Author Archives: admin


Learn global specifications of the Platelet Rich Plasma and Stem Cell Alopecia Treatment Market – StartupNG

Global Platelet Rich Plasma and Stem Cell Alopecia Treatment Market Report 2019 Market Size, Share, Price, Trend and Forecast is a professional and in-depth study on the current state of the global Platelet Rich Plasma and Stem Cell Alopecia Treatment industry.

The report also covers segment data, including: type segment, industry segment, channel segment etc. cover different segment market size, both volume and value. Also cover different industries clients information, which is very important for the manufacturers.

There are 4 key segments covered in this report: competitor segment, product type segment, end use/application segment and geography segment.

Make An EnquiryAbout This Report @ https://www.researchmoz.com/enquiry.php?type=E&repid=2640669&source=atm

For competitor segment, the report includes global key players of Platelet Rich Plasma and Stem Cell Alopecia Treatment as well as some small players.

Market: Drivers and Restrains The research report has incorporated the analysis of different factors that augment the markets growth. It constitutes trends, restraints, and drivers that transform the market in either a positive or negative manner. This section also provides the scope of different segments and applications that can potentially influence the market in the future. The detailed information is based on current trends and historic milestones. This section also provides an analysis of the volume of sales about the global market and also about each type from 2015 to 2026. This section mentions the volume of sales by region from 2015 to 2026. Pricing analysis is included in the report according to each type from the year 2015 to 2026, manufacturer from 2015 to 2020, region from 2015 to 2020, and global price from 2015 to 2026. A thorough evaluation of the restrains included in the report portrays the contrast to drivers and gives room for strategic planning. Factors that overshadow the market growth are pivotal as they can be understood to devise different bends for getting hold of the lucrative opportunities that are present in the ever-growing market. Additionally, insights into market experts opinions have been taken to understand the market better. Global Platelet Rich Plasma and Stem Cell Alopecia Treatment Market: Segment Analysis The research report includes specific segments such as application and product type. Each type provides information about the sales during the forecast period of 2015 to 2026. The application segment also provides revenue by volume and sales during the forecast period of 2015 to 2026. Understanding the segments helps in identifying the importance of different factors that aid the market growth. Global Platelet Rich Plasma and Stem Cell Alopecia Treatment Market: Regional Analysis The research report includes a detailed study of regions of North America, Europe, Asia Pacific, Latin America, and Middle East and Africa. The report has been curated after observing and studying various factors that determine regional growth such as economic, environmental, social, technological, and political status of the particular region. Analysts have studied the data of revenue, sales, and manufacturers of each region. This section analyses region-wise revenue and volume for the forecast period of 2015 to 2026. These analyses will help the reader to understand the potential worth of investment in a particular region. Global Platelet Rich Plasma and Stem Cell Alopecia Treatment Market: Competitive Landscape This section of the report identifies various key manufacturers of the market. It helps the reader understand the strategies and collaborations that players are focusing on combat competition in the market. The comprehensive report provides a significant microscopic look at the market. The reader can identify the footprints of the manufacturers by knowing about the global revenue of manufacturers, the global price of manufacturers, and sales by manufacturers during the forecast period of 2015 to 2019. Following are the segments covered by the report are: Androgenic Alopecia Congenital Alopecia Cicatricial Or Scarring Alopecia By Application: Hospital Dermatology Clinic Other Key Players: The Key manufacturers that are operating in the global Platelet Rich Plasma and Stem Cell Alopecia Treatment market are: Kerastem Eclipse Regen Lab SA Stemcell Technologies RepliCel Life Sciences Histogen Glofinn Oy. Competitive Landscape The analysts have provided a comprehensive analysis of the competitive landscape of the global Platelet Rich Plasma and Stem Cell Alopecia Treatment market with the company market structure and market share analysis of the top players. The innovative trends and developments, mergers and acquisitions, product portfolio, and new product innovation to provide a dashboard view of the market, ultimately providing the readers accurate measure of the current market developments, business strategies, and key financials.

Request Sample Report @ https://www.researchmoz.com/enquiry.php?type=S&repid=2640669&source=atm

Important Key questions answered in Platelet Rich Plasma and Stem Cell Alopecia Treatment market report:

What will the market growth rate, Overview, and Analysis by Type of Platelet Rich Plasma and Stem Cell Alopecia Treatment in 2024?

What are the key factors affecting market dynamics? What are the drivers, challenges, and business risks in Platelet Rich Plasma and Stem Cell Alopecia Treatment market?

What is Dynamics, This Overview Includes Analysis of Scope and price analysis of top Manufacturers Profiles?

Who Are Opportunities, Risk and Driving Force of Platelet Rich Plasma and Stem Cell Alopecia Treatment market? Knows Upstream Raw Materials Sourcing and Downstream Buyers.

Who are the key manufacturers in space? Business Overview by Type, Applications, Gross Margin, and Market Share

What are the opportunities and threats faced by manufacturers in the global market?

You can Buy This Report from Here @ https://www.researchmoz.com/checkout?rep_id=2640669&licType=S&source=atm

The content of the study subjects, includes a total of 15 chapters:

Chapter 1, to describe Platelet Rich Plasma and Stem Cell Alopecia Treatment product scope, market overview, market opportunities, market driving force and market risks.

Chapter 2, to profile the top manufacturers of Platelet Rich Plasma and Stem Cell Alopecia Treatment , with price, sales, revenue and global market share of Platelet Rich Plasma and Stem Cell Alopecia Treatment in 2019 and 2015.

Chapter 3, the Platelet Rich Plasma and Stem Cell Alopecia Treatment competitive situation, sales, revenue and global market share of top manufacturers are analyzed emphatically by landscape contrast.

Chapter 4, the Platelet Rich Plasma and Stem Cell Alopecia Treatment breakdown data are shown at the regional level, to show the sales, revenue and growth by regions, from 2019 to 2025.

Chapter 5, 6, 7, 8 and 9, to break the sales data at the country level, with sales, revenue and market share for key countries in the world, from 2019 to 2025.

Chapter 10 and 11, to segment the sales by type and application, with sales market share and growth rate by type, application, from 2019 to 2025.

