Author Archives: admin


Tweet Chat Recap: Evaluating Treatment Approaches for Relapsed/Refractory DLBCL – Targeted Oncology

Targeted Oncology was joined by Kami J. Maddocks, MD, associate professor of clinical internal medicine, Division of Hematology, The Ohio State University Comprehensive Cancer CenterJames, for the discussion of a 76-year-old man with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in a recent tweet chat. In this case scenario, the patient presented with stage IV high-risk disease and received R-CHOP (Rituximab [Rituxan], cyclophosphamide, doxorubicin, vincristine, prednisone), and radiotherapy.

Although the treatment appeared well-tolerated, the patient presented with similar symptoms as at diagnosis after completing 6 cycles with complete response to the therapy. According to the work-up, the patient is ineligible for transplant.

The patient was ineligible for stem cell transplantation (SCT), which Maddocks speculates may be due to the patients age, although other considerations could include comorbidities or intolerance to R-CHOP. Eligibility is the first thing she considers for her patients as it is currently the standard of care and the only curative approach for patients to receive salvage chemotherapy followed by consolidation with autologous SCT.

Maddocks told Targeted Oncology, In some patient cases, [the reason for ineligibility] is age even though there's no specific age cutoff, but we know that it's harder on the marrow as patients get older to collect stem cells and get that aggressive salvage chemotherapy. Patient comorbidities [can also impact eligibility], so heart conditions, lung conditions, renal insufficiency can be a problem. Performance status and then lastly, just if the patient had trouble getting to their initial chemotherapy with R-CHOP or had a lot of complications, then it's probably going to be harder for them to tolerate even more aggressive or intensive therapy.

In a twitter poll ahead of the chat, Targeted Oncology asked what the next best line of therapy for this patient might be, with 4 potential different treatment options. The option that drew the most attention, however, was the recently approved regimen of tafasitamab (Monjuvi) and lenalidomide (Revlimid).

Maddocks tweeted, All these options are potential therapeutic choices for this patient, but the combination of tafasitamab/lenalidomide is the only option approved in this setting. The treatment has a promising ORR [overall response rate], and CR [complete response], and the remissions for patients who respond are durable!

During the tweet chat, Maddocks reviewed each of the different treatment options in the poll, and why she selected this combination regimen as the next best line of therapy for this particular patient. Following the chat, she spoke with Targeted Oncology to share further insights on each of these therapeutic approaches and the importance of the FDAs approval of tafasitamab plus lenalidomide in this setting.

The combination of tafasitamab plus lenalidomide held the majority vote, which Maddocks agreed would be the next best line of therapy for this patient.

For patients who are not candidates or considered eligible for a salvage chemotherapy followed by autologous SCT, the tafasitamab/lenalidomide combination was recently approved in the setting of first relapse, and it's the only approved therapy in this setting, Maddocks said. Historically, we would give some sort of palliative chemotherapy approach if patients were candidates and interested in pursuing therapy, or consideration of clinical trial, but this is the only therapy approved in this setting.

The approval of tafasitamab in combination with lenalidomide includes an indication for patients who are not eligible for autologous SCT, as describes the patient in our case. This regimen was approved on the basis of the phase 2 L-MIND (NCT02399085) clinical trial, which explored this use of this regimen in 81 patients with relapsed/refractory DLBCL. Two-year follow-up demonstrated an ORR of 58.5%, which included CRs in 41.3% of patients and partial responses (PRs) in 17.5% of patients. In addition, 15.0% achieved stable disease, and the median duration of response was 34.6 months (95% CI, 26.1-34.6).1

I think this patient case is the perfect example of where this can fit into the treatment landscape, Maddocks explained. For patients who first relapse from the standard R-CHOP therapy, the toxicities were generally manageable, and with the response rate, this is a great option for patients at first relapse who are not going to be candidates for a transplant. I think maybe patients who go on to get palliative chemotherapy or maybe patients who get treatment with plans to go to transplant but just don't tolerate it and dont look like they're going to [undergo] aggressive therapy, this may be an option for those patients too, understanding that there is some role for CAR T in a set of those patients.

This study, which was presented during the 25th Congress of the European Hematology Association (EHA), demonstrated that the majority of toxicities were hematologic, and most were reversible. The most common grade 3 hematologic treatment-emergent adverse events (TEAEs) were neutropenia in 49.4% of patients, thrombocytopenia in 17.3%, and febrile neutropenia in 13.2%.1

These were able to be managed by holding the dose growth factor, and there was a population of patients who had to be dose-reduced on the lenalidomide. The starting dose was 25 mg, so the majority were able to maintain 20 mg if they were dose-reduced, although a few had to be reduced more than once, Maddocks said. The most common grade 3/4 or serious AEs were infection, probably not surprisingly, and overall, that's probably similar to what you see with other options in this setting. There was a small number of infusion reactions, but these were all grade 1 in the trial and were easily managed.

Non-hematologic TEAEs of grade 3 included pneumonia in 8.6% of patients and hypokalemia in 6.2%. Serious AEs reported included pneumonia in 8.6%, febrile neutropenia in 6.2%, and pulmonary embolism in 3.7%, as well as bronchitis, lower respiratory tract infection, atrial fibrillation, and congestive cardiac failure in 2.5% each.1

Given the safety profile of this combination of tafasitamab plus lenalidomide, this regimen is particularly suitable for a large proportion of patients with DLBCL, Gilles Salles, MD, PhD, lead author of L-MIND, toldTargeted Oncology. We do know that the median age of occurrence of DLBCL is in the late 60s, and there are many, many patients that are over 70 and that are not usually transplant eligible. Clearly this is a great opportunity for patients to receive this non-cytotoxic regimen.

Although this regimen is an exciting opportunity for patients with DLBCL and relapsed/refractory disease, 1 challenge that needs to be addressed is the potential use of tafasitamab plus lenalidomide in sequence with CAR T-cell therapy. There is very little experience, if any, of patients receiving the combination regimen after receiving CAR T-cell therapy. The combination and CAR T cells both target the same antigen, CD19, which can be problematic. As its known that some patients will lose CD19 expression on CAR T-cell therapy, the regimen may no longer be an effective treatment option.

For those patients that had failed CAR T-cell therapy, substantial proportions, about 30% of them, may have lost CD19 expression and then may not be eligible anymore for this regimen. There is, however, a substantial proportion of patients that retains CD19 and in whom tafasitamab/lenalidomide can be used as a treatment option, Salles commented.

A large proportion of patients will maintain CD19 expression following CAR T-cell therapy, so tafasitamab plus lenalidomide may still be effective in a percentage of patients.

Its hard to say because we dont have a lot of data, but we do know there are other CD19-directed therapies outside of CAR T cell development, Maddocks told Targeted Oncology. I think in the next few years, were going to see patients treated both pre- and post-CAR T with other CD19-directed therapies, and well have more information on this.

The combination of polatuzumab vedotin (Polivy) plus bendamustine (Bendeka) and rituximab (BR) was approved by the FDA as treatment of patients with relapsed/refractory DLBCL after 2 prior lines of therapy in June 2019 based on the findings from the phase 1b/2 GO29365 (NCT02257567) clinical trial. Although this option is also not FDA-approved for the treatment of patients after first relapse, Maddocks noted that this was the only treatment evaluated in a randomized trial. The study had included patients who were ineligible for transplant.

Significant improvements were observed with polatuzumab vedotin plus BR compared with BR alone in an international, multicenter, open-label study, particularly in regard to the ORR, CRs, progression-free survival (PFS), and overall survival (OS). CRs were observed in 40.0% of the patients with the combination versus 17.5% with BR alone. Survival rates favored the combination as well, with a median PFS of 9.5 months with the combination versus 3.7 months with BR alone (HR, 0.36; 95% CI, 0.21-0.63; P <.001) and a median OS of 12.4 months versus 4.7 months (HR, 0.42; 95% CI, 0.24-0.75; P =.002), respectively.2

The addition of polatuzumab did increase toxicity from the standpoint of cytopenias, but that didn't really translate to increased serious infections. It did add neuropathy as a side effect, but most of that was reversible, so I think this was a regimen that, by the addition of polatuzumab, was something that you could offer patients that did give them somewhat of a better overall response and was more durable than just giving them a palliative chemotherapy alone, Maddocks added. This is also a regimen that's been used in patients who were not able to achieve a remission to bridge them to CAR T or in some patients after CAR T, and so I can understand why this was definitely one of the more favorable choices.

In the study, grade 3/4 neutropenia was observed more frequently in the combination arm (42.6%) compared with the BR alone arm (33.3%), but the occurrence of grade 3/4 infections was comparable between the 2 groups (23.1% vs. 20.5%, respectively). In addition, the study authors noted that although many of the fatal AEs occurred after disease progression, 11 patients in the BR arm experienced fatal AEs compared with 9 in the combination arm, infection being the most common, which was the cause in 4 patients in each arm.2

Although the regimen appeared tolerable in this setting, Maddocks tweeted, it is more attractive than chemotherapy alone and understandable why it was chosen [as the second-best option in the Twitter poll].

Among the treatment options considered in our twitter poll ahead of the tweet chat, selinexor (Xpovio) only caught the attention of 16.7% of voters, similar to CAR T-cell therapy. However, both of these options are currently only approved in patients who have received at least 2 prior lines of therapy, which this case did not.

In regard to selinexor in particular, Maddocks tweeted, Looking at the single arm phase 2 data, it also has the lowest overall response rates of all the options listed with an ORR of 28%.

Selinexor received its approval from the FDA in June 2020, which is indicated for the treatment of adult patients with relapsed/refractory DLBCL, not otherwise specified, who have received at least 2 prior systemic therapies. This is the only oral single-agent therapy approved in this setting, and it is also the only nuclear export inhibitor approved by the FDA for use in hematologic malignancies.

The agent was approved on the basis of the phase 2b SADAL clinical trial, which demonstrated an ORR of 29% with 13% CRs and 16% PRs. The responses achieved in the study were durable, which led to a median duration of response of 9.2 months in the overall population (95% CI, 4.8-23.0) and 13.5 months in those who had achieved a CR (95% CI, 9.3-23.0).3

The most common treatment-related AEs were cytopenias and gastrointestinal/constitutional symptoms, which were generally reversible and manageable with dose modifications and/or standard supportive care approaches. The most common on-hematologic AEs, which were mostly grade 1/2, were nausea (52.8%), fatigue (37.8%), and anorexia (34.6%). The most common grade 3/4 AEs included thrombocytopenia (39.4%), neutropenia (20.5%), and anemia (13.4%). No treatment-related grade 5 AEs were observed.

CAR T-cell therapy, on the other hand, offers a unique option to this patient case even though it is still only approved in patients who have progressed or relapsed after 2 prior therapies or SCT. The TRANSCEND-PILOT-017006 (NCT03483103) study is evaluating the potential for CAR T-cell therapy lisocabtagene maraleucel (liso-cel) as treatment of patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma who have received at least 1 prior therapy and are ineligible for SCT. While this does appear promising for introducing CAR T-cell therapy earlier on for patients with DLBCL, the treatment is not available off trial and is not a standard approach.

Maddocks told Targeted Oncology, It's very clear who's eligible for autologous transplant by age and comorbidities, but with CAR T, it's not so clear all the time who is going to be a candidate. There's not as great of data or information on who is going to be a candidate for that or not. Probably more patients are going to be a candidate for transplant, but there is still going to be patients that are comorbidities that they're not going to be a candidate for CAR T cells, and while they're approved in this setting and they can be very effective, there's also logistical issues, including that right now there's only certain centers, most often transplant centers, that are able to administer CAR T cells, so the patient has to have access to a center, they have to be able to get through the time that their leukapheresis cells are sent out and then sent back, and there's still barriers to cost and insurance in some patients, too.

This particular patient case does represent a challenge, Maddocks said. Historically, this is not a patient that's going to be a candidate for an autologous SCT, and that's going to be the only curative approach. CAR T is not approved in this setting, which is the other curative approach we know outside of patients who are unable to get to autologous STC, or at least appears to be likely curative for a percentage of patients.

Overall, CAR T-cell therapy is not a viable treatment option for the patient depicted in our tweet chat discussion, although it can still offer curative opportunities to a select group of patients with DLBCL who are ineligible for transplant.

In conclusion, tafasitamab plus lenalidomide helps fulfill the unmet need of patients who are in first relapse but are ineligible for transplant, which is the only curative option for patients with relapsed/refractory DLBCL. Although CAR T cells appear hopeful in this space, more research needs to be done to further determine their role in the treatment paradigm.

When you look at relapsed DLBCL, in general, and have these options, it's exciting for our patients to be able to have these. All of these have come up in the last 1 to 2 years, CAR T being a little bit longer than the other 3 regimens, but they all have offered patients tolerable therapy in the setting of previously not having these options.

Reference

1. Salles G, Duell J, Gonzlez-Barca E, et al. Long-term outcomes from the phase II L-MIND study of Tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. Presented at: Presented at: EHA25 Virtual; June 11-21, 2020. Abstract EP1201.

2. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma.J Clin Oncol. 2019;38(2):155-165. doi: 10.1200/JCO.19.00172

3. Kalakonda N, Cavallo F, Follows G, et al. A phase 2b study of selinexor in patients with relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL).Hematol Oncol. 2019;37(S2). doi: 10.1002/hon.31_2629

See the original post:
Tweet Chat Recap: Evaluating Treatment Approaches for Relapsed/Refractory DLBCL - Targeted Oncology

Seeing the eye like never before | Newsroom – UW Medicine Newsroom

While there is no cure for blindness and macular degeneration, scientists have accelerated the process to find a cure by visualizing the inner workings of the eye and its diseases at the cellular level.

In an effort led by UW Medicine, researchers successfully modified the standard process of optical coherence tomography (OCT) to detect minute changes in response to light in individual photoreceptors in the living eye.

The results were published Sept. 9 in Science Advances.

We have now accelerated the life cycle of vision restoration, said lead author Vimal Prabhu Pandiyan, a ophthalmology researcherat the University of Washington School of Medicine.

The study was fundedin partby the National Eye Institutes Audacious Goals Initiative, which embraces bold ideas in helping people to see better.

The OCT modifications outlined in the study will help researchers who want to test therapiessuch as stem cells or gene therapy to treat retinal disease. They now have the tools to zoom in on the retina to evaluate whether the therapy is working.

Corresponding author Ramkumar Sabesan, a UW assistant research professor of ophthalmology, said the only wayto objectively measure the eye currently is to look at a wide retinal area. Sabesan said researchers currently can attach electrodes on the cornea but it captures a large area with around 1 million cells. Now they are talking about nanometers, or one billionth of a meter a small fraction of the size of a cell, providing orders of magnitude improvement.

Since photoreceptors are the primary cells affected in retinal generation and the target cells of many treatments, noninvasive visualization of their physiology at high resolution is invaluable, the researchers wrote.

Cone photoreceptors are the building blocks of sight, capturinglight and funneling information to the other retinal neurons. They are a key ingredient in how we process images and patterns of light falling on the retina.

Optical coherence tomography has been around since the 1990s. In this study, researchers used OCT with adaptive optics, line-scanning and phase-resolved acquisition to deliver the concept of Thomas Youngs interference to the human eye. With the ability to zoom in on the retina at high speeds, they found that cone photoreceptors deform at the scale of nanometers when they first capture light and begin the process of seeing.

As Sabesan explained: You can imagine a picture that looks visually and structurally normal. But when we interrogate the inner working of the retina at a cellular scale, we may detect a dysfunction sooner than what other modalities can do. A doctor then can prescribe medication to intervene early or follow the time-course of its repair via gene therapy or stem cell therapy in the future.

We will now have a way to see if these therapies are acting in the way they should, Sabesan said.

The study also involved researchers at Stanford University, University of California,Berkeley, and University of California, Riverside.

The study was funded by NIH grants U01EY025501, EY027941, EY029710, EY025501, and P30EY001730; Research to Prevent Blindness Career Development Award; Foundation Fighting Blindness; Murdock Charitable Trust; Burroughs Welcome Fund Careers at the Scientific Interfaces; and Unrestricted grant from the Research to Prevent Blindness.

See the original post:
Seeing the eye like never before | Newsroom - UW Medicine Newsroom

Let-7 derived from endometrial extracellular vesicles is an important inducer of embryonic diapause in mice – Science Advances

INTRODUCTION

Embryonic diapause refers to a reversible arrest of the development of blastocysts. In wildlife, the phenomenon ensures that the young are born in a favorable environment. Embryonic diapause can be induced in a laboratory condition and is best studied in rodents. In mice, ovariectomy in the early morning of day 4 post-fertilization followed by progesterone administration induces embryonic diapause, during which the blastocysts become dormant and do not implant in the uterus, but can implant and develop normally when reactivated by a single dose of estradiol (1). A recent study showed that sheep blastocysts, which do not normally undergo embryonic diapause, could be induced to become dormant in the uterus of delayed implanting mice and could be reactivated when transferred back to the uterus of the ewe (2), suggesting that embryonic diapause is an evolutionary conserved phenomenon.

The onset, maintenance, and termination of embryonic diapause are under maternal control (3). Various factors regulate embryonic diapause. For instance, photoperiod influences embryonic diapause in minks and lactation affects that in rodents (3). High levels of uterine anandamide maintain embryonic diapause in mice (4), while the metabolite of estrogen, catechol estrogen (5), and polyamines (6) reactivates the dormant embryos in mice and mink, respectively. However, the factors that induce the onset of embryonic diapause in vivo remain unknown.

Let-7 is a family of microRNAs up-regulated in the dormant mouse blastocysts (7). Their expressions return to a low level after estrogen-induced reactivation (8). Although an overexpression of let-7a suppresses implantation (7), the origin and role of let-7 in the dormant blastocysts are unknown. As embryonic diapause is mainly a maternally controlled event and endometrial cells produce extracellular vesicles (EVs) containing microRNAs (9), we tested the hypothesis that endometrial cells produced let-7 containing EVs to induce embryonic diapause in this report. The mechanisms of the action of let-7 on embryonic diapause were investigated. In addition, we provided evidence suggesting that the actions of let-7 on embryos were conserved in humans.

To test the hypothesis, the precursor of let-7a (pre-let-7a) or scrambled RNA (control) was electroporated into mouse blastocysts on day 4 of pregnancy. The level of mature let-7a was >40-fold higher in the pre-let-7a blastocysts than in the control blastocysts (fig. S1A). After 3 days of culture (day 7), the level of let-7a remained threefold higher in the pre-let-7a group (fig. S1A). The majority of the pre-let-7a blastocysts (95 3.2%) were morphologically viable, with a large blastocoel (Fig. 1A), whereas 31 2.2% of the control embryos had shrunken in size and some degenerated by that time. On day 12, over 50% of the embryos with a pre-let-7a overexpression remained morphologically viable, while all the control embryos had degenerated (Fig. 1A).

(A) Overexpression of let-7a extended the survival of blastocysts in culture. Survived blastocysts were defined as those with a well-defined blastocoel. (B) The percentage of apoptotic cells was low in blastocysts with overexpression of let-7a on day 7 (D7-let7) and was comparable to that in day 4 activated (D4-act) blastocysts. Blastocysts electroporated with scrambled RNA (D7-scr) had significantly higher percentage of TUNEL+ cells. *P < 0.05. (C) Glucose metabolism of the D7-let7 and in vivo dormant (Dor) blastocysts was low with significant reduction in glucose, pyruvate uptake, and ATP levels when compared with the D4-act blastocysts and E2-induced reactivated blastocysts (E2-act), respectively. D7-let7 had a high lactate production, which was low in the dormant blastocysts. *P < 0.05. (D) Expression of genes related to glucose metabolism. (E and F) The percentages of proliferating (Ki67+, green) cells (E) and cells with DNA synthesis (EdU+, green) (F) were lower in blastocysts of D7-let7 when compared to that in D4-act blastocysts. Numbers in parenthesis are number of embryos analyzed. *P < 0.05. (G) Dor, D7-let7, and D7-scr blastocysts did not bind significant amount of FITC-labeled EGF. The binding of EGF was high in the D4-act blastocysts and the delayed implanting mice 6 hours after E2-act.

Consistent with the above observation, the percentage of apoptotic [terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labelingpositive ( TUNEL+)] cells in the day 7 blastocysts (N = 6 embryos per group) with electroporation of pre-let-7a on day 4 (D7-let7) was significantly lower than that of the control embryos (D7-scr, P < 0.05; Fig. 1B). Blastocysts collected in the afternoon of day 4 of pregnancy (in vivo activated blastocysts, D4-act) had a low percentage of TUNEL+ cells comparable to that of D7-let7 blastocysts (Fig. 1B).

It is well established that metabolism is suppressed in the dormant embryos (10). Therefore, we tested whether an overexpression of let-7a would change the energy metabolism of embryos. As expected, D7-let7 and in vivo dormant (Dor) blastocysts had low glucose metabolism; their glucose, pyruvate uptakes, and adenosine triphosphate (ATP) levels were significantly lower than those of the D4-act and estrogen-induced reactivated (E2-act) blastocysts, respectively (Fig. 1C; N = 5). The reduced glucose metabolism was likely a result of the inhibitory action of let-7 on its target genes related to glucose metabolism (predicted by TargetScan or RNA22), Hk2, Fbp1, Dld, and Dlst (Fig. 1D). Lactate production was unexpectedly significantly higher in the D7-let7 blastocysts than in the D4-act blastocysts (Fig. 1C), which might be due to a high level of Ldha (lactate dehydrogenase A) mRNA in the former (Fig. 1D).

The effects of an overexpression of let-7a on the proliferation and extent of the active DNA synthesis of blastomeres were determined by immunostaining for Ki67 and 5-ethynyl-2-deoxyuridine (EdU) incorporation assay, respectively. The percentage of Ki67+ cells in the D7-let7 blastocysts (N = 12) was significantly lower than that of the D4-act blastocysts (N = 10, P < 0.05; Fig. 1E). The Ki67+ cells in the D7-let7 blastocysts were concentrated in the inner cell mass; this is consistent with the observation that the mouse trophectoderm cells entered dormancy earlier than the inner cell mass cells (11, 12). Consistent with cell proliferation, the percentage of EdU+ cells was about fourfold higher (P < 0.05) in the D4-act blastocysts (N = 5) than in the D7-let7 blastocysts (N = 7) (Fig. 1F). The observations were in line with the report that cell cycle arrest in the delayed implanting blastocysts occurs before the S phase (13).

An increase in epidermal growth factor (EGF) binding is a marker of reactivation of dormant mouse blastocysts (5). Dormant blastocysts did not bind a significant amount of fluorescein isothiocyanate (FITC)labeled EGF (Dor; Fig. 1G). EGF binding was up-regulated in blastocysts from delayed implanting mice at 6 hours after estradiol-induced reactivation (E2-act). However, D7-let7 and D7-scr blastocysts exhibited a low EGF binding. The similarly low EGF binding of D7-let7 and D7-scr blastocysts could be attributed to different causes; the former reflected a diapause state, while the latter reflected a deteriorating state with many apoptotic cells (Fig. 1B).

To determine whether the overexpression of let-7 in embryos had been in a reversible dormant state in vivo, a 2-fluoroestradial-17 (2-Fl-E2)treated mouse model was used. 2-Fl-E2 treatment induces a receptive state of the endometrium (5). It also inhibits the uterine estrogen-2/4-hydroxlyase activity, thereby suppressing the synthesis of 4-hydroxy-E2, a catechol metabolite of estradiol-17 (E2) required for the activation of dormant mouse blastocysts (5). Thus, 2-Fl-E2 injection induces uterine receptivity but fails to reactivate the dormant blastocysts in the delayed implanting mice (5). We transferred D7-let7 blastocysts into the 2-Fl-E2treated pseudo-pregnant uteri (N = 6 mice per group); the number of implantation sites at 28 hours after embryo transfer was significantly lower than that after the transfer of the D4-act blastocysts (P < 0.05; Fig. 2A).

(A) The implantation rate of D7-let7 after embryo transfer into 2-Fl-E2treated mice was significantly lower than that of D4-act. 2-Fl-E2 injection induces uterine receptivity but fails to activate the dormant blastocysts in the delayed implanting mice. Numbers in parenthesis are number of animals receiving the transferred embryos. *P < 0.05. (B) Live births were obtained after transfer of blastocysts with overexpression of let-7a for 3 days (D7-let7) and 4 days (D8-let7), although the live birth rate was lower than that from D4-act blastocysts. Numbers in parenthesis are number of live birth/total number of embryos transferred. (C) Survival curve of blastocysts carrying an inducible let-7g transgene with and without DOX treatment cultured in KSOM + AA medium. Most of the control embryos survived until day 6, whereas 50% of the DOX-treated embryos maintained good morphology even on day 13. (D) Live births were obtained after transfer of let-7g blastocysts treated with DOX treatment for 3 days (D7+DOX) and 5 days (D9+DOX). No live birth was obtained from transfer of day 7 WT blastocysts. Numbers in parenthesis are number of live birth/total number of embryos transferred. (E) Microarray analyses of the mRNA expression of D4-act (D4-act-7g), in vitro (DOX treatment in culture, DOX-7g), and in vivo induced dormant (Dor-7g) let-7g blastocysts. Heatmap of the top 500 differentially expressed genes between the dormant and D4-act blastocysts was shown. (F) Venn diagram showing the number of differentially expressed genes between in vitro (DOX treatment in culture) or in vivo induced dormant blastocysts against D4-act blastocysts. Photo credit: W. M. Liu, The University of Hong Kong.

The reversible nature of let-7induced embryonic diapause was tested by transferring D7-let7 blastocysts into D3 pseudo-pregnant uteri. Live births were obtained from blastocysts with an overexpression of let-7a for 3 days (D7-let7) and 4 days (D8-let7; Fig. 2B). All the pups had normal birth weight (fig. S1B). No pup was born after the transfer of the D12-let7 and D7-scr blastocysts (data not shown).

