competing risks; nominal P=0.7555). Chronic GVHD requiring systemic immunosuppression by day +180 occurred in three (1.8%) patients in the vedolizumab group (severity was moderate in two patients and severe in one) and four (2.4%) in the placebo group (one mild, two moderate and one patient had severe chronic GVHD) (Extended Data Table 3). KM estimates for GVHD (any organ)-free and relapse (of the underlying malignancy)-free survival by day +180 were 80.1% in the vedolizumab group and 69.7% in the placebo group; events for this end point occurred in 33 (19.6%) of patients in the vedolizumab group and 49 (29.7%) in the placebo group (HR 0.61, 95% CI 0.390.96; nominal P=0.0243). Events of clinical stage 24 lower-GI aGVHD or death by day +180 occurred in fewer patients in the vedolizumab group (19, 11.3%) than in the placebo group (33, 20.0%) (HR 0.52, 95% CI 0.290.91; nominal P=0.0222). KM estimates for clinical stage 24 lower-GI aGVHD-free survival were 88.5% and 79.5%, respectively. By day +180 grade 24 aGVHD-free survival (per MAGIC criteria10, see Supplementary Table 4) also seemed to favor vedolizumab over placebo; KM estimates were 74.1% for vedolizumab and 63.3% for placebo, with events occurring in 43 (25.6%) and 59 (35.8%) patients, respectively (HR 0.67, 95% CI 0.450.99; nominal P=0.0421). Frequency of lower-GI aGVHD by maximum MAGIC grade were also reported for each treatment group, with corresponding values for maximum MAGIC grade of skin and liver aGVHD (Extended Data Table 2).

Progression-free survival in vedolizumab and placebo treatment groups by day +180 were 83.1% (95% CI 76.588.0) versus 77.6% (95% CI 70.483.3), respectively. Cumulative incidence of all relapse and death events for time to relapse (of the underlying malignancy) by day +180 were similar across treatment groups 10.9% (95% CI 6.716.2) for vedolizumab versus 10.6% (95% CI 6.416.0) for placebo (death as a competing risk; nominal P=0.9090). By day +180, there was no significant difference in relapse of the underlying malignancy between treatment groups, occurring in 18 (10.7%) patients from the vedolizumab group and 17 (10.3%) from the placebo group (HR 1.32, 95% CI 0.513.40; nominal P=0.9821; Extended Data Table 3).

Consistent results were obtained for primary and secondary efficacy end points when these were assessed as exploratory study end points 1 year after allo-HSCT (Extended Data Table 4). By day +365 after allo-HSCT, 21.4% of patients in the vedolizumab group and 33.9% in the placebo group had an event of lower-GI aGVHD or death (HR 0.53, 95% CI 0.350.81; nominal P=0.0041). KM estimates for lower-GI aGVHD-free survival 1 year after transplant were 78.1% for vedolizumab and 65.1% for placebo. Events of IBMTR grade CD aGVHD of any organ or death by day +365 occurred in 47 (28.0%) of patients in the vedolizumab group and 59 (35.8%) of patients in the placebo group (HR 0.68, 95% CI 0.461.00; nominal P=0.0709). Death without relapse occurred in 15 patients (8.9%) in the vedolizumab group and 25 (15.2%) in the placebo group (HR 0.49, 95% CI 0.250.95; nominal P=0.0670). All-cause deaths by day +365 occurred in 28 patients (16.7%) in the vedolizumab group and 36 (21.8%) in the placebo group (HR 0.67, 95% CI 0.411.11; nominal P=0.1741). IBMTR grade BD aGVHD in any organ or death events occurred in 69 patients (41.1%) in the vedolizumab group and 82 (49.7%) in the placebo group (HR 0.71, 95% CI 0.520.99; nominal P=0.0534). Incidence of relapse of the underlying malignancy at day +365 was also comparable between treatment groups occurring in 19.6% of patients in the vedolizumab group versus 13.3% for placebo (HR 2.13, 95% CI 0.974.65; nominal P=0.2097; Extended Data Table 4).