Chapter 12, Platelet Rich Plasma and Stem Cell Alopecia Treatment market forecast, by regions, type and application, with sales and revenue, from 2019 to 2025.

Chapter 13, 14 and 15, to describe Platelet Rich Plasma and Stem Cell Alopecia Treatment sales channel, distributors, customers, research findings and conclusion, appendix and data source.

Read the original here:
Learn global specifications of the Platelet Rich Plasma and Stem Cell Alopecia Treatment Market - StartupNG

Hill Highlights the Potential of Selinexor as a Less Intensive Option for DLBCL – OncLive

Selinexor (Xpovio) may serve as a favorable therapeutic option for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) who are not eligible for intensive chemotherapy or CAR T-cell therapy, according to Brian T. Hill, MD, PhD, who added that the agent is now being explored in combination as well as in earlier lines of treatment.

In June 2020, the FDA approved selinexor for the treatment of patients with relapsed/refractory DLBCL, not otherwise specified, including DLBCL arising from follicular lymphoma, following at least 2 lines of systemic therapy.

The regulatory decision was based on data from the phase 2b SADAL trial(NCT02227251),in which the agent elicited a 29% overall response rate (ORR; 95% CI, 22-38) in a total of 129 patients with DLBCL after 2 to 5 systemic regimens; this included a complete response rate of 13%. Notably, 38% of patients who achieved a partial response or CR had response durations of at least 6 months; 15% had response durations that persisted for at least 12 months. These responses were encouraging, noted Hill, especially for such a heavily pretreated population.

Selinexor is an oral agent that can potentially be taken for prolonged periods of time with adequate supportive care and monitoring for adverse effects (AEs); that's new to the field and new to this disease, said Hill. All of the effective therapies we've had previously have been exclusively intravenous or rely on intravenous therapy. Particularly for older patients who are not candidates for intensive therapy such as autologous stem cell transplant or CAR T-cell therapy, [selinexor] may represent a viable treatment strategy.

In an interview withOncLive,Hill, director of the Lymphoid Malignancies Program and a staff physician at the Cleveland Clinic Taussig Cancer Institute, shed light on XPO1 as a target in DLBCL, the emergence of selinexor in the treatment landscape, and exciting agents in the pipeline.

OncLive: Could you start off by describing the challenges faced in managing heavily pretreated patients with DLBCL?

Hill: After [progression on] frontline therapy, patients with DLBCL are at high risk for [additional] treatment failure and poor survival. We had autologous stem cell transplant for appropriate candidates and now we have CAR T-cell therapy, as well. However, beyond those 2 relatively intense modalities of treatment, historically, we've had very few tools to treat patients who are in a deep relapsed or refractory state.

How has treatment evolved in recent years?

The major change in the treatment of [patients with] relapsed DLBCL was introduced a couple of years ago with the FDA approval of CAR T-cell therapy. Before this modality, we really did not have any good [methods for] achieving durable remission for patients who had relapsed after autologous stem cell transplant, or for those who could never achieve sufficient disease control or have enough chemosensitivity to make it to transplant.

We're now in this postCAR T era, but the reality is that the rate of durable remission in the best of circumstances, even with CAR T-cell therapy, [ranges from approximately] 40% to 50% [of patients who go on to achieve] durable remission. That means that even with CAR T cells, over half of patients are still going to progress on their treatment. There's still an unmet need for effective therapies that can keep patients going beyond that.

Could you speak to XPO1 as a target in this disease?

XPO1 is a nuclear export protein, which shuttles various transcription factors and other regulatory proteins in and out of the cell nucleus. By inhibiting XPO1 with the selective nuclear export inhibitor selinexor, their cell undergoes apoptosis through a variety of mechanisms. This is a novel target we haven't had before in oncology.

Selinexor was recently approved by the FDA. Could you speak to thefindings from the phase 2b SADAL trialthat led to its approval?

Selinexor was previously FDA approved for use in heavily pretreated multiple myeloma and [the agent] recently gained approval for relapsed/refractory DLBCL based on findings from the SADAL trial. This [trial was done in] a heavily pretreated patient population, many of whom received multiple lines of previous therapy, including autologous stem cell transplant. In these patients, selinexor was given orally twice a week at a couple of different doses, either 100 mg or 60 mg. The toxicity seen at the high dose was significant in terms of cytopenia and gastrointestinal [AEs]. However, those AEs [were reduced when the drug was given] at the dose of 60 mg twice a week. The ORR was [around] 30%, which for a heavily pretreated patient population is very reasonable.

Is selinexor under examination in any other clinical trials?

As is frequently the case with new drug approvals, selinexor was shown to have activity in an extensively pretreated patient population. The natural progression of [research and] development is going to be to move the agent into earlier lines of treatment.

Right now, the drug is being [evaluated in] various second- and third-line platinum-based chemotherapy combinations that still have activity in DLBCL; the potential that this may be additive [in terms of] efficacy without additional toxicity is being examined, as well.

Beyond this agent, are any efforts examining XPO1 inhibition?

This target is now being explored in a wide variety of malignancies. In addition to multiple myeloma and DLBCL, [XPO1 inhibitors] now being combined with other pathway inhibitors, both for hematologic malignancies and for solid tumors.

Are any other notable agents coming down the pike that you wanted to highlight?

Just within the past year, we've had 3 drugs approved in the relapsed/refractory DLBCL setting. We have the antibody-drug conjugate polatuzumab vedotin(Polivy); the monoclonal antibody [targeted] against CD19, tafasitamab-cxix (Monjuvi), which is used in combination with lenalidomide(Revlimid); and selinexor.

[These agents are] welcome additions; [its important] to have more than 1 option [for] this patient population because it's unlikely that any of these [agents] are going to be curative. However, if were able to extend the patient's wellbeing and livelihood for a period of time following progression on curative intent therapy, [were] still clinically benefitting them.

FDA approves selinexor for relapsed/refractory diffuse large B-cell lymphoma. News release. FDA. June 22, 2020. Accessed August 30, 2020. bit.ly/37VnEXd.