In the above experiments, electroporation induced only a transient rise in the let-7a level for a few days. To determine the prolonged action of a high level of let-7 on embryo survival in vitro, we produced transgenic mice from embryonic stem cells with doxycycline (DOX)inducible let-7g (a gift from G. Q. Daley, Harvard Stem Cell Institute, Boston, MA, USA). DOX treatment induces let-7g expression in the transgenic mice. The transgene is unique in that the loop region of the precursor let-7g (pre-let-7g) in the transgene is replaced by that of microRNA-21. Therefore, endogenous Lin28 cannot bind to pre-let-7g and block let-7g biogenesis in the transgenic mice (14). Let-7 family members contain a similar seed sequence that spans from nucleotide 2 to 8 in mice (15). This conserved feature suggests that the let-7 family members have similar target mRNAs and functions. Identical changes in the expression of 14 genes were observed in the blastocysts after an overexpression of let-7a and let-7g (fig. S2). The above embryo transfer experiment was repeated with the transgenic mice.

When blastocysts from the transgenic mice were treated with DOX during culture, the let-7g level in the embryos increased 32-fold, and 50% of the blastocysts survived for 14 days in vitro (Fig. 2C). Pups were obtained after the transfer of DOX-treated day 7 (D7+DOX) and day 9 (D9+DOX) blastocysts, but not day 7 wild-type (D7WT) blastocysts, into WT day 3 pseudo-pregnant mice (Fig. 2D). Because the inducible let-7g transgenic mice better simulated the in vivo condition, their blastocysts were mainly used for subsequent experiments unless otherwise stated.

To understand the molecular actions of let-7 on embryonic diapause, the GeneChipTM Mouse Gene 2.0 ST Array was used to determine the transcriptomes of D4-act, in vivo dormant, and let-7induced dormant blastocysts from let-7gtransgenic mice. Unsupervised hierarchy clustering (Fig. 2E) and principal components analysis (fig. S3A) showed that the mRNA profiles (table S1) of the in vitro induced dormant blastocysts (DOX treatment in culture, DOX-7g) and the in vivo dormant blastocysts (Dor-7g) were similar but distinct from those of the D4-act let-7g blastocysts (D4-act-7g). To confirm the data obtained from the mRNA profiles, the total RNAs isolated from five pools of D4-act-7g, Dor-7g, and DOX-7g blastocysts were subjected to direct quantitative polymerase chain reaction (qPCR) analyses for the transcript levels of six genes, namely, Ccne1, Btg1, Pkm, Oxct1, Fbp1, and Sap1 (fig. S3B). These genes were involved in cell cycle (Ccne1 and Btg1), carbohydrate metabolism, energy pathway (Pkm and Oxct1), and chromatin remodeling (Sap30). The expression patterns were consistent with the results of the array. Among them, two genes (Btg1 and Oxct1) were significantly higher, while the rest were significantly lower in the Dor-7g and DOX-7g blastocysts than in the D4-act-7g blastocysts (P < 0.05).

Compared with the D4-act-7g blastocysts, the in vitro and the in vivo induced dormant blastocysts exhibited 3444 and 2452 differentially expressed genes, respectively (Fig. 2F). Among the differentially expressed genes, 1006 of them were common in the two comparisons (Fig. 2F). Gene ontology analysis of these common genes using Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that they were related to mitotic nuclear division, cell division, G1-S transition of mitotic cell cycle, DNA repair, DNA replication, and cell cycle (table S2).

Because embryonic diapause is a maternally regulated phenomenon, we tested the possibility of a maternal origin of let-7 in the delayed implanting blastocysts. This possibility is supported by three observations. First, transmission and scanning electron microscopy showed EV-like structures in the mouse uterine lumen (fig. S4A) and on the trophectoderm of blastocysts collected in the uterine lumen (fig. S4B), respectively. Second, immunostaining detected the presence of CD63, a marker of EVs, in the uterine epithelium of mice (fig. S4C) and on the surface of EVs from uterine luminal fluid (ULF; fig. S4D). Nanoparticle tracking analysis showed that the EVs in ULF had a mean size of 82.3 nm (fig. S4E). Western blot analysis showed that these ULF-EVs were positive for HSP70, CD63, and TSG101 and negative for calnexin and GM130. Third, mouse ULF contains let-7 carrying CD63+ EVs, which can be internalized by blastocysts (16). To obtain further evidence, the expression patterns of let-7 in the endometrial epithelial cells, EVs from ULF (ULF-EVs), and in blastocysts from mice before embryonic diapause, during embryonic diapause, and after E2-induced reactivation were determined. The results showed that they had similar patterns with a high let-7a expression only in the dormancy period (Fig. 3A). The pattern was markedly different from that of the stromal cells (fig. S5), supporting the idea that the endometrial epithelial cells produced EVs containing let-7a during delayed implantation.

(A) The expression patterns of let-7a in endometrium epithelial cells, EVs of ULF-EVs, and blastocysts in the mouse delayed implantation model before and during diapause and 1, 3, and 24 hours after estradiol-induced reactivation were similar. *P < 0.05; **P < 0.01; ***P < 0.001. (B) The expression of pre-S7gL21 was significantly higher in ULF-EVs from DOX-treated transgenic mice carrying an inducible let-7g transgene relative to that of ICR mice (upper panel) and in ICR blastocysts after transfer into the DOX-treated let-7g transgenic mice when compared to ICR blastocysts without transfer (lower panel). **P < 0.01. (C) Let-7 in EVs suppressed the level of LIN28 in human trophoblast JEG-3 cells. Let-7acontaining EVs generated by transfection of endometrial cells with pre-let-7a, but not EV-free let-7a, suppressed expression of LIN28. *P < 0.05. (D and E) Let-7aenriched EVs suppressed expression of c-myc protein (D) and DNA synthesis (E) in day 4 mouse blastocysts. Day 4 embryos were cocultured with let-7aenriched EVs or control EVs. Expression of c-myc protein (green) was observed by confocal microscopy after immunohistochemical staining and analyzed with the ImageJ software (n = 15 embryos for each group). DNA synthesis was determined by EdU incorporation assay. Green, newly synthesized DNA; blue, DAPI. n = 20 embryos for each group. **P < 0.01. (F) Let-7genriched EVs from DOX-treated endometrial epithelial cells of let-7g transgenic mice (Let-7g-EV) prolonged the survival of WT day 4 blastocysts in KSOM + AA medium. The survival rate on day 7 of untreated blastocysts and those treated with EVs from WT mice was low. Numbers in parenthesis are number of embryos analyzed. *P < 0.05.

The inducible let-7g transgenic mice carry a unique chimeric let-7g Stem/miR-21 loop sequence (S7gL21), in which the loop of pre-let-7g is replaced by that of microRNA-21. qPCR assay was developed to detect the expression of the transgene; the forward primer targeted on a sequence that crossed the stem and the loop of S7gL21 so that only the precursor of the transgene, but not pre-let-7g, was amplified. DOX treatment significantly induced the expression of the sequence in the liver (data not shown) and ULF-EVs (Fig. 3B, upper panel) of the transgenic mice, but not that of the ICR (Institute of Cancer Research) mice. Blastocysts from ICR mice were transferred into the pseudo-pregnant delayed implanting let-7g transgenic mice. Three days later, the expression of the S7gL21 sequence was significantly higher in the transferred embryos than in those that were not transferred (Fig. 3B, lower panel). The result confirmed that let-7 was transferred from the mother to the embryos in vivo.

To study the biological effect of let-7a and let-7g in EVs, we produced let-7enriched EVs by two methods. First, let-7aenriched EVs were isolated from the spent culture medium of human endometrial Ishikawa cells transfected with pre-let-7a. Transfection with scrambled RNA was used as control. The collected EVs at physiological concentration were then used to treat day 4 blastocysts or human trophoblast JEG-3 cells. Endometrial EVs containing let-7a, but not EV-free let-7a, were biologically active in suppressing the expression of let-7 targets, LIN28A [lin-28 homolog A (Caenorhabditis elegans); Fig. 3C], C-MYC (MYC proto-oncogene), and RICTOR (RPTOR independent companion of MTOR, complex 2; fig. S5B) in the JEG-3 cells. Incubation of the let-7aenriched EVs for 24 hours significantly decreased the protein expression of c-myc in the treated blastocysts relative to the control embryos (Fig. 3D) and reduced their DNA synthesis (let-7 EVs; Fig. 3E) to a level comparable to that in the in vivo dormant blastocysts (Dor; Fig. 3E).

To better simulate the in vivo situation, let-7genriched EVs were obtained from endometrial epithelial cells of let-7g transgenic mice treated with DOX for 4 days in a medium supplemented with 10% EV-free fetal bovine serum (FBS) and were used at physiological concentration to treat WT day 4 blastocysts in KSOM + amino acid (AA) medium. After 3 days of culture, 82 16.2% (N = 150) of the let-7g-EVtreated blastocysts still had the blastocoel, and 12 5.4% of them developed to term after an embryo transfer. In contrast, 85 10.1% (N = 100) of the blastocysts degraded in the absence of EVs (Fig. 3F), and the survived ones produced no pups after transfer.

Inhibition of mTOR (mammalian target of rapamycin) (17) or MYC (18) induces a diapause-like state in mouse embryos. We consistently observed significant decreases in the transcript expression of c-myc and Akt1 (mTOR activator) and increases in that of Tsc1 and Tsc2 (mTOR inhibitors) in the let-7ginduced dormant blastocysts when compared with the untreated blastocysts (Fig. 4A). On the other hand, Pten of PIK3 (phosphatidylinositol-3-kinase) signaling, an upstream pathway of mTOR, was unaffected by the DOX treatment.

(A) RT-PCR analysis showing the expression of c-myc and mTOR signaling components after let-7g overexpression. D4 blastocysts from let-7g transgenic mice were cultured in the presence or absence of DOX for 48 hours before determination of gene expression. *P < 0.05. (B) Expression of c-myc in JEG-3 trophoblast cells at 24 hours after transfection of c-myc mRNA. **P < 0.01. (C) Representative confocal images of EdU incorporation (green) in blastocysts at 24 hours after electroporation of c-myc mRNAs or scrambled RNA. Blue, nuclei. Scale bar, 50 m. (D) Expression of c-Myc and pRpS6 in JEG-3 cells treated with mTOR inhibitor, INK-128, for 24 hours. ***P < 0.001. (E) Western blot analysis of the effect of c-myc inhibitor 10058-F4 (MI) on mTORC1 targets (pRpS6 and p4EBP1) and mTORC2 target (pAKT) in JEG-3 cells. All quantification measurements are normalized to -actin. **P < 0.01. (F) Representative confocal images of blastocysts immunostained for p4EBP1 and pRpS6. D4 blastocysts from let-7g transgenic mice were electroporated with or without c-myc mRNA before culture in the presence or absence of DOX. ICR D4 blastocysts (D4) and dormant embryos (Dor) served as positive and negative controls, respectively. (G) Expression of Rictor and phosphorylated AKT protein in JEG-3 cells transfected with either let-7a mimics or scramble for 24 hours. Data are presented as means SE. *P < 0.05; **P < 0.01. (H) Representative confocal microscope images showing Rictor in embryos during diapause and at 6-hour postestrogen-induced reactivation (A6h). Scale bar, 50 m.

Next, we determined whether c-myc mediated the action of let-7g on the induction of embryonic diapause. In vitro transcription was used to generate c-myc mRNA. The mRNA was biologically active, and the level of C-MYC protein in the JEG-3 cells increased fourfold at 24 hours after transfection of the mRNA (Fig. 4B). Electroporation of the c-myc mRNA enhanced C-MYC expression (fig. S6A) and EdU incorporation (Fig. 4C) in D4 blastocysts. Overexpression of c-myc also nullified the effects of let-7g overexpression on the prolongation of the embryo survival in vitro; in the presence of DOX, the let-7g transgenic blastocysts transfected with c-myc mRNA could only survive until day 6; the vast majority died the next day, whereas 50% of the DOX-treated transgenic blastocysts without the transfection survived up to day 15 (fig. S6B).

C-MYC is upstream of mTORC1 in rat fibroblasts (19). The incubation of JEG-3 cells with an inhibitor of mTORC1/mTORC2 pathways, INK-128, for 24 hours reduced phosphorylation of mTORC1 target and RpS6 phosphorylated at Ser235/236 (pRpS6) and had no effect on the expression of C-MYC (Fig. 4D). On the other hand, treatment with the C-MYC inhibitor 10058-F4 [MYC inhibitor (MI)] (20) significantly decreased the phosphorylation of mTORC1 targets, pRpS6, and p4EBP1 (4EBP1 phosphorylated at Thr37/46) in the JEG-3 cells (Fig. 4E) and D4 blastocysts (fig. S6C). The phosphorylation level of mTORC2 target, AKT at Ser473 (pAKT), was unexpectedly not affected (Fig. 4E and fig. S6C), suggesting that mTORC1, but not mTORC2, signaling was downstream of C-MYC in blastocysts and trophoblast cells. Overexpression of c-myc mRNA in day 4 let-7g blastocysts for 48 hours reduced the inhibitory effects of DOX-induced let-7g on mTORC1 targets (Fig. 4F).