The safety analyses included 334 patients (169 patients in the vedolizumab group and 165 in the placebo group) who received 1 dose of study treatment and were assessed up to 18 weeks after the last dose of study treatment. Median (range) treatment exposure was 280.0 (127295) days for the vedolizumab group (mean (s.d.) of 5.4 (2.05) doses) and 278.0 (127296) days for the placebo group (mean 5.1 (2.25) doses). AEs of grade 3 or higher occurred in 92.3% of patients who received vedolizumab and 89.1% who received placebo (Table 3); the most frequent AEs of grade 3 or higher were anemia (29.6% versus 31.5%); neutropenia (31.4% versus 29.7%); febrile neutropenia (43.8% versus 42.4%); stomatitis (27.2% versus 26.7%); and decreased platelet count (21.9% versus 24.8%). Serious AEs occurred in 120 patients (71.0%) who received vedolizumab and 114 (69.1%) who received placebo (Extended Data Table 5). AEs led to treatment discontinuation in 44 (26.0%) versus 51 patients (30.9%) (Extended Data Table 6).

Table 3 lists serious infections among other AEs (serious and non-serious) prespecified as being of special interest (AESIs) in the study. Occurrence of post-transplant lymphoproliferative disease and Clostridioides infections are also reported in Table 3. AESIs included cytomegalovirus (CMV) colitis, which was reported in one patient from each treatment group (0.6% of patients in vedolizumab group 0.6% in the placebo group). Overall, CMV reactivation was reported in 23.7% of patients in the vedolizumab group and 18.2% in the placebo group. Most of the CMV reactivation events were grade 1 to grade 2 and none was above grade 3. The proportions of patients with grade 3 CMV reactivation were similar in both treatment groups. CMV infections were analyzed in subgroups of patients who received ATG prophylaxis or not (Supplementary Table 9). For those receiving ATG, grade 3 CMV infections occurred in seven patients (4.1%) in the vedolizumab group and six patients (3.6%) in the placebo group and serious CMV infections in seven (4.1%) versus three patients (1.8%), respectively. For patients treated without ATG, the frequency of grade 3 CMV infections was numerically lower in vedolizumab-treated versus placebo-treated patients (1 (0.6%) versus 3 (1.8%), respectively), one patient in the vedolizumab treatment group had a serious CMV infection. Other serious infections (excluding CMV colitis) occurred in 125 (74.0%) of patients receiving vedolizumab versus 111 (67.3%) receiving placebo. These are listed by infection type (Extended Data Table 7). The most common serious infections were CMV reactivation (23.7% versus 18.2%); pneumonia (7.7% versus 8.5%); sepsis (5.3% versus 7.3%); and bacteremia (4.7% versus 5.5%) (Table 3). Serious abdominal and GI infections occurred in eight patients receiving vedolizumab (4.7%) and three receiving placebo (1.8%). Clostridioides infections occurred in 14 (8.3%) patients in the vedolizumab treatment group and six (3.6%) patients in placebo treatment group; of these 2.4% of patients in each treatment group had Clostridioides colitis (C.difficile colitis or Clostridioides colitis). For safety end points, statistical analyses were not adequately powered for comparisons between treatment groups. There were five patients with an AE of human polyomavirus infection; none of these was diagnosed as progressive multifocal leukoencephalopathy (PML). One patient with AML relapse and subsequent additional therapy developed PML, with a fatal outcome ~6 months after the last dose of vedolizumab. An independent adjudication committee deemed the most probable cause of this event to be the immunosuppressive treatment for AML. Secondary malignancies occurred in seven patients (4.1%) in the vedolizumab group and 16 (9.7%) in the placebo group. Post-transplant lymphoproliferative disease occurred in three patients (1.8%) in the placebo group only (Table 3).

Overall, 48 patients died during the period from first dose of study treatment to 18 weeks after last dose: 21 (12.4%) in the vedolizumab group and 27 (16.4%) in the placebo group. Leading causes of death were multiple organ dysfunction syndrome (3.0% versus 1.8%); AML recurrence (0.6% versus 2.4%); respiratory failure (1.8% versus 1.2%); pneumonia (1.2% versus 1.2%); and sepsis (0.0% versus 1.8%). Intestinal aGVHD was listed as cause of death in 0.0% versus 1.2% patients, aGVHD in liver (0.6% versus 0.6%) and aGVHD (0.6% versus 0.0%). An additional 17 patients died during the period from 18 weeks post-treatment to 12 months after HSCT: eight in the vedolizumab group and nine in the placebo group (Extended Data Table 8).

View post:
Vedolizumab for the prevention of intestinal acute GVHD after allogeneic hematopoietic stem cell transplantation: a ... - Nature.com