Visit link:
Hill Highlights the Potential of Selinexor as a Less Intensive Option for DLBCL - OncLive

Emerging Evidence Supports the Use of Narsoplimab in HSCT-TMA – OncLive

During the 2020 European Society for Blood and Marrow Transplantation Annual Meeting, Rafael F. Duarte, MD, PhD, FRCP, of the Hospital Universitario Puerta de Hierro Majadahonda in Madrid, Spain, presented 2 real-world clinical cases in which the investigational monoclonal antibody narsoplimab (OMS721) demonstrated clinical benefit in patients with hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA).

Because the selection of patients for clinical trials has limitations, and more so, because running a trial is a hard endeavor for this difficult complication, [I wanted to share] some hands-on experience that we have had with narsoplimab outside of the trial with some case studies of patients who have been treated in a compassionate-use basis, said Duarte.

First, Duarte shared a case of a 19-year-old female who received narsoplimab following matched-sibling allogeneic HSCT to treat her B-cell acute lymphoblastic leukemia (B-ALL) in first complete remission.

At 5 months, the patient experienced late-onset acute graft-versus-host disease (GVHD) and severe HSCT-TMA with lower gastrointestinal (GI) bleeding and ischemic ulcers. While skin involvement of GVHD resolved, she received initial treatment with 1 dose of eculizumab (Soliris) due to persistent GI symptoms after steroids, mesenchymal stromal cells, and extracorporeal photopheresis. Additionally, she received 4 mg/kg of narsoplimab once or twice weekly for a total of 18 doses.

We asked for narsoplimab purely on the basis that this was a severely immunocompromised patient who had experienced complications before and who had been receiving a lot of immunosuppression for the treatment of GVHD, said Duarte. We tried to minimize immunosuppression, so we thought narsoplimab would be a good option.

According to Duarte, the patients GI bleeding and microangiopathy hemolytic anemia resolved quickly and dramatically after starting narsoplimab. Additionally, she became transfusion independent with platelet counts above 100 x 109 per liter.

At 21 months, the patient remains in complete remission (CR) of B-ALL and is devoid of signs of HSCT-TMA after discontinuing narsoplimab.

Subsequently, Duarte presented another, more complex case of a 48-year-old male with HIV and Hodgkin lymphoma who was in his third CR.

Following CCR5-32/32 HSCT, the patient experienced very early HSCT-TMA on day 0. Subsequently, he had rapid severe renal failure that required hemodialysis.

Initial treatment with calcineurin inhibitor withdrawal did not elicit any response, so he was started on narsoplimab at 4 mg/kg twice weekly on day 6. He received a total of 8 doses of narsoplimab.

The patients lactate dehydrogenase (LDH), bilirubin, and schistocyte counts improved rapidly following narsoplimab initiation. Additionally, the patient derived partial improvement of renal function and fluid management, although he required continued dialysis.

Despite this, at 31 days post-transplant, the patient had multiple secondary complications as a result of the CCR5-32/32 HSCT and experienced sudden death. The death was not thought to be related to TMA and no autopsy was granted.

We dont have a better explanation regarding what happened with this patient, unfortunately, Duarte explained. We think we are seeing that many of the patients who undergo transplant with this mutated CCR5-32/32 tend to have greater mortality and greater complications than HIV-positive patients who undergo transplant with standard [procedure].

Duarte also presented findings from the pivotal, phase 2 trial, in which narsoplimab demonstrated high rates of CRs, as well as improved laboratory and clinical markers among patients with HSCT-TMA.

Narsoplimab was previously granted a breakthrough therapy designation by the FDA for the treatment of patients with high-risk TA-TMA. In addition, the agent was granted an orphan drug designation for TA-TMA therapy and complement-mediated TMA prevention.

Findings from the single-arm, open-label phase 2 trial demonstrated a 54% CR rate in all treated patients (n = 28) with the mannan-binding lectin-associated serine protease-2 inhibitor (95% CI, 34%-72%). Additionally, patients treated per protocol recommendations (n = 23), which entailed 4 weeks or more of dosing, achieved a CR rate of 65% (95% CI, 43%-84%).

At 100 days following HSCT-TMA diagnosis, 68% of all treated patients, 83% of patients treated per protocol, and 93% of treatment responders (n = 15) were alive.

Eligible patients had to be 18 years of older at screening, which occurred during the patients first visit. Additionally, patients had to have persistent HSCT-TMA as defined by a platelet count less than 150,000 per L, evidence of microangiopathy hemolysis such as the presence of schistocytes, serum LDH greater than upper limit of normal, or haptoglobin less than the lower limit of normal, and renal dysfunction defined as doubling of serum creatinine compared with pre-transplant level. All of the following had to be present for at least 2 weeks following modification or discontinuation of calcineurin inhibitors.

Patients who had eculizumab therapy within 3 months of screening, positive direct Coombs test, or active systemic bacteria or fungal infection that required antimicrobial therapy beyond prophylactic antimicrobial therapy as a standard of care were excluded from the study.

Response-based efficacy requiring improvement in TMA laboratory markers of platelet count and LDH and improvement in clinical status, as well as safety, served as the primary end points of the trial. Secondary end points included survival and change from baseline laboratory markers.

Regarding laboratory markers, LDH had to be less than 1.5 L. For patients who had a baseline platelet count of 20,000/L, improvement was defined as a tripling of baseline platelet count more than 30,000 and freedom from platelet transfusion. For patients with a baseline platelet count of more than 20,000, improvement was defined as an increased count of least 50% and absolute count of more than 75,000, as well as freedom from platelet transfusion.

Clinical improvement was based off any of the following improvements in specific organ function. Patients could derive blood improvement defined as transfusion freedom; renal improvement defined as a reduction of creatinine of more than 40%, normalization of creatinine and more than 20% reduction of creatinine, or discontinuation of renal replacement therapy; pulmonary improvement defined as extubation and discontinuation of ventilator support, or discontinuation of non-invasive mechanical ventilation; gastrointestinal improvement defined as improvement assessed by MAGIC (Mount Sinai GVHD International Consortium) criteria; or neurological improvement defined as limited to stroke, posterior reversible encephalopathy syndrome, seizures, and weakness.