Inhibition of mTORC1 alone was insufficient to induce embryonic diapause (17). Therefore, bioinformatics analysis was conducted to find whether let-7 also targeted the mTORC2 pathway. TargetScan identified that a component of mTORC2, Rictor, was a potential target of let-7. The prediction was supported by the down-regulation of RICTOR expression in the JEG-3 cells at 48 hours after transfection of the cells with pre-let-7a (Fig. 4G). Dual luciferase assay confirmed that Rictor was a direct target of let-7a. At 24 hours after transfection, let-7a mimics reduced the luciferase activity of Rictor 3 untranslated region (3UTR) reporter by about fivefold when compared to the scramble control (fig. S7). Mutation of the let-7a binding sites on the reporter construct abolished the reduction in luciferase activity (fig. S7). As expected, the expression of RICTOR was lower in the dormant embryos (Dor) than in those at 6-hour postE2-induced reactivation (A6h; Fig. 4H). The action of let-7 on mTORC2 signaling was further confirmed by a significant decrease in pAKT expression in the JEG-3 cells at 48 hours after transfection of pre-let-7a when compared with the scramble control (Fig. 4G).

The inhibition of polyamine biosynthesis delays the reactivation of dormant embryos in vitro (21). We consistently found an increased expression of polyamine biosynthesis enzymes, ornithine decarboxylase (ODC1) and spermine synthesis enzyme (SMS) in the reactivated embryos (A24h), relative to the dormant embryos (Dor; Fig. 5A).

(A) Representative confocal microscope images of Dor and Act-24h embryos immunostained for ODC1 and SMS. Scale bar, 50 m. (B) Schematic representation of the five putative myc response elements in the proximal Odc1 promoter (upper). Luciferase activities in 293T cells after cotransfection of a c-myc expression vector with empty luciferase reporter (pGL3) and long or short Odc1 promoter constructs (lower). Data represent means SE. ***P < 0.001 versus empty reporter (pGL3); ###P < 0.001 versus long Odc1 promoter construct. (C) ChIP-qPCR assay to evaluate the relative myc binding to the Odc1 promoter isolated from uterine epithelial cells on day 4 of pregnancy (D4-ME) and during diapause (Dor-ME). Amplified putative myc response elements (1, 2, 3, and 4-5) are depicted in the upper panel of (B). Data represent means SE. *P < 0.05 and **P < 0.01. (D and E) The expression of ODC1 was detected at 24 hours after incubation with or without the c-myc inhibitor 10058-F4 (MI) in JEG-3 trophoblast cells (D) and in blastocysts (E). All quantification measurements in Western blot were normalized to -actin. Scale bar, 50 m. (F) D4 blastocysts from let-7g transgenic mice were electroporated with or without c-myc mRNA before culture in the presence of DOX. D4 and Dor blastocysts served as positive and negative controls, respectively. (G) Schematic diagram summarizing the molecular actions of endometrium-derived let-7 in inducing embryonic diapause. Blastocysts take up endometrial EVs enriched with let-7. Let-7 inhibits c-myc, leading to reduction of mTORC1 activity and reduction in ODC1 biosynthesis. Polyamines are required for reactivation of diapausing embryo. Let-7 also suppresses mTORC2 directly by its action on mTORC2 component Rictor.

Odc1 encodes a rate-limiting enzyme in polyamine biosynthesis. An analysis of a genome-wide embryonic C-MYC chromatin immunoprecipitation (ChIP) sequencing dataset (22) revealed recruitment of C-MYC at the promoter of Odc1 and identified five putative c-myc response elements on the promoter (Fig. 5B). Luciferase reporter assays showed that response elements 3, 4, and 5 were the major sites that conferred C-MYC responsiveness (Fig. 5B). Site-specific ChIP assays using the DNA from mouse primary uterine epithelial cells isolated from delayed implanting (Dor-ME) and day 4 activated mouse uteri (D4-act) confirmed the recruitment of C-MYC to these response elements (Fig. 5C). There were reductions in the recruitment of C-MYC to these elements of Odc1 promoter in the uterine epithelial cells during embryonic diapause (Dor-ME) when compared to those from D4-act mice (Fig. 5C).

Our data further showed that the inhibition of C-MYC by MI for 24 hours significantly decreased the protein level of ODC1 in the JEG-3 cells (Fig. 5D) and D4 blastocysts (Fig. 5E). Treatment with DOX reduced the protein expression of ODC1 in the let-7g blastocysts relative to the D4 blastocysts (Fig. 5F). The action was mediated by C-MYC as the transfection of c-myc mRNA abolished the let-7induced down-regulation of ODC1 in the embryos (Fig. 5F). Together, endometrial epithelial cellderived let-7 suppressed c-myc/mTORC1, mTORC2 signaling, and polyamine biosynthesis to induce embryonic diapause (Fig. 5G).

Non-diapause sheep blastocysts become dormant in the uteri of delayed implanting mice and can be reactivated after a transfer to the uterus of ewe (2). We tested whether let-7enriched EVs would affect the differentiation of a human embryo surrogate model termed BAP-EB (23). BAP-EB was derived by BAP (BMP4, A83-01, and PD173074)induced differentiation of embryoid bodies of human embryonic stem cells (hESCs) into trophoblast spheroids. BAP-EB spheroids resemble human blastocysts in size and morphology. They express markers of trophectoderm and trophoblast and do not express those of other germ layers. BAP-EB selectively attached onto primary receptive endometrial epithelial cells and receptive endometrial epithelial cell lines, but not other nonendometrial cell lines, nonreceptive endometrial cell line, and primary prereceptive endometrial epithelial cells (23).

The time when BAP was added to induce trophoblast differentiation was considered as time zero of post-induction of differentiation (pid). During differentiation, the expression of the marker of inner cell mass (OCT4) in the BAP-EB spheroids decreased rapidly at 48-hour pid and was undetectable by 96-hour pid. The expression pattern was different from that of the trophectoderm and trophoblast markers. The trophectoderm marker (CDX2) showed a transient increase at 48-hour pid, while those of trophoblast (CK7, CDH1, and GATA2), syncytiotrophoblast (ERVW-1 and CGB), and extravillous trophoblast (MMP2 and HLA-G) increased progressively with differentiation. Treatment with let-7g-EVs at 48-hour pid significantly affected the mRNA expression of these trophoblast markers at 96-hour pid relative to the control-EVtreated spheroids (Fig. 6A); let-7treated BAP-EB at 96-hour pid exhibited significantly higher levels of trophectoderm marker (CDX2) and lower levels of trophoblastic markers (GATA2, CK7, CDH1, ERVW-1, CGB, MMP2, and HLA-G). The comparable expression levels of these markers in the let-7g-EVtreated spheroids at 96-hour pid with that of the spheroids at 48-hour pid were consistent with a high level of let-7induced dormancy and cessation of differentiation.

(A) Treatment of hESC-derived trophoblast spheroids (BAP-EB, human embryo surrogates) with Let-7genriched EVs at 48-hour pid significantly reduced the mRNA expression of trophoblast [CK7 (keratin 7), CDH1 (cadherin 1), and GATA2 (GATA-binding protein 2)], syncytiotrophoblast [ERVW-1 (endogenous retrovirus group W member 1, envelope) and CGB (chorionic gonadotropin subunit beta 3)], and extravillous trophoblast [MMP2 (matrix metallopeptidase 2) and HLA-G (major histocompatibility complex, class I, G)] markers at 96-hour pid relative to the control EVtreated BAP-EB. The expression of pluripotent genes [OCT4 (POU class 5 homeobox 1) and CDX2 (caudal type homeobox 2)] decreased within this period. *P < 0.05. (B) Treatment with let-7genriched EVs significantly reduced the attachment of BAP-EB onto receptive endometrial epithelial cells, Ishikawa. At 48-hour pid of BAP-EB, control EVs or Let-7genriched EVs were incubated with BAP-EB until 72-hour pid; the spheroids were evenly transferred onto a confluent monolayer of Ishikawa cells and further cocultured for 3 hours. Nonadherent spheroids were removed, and the percentage of attached BAP-EB was calculated. *P < 0.05. (C) Viability of day 5 human blastocysts after treatment with let-7enriched EVs or control EVs for 3 days. Blastocysts with a blastocoel were considered viable.

BAP-EB spheroids attach specifically onto receptive endometrial cells resembling the early implantation event (23). Treatment with let-7g-EVs reduced the protein expression of c-myc (fig. S8) in the BAP-EB and significantly decreased their attachment onto the receptive endometrial epithelial Ishikawa cells (P < 0.05; Fig. 6B).

Good quality human blastocysts can be obtained in 65% of the cultured blastocysts on day 5 and 30% on day 6, but only 5% on day 7 (24). In this study, day 5 human blastocysts (N = 21) were treated with let-7genriched EVs and their viability in terms of the presence of a blastocoel, morphology of the trophectoderm cells, and the inner cell mass cells were examined. The blastocoel and good morphology were maintained in 52% of let-7g-EVtreated blastocysts on day 7, whereas only 30% did so in the untreated group (N = 10). One of the EV-treated blastocysts remained viable until day 8 (Fig. 6C). The observations were consistent with a beneficial effect of let-7 on embryo survival in vitro.

There have long been efforts searching for the natural initiator of embryonic diapause but without much success. Our data show that let-7 of endometrial epithelial origin is a key inducer of embryonic diapause in vivo. Specifically, when the mice undergo diapause, the endometrium generates let-7enriched EVs, which are taken up by blastocysts. Two observations support the role of let-7 in the induction of embryonic diapause. First, the overexpression of let-7a and incubation with let-7enriched EVs prolonged blastocyst survival in vitro. Second, the treated embryos developed to term after an embryo transfer. The study further demonstrates a conserved action of let-7 on the induction of diapause-like phenotype in a human embryo surrogate and the prolongation of survival of human embryos in vitro.

Let-7 is a key inducer of embryonic diapause because it can simultaneously regulate the two known pathways leading to embryonic diapause. Two recent studies showed that simultaneous inhibition of C-MYC and N-MYC (18) or inhibition of mTORC1 and mTORC2 (17) signaling is required for the induction of embryonic diapause. The present data showed that let-7 induced embryonic diapause via the inhibition of both the C-MYC/mTORC1 and mTORC2 signaling pathways. Although the action of let-7 on n-myc has not been studied, it is known that there are two let-7 binding sites in the 3UTR of Mycn (25). Therefore, it is likely that let-7 also suppresses the expression of n-myc.

Let-7 inhibits Odc1 expression via the suppression of c-myc. This can be a mechanism reducing the potential of diapausing blastocysts to be reactivated, as polyamine biosynthesis is required for reactivation, and inhibition of their biosynthesis in embryos delays reactivation in vitro (21). Our site-specific ChIP assay demonstrated a reduced recruitment of C-MYC to the Odc1 promoter during diapause. Whether the reduction is due to the suppression of C-MYC expression resulting from a high expression of let-7 in the cells during diapause remains to be determined.

We localized the C-MYC protein mainly to the cytoplasm of embryos. This differs from the expected nuclear localization of C-MYC in many cell types. The antibody used in this report localized the expression of C-MYC to the nuclei of embryonic stem cells (fig. S6D). Three other antiC-MYC antibodies were tested and showed similar cytoplasmic C-MYC expression in embryos (data not shown). The expression of cytoplasmic MYC has been reported. MYC-nick is a cytoplasmic cleavage product of the full-length C-MYC, widely expressed in a large number of cell lines (26). It is expressed in differentiating cells and tissues and plays a significant role in the differentiation of myofibroblasts and the trans-differentiation of fibroblasts into muscle cells (26). Thus, a let-7induced decrease of cytoplasmic C-MYC may lead to a decrease in the differentiation potential of the diapausing blastocysts.

Let-7 overexpression induced dormancy via the suppression of apoptosis, cell proliferation, DNA synthesis, and energy metabolism. The majority of these phenotypes can be explained by the actions of let-7 on its targets, for instance, a high level of let-7 targets on c-myc to inhibit proliferation (27), caspase-3 to suppress apoptosis (28), and HK2 to reduce glucose utilization (29). A high let-7 expression is also associated with the quiescence of fibroblasts (30). Our results on Hk2 and Fbp1 mRNA expression are in contrast with those of a previous proteomic study (31). The discrepancies could possibly be due to different comparisons made in the two studies: dormant versus reactivated blastocysts at 12 to 14 hours after E2 injection in the previous studies but dormant versus D4 activated blastocysts in the present study.