Eligible patients had an average age of 48, and 71% were male. Moreover, 96% of patients had malignant underlying disease. Regarding risk factors, 64% had GVHD, 75% had significant infection, 14% had non-infectious pulmonary complications, such as idiopathy pneumonia syndrome or diffuse alveolar hemorrhage, and 50% had neurological signs.

Moreover, the study population was defined as high risk as 93% of patients had multiple risk factors associated with poor outcome.

Regarding safety, any-grade toxicities were observed in 92.9% of patients treated with narsoplimab. The most common adverse effects (AEs) included nausea, vomiting, diarrhea, hypokalemia, neutropenia, and fever.

Additionally, 21% of patients died while on study; however, all deaths were attributed to common complications of HSCT.

Investigators concluded that similar AEs are associated with patients who undergo transplant and that narsoplimab was generally well tolerated.

These are very highly encouraging results with narsoplimab in patients with very severe TMA who are unresponsive to other treatments. These results suggest that narsoplimab may be of benefit in these severely ill, complex patients with TMA, including those in the most complex clinical scenarios, Duarte concluded.

Reference

Duarte R. MASP-2 inhibition with the investigational agent narsoplimab for the treatment of HSCT-TMA: overview of data and case discussion. Presented at: 2020 European Society for Blood and Marrow Transplantation Annual Meeting; August 30-September 2, 2020; Virtual. Session IS28-4.

Originally posted here:
Emerging Evidence Supports the Use of Narsoplimab in HSCT-TMA - OncLive

Blood cancer survivor who found donor ‘at the eleventh hour’ highlights importance of stem cell donations – Leicestershire Live

Rik Basra was diagnosed with a deadly form of blood cancer in 2009, and then again in 2011.

The father of two was fortunate enough to survive the Acute Myeloid Leukaemia after a last-minute stem cell donor was found in Germany.

The stem cell transplant was successful, which meant the former Leicestershire Police employee could continue to spend time with his family.

Speaking to LeicestershireLive, he detailed his experience and stressed the importance of people joining the donor register.

He said: "I was diagnosed in 2009 originally and was cleared, but then in 2011 it came back.

"The second time I was told that I would need a stem cell transplant and without one I wouldn't make it.

"I had actually finished my last round of chemotherapy and they couldn't give me anymore, because it would have killed me.

"But they managed to find a donor at the 11th hour from someone in Germany."

When the donor was found Rik and his family felt as though all their Christmases had come all at once, he said.

It wasn't a perfect match, but it was enough to give Rik a fighting chance.

After having the stem cell transplant on Christmas Eve in 2011, Rik hasn't had any problems since and says he has got his future back.

"I had been told to make funeral arrangements before that," he said.

"I was shocked and actually I wanted to jump up and down in the air, it was such a surprise.

"Before that, we were just hoping for the best and preparing for the worst.

"We were hoping that some miracle could happen and it did; we got a match. And you have to remember that all those searches had taken place, so this came completely out of the blue."

Want a free daily bulletin - plus breaking news alerts direct to your inbox? Then sign up to our email newsletter service!

All you need to do is type your email address into the 'sign up to free daily alerts' box. It's at the top of this article.

It's also on any stories on the website - simply click 'subscribe' and you can expect your first newsletter at the next release.

Alternatively, click here to sign up online.

Decide later that you no longer wish to receive the emails? No problem - you can just follow the unsubscribe link.

But Rik's situation isn't unique. He said every 14 minutes someone else is diagnosed and in need of the very same stem cell treatment that saved his life.

For some, that match is never found and the arrival of Covid-19 has only reduced the number of people ready and willing to donate.

"It's still really important that people sign up to the register," said Rik.

"Blood cancer doesn't stop for Covid-19.

"You don't have to die to donate your stem cells.

"Anyone could be diagnosed. It's a vested interested for everyone to get involved and do something.

"All the things you take for granted, which were challenging for me, I can now do. It has saved my life and I have got my future back.

"I have two daughters and a granddaughter and I wouldn't have known her and she wouldn't have known me if it wasn't for the donation."

Since his treatment, he has set up Rik Basra Leukaemia Campaign in which he seeks to help people from all different backgrounds join the register and reassures them about any worries they may have.

Anthony Nolan is a charity that works in the areas of leukaemia and hematopoietic stem cell transplantation.

Since the start of the lockdown in March this year, they have seen a huge downfall in the number of donations not just in Leicester but all over the UK.

From March to August 2019, Anthony Nolan held over 300 stem cell donor recruitment events which added over 12,500 donors to the register. Since lockdown in March this year, theyve held zero.

Nearly 19,000 fewer people have joined the stem cell register so far this year compared to the same period in 2019.

In Leicester, between March and August last year, 557 people joined the Anthony Nolan register compared to just 190 between March and August this year.

Henny Braund, chief executive of Anthony Nolan, says: "Unfortunately, the coronavirus pandemic has had a serious impact on our ability to talk to people about the Anthony Nolan register and about their life-saving potential.

"Social distancing restrictions have meant that donor recruitment events have been cancelled and we havent been able to speak to students at schools and universities like we usually would.

"This has resulted in a drop in sign-ups to the register, however transplants continue to happen around the world, which means that we still desperately need people to join the Anthony Nolan register.

"The more people join, the more opportunities are afforded to patients who urgently need treatment. We are particularly calling on young men aged 16-30 to join, as they are the most likely to be chosen to donate."

Joining the register is easy and it can be done online.

If you wish to sign up to the register and help to save lives by donating your stem cells, you can do so by clicking here.

Read the original here:
Blood cancer survivor who found donor 'at the eleventh hour' highlights importance of stem cell donations - Leicestershire Live

Elixirgen Therapeutics planning to begin Phase I/II Clinical Trials of its COVID-19 Vaccine Candidate EXG-5003 at Fujita Health University | Vaccines…

Details Category: Vaccines Published on Tuesday, 01 September 2020 17:45 Hits: 64

BALTIMORE, MD, USA I September 1, 2020 I Elixirgen Therapeutics, Inc., a Baltimore-based biotechnology company focused on the discovery, development and commercialization of therapies for genetic diseases and vaccines, announced that Fujita Health University has received acontract from the Japan Agency for Medical Research and Development (AMED) to initiate Phase I/II clinical trials of the company's COVID-19 vaccine candidate, EXG-5003. Clinical trials are expected to begin at Fujita Health University Hospital in Aichi, Japan in Q1 2021.