Contrary to the low lactate production of dormant embryos in vivo, an overexpression of let-7 up-regulated lactate production. Dld and Dlst are let-7 targets. They are subunits of the 2-oxo-glutarate complex and the -ketoglutarate dehydrogenase complex of carbohydrate metabolism. Inhibition of DLD (Dihydrolipoamide dehydrogenase) activity in spermatozoa causes lactate accumulation (32), and infantile lactic acidosis is associated with severe deficiencies of the -ketoglutarate dehydrogenase complex (33). These conditions may have been recapitulated in the present model by the suppressive action of let-7 on Dld and Dlst. Alternatively, the observation could be due to an indirect action of let-7 on Ldha via its well-known target Lin28a. Overexpression of Lin28a decreases the expression of Ldha in the human embryonic kidney cells (34). The molecular mechanism of Lin28a on the observation remains to be determined.

Transcriptomic analyses showed that the mRNA profile of let-7ginduced embryonic diapause is about 30 to 40% similar to that of in vivo dormant embryos. These common genes represent the let-7affected genes contributing to in vivoinduced embryonic diapause. Consistently, gene ontology analysis of the common genes showed that they were related to pathways expected to be involved in embryonic diapause. The present study demonstrates that ULF-EVs are important in the induction of embryonic diapause. EVs contain many other components. The lack of some of these components could explain the differential expression of genes between the let-7ginduced and in vivo dormant embryos. The differentially expressed genes may be responsible for the phenotypes that are different between the let-7induced and the in vivo embryonic diapause, such as high lactate production after let-7induced embryonic diapause. Their absence may also explain the inability of an overexpression of let-7 alone in maintaining the survival of embryos for a very long term.

The endometrium produces ULF-EVs containing proteins, mRNAs, and microRNAs that are believed to be important means of communication between the blastocysts and the endometrium (9). Let-7 containing EVs inhibited the differentiation of human embryo surrogates and reduced their attachment onto receptive endometrial epithelial cells. Dysregulation of endometrial microRNAs occurs in subfertile women (35). It is possible that an abnormal expression of embryonic diapause-related microRNAs in the endometrial-derived EVs would retard the differentiation of the implanting embryos, leading to asynchronous development between the embryos and the endometrium. Desynchronization in the development between the blastocyst and the endometrium is a cause of implantation failure (36). However, further studies are required to explore this possibility.

In conclusion, the study showed an important role of endometrial EVs in embryo dormancy, demonstrating that let-7 in EVs is a major player in the induction of embryonic diapause.

A summary of the techniques and procedures for addressing the questions raised in the report can be found in the Supplementary Materials.

The study protocol was approved by the Committee on the Use of Live Animals in Teaching and Research, The University of Hong Kong (CULATR number: 3560-15). Females of the ICR mice were mainly used. Transgenic mice carrying a DOX-inducible let-7g gene (Slet-7gLmiR-21) were generated by the injection of embryonic stem cells carrying the let-7gStem/21loop sequence (a gift from G. Daley, Harvard Stem Cell Institute, Boston, MA, USA) into ICR blastocysts. The chimeric mice generated were then bred with CD-1 females to generate germline-transmitted pups. To match the genetic background of the embryonic stem cells carrying the transgene (V6.5 mESC), the mouse line was maintained on a C57/B6 background by backcrossing more than five times.

ICR female mice aged 6 to 8 weeks were superovulated by successive intraperitoneal injections of 5 IU of pregnant mare serum gonadotropin (Sigma-Aldrich, St. Louis, USA) and 5 IU of human chorionic gonadotropin (hCG; Sigma-Aldrich) 47 to 48 hours apart and were mated with male mice. The vaginal plug was checked the day following mating. The day when a vaginal plug was seen was considered as day 1 of pregnancy. Blastocysts were collected from the uteri at 96 hours after hCG injection and cultured in M16 medium (Sigma-Aldrich) or KSOM + AA medium (Millipore, MA, USA). In normal pregnancy, blastocysts are activated by an estradiol surge in the afternoon of day 4 of pregnancy.

Delayed implanting mice were generated as reported (7). Briefly, pregnant mice were ovariectomized in the morning (8:00 a.m. to 9:00 a.m.) of day 4 followed by daily subcutaneous injection of progesterone (P4; 2 mg per mouse; Sigma-Aldrich) from days 5 to 7 (5) to maintain the delayed implantation status. Dormant blastocysts were activated by a single subcutaneous injection of E2 (25 ng per mouse; Sigma-Aldrich) into the delayed implanting mice on day 7 of pregnancy.

Female mice were mated with vasectomized males to generate pseudo-pregnant mice. Embryos were flushed out on day 4 of pregnancy and cultured as described above. Before embryo transfer, the mice were anesthetized with pentobarbital (40 mg/kg, intraperitoneally). Twenty embryos were transferred to each mouse. The implantation sites on day 5 of pregnancy were identified by intravenous injection of 0.1 ml of 1% Chicago blue dye (Sigma-Aldrich) in saline, or the numbers of live birth were recorded.

Endometrial epithelial and stromal cells were isolated after the collection of ULF. Briefly, the uteri were opened longitudinally, and the tissues were digested in trypsin (Difco, BD Biosciences, MD, USA) for 1.5 hours at 4C and then for 30 min at 37C. Dulbeccos modified Eagles medium (DMEM)/F12 medium (Sigma-Aldrich) supplemented with 10% FBS (Thermo Fisher Scientific, CA, USA) was used to stop the digestion. The epithelial cells were collected after a gentle shaking to separate the cells from the uterine tissues and were washed with phosphate-buffered saline (PBS) thrice at 300g for 10 min. The cells were then cultured briefly for 30 min to remove the contaminated stromal cells before reseeding to another culture well for experimentation. The remaining tissues were further digested by collagenase I (10 mg/ml; Invitrogen, Carlsbad, USA) and deoxyribonuclease (DNase; 5 mg/ml; Invitrogen) for 30 min with shaking at 37C. After stopping the digestion as described above, the stromal cells were shaken from the tissues. The cell pellets collected were washed by PBS thrice and filtered through a nylon mesh with pore size of 40 m (BD Falcon Co., NJ, USA) before RNA isolation. The purity of the epithelial cells and stromal cells was over 90% as determined by immunostaining, using antibodies against mouse cytokeratin (Dako, Glostrup, Denmark) and mouse CD90 (BD Biosciences, MA, USA), respectively.

Electroporation. Pre-let-7a or scrambled miRNA control (Thermo Fisher Scientific) was electroporated into day 4 blastocysts from ICR mice as described (7). Briefly, the uteri of day 4 pregnant mice were flushed with Hanks solution to obtain blastocysts, which were then transferred to prewarmed droplets of M16 medium. Pre-let-7a or scramble control was electroporated into the embryos in a flat electrode chamber (1-mm gap between electrodes; BTX Inc., San Diego, USA) in 20 l of Hepes-buffered saline (150 mM NaCl, 20 mM Hepes, Sigma-Aldrich), by two sets of three electric pulses of 1 ms at 30 V with 1-min interval between sets, and inverting polarity using the 830 Electro Square Porator (BTX Inc., San Diego, USA). Following electroporation, the embryos were cultured in KSOM + AA or M16 for experimentation. About 95% of the electroporated embryos survived the process; they showed no sign of cell lysis at 2 hours after electroporation.

Treatment with let-7enriched EV. Ishikawa cells were transfected with pre-let-7a or pre-miR scramble using Lipofectamine 2000 (Thermo Fisher Scientific). After transfection, the transfection medium was replaced by fresh MEM medium supplemented with 1% penicillin/streptomycin, 1% l-glutamine, and 10% EV-depleted FBS (Thermo Fisher Scientific, CA, USA). The spent medium after 48 hours of culture was collected for EV isolation. EVs were isolated from the spent medium with the Total Exosome Isolation Kit (Thermo Fisher Scientific) according to the manufacturers instruction. The let-7a levels in the EVs were detected by reverse transcription qPCR (RT- qPCR) (let-7a primer, Thermo Fisher Scientific). Alternatively, let-7genriched EVs were isolated from the spent medium after culture of DOX-treated endometrial epithelial cells from the let-7g transgenic mice in medium supplemented with 10% EV-depleted FBS for 48 hours. The epithelial cells with a purity of more than 90% were isolated as above. The protein concentration of the EV preparation was determined with the BCA Protein Assay Kit (Thermo Fisher Scientific) with a working concentration range of 5 to 2000 g/ml. The let-7enriched EVs at a final concentration of 100 g/ml were used for coincubation with embryos.

Pregnant mice or delayed implanting mice at 3, 6, and 24 hours after E2 reactivation were sacrificed by an overdose of pentobarbital (150 to 200 mg/kg, intraperitoneally). Their uteri were isolated, and ULF was collected by flushing the uterine lumen with 500 l of PBS. The embryos in the flushing were removed under a dissection microscopy. EVs in the ULF were isolated with the Total Exosome Isolation Kit. Briefly, the ULF was centrifuged successively at 300g for 10 min to remove cells, at 2000g for 10 min to remove dead cells, and at 20,000g for 60 min to remove cell debris and large vesicles. The pellets that formed in each centrifugation were discarded. After the last centrifugation, the total exosome isolation reagent (250-l volumes) was mixed with the supernatant overnight at 4C on a roller mixer, before the samples were centrifuged at 10,000g for 60 min at 4C. The supernatant was discarded, and the ULF-EV pellet was gently washed once with 200 l of PBS to remove residual extract buffer and resuspended in 20 l of PBS and stored at 80C. The size and purity of the isolated ULF-EVs were determined using a nanoparticle tracking analyzer (ZetaView PMX 120, Particle Metrix, Germany), electron microscopy (FEI Tecnai G2 20 Scanning TEM, FEI Co., USA), and Western blot analysis of EV-specific markers HSP70 (Abcam, Cambridge, UK), CD63 (Abcam), and TSG101 (Abcam) and negative control markers GM130 (Abcam) and calnexin (Abcam), as described (16). The average protein content of pooled ULF-EV preparations was 1.2 0.2 g per mice as determined with the BCA Protein Assay Kit (Thermo Fisher Scientific). The volume of mouse ULF on days 2 to 5 of pseudo-pregnancy is 2 to 5 l per mice (37). Therefore, the protein concentration of EV in ULF was estimated to be 240 to 600 g/ml in vivo. In this study, embryos were treated with EVs at a physiological dose of 100 g/ml.

Cell apoptosis was examined with the In Situ Cell Death Detection Kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturers instruction. Briefly, embryos were fixed in 4% paraformaldehyde for 15 min at room temperature, permeabilized with 0.1% Triton X-100 in Dulbeccos PBS (DPBS) for 30 min, and then incubated with TUNEL reaction mixture containing 5 l of enzyme solution and 45 l of label solution at 37C for 60 min. The embryos were washed three times with PBS. Their nuclei were stained with propidium iodide (Sigma-Aldrich) for 5 min before the embryos were mounted on microscope slides for examination under a fluorescence-inverted microscope (TE300; Nikon, Japan).

The method used was a miniaturized version of conventional enzymatic methods, which rely on the detection of ultraviolet (UV)excited NADH (reduced form of nicotinamide adenine dinucleotide) and NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) in enzyme coupled reactions (38). Instead of having the enzymatic reactions conducted in cuvettes, they were done in 20-l droplets on a petri dish. The specific enzyme cocktails for the metabolite studied were as follows: glucose cocktail: 42 mM EPP S (4-(2-Hydroxyethyl)-1-piperazinepropanesulfonic acid) buffer (pH 8.0), 42 M dithiothreitol, 3 mM MgSO47H2O, 0.42 mM ATP, 1.2 mM NADP, and hexokinase (14 U/ml)/glucose-6-phosphate dehydrogenase (7 U/ml; Roche Applied Science); pyruvate cocktail: 63 mM EPP buffer (pH 8.0), 0.1 mM NADH, and l-lactate dehydrogenase (75 U/ml; Roche Applied Science); lactate cocktail: 0.45 M glycine/0.73 M hydrazine buffer, 4.5 mM NAD, and l-lactate dehydrogenase (69 U/ml; Roche Applied Science).

The cocktail droplet (2 l) was mixed with 18 l of spent culture media. Following a 3-min incubation at room temperature, 5 l of the medium was transferred to a homemade chamber with a chamber depth of 1 mm, and its fluorescence intensity was determined under a fluorescence microscope. The fluorescence signal relative to the background was determined by the pixel intensities using the Image-Pro Plus 6.0 software (Media Cybernetics Inc., Silver Spring, MD, USA). The background signal was estimated using a method described previously (39). The changes in fluorescence were converted to changes in the concentration based on standard curves performed on the same day with known concentrations of the appropriate substrates.

DNA synthesis was determined by the EdU incorporation assay (Thermo Fisher Scientific) according to the manufacturers instruction. Briefly, embryos were cultured in KSOM medium containing 10 M EdU for 30 min before washing with PBS. After the removal of the zona pellucida, the embryos were fixed in methanol at 20C for 20 min and permeated in PBS containing 1% bovine serum albumin (BSA) and 0.5% Triton X-100. The incorporated EdU was detected by incubation with 1 mM CuSO4 and 100 M fluorescent azide for 30 min. The staining mixture was prepared fresh each time. The embryos were washed three times with PBS containing 0.05% Tween 20 before the fluorescence signal was visualized under a confocal microscope (Carl Zeiss LSM 700, Zeiss, Germany).

The embryos were washed with M2 medium (Sigma-Aldrich) and fixed in 4% paraformaldehyde for 15 min at room temperature. They were permeabilized with 0.1% Triton X-100 in DPBS for 30 min and incubated for 1 hour in DPBS containing 1% BSA at room temperature before incubation with antibodies against C-MYC, pAKT, pRpS6, p4EBP1 (Abcam, UK), or Ki67 (Santa Cruz Biotechnology Inc., Santa Cruz, CA) at 4C overnight followed by incubation with secondary antibody [FITC-labeled anti-goat immunoglobulin G (IgG)] for 1 hour at 37C. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI) (5 g/ml; Sigma-Aldrich) or propidium iodide (1 g/ml) for 5 min. Last, the embryos were rinsed in DPBS to remove excess reagents and examined under a confocal microscope.

Proteins were extracted from the JEG-3 cells and the uterine epithelial cells with radioimmunoprecipitation assay (RIPA) lysis buffer supplemented with protein inhibitor and phosphatase inhibitors (Sigma-Aldrich). The concentration of proteins in the extract was measured using the BCA Kit (Thermo Fisher Scientific). The protein extracts were separated on 10% SDSpolyacrylamide gel electrophoresis, transferred onto polyvinylidene difluoride membranes (Merck Millipore, Germany), and probed with antibodies against c-myc (Cell Signaling Technology, MA, USA), ODC1, SMS, pAKT, p4EBP1, pRpS6, and the total protein of AKT, 4EBP1, and RpS6 (Cell Signaling Technology). -Actin (Sigma-Aldrich) was used as the internal control. The membranes were incubated with the WesternBright ECL Kit (Advansta, CA, USA) and exposed to x-ray films.

Embryos at the same developmental stage were randomly pooled into three groups with five embryos per group. Total RNA was extracted from each group in 0.5 l of 2 M guanidine isothiocyanate (Sigma-Aldrich) buffer at room temperature for 5 min. Complete lysis of the embryos in the buffer was confirmed under a microscope. The samples were diluted to 5 l with double-distilled water and were used directly for the multiplex microRNA assays.

To amplify the precursor-microRNA, the forward and reverse primers were designed to anneal to the stem portion of the hairpin. The forward primer was designed for a sequence that crossed the stem and the loop of the precursor of Slet-7gLmiR-21 so that only its stem, but not that of the pre-let-7g, was amplified. The sequences of the primers used for pre-S7gL21 were as follows: forward: 5-GTAGTAGTTTGTACAGTTCTGT-3; reverse: 5-TAAATCCTGGCAAGGC-3; probe: 5-CTGTACAGTCCATGAGATT-3; Rt reverse: 5-TAAATCCTGGCAAGGCA-3.

Embryos were lysed in 5% NP-40 to release the total RNA. RT primer annealing was performed at 85C for 5 min by adding 1 pmol of RT reverse primer to 1 g of the above RNA. Then, the samples were placed immediately in ice to avoid the formation of stem-and-loop structure. RT was performed at 45C for 60 min and at 85C for 5 min and then kept at 4C in a thermal cycler (T100 Thermal Cycler, Bio-Rad, CA, USA). RT-qPCR was performed with the 7500 Real-Time PCR System (Thermo Fisher Scientific). The program was a 10-min cycle at 95C, followed by 45 cycles of 15 s at 95C and 60 s at 60C.

Microarray (GeneChipTM Mouse Gene 2.0 ST) was used to study the effect of let-7 overexpression on the transcriptome of the treated blastocysts. For each sample, RNA was collected from 10 blastocysts. RNA extraction, amplification, and purification were performed according to Kurimoto et al. (40). The complementary DNAs (cDNAs) from day 7 dormant blastocysts, D4-act, and DOX-induced blastocysts were hybridized to the GeneChipTM Mouse Gene 2.0 ST array in duplicates (Affymetrix, CA, USA). All cDNA hybridizations were performed by the Centre for Genomic Sciences, The University of Hong Kong. The microarray data have been deposited to the Gene Expression Omnibus (GSE141900). The data were analyzed using Partek Genomics Suite 6.6 (St. Louis, MO, USA). The expression matrix was further subjected to the R package linear models for microarray data (41) for identifying the differentially expressed genes. Principal components were computed and plotted with the R packages FactoMineR and factoextra. Heatmaps were plotted with the R package gplots using z scores calculated for each gene across different samples. Biological process analysis was performed by DAVID (v6.8) (42).

To obtain the DNA template for in vitro transcription, the pcDNA 3.1_cMyc plasmid containing the coding DNA sequence was PCR-amplified using the following primers: 5-TAATACGACTCACTATAGATGCCCCTCAACGTGAAC-3 (with T7 polymerase promoter) and 5-TTATGCACCAGAGTTTCGAAGC-3. The product was purified using the GeneJET PCR Purification Kit (Thermo Fisher Scientific). The MEGAscript T7 ULTRA Transcription Kit (Thermo Fisher Scientific) was used for in vitro transcription from DNA to mRNA according to the manufacturers instructions. Briefly, DNA template was recovered at a final concentration of 1 g/l. Transcription reaction was performed by incubation at 37C for 4 hours. TURBO DNase (1 l) was added into the reaction and incubated for 15 min at 37C before the addition of the tailing reagents for poly(A) tailing. Last, RNA was recovered using phenol:chloroform extraction and isopropanol precipitation. The recovered RNA was then quantified and stored at 80C and was ready for transfection.

The mouse genomic DNA was extracted from the ICR mouse liver using a DNA extraction kit (Thermo Fisher Scientific) according to the manufacturers protocol. The 3UTR of Rictor was amplified with the Not I and Xho I digestion sites by the Phusion High Fidelity DNA Polymerase (New England Biolabs, Beverly, MA, USA). The PCR products were first purified with the GeneJET PCR Purification Kit (Thermo Fisher Scientific), digested with the Not I and Xho I enzymes (New England Biolabs), and purified with the GeneJET PCR Purification Kit again. The purified PCR products were ligated with the Not I and Xho Idigested psiCHECK-2 vector (Promega, WI, USA). Lipofectamine 2000 transfection reagent (Thermo Fisher Scientific) was used to cotransfect 1 g of the WT and mutant (Mut) reporter constructs with 5 nM let-7a mimic (Thermo Fisher Scientific) into a monolayer of JEG-3 cells at 70% confluence in Opti-MEM (Thermo Fisher Scientific). At 24 hours after transfection, the cells were lysed in 100 l of 1 passive lysis buffer (Promega). The luciferase assays were performed using a luciferase assay kit (Promega) according to the manufacturers protocol and were measured using a luminometer (GloMax 96 Microplate Luminometer, Promega). Renilla luciferase was used for normalization.

ChIP analysis was performed using the Pierce Chromatin Prep Module (Thermo Fisher Scientific, 26158) according to the manufacturers instruction. Uterine epithelium cells from delayed implanting and activated mice were isolated as described above. Formaldehyde was used to cross-link DNA and its interacting proteins in the cells. The cells were then lysed in the Lysis Buffer on ice for 10 min and centrifuged. The supernatant was discarded, while the nuclei were resuspended in the MNase Digestion Buffer. Micrococcal nuclease was added to digest the chromatin. Immunoprecipitation was performed with the ChIP-grade c-Myc antibody (Cell Signaling Technology) at a dilution of 1:100. Proteinase K was used to disrupt the cross-links between the DNA and proteins. The DNA was then purified using the PCR Cleanup Extraction Kit (Thermo Fisher Scientific), after which quantitative RT-PCR was performed with the SYBR Green Master Mix (Thermo Fisher Scientific) using the following ChIP primer sequences (Table 1).

The data obtained were normalized to the input [fold differences = 2(Ct sample Ct input)].

Blastocysts were incubated for 10 min at 37C in an atmosphere of 5% CO2 in 40-l microdrops of M16 containing Alexa Fluor 488labeled EGF (2 g/ml; Thermo Fisher Scientific). Unlabeled EGF peptide at a concentration of 20 g/ml was used as control for nonspecific binding of the labeled peptide. After termination of the incubation, blastocysts were washed in medium and fixed in 4% paraformaldehyde in PBS for 15 min at 4C. Z-stack images of fixed embryos were captured with a confocal fluorescence microscope (Carl Zeiss LSM700, Germany). For quantification of the EGF binding, the images of the embryos were analyzed with the ImageJ software (1.52p, USA). The average fluorescence intensity was calculated. The data presented were the averages of the fluorescence intensity from at least three embryos.

BAP-EB spheroids were generated from hESCs as described (23). Briefly, hESCs (VAL3, Spanish Stem Cell Bank, Spain) were digested to single cells with accutase (Thermo Fisher Scientific, Waltham, USA) and aggregated in AggreWellTM400 (STEMCELL Technologies Inc., Canada) in mTeSRTM1 medium (STEMCELL Technologies Inc., Canada) for 24 hours before the induction of trophoblast differentiation in BAP medium (mouse embryonic fibroblastconditioned medium supplemented with BMP4 (10 ng/ml; R&D Systems, Minneapolis, USA), 1 M A83-01 (Stemgent, San Diego, USA), and 0.1 M PD173074 (Stemgent). The medium was changed daily during a 96-hour differentiation.

Control EVs or let7-enriched EVs were added to the BAP-EB culture at 48-hour pid. For the attachment assay, BAP-EB at 72-hour pid was transferred onto a confluent monolayer of Ishikawa cells and cocultured for 3 hours. Nonadherent spheroids were removed, and the percentage of attached BAP-EB was determined. For the gene expression analyses, BAP-EB at 0 and 48 hours before EV treatments and BAP-EB at 96 hours after EV treatments were collected and subjected to total RNA extraction and real-time quantification of marker expressions, as described (23).

Human embryos were obtained from infertile couples attending the assisted reproduction clinics at the Department of Obstetrics and Gynecology, General Hospital of Chinese Peoples Liberation Army and the Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-Sen University. The Institutional Review Board of the Hospital approved the project (S2017-095-01), and written consent was obtained from each donor. The embryos were donated because the donor couples had completed their family (N = 17), or the embryos were chromosomal abnormal as determined by preimplantation genetic testing for aneuploidy (N = 4). The donated embryos were cryopreserved on day 5 before experimentation.

EVs were obtained from endometrial cells of let-7g transgenic mice after treatment with DOX in DMEM/F12 medium supplemented with EV-free FBS for 4 days. Control EVs were obtained from cells without DOX treatment. On the day of experimentation, the donated blastocysts were thawed and cultured in G2 medium (Vitrolife, Sweden) supplemented with let-7genrched EVs or control EVs until they were morphologically not viable.

All the results are shown as means SEM. All the data were analyzed using one-way analysis of variance (ANOVA). A P value of less than 0.05 was considered statistically significant.

Acknowledgments: Funding: The project is supported by a grant from the National Natural Science Foundation of China (NSFC 31471398); a grant from the Research Grant Council (GRF 17107915), Hong Kong; and a National Key Basic Research Development Program (973 Program) from the Ministry of Science and Technology of the Peoples Republic of China (MOST 2018YFC1004402) to W.S.B.Y. Author contributions: Conceptualization: W.S.B.Y., W.M.L., and R.R.C.; conduct of the experiments: W.M.L., R.R.C., Z.R.N., M.Y.M., T.L., P.C.C., and R.T.P.; data analysis: W.S.B.Y., Y.L.L., W.M.L., and A.C.C.; writing (original draft): W.S.B.Y. and W.M.L.; writing (review and editing): all authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The microarray data have been deposited to the Gene Expression Omnibus. Additional data available from W.S.B.Y. upon request.

Read the rest here:
Let-7 derived from endometrial extracellular vesicles is an important inducer of embryonic diapause in mice - Science Advances

Mini-Guts Could Offer Treatment Hope for Children With Intestinal Failure – Technology Networks

Read Time:

Pioneering scientists at the Francis Crick Institute, Great Ormond Street Hospital (GOSH) and UCL Great Ormond Street Institute of Child Health (ICH) have grown human intestinal grafts using stem cells from patient tissue that could one day lead to personalised transplants for children with intestinal failure, according to a study published in Nature Medicine on Monday 7th September.

Children with intestinal failure cannot absorb the nutrients that are essential for their overall health and development. This may be due to a disease or injury to their small intestine.

In these cases, children can be fed intravenously via a process called parenteral nutrition, however this is associated with severe complications such as line infections and liver failure. If complications arise or in severe cases these children may need a transplant. However, there is a shortage of suitable donor organs and problems can arise after surgery, such as the body rejecting the transplant.

In their proof-of-concept study, the research team showed how intestinal stem cells and small intestinal or colonic tissue taken from patients can be used to grow the important inner layer of small intestine in the laboratory with the capacity to digest and absorb peptides and digest sucrose in food.

This is the first step in efforts to engineer all the layers of the intestine for transplantation. The researchers hope that one day, laboratory grown organs could offer a safe and longer-lasting alternative to traditional donor transplants.