EXG-5003 is a temperature-sensitive self-replicating RNA vaccine expressing the receptor binding domain of the SARS-CoV-2 spike protein. EXG-5003 was optimized for intradermal injection withpotential dose-sparing and safety benefits.

About Elixirgen Therapeutics, Inc.

Elixirgen Therapeutics, Inc. is a Baltimore-based biotechnology company, which is focused on curing humanity's ailments through innovations in gene and cell therapy, including stem cell therapy. Elixirgen Therapeutics, Inc. is now applying its RNA technology to the development of a COVID-19 vaccine.For more information visit http://www.ElixirgenTherapeutics.com

About Fujita Health University

Fujita Health University plays a major role in treating COVID-19 patients and conducting its clinical trials in Japan. For more information visit http://www.fujita-hu.ac.jp/en/

SOURCE: Elixirgen Therapeutics

Read the original:
Elixirgen Therapeutics planning to begin Phase I/II Clinical Trials of its COVID-19 Vaccine Candidate EXG-5003 at Fujita Health University | Vaccines...

How Groups of Cells Cooperate to Build Organs and Organisms – The Scientist

Efforts to use regenerative medicinewhich seeks to address ailments as diverse as birth defects, traumatic injury, aging, degenerative disease, and the disorganized growth of cancerwould be greatly aided by solving one fundamental puzzle: How do cellular collectives orchestrate the building of complex, three-dimensional structures?

While genomes predictably encode the proteins present in cells, a simple molecular parts list does not tell us enough about the anatomical layout or regenerative potential of the body that the cells will work to construct. Genomes are not a blueprint for anatomy, and genome editing is fundamentally limited by the fact that its very hard to infer which genes to tweak, and how, to achieve desired complex anatomical outcomes. Similarly, stem cells generate the building blocks of organs, but the ability to organize specific cell types into a working human hand or eye has been and will be beyond the grasp of direct manipulation for a very long time.

But researchers working in the fields of synthetic morphology and regenerative biophysics are beginning to understand the rules governing the plasticity of organ growth and repair. Rather than micromanaging tasks that are too complex to implement directly at the cellular or molecular level, what if we solved the mystery of how groups of cells cooperate to construct specific multicellular bodies during embryogenesis and regeneration? Perhaps then we could figure out how to motivate cell collectives to build whatever anatomical features we want.

New approaches now allow us to target the processes that implement anatomical decision-making without genetic engineering. In January, using such tools, crafted in my lab at Tufts Universitys Allen Discovery Center and by computer scientists in Josh Bongards lab at the University of Vermont, we were able to create novel living machines, artificial bodies with morphologies and behaviors completely different from the default anatomy of the frog species (Xenopus laevis) whose cells we used. These cells rebooted their multicellularity into a new form, without genomic changes. This represents an extremely exciting sandbox in which bioengineers can play, with the aim of decoding the logic of anatomical and behavioral control, as well as understanding the plasticity of cells and the relationship of genomes to anatomies.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking. Resolving the whole picture will involve understanding not only the mechanisms by which cells operate, but also elucidating the computations that cells and groups of cells carry out to orchestrate tissue and organ construction on a whole-body scale. The next generation of advances in this area of research will emerge from the flow of ideas between computer scientists and biologists. Unlocking the full potential of regenerative medicine will require biology to take the journey computer science has already taken, from focusing on the hardwarethe proteins and biochemical pathways that carry out cellular operationsto the physiological software that enables networks of cells to acquire, store, and act on information about organ and indeed whole-body geometry.

In the computer world, this transition from rewiring hardware to reprogramming the information flow by changing the inputs gave rise to the information technology revolution. This shift of perspective could transform biology, allowing scientists to achieve the still-futuristic visions of regenerative medicine. An understanding of how independent, competent agents such as cells cooperate and compete toward robust outcomes, despite noise and changing environmental conditions, would also inform engineering. Swarm robotics, Internet of Things, and even the development of general artificial intelligence will all be enriched by the ability to read out and set the anatomical states toward which cell collectives build, because they share a fundamental underlying problem: how to control the emergent outcomes of systems composed of many interacting units or individuals.

Many types of embryos can regenerate entirely if cut in half, and some species are proficient regenerators as adults. Axolotls (Ambystoma mexicanum) regenerate their limbs, eyes, spinal cords, jaws, and portions of the brain throughout life. Planarian flatworms (class Turbellaria), meanwhile, can regrow absolutely any part of their body; when the animal is cut into pieces, each piece knows exactly whats missing and regenerates to be a perfect, tiny worm.

The remarkable thing is not simply that growth begins after wounding and that various cell types are generated, but that these bodies will grow and remodel until a correct anatomy is complete, and then they stop. How does the system identify the correct target morphology, orchestrate individual cell behaviors to get there, and determine when the job is done? How does it communicate this information to control underlying cell activities?

Several years ago, my lab found that Xenopus tadpoles with their facial organs experimentally mixed up into incorrect positions still have largely normal faces once theyve matured, as the organs move and remodel through unnatural paths. Last year, a colleague at Tufts came to a similar conclusion: the Xenopus genome does not encode a hardwired set of instructions for the movements of different organs during metamorphosis from tadpole to frog, but rather encodes molecular hardware that executes a kind of error minimization loop, comparing the current anatomy to the target frog morphology and working to progressively reduce the difference between them. Once a rough spatial specification of the layout is achieved, that triggers the cessation of further remodeling.

The deep puzzle of how competent agents such as cells work together to pursue goals such as building, remodeling, or repairing a complex organ to a predetermined spec is well illustrated by planaria. Despite having a mechanistic understanding of stem cell specification pathways and axial chemical gradients, scientists really dont know what determines the intricate shape and structure of the flatworms head. It is also unknown how planaria perfectly regenerate the same anatomy, even as their genomes have accrued mutations over eons of somatic inheritance. Because some species of planaria reproduce by fission and regeneration, any mutation that doesnt kill the neoblastthe adult stem cell that gives rise to cells that regenerate new tissueis propagated to the next generation. The worms incredibly messy genome shows evidence of this process, and cells in an individual planarian can have different numbers of chromosomes. Still, fragmented planaria regenerate their body shape with nearly 100 percent anatomical fidelity.