"It's urgent that we find new ways to care for children without a working intestine because, as they grow older, complications from parental nutrition can arise," says Dr Vivian Li, senior author and group leader of the Stem Cell and Cancer Biology Laboratory at the Crick.

"We've set out a process to grow one layer of intestine in the laboratory, moving us a step closer to being able to offer these patients a form of regenerative medicine, which uses materials created from their own tissue. This would reduce some of the risks that transplant patients face, such as their immune system attacking the transplant."

The researchers took small biopsies of intestine from 12 children who either had intestinal failure or were at risk of developing the condition. In the lab, they then stimulated the biopsy cells to grow into "mini-guts", also known as intestinal organoids, generating over 10 million intestinal stem cells from each patient over the course of 4 weeks.

The researchers also collected small intestine and colon tissue, that would otherwise have been discarded, from other children undergoing essential surgery to remove parts of their gut. Using laboratory techniques, cells were removed from these tissues leaving behind a skeleton structure which formed scaffolds.

The researchers placed the "mini-guts" onto these scaffolds, where they grew on this structure to form a living graft. Due to specific culture conditions, the stem cells changed into many of the different types of cells that exist in the small intestine. The grafts were able to digest and absorb peptides, the building blocks of proteins, as well as digest sucrose into glucose sugars.

"Although this research is in the lab right now, we're concentrating on making this a realistic and safe treatment option," explains senior author NIHR Professor Paolo De Coppi, Consultant Paediatric Surgeon at GOSH and Head of Surgery, Stem Cells & Regenerative Medicine Section at the UCL Great Ormond Street Institute of Child Health (ICH).

"What's significant here is we've shown that scaffolds can be created using tissue from the colon, not only tissue from the small intestine. In practice, it is often easier to obtain tissue from the colon, so this could make the approach much more feasible. It's an important step forward in regenerative medicine and we're optimistic about what this means for patients, but more research lies ahead before we can safely and effectively translate this approach to treatment."

As well as proving that biopsies taken from children could be used to grow functioning intestinal grafts, the researchers also demonstrated that the grafts survive and mature when transplanted into mice.

"By applying our basic science knowledge of intestinal stem cell biology, we have developed a time efficient and clinically relevant method for rebuilding human small intestine grafts for transplantation," says Laween Meran, lead author, Gastroenterology Registrar and Clinical Research Training Fellow at the Stem Cell and Cancer Biology Laboratory at the Crick and the ICH.

"Now that we've shown the grafts are successful on a small scale, the next crucial steps will be to start growing the other layers of the intestine such as muscle and blood vessels, whilst also scaling up our methods to create viable grafts relevant to individual patient needs".

Reference:Meran, L., Massie, I., Campinoti, S. et al. Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure. Nature Medicine.2020. doi.org/10.1038/s41591-020-1024-z

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Original post:
Mini-Guts Could Offer Treatment Hope for Children With Intestinal Failure - Technology Networks

Balzarotti Breaks Down New Developments in the Expanding DLBCL Paradigm – OncLive

In recent years, rituximab (Rituxan), cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) has been the standard treatment for patients with diffuse large B-cell lymphoma (DLBCL), according to Monica Balzarotti, MD, but new approaches such as selinexor (Xpovio), bispecific antibodies, and CAR T-cell therapies are expanding the armamentarium.

Notably, about 20% of patients with DLBCL have refractory disease. Some patients are not suitable for high-dose consolidation with autologous stem cell transplantation (ASCT) because there is no treatment that can guarantee a longer remission, Balzarotti explained. Whatever you usechemotherapy, such as gemcitabine or oxaliplatin, polatuzumab vedotin (Polivy)/bendamustine, or even new experimental drugs[we are not able to obtain] longer remissions. Looking forward, we must determine whether we can consolidate and maintain responses.

In an interview with OncLive, Balzarotti, a hematologist in the Department of Hematology at the Institute for Research, Hospitalization, and Health Care (IRCCS) Humanitas Research Hospital, discussedthe current treatment landscape of DLBCL, including the recent FDA approval of selinexor for the treatment of adult patients with relapsed/refractory disease.

OncLive: Could you discuss the current treatment landscape for DLBCL?

Balzarotti: In the first-line treatment of [patients with] DLBCL, R-CHOP is still the golden standard because no other regimen has been able to demonstrate superiority [over this approach]. However, there is some hope regarding the use of BTK inhibition in younger patients. The PHOENIX trial demonstrated the superiority of R-CHOP plus ibrutinib (Imbruvica) in younger patients; however, the primary end point concerned older patients. Thus, we dont have a definitive [takeaway] from this trial. Another trial will examine acalabrutinib (Calquence) in younger patients that might help us to answer this question.

At relapse, [we use] high-dose consolidation with ASCT; this approach is reserved for younger patients aged up to 70 years. This strategy can cure about 50% of patients with relapsed disease, even the patients that experience relapse later on. In the case of primary refractory disease, or patients with very early progressive disease, even chemotherapy and ASCT is not enough to guarantee a high percentage of cure. Under 20% of these patients have the probability to survive 1 year.

Now, we have CAR T-cell therapy and we are very hopeful. This is a new strategy that is very promising, but I don't believe it will be able to cure all patients with relapsed/refractory disease. Thus, we need other drugs and more knowledge of the biology of the disease.

Could you expand on some of the later-line treatment approaches?

We have several therapies, many of which are concentrated [for use] in the subgroup of patients who are not suitable for ASCT. The majority of patients with DLBCL are not eligible for ASCT, because this disease mainly effects the elderly. Oftentimes, elderly patients do not receive an optimal treatment in the first-line setting. Sometimes they receive a reduced dose of R-CHOP and then they relapse, or they have a comorbidity that does not allow for them to receive full-dose chemotherapy.

As such, several therapies have been developed. One such therapy is lenalidomide (Revlimid), which can result in a 30% complete remission (CR) rate. This is higher in patient with the Germinal center B-cell like subtype. This is the only drug that has been approved for use worldwide.

Another agent is polatuzumab vedotin, which is a CD79b-directed antibody-drug conjugate (ADC); this drug has been approved for use in combination with bendamustinein the United States and it [will likely] be approved in Europe and Italy in the future. However, this has been delayed because of the novel coronavirus 2019 pandemic.

We also have several other drugs and strategies, such as the bispecific antibodies, ADCs, and monoclonal antibodies, such as cabozantinib (Cabometyx). We also have selinexor, CAR T-cell therapy, ASCT, and maybe some other drugs that are still in earlier phases of experimentation. We have many treatments, but we still need to learn how best to use them and how to sequence them appropriately.

What are the big unmet needs that still need to be addressed?

Oftentimes, DLBCL is not a good candidate for maintenance therapy because it does not have a molecular marker such BCL-2 which is used in follicular lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. However, when evaluating circulating tumor DNA and the identification of newer molecular markers, we may be able to proceed in that way. We have small experience with the consolidation and maintenance treatment, for example, with lenalidomide and other drugs, which is encouraging.

What ongoing studies are you most excited about?

In the first-line setting, the most highly anticipated results are those from the POLARIX trial, which compared R-CHOP with R-CHOP plus polatuzumab vedotin. We also anticipate results from another trial, which is comparing ASCT with CAR T cells in the setting of refractory disease. Other trials are in earlier stages and are currently accruing.

Could you speak to the recent FDA approval of selinexor in DLBCL?

Selinexor has shown encouraging activity with a high rate of both CR and overall remission. In the published trial, there were longer durations of complete and partial remissions. The fact that remission can be maintained is important, especially for the maintenance therapy that I mentioned earlier.

On the other hand, I know that selinexor is not an easy drug to manage, especially because of the high rate of nausea and vomiting. There are very aggressive protocols to contain these toxicities [but it] is a bit worrying for the European investigators; we are not used to administering these drugs. There is an agent in the United States that is used to help control these symptoms.

However, I believe this could potentially be problematic because, when prescribing a drug for a long period of time, the adverse effects may hinder a patients quality of life. We need to ensure that patients are taking the drug as directed.

Where should future research efforts be focused with this agent?

Its important to learn how to manage selinexor [better]. When there is a new drug, you read the literature to better understand the activity of the drug, but only for a very selective group of patients. Then, there is the real world. We have real-world data on CAR T cells and its interesting to think about; this is better. We are now waiting for the real-world [data] of selinexor [to see what can be learned].

What is your take-home message to your colleagues treating patients with DLBCL?

The most important message is that patients with relapsed disease should be managed by the referral center, not because the conditions of the center are better, but because they usually have new drugs, strategies, and ways to approach patients.

In one center they may have selinexor, in another they may have ADCs, and another may have CAR T-cell therapy. You need a center or a collaborative group where you can find all of these strategies because this will help you choose the best therapy because you will have a better understanding of the risks and characteristics of the drug. Sometimes these strategies can be used in segments.

See the rest here:
Balzarotti Breaks Down New Developments in the Expanding DLBCL Paradigm - OncLive

Application of Immunotherapy to $7 Billion Lower Back Pain Market Patented by Creative Medical Technology Holdings – BioSpace

PHOENIX, Sept. 8, 2020 /PRNewswire/ --(OTC CELZ) -- Creative Medical Technology Holdings Inc. announced today receipt of a Notice of Allowance from the United States Patent and Trademark Office for its patent application, "Perispinal Perfusion by Administration of T Regulatory Cells Alone or in Combination with Angiogenic Cell Therapies."

The patent covers the use of activated T regulatory cells for inducing an increase in blood circulation in areas surrounding the disc of patients with lower back pain. It is believed that a significant proportion of patients suffering from lower back pain have abnormally poor circulation, which does not effectively remove waste products and irritants. Restoration of circulation in the lower back is associated with reduction of pain.

The Company acquired a previously granted US Patent # 9,598,673 covering use of various types of stem cells, autologous and allogeneic, for treating lower back pain. The Company has completed an autologous cell therapy pilot study in the area of lower back pain utilizing this patented technology and is currently in the process of assembling data for publication.

"Creative Medical Technology Holdings is developing a critical mass of issued intellectual property covering multiple cell therapy treatments of lower back pain as well as other indications," said Timothy Warbington, President and CEO of the Company. "Testimony to the size of the lower back pain market is the $1 Billion Mesoblast-Grunenthal deal for a pre-review cell therapy product1. We are enthusiastic to add this new therapy to our expanding portfolio of rapid-to-commercialize cellular therapies."

Creative Medical Technology Holdings has previously commercialized its CaverStemR technology involving personalized bone marrow cellular therapy for erectile dysfunction. This technology is covered by issued patent # 8,372,797 and a clinical trial demonstrating safety with signals of efficacy published in the peer-reviewed literature2.

"Immunotherapy is one segment of the biotechnology industry that is expanding at an exponential rate," said Donald Dickerson, CFO of the Company. "The recent Nobel Prize in the area of Immunotherapy of Cancer, as well as the current valuations of immunotherapy companies, validates the approaches that we have been developing, and now patenting. Essentially our approach is to use stem cells, or immunotherapy to enable the body to heal itself."

"The Company welcomes the biotechnology/life sciences community and key opinion leaders to contact us to discuss potential collaboration on our patented technologies in this amazing space," Mr. Warbington said further.

About Creative Medical Technology Holdings

Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of urology, neurology and orthopedics and trades on the OTC under the ticker symbol CELZ. For further information about the company, please visit http://www.creativemedicaltechnology.com.

Forward Looking Statements

OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website at http://www.sec.gov.

Creativemedicaltechnology.com http://www.StemSpine.com http://www.Caverstem.com http://www.Femcelz.com

1https://www.biopharma-reporter.com/Article/2019/09/12/Gruenenthal-partners-with-Mesoblast-for-back-pain-cell-therapy#:~:text=Gr%C3%BCnenthal%20agrees%20deal%20with%20Mesoblast,disease%20in%20previously%20treated%20patients.

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958721/

View original content to download multimedia:http://www.prnewswire.com/news-releases/application-of-immunotherapy-to-7-billion-lower-back-pain-market-patented-by-creative-medical-technology-holdings-301125294.html

SOURCE Creative Medical Technology Holdings, Inc.

More:
Application of Immunotherapy to $7 Billion Lower Back Pain Market Patented by Creative Medical Technology Holdings - BioSpace

Stem Cell Alopecia Treatment Market is Thriving Worldwide 2020 | Trends, Growth and Profit Analysis, Forecast by 2027 – The Daily Chronicle

Sanford Burnham Prebys Medical Discovery Institute

Global Stem Cell Alopecia Treatment Market, By Indication

Male Pattern Baldness Female Pattern Baldness Others

The report provides detailed coverage of the Stem Cell Alopecia Treatment Market, including structure, definitions, applications, and Industry Chain classifications. The Stem Cell Alopecia Treatment Market analysis is provided for the international markets including development trends, competitive landscape analysis, investment plan, business strategy, opportunities and development status of key regions. Development policies and plans are discussed and manufacturing processes and cost structures analyzed. This report also includes information on import / export consumption, supply and demand, costs, industry share, policy, Price, Sales and gross margins.