Permanent editing of the encoded target morphology without genomic editing reveals a new kind of epigenetics.

So how do cell groups encode the patterns they build, and how do they know to stop once a target anatomy is achieved? What would happen, for example, if neoblasts from a planarian species with a flat head were transplanted into a worm of a species with a round or triangular head that had the head amputated? Which shape would result from this heterogeneous mixture? To date, none of the high-resolution molecular genetic studies of planaria give any prediction for the results of this experiment, because so far they have all focused on the cellular hardware, not on the logic of the softwareimplemented by chemical, mechanical, and electrical signaling among cellsthat controls large-scale outcomes and enables remodeling to stop when a specific morphology has been achieved.

Understanding how cells and tissues make real-time anatomical decisions is central not only to achieving regenerative outcomes too complex for us to manage directly, but also to solving problems such as cancer. While the view of cancer as a genetic disorder still largely drives clinical approaches, recent literature supports a view of cancer as cells simply not being able to receive the physiological signals that maintain the normally tight controls of anatomical homeostasis. Cut off from these patterning cues, individual cells revert to their ancient unicellular lifestyle and treat the rest of the body as external environment, often to ruinous effect. If we understand the mechanisms that scale single-cell homeostatic setpoints into tissue- and organ-level anatomical goal states and the conditions under which the anatomical error reduction control loop breaks down, we may be able to provide stimuli to gain control of rogue cancer cells without either gene therapy or chemotherapy.

During morphogenesis, cells cooperate to reliably build anatomical structures. Many living systems remodel and regenerate tissues or organs despite considerable damagethat is, they progressively reduce deviations from specific target morphologies, and halt growth and remodeling when those morphologies are achieved. Evolution exploits three modalities to achieve such anatomical homeostasis: biochemical gradients, bioelectric circuits, and biophysical forces. These interact to enable the same large-scale form to arise despite significant perturbations.

N.R. FULLER, SAYO-ART, LLC

BIOCHEMICAL GRADIENTS

The best-known modality concerns diffusible intracellular and extracellular signaling molecules. Gene-regulatory circuits and gradients of biochemicals control cell proliferation, differentiation, and migration.

BIOELECTRIC CIRCUITS

The movement of ions across cell membranes, especially via voltage-gated ion channels and gap junctions, can establish bioelectric circuits that control large-scale resting potential patterns within and among groups of cells. These bioelectric patterns implement long-range coordination, feedback, and memory dynamics across cell fields. They underlie modular morphogenetic decision-making about organ shape and spatial layout by regulating the dynamic redistribution of morphogens and the expression of genes.

BIOMECHANICAL FORCES

Cytoskeletal, adhesion, and motor proteins inside and between cells generate physical forces that in turn control cell behavior. These forces result in large-scale strain fields, which enable cell sheets to move and deform as a coherent unit, and thus execute the folds and bends that shape complex organs.

The software of life, which exploits the laws of physics and computation, is enabled by chemical, mechanical, and electrical signaling across cellular networks. While the chemical and mechanical mechanisms of morphogenesis have long been appreciated by molecular and cell biologists, the role of electrical signaling has largely been overlooked. But the same reprogrammability of neural circuits in the brain that supports learning, memory, and behavioral plasticity applies to all cells, not just neurons. Indeed, bacterial colonies can communicate via ionic currents, with recent research revealing brain-like dynamics in which information is propagated across and stored in a kind of proto-body formed by bacterial biofilms. So it should really come as no surprise that bioelectric signaling is a highly tractable component of morphological outcomes in multicellular organisms.

A few years ago, we studied the electrical dynamics that normally set the size and borders of the nascent Xenopus brain, and built a computer model of this process to shed light on how a range of various brain defects arise from disruptions to this bioelectric signaling. Our model suggested that specific modifications with mRNA or small molecules could restore the endogenous bioelectric patterns back to their correct layout. By using our computational platform to select drugs to open existing ion channels in nascent neural tissue or even a remote body tissue, we were able to prevent and even reverse brain defects caused not only by chemical teratogenscompounds that disrupt embryonic developmentbut by mutations in key neurogenesis genes.

Similarly, we used optogenetics to stimulate electrical activity in various somatic cell types totrigger regeneration of an entire tadpole tailan appendage with spinal cord, muscle, and peripheral innervationand to normalize the behavior of cancer cells in tadpoles strongly expressing human oncogenes such as KRAS mutations. We used a similar approach to trigger posterior regions, such as the gut, to build an entire frog eye. In both the eye and tail cases, the information on how exactly to build these complex structures, and where all the cells should go, did not have to be specified by the experimenter; rather, they arose from the cells themselves. Such findings reveal how ion channel mutations result in numerous human developmental channelopathies, and provide a roadmap for how they may be treated by altering the bioelectric map that tells cells what to build.

We also recently found a striking example of such reprogrammable bioelectrical software in control of regeneration in planaria. In 2011, we discovered that an endogenous electric circuit establishes a pattern of depolarization and hyperpolarization in planarian fragments that regulate the orientation of the anterior-posterior axis to be rebuilt. Last year, we discovered that this circuit controls the gene expressionneeded to build a head or tail within six hours of amputation, and by using molecules that make cell membranes permeable to certain ions to depolarize or hyperpolarize cells, we induced fragments of such worms to give rise to a symmetrical two-headed form, despite their wildtype genomes. Even more shockingly, the worms continued to generate two-headed progeny in additional rounds of cutting with no further manipulation. In further experiments, we demonstrated that briefly reducing gap junction-mediated connectivity between adjacent cells in the bioelectric network that guides regeneration led worms to regenerate head and brain shapes appropriate to other worm species whose lineages split more than 100 million years ago.

My group has developed the use of voltage-sensitive dyes to visualize the bioelectric pattern memory that guides gene expression and cell behavior toward morphogenetic outcomes. Meanwhile, my Allen Center colleagues are using synthetic artificial electric tissues made of human cells and computer models of ion channel activity to understand how electrical dynamics across groups of non-neural cells can set up the voltage patterns that control downstream gene expression, distribution of morphogen molecules, and cell behaviors to orchestrate morphogenesis.

The emerging picture in this field is that anatomical software is highly modulara key property that computer scientists exploit as subroutines and that most likely contributes in large part to biological evolvability and evolutionary plasticity. A simple bioelectric state, whether produced endogenously during development or induced by an experimenter, triggers very complex redistributions of morphogens and gene expression cascades that are needed to build various anatomies. The information stored in the bodys bioelectric circuitscan be permanently rewritten once we understand the dynamics of the biophysical circuits that make the critical morphological decisions. This permanent editing of the encoded target morphology without genomic editing reveals a new kind of epigenetics, information that is stored in a medium other than DNA sequences and chromatin.

Recent work from our group and others has demonstrated that anatomical pattern memories can be rewritten by physiological stimuli and maintained indefinitely without genomic editing. For example, the bioelectric circuit that normally determines head number and location in regenerating planaria can be triggered by brief alterations of ion channel or gap junction activity to alter the animals body plan. Due to the circuits pattern memory, the animals remain in this altered state indefinitely without further stimulation, despite their wildtype genomes. In other words, the pattern to which the cells build after damage can be changed, leading to a target morphology distinct from the genetic default.

N.R. FULLER, SAYO-ART, LLC

First, we soaked a planarian in voltage-sensitive fluorescent dye to observe the bioelectrical pattern across the entire tissue. We then cut the animal to see how this pattern changes in each fragment as it begins to regenerate.

We then applied drugs or used RNA interference to target ion channels or gap junctions in individual cells and thus change the pattern of depolarization/hyperpolarization and cellular connectivity across the whole fragment.

As a result of the disruption of the bodys bioelectric circuits, the planarian regrows with two heads instead of one, or none at all.

When we re-cut the two-headed planarian in plain water, long after the initial drug has left the tissue, the new anatomy persists in subsequent rounds of regeneration.

Cells can clearly build structures that are different from their genomic-default anatomical outcomes. But are cells universal constructors? Could they make anything if only we knew how to motivate them to do it?

The most recent advances in the new field at the intersection of developmental biology and computer science are driven by synthetic living machines known as biobots. Built from multiple interacting cell populations, these engineered machines have applications in disease modeling and drug development, and as sensors that detect and respond to biological signals. We recently tested the plasticity of cells by evolving in silico designs with specific movement and behavior capabilities and used this information to sculpt self-organized growth of aggregated Xenopus skin and muscle cells. In a novel environmentin vitro, as opposed to inside a frog embryoswarms of genetically normal cells were able to reimagine their multicellular form. With minimal sculpting post self-assembly, these cells form Xenobots with structures, movements, and other behaviors quite different from what might be expected if one simply sequenced their genome and identified them as wildtype X. laevis.

These living creations are a powerful platform to assess and model the computations that these cell swarms use to determine what to build. Such insights will help us to understand evolvability of body forms, robustness, and the true relationship between genomes and anatomy, greatly potentiating the impact of genome editing tools and making genomics more predictive for large-scale phenotypes. Moreover, testing regimes of biochemical, biomechanical, and bioelectrical stimuli in these biobots will enable the discovery of optimal stimuli for use in regenerative therapies and bioengineered organ construction. Finally, learning to program highly competent individual builders (cells) toward group-level, goal-driven behaviors (complex anatomies) will significantly advance swarm robotics and help avoid catastrophes of unintended consequences during the inevitable deployment of large numbers of artificial agents with complex behaviors.

Understanding how cells and tissues make real-time anatomical decisions is central to achieving regenerative outcomes too complex for us to manage directly.

The emerging field ofsynthetic morphology emphasizes a conceptual point that has been embraced by computer scientists but thus far resisted by biologists: the hardware-software distinction. In the 1940s, to change a computers behavior, the operator had to literally move wires aroundin other words, she had to directly alter the hardware. The information technology revolution resulted from the realization that certain kinds of hardware are reprogrammable: drastic changes in function could be made at the software level, by changing inputs, not the hardware itself.

In molecular biomedicine, we are still focused largely on manipulating the cellular hardwarethe proteins that each cell can exploit. But evolution has ensured that cellular collectives use this versatile machinery to process information flexibly and implement a wide range of large-scale body shape outcomes. This is biologys software: the memory, plasticity, and reprogrammability of morphogenetic control networks.

The coming decades will be an extremely exciting time for multidisciplinary efforts in developmental physiology, robotics, and basal cognition to understand how individual cells merge together into a collective with global goals not belonging to any individual cell. This will drive the creation of new artificial intelligence platforms based not on copying brain architectures, but on the multiscale problem-solving capacities of cells and tissues. Conversely, the insights of cognitive neurobiology and computer science will give us a completely new window on the information processing and decision-making dynamics in cellular collectives that can very effectively be targeted for transformative regenerative therapies of complex organs.

Michael Levinis the director of the Allen Discovery Center at Tufts University and Associate Faculty at Harvard Universitys Wyss Institute. Email him atmichael.levin@tufts.edu. M.L. thanks Allen Center Deputy DirectorJoshua Finkelsteinfor suggestions on the drafts of this story.

More here:
How Groups of Cells Cooperate to Build Organs and Organisms - The Scientist

Keio University gets OK for iPS-based heart cell transplant plan – The Japan Times

A health ministry panel on Thursday approved a Keio University clinical research project to transplant heart muscle cells made from induced pluripotent stem (iPS) cells into heart disease patients.

The research will be carried out by a team led by Prof. Keiichi Fukuda for three people between 20 and 74 suffering from dilated cardiomyopathy, which lowers the hearts power to pump blood. The first transplant will be conducted by the end of this year at the earliest.

The team will use iPS cells made by Kyoto University from the blood of a person who has a special immunological type with less risk of rejection.

The team will transform the iPS cells into heart muscle cells and inject about 50 million of them into the heart using a special syringe. Immunosuppressive drugs will be used for about half a year, and the team will spend a year checking to see whether the treatment leads to the development of tumors and irregular heartbeat or whether it restores heart function.

In January, Osaka University conducted the worlds first transplant of heart muscle cells made from iPS cells. The heart muscle cells were made into sheets and pasted on the surface of the patients heart so that a substance they emit can help regenerate the heart muscles. The cells themselves, however, disappear quickly.

Meanwhile, Keio University has confirmed in an experiment on monkeys that cells colonize after a transplant and heart function improves.

The university expects that transplanted cells will colonize over a long period also in the upcoming clinical research project.

According to the team, there are about 25,000 dilated cardiomyopathy patients in Japan.

A startup led by Fukuda is planning a clinical trial aimed at commercializing the iPS-derived cells, hoping they will also be used for the treatment of other cardiac diseases.

Original post:
Keio University gets OK for iPS-based heart cell transplant plan - The Japan Times

Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications – The Scarlet

The global Stem Cell-Derived Cells market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Stem Cell-Derived Cells market player in a comprehensive way. Further, the Stem Cell-Derived Cells market report emphasizes the adoption pattern of the Stem Cell-Derived Cells across various industries.

The Stem Cell-Derived Cells market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

Buy the report at a discounted rate!!! Exclusive offer!!!

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

The Stem Cell-Derived Cells market report offers a plethora of insights which include:

The Stem Cell-Derived Cells market report answers important questions which include:

The Stem Cell-Derived Cells market report considers the following years to predict the market growth:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Why Choose Stem Cell-Derived Cells Market Report?

Stem Cell-Derived Cells Market Reportfollows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.

More:
Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications - The Scarlet

Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 – StartupNG

The Plasma Therapy market research report added by Market Study Report, LLC, is an in-depth analysis of the latest trends persuading the business outlook. The report also offers a concise summary of statistics, market valuation, and profit forecast, along with elucidating paradigms of the evolving competitive environment and business strategies enforced by the behemoths of this industry.

The Plasma Therapy market report provides with a broad perspective of this business space and contains crucial insights such as current and predicted remuneration of the industry, in consort with its size and valuation over the estimated timeframe.

Request a sample Report of Plasma Therapy Market at:https://www.marketstudyreport.com/request-a-sample/2448306?utm_source=scientect.com&utm_medium=AG

The study assesses the key factors that are positively affecting the industry landscape based on revenue generated as well as market growth. Additionally, the document analyzes the current trends that define this market while evaluating the challenges & limitations as well as the growth factors of this domain.

Key aspects of Plasma Therapy market report:

Regional analysis of Plasma Therapy market:

Plasma Therapy Market Segmentation:

Product types and application scope of Plasma Therapy market:

Product landscape:

Product types:

Key factors highlighted in the report:

Application Landscape:

Application segmentation:

Details specified in the document:

Additional information enlisted in the document:

Ask for Discount on Plasma Therapy Market Report at:https://www.marketstudyreport.com/check-for-discount/2448306?utm_source=scientect.com&utm_medium=AG

Competitive arena of the Plasma Therapy market:

Key players in the Plasma Therapy market:

Major aspects enlisted in the report:

Report Objectives:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-plasma-therapy-market-growth-status-and-outlook-2020-2025

Some of the Major Highlights of TOC covers:

Plasma Therapy Regional Market Analysis

Plasma Therapy Segment Market Analysis (by Type)

Plasma Therapy Segment Market Analysis (by Application)

Plasma Therapy Major Manufacturers Analysis

Related Reports:

1. Global Induced Pluripotent Stem Cells (iPSCs) Market Growth (Status and Outlook) 2020-2025 This report categorizes the Induced Pluripotent Stem Cells (iPSCs) market data by manufacturers, region, type and application, also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors Analysis. Read More: https://www.marketstudyreport.com/reports/global-induced-pluripotent-stem-cells-ipscs-market-growth-status-and-outlook-2020-2025

2. Global Ergothioneine (EGT) Market Growth (Status and Outlook) 2020-2025 Ergothioneine (EGT) Market report covers the market landscape and its growth prospects over the coming years, the Report also brief deals with the product life cycle, comparing it to the relevant products from across industries that had already been commercialized details the potential for various applications, discussing about recent product innovations and gives an overview on potential regional market. Read More: https://www.marketstudyreport.com/reports/global-ergothioneine-egt-market-growth-status-and-outlook-2020-2025

Contact Us: Corporate Sales, Market Study Report LLC Phone: 1-302-273-0910 Toll Free: 1-866-764-2150 Email: [emailprotected]

Visit link:
Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 - StartupNG

Genetics of the Tree of Life – Lab Manager Magazine

The African baobab tree (Adansonia digitata) is called the tree of life. Baobab trees can live for more than a thousand years and provide food, livestock fodder, medicinal compounds, and raw materials. Baobab trees are incredibly significant. However, there are growing conservation concerns and until now, a lack of genetic information.

The African baobab tree has 168 chromosomescritical knowledge for further genetic studies, conservation, and improvement for agricultural purposes. The findings were published in the journalScientific Reports. Previous studies estimated that the tree has between 96 and 166 chromosomes.

The African baobab tree has 168 chromosomes in total. USDA researchers used fluorescent probes to see the genetic components of individual chromosomes within the cells.

Islam-Faradi, Sakhanokho & Nelson

"We were able to unequivocally count the chromosomes," says Nurul Faridi, a USDA Forest Service research geneticist who co-led the study with Hamidou Sakhanokho, a USDA Agricultural Research Service research geneticist.

The researchers used fluorescent probes to see the genetic components of individual chromosomes within the cellswhich glow like jewels.

The analysis also revealed that the tree has a massive nucleolus organizer region (NOR). Relative to the main chromosome body, this region appears larger than that of any other plant species. During certain stages of the cell cycle, nucleoli form at the NORs. The nucleoli are essential for ribosome assembly and protein synthesis in eukaryotes and are an important feature that differentiates eukaryotes from prokaryotes.

"These genetic findings are foundational and will make genetic conservation of the African baobab tree more efficient and effective," says Dana Nelson, a coauthor and project leader of the Southern Research Station's genetic unit. "This research is also a precursor for tree breeding programs seeking to improve baobab for silvicultural applications."

- This press release was originally published on theUSDA Forest Service's Southern Research Station website

Read more:
Genetics of the Tree of Life - Lab Manager Magazine