Ask For Discount @https://www.verifiedmarketresearch.com/ask-for-discount/?rid=15102&utm_source=TDC&utm_medium=001

Stem Cell Alopecia Treatment Market forecast up to 2027, with information such as company profiles, product picture and specification, capacity production, price, cost, revenue, and contact information. Upstream raw materials and equipment as well as downstream demand analyses are also carried out. The Stem Cell Alopecia Treatment Market size, development trends and marketing channels are analyzed. Finally, the feasibility of new investment projects is assessed and general research results are offered.

The Stem Cell Alopecia Treatment Market was created on the basis of an in-depth market analysis with contributions from industry experts. The report covers the growth prospects in the coming years and the discussion of the main providers.

To understand how the effects of COVID-19 are addressed in this report. A sample copy of the report is available at https://www.verifiedmarketresearch.com/product/stem-cell-alopecia-treatment-market/?utm_source=TDC&utm_medium=001

Verified Market Researchis a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Mr. Edwyne Fernandes

US: +1 (650)-781-4080 UK: +44 (203)-411-9686 APAC: +91 (902)-863-5784 US Toll-Free: +1 (800)-7821768

Email:[emailprotected]

Follow this link:
Stem Cell Alopecia Treatment Market is Thriving Worldwide 2020 | Trends, Growth and Profit Analysis, Forecast by 2027 - The Daily Chronicle

Stem Cell Therapy Market Research, Technology, Demand, Analysis, Services, Type and Global Industry Forecast 2025 – The Daily Chronicle

Introduction & Scope: Global Stem Cell Therapy Market

Global Stem Cell Therapy market research report presentation demonstrates and presents an easily understandable market depiction, lending crucial insights on market size, market share as well as latest market developments and notable trends that collectively harness growth in the global Stem Cell Therapy market.

Research analysts and industry experts through this report are also aiming to lend ample light on further essential determinants such as a meticulous review and analytical take of opportunity assessment, also encompassing threat and challenge analysis that constantly deter upward growth spurt in Stem Cell Therapy market.

According to research inputs, this global Stem Cell Therapy market is also likely to register a thumping growth of USD xx million in 2020 and is further anticipated to reach over xx million USD by the end of 2027, clocking at a steady CAGR of xx% through the forecast span, 2020-27. Expert opinion also suggests that the global Stem Cell Therapy market is likely to tread on the road to recovery in the foreseeable future.

Request sample copy of this report at: https://www.adroitmarketresearch.com/contacts/request-sample/691?utm_source=Pallavi

Gauging COVID-19 Impact To enable mindful business discretion amidst catastrophic developments such as COVID-19 and its subsequent implications, this ready-to-refer research report on the global Stem Cell Therapy market is designed to answer the queries pertaining to the pandemic to emerge from catastrophic implications.

This intensively compiled research report presentation is a versatile hub of innate knowledge factors such as sales volume and bulk production, pricing matrix and sales figures, overall growth review and margin, chances of growth in the future and their range amongst other additional growth determinants that influence growth in the Stem Cell Therapy market.

Read complete report at: https://www.adroitmarketresearch.com/industry-reports/stem-cell-therapy-market?utm_source=Pallavi

Global Stem Cell Therapy Market Dynamics Drivers: A systematic estimation of the major growth propellants prevalent across regional and global parlance Barriers: This section of the report further includes a detailed analytical assessment of the major challenges faced by the market players besides also offering a probability review Opportunities: Briefly addressing multiple consumption and production advances, competition concentration as well as growth tendencies observed across regional and global levels alike.

Stem Cell Therapy Market Segmentation

Type Analysis of Stem Cell Therapy Market:

Based on cell source, the market has been segmented into,

Adipose Tissue-Derived Mesenchymal SCs Bone Marrow-Derived Mesenchymal SCs Embryonic SCs Other Sources

Applications Analysis of Stem Cell Therapy Market:

Based on therapeutic application, the market has been segmented into,

Musculoskeletal Disorders Wounds & Injuries Cardiovascular Diseases Gastrointestinal Diseases Immune System Diseases Other Applications

Regional Analysis

Furthermore, the report helps as a expedient guide to design and instrument probable growth routing activities across select regional hubs in the Stem Cell Therapy market. Frontline companies and their result-based growth approaches are also recruited in the report to emulate growth.

In addition to in its succeeding sectors of the report, this detailed presentation of the Stem Cell Therapy market offers vigorous details on regional belts and expansion projects identifying potential growth possibilities.

Five-Pointer Guide for Report Investment A rigorous, end-to-end review and analysis of the Stem Cell Therapy market events and their implications A thorough compilation of broad market segments A complete demonstration of best in-industry practices, mindful business decisions and manufacturer activities that steer revenue sustainability in the global Stem Cell Therapy market A complete assessment of competition spectrum, inclusive of relevant details about key and emerging players A pin-point review of the major dynamics and dominant alterations that influence growth in the global Stem Cell Therapy market

Study on Table of Contents: Stem Cell Therapy Market Overview, Scope, Status and Prospect (2015-2020) covering COVID-19 Pandemic. Global Stem Cell Therapy Market Competition by Manufacturers Global Stem Cell Therapy Capacity, Production, Revenue (Value) by Region (2015-2020) Global Stem Cell Therapy Supply (Production), Consumption, Export, Import by Region (2015-2020) Global Stem Cell Therapy Production, Revenue (Value), Price Trend by Type Global Stem Cell Therapy Manufacturers Profiles/Analysis Stem Cell Therapy Manufacturing Cost Analysis Industrial Chain, Sourcing Strategy and Downstream Buyers Marketing Strategy Analysis, Distributors/Traders Global Stem Cell Therapy Market Effect Factors Analysis and Forecast (2020-2025)

Key Points Covered in Stem Cell Therapy Market Report: COVID 19 Impact Analysis

Stem Cell Therapy market. This chapter includes different goods and services covered in the report, basic definitions and market supply chain analysis. Global Market Size And Growth This section contains the global historic and forecast market value, and drivers and restraints that support and control the growth of the market in the historic and forecast period 2020 Updated & COVID 19 Outbreak Impact Analysis Trends And Strategies This chapter includes some of the major trends shaping the global Stem Cell Therapy market by segment. This section highlights likely future developments in the market and suggests approaches companies can take to exploit these opportunities 2020 Updated & Covid 19 Impact and Recovery PESTEL Analysis This chapter covers the political, economic, social, technological, environmental and legal factors affecting a market. Customer Information This section includes customer surveys in the Stem Cell Therapy industry & Trends to Watch During the COVID-19 Outbreak Global Market Segmentation This section contains global segmentation of the Stem Cell Therapy market. Segmentation types include by region and by country segmentation of the Stem Cell Therapy market. Drives Future Change

Ask our Expert if You Have a Query at: https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/691?utm_source=Pallavi

About Us :

Adroit Market Research is an India-based business analytics and consulting company incorporated in 2018. Our target audience is a wide range of corporations, manufacturing companies, product/technology development institutions and industry associations that require understanding of a markets size, key trends, participants and future outlook of an industry. We intend to become our clients knowledge partner and provide them with valuable market insights to help create opportunities that increase their revenues. We follow a code Explore, Learn and Transform. At our core, we are curious people who love to identify and understand industry patterns, create an insightful study around our findings and churn out money-making roadmaps.

Contact Us :

Ryan Johnson Account Manager Global 3131 McKinney Ave Ste 600, Dallas, TX75204, U.S.A. Phone No.: USA: +1 972-362 -8199/ +91 9665341414

Continue reading here:
Stem Cell Therapy Market Research, Technology, Demand, Analysis, Services, Type and Global Industry Forecast 2025 - The Daily Chronicle

FDA Grants Breakthrough Therapy Designation to Plinabulin for Chemotherapy-Induced Neutropenia Indication – Cancer Network

The FDA granted breakthrough therapy designation to BeyondSprings first-in-class agent plinabulin for the chemotherapy-induced neutropenia (CIN) indication, according to a BeyondSpring press release.

Data for the full PROTECTIVE-2 phase 3 study is expected for the fourth quarter of 2020 and the company will file a new drug application (NDA) with the FDA by the end of 2020.

"Receipt of breakthrough therapy sesignation from the FDA acknowledges both the significant unmet need among patients with CIN and the highly encouraging clinical results generated by Plinabulin, said Douglas Blayney, MD, global principal investigator for plinabulins CIN studies, in a press release.

The designation was granted based on positive interim analysis data from the phase 3 PROTECTIVE-2 study. The data found that plinabulin combined with pegfilgrastim (Neulasta) was significantly better than pegfilgrastim alone in achieving the primary end point (p < 0.01).

More, there was a well-tolerated safety profile and fewer grade 4 adverse events with plinabulin combined with pegfilgrastim compared to pegfilgrastim alone. The primary end point of the research was the prevention of severe neutropenia.

This should expedite plinabulins move into the clinic, which is beneficial for patients, said Blayney. The currently approved CIN prevention agents are all G-CSF-based and not available to all patients. Even with the use of G-CSFs, over 80 percent of cancer patients undergoing chemotherapy may still experience Grade 4 neutropenia, which could lead to severe infection, hospitalization and even death. Thus, CIN still represents an unmet medical need.

The results from the study were further strengthened by other CIN studies from BeyondSpring confirming early onset action in week 1 with protecting neutrophils in various cancer types and various chemotherapies, which is complementary to Week 2 neutrophil protection with G-CSFs.

For patients undergoing treatment involving the destruction of white blood cells, CIN is a common side effect. For patients with grade 4 neutropenia, there exists an abnormally low concentration of neutrophils, which could lead to infection, hospitalization, or death.

Plinabulin is a differentiated immune and stem cell modulator in the late stages of clinical development to increase patient overall survival and alleviate CIN. The benefits of plinabulin are associated with its effect as a potent antigen-presenting cell (APC) inducer and T-cell activation.

"The clinical profile Plinabulin has shown truly represents a breakthrough in the CIN space since G-CSFs," Ramon Mohanlal, MD, PhD, MBA, chief medical officer and executive vice president of research and development, at BeyondSpring, said in a press release. We look forward to continuing to work with the FDA as we advance the development of Plinabulin to address this urgent medical need.

Reference:

BeyondSpring Receives Breakthrough Therapy Designations from Both U.S. FDA and China NMPA for Plinabulin in Chemotherapy-Induced Neutropenia Indication [news release]. New York, New York. Published September 8, 2020.https://www.globenewswire.com/news-release/2020/09/08/2089925/0/en/BeyondSpring-Receives-Breakthrough-Therapy-Designations-from-Both-U-S-FDA-and-China-NMPA-for-Plinabulin-in-Chemotherapy-Induced-Neutropenia-Indication.html. Accessed September 8, 2020.

Originally posted here:
FDA Grants Breakthrough Therapy Designation to Plinabulin for Chemotherapy-Induced Neutropenia Indication - Cancer Network

Automation needed to truly scale cell therapies, Lonza – Bioprocess Insider – BioProcess Insider

Lonza says it has achieved a significant milestone with the first patient being treated with a CD19 CAR-T cell immunotherapy made using its automated point-of-care Cocoon technology.

In March 2019, Swiss CDMO Lonza entered a partnership with Israels Sheba Medical Center to provide automated and closed CAR-T manufacturing using its point-of-care (POC) Cocoon cell therapy manufacturing platform.

This week, Sheba and Lonza announced the first patient has been dosed with a CD19 CAR-T cell immunotherapy made using the technology in a phase II cancer trial.

Image: iStock/Duncan_Andison

Shebas ongoing immunotherapy program has already treated 100 oncology patients with its CAR-T CD19 therapy with good clinical success. The therapy is currently manufactured at the point-of-care using an open, clinically validated manual process. However, this first patient to be treated with a Cocoon-made CAR-T is significant as it demonstrates the potential of the Lonzas system in scaling up the manufacture of cell therapies, Eytan Abraham, head of Personalized Medicine at Lonza, said.

The ultimate goal of this, as well as other cell and gene therapies, is to treat large patient populations, he told Bioprocess Insider. The Cocoon platform represents an ideal solution for Sheba, solving the shortage of resources e.g., manpower, clean room space and manufacturing bandwidth.

A further ten patients will be tested with the Cocoon-manufactured CAR-T candidate, he added, before the results are reviewed by the Israeli Ministry of Health.

Assuming this goes well, the intention is that Sheba transitions to using the Cocoon for all CAR-T manufacturing, he continued, though noted that with a process change for any candidate being investigated in an ongoing clinical trial Sheba will need to show product comparability and receive approval from the Israeli Ministry of Health.

A full clinical comparability study confirmed that the product produced in the current manual process is indeed comparable to the product produced in the Cocoon platform.

Developed by Octane Biotech, Lonza began working with the system in 2015 to help develop the platform for autologous cell therapy manufacturing. The automated and closed platform is a single system that can be used for a variety of different autologous cell therapy protocols, including CAR-T, but also tumor-infiltrating lymphocytes (TILs) and Mesenchymal stem cells (MSCs).

In October 2018, Lonza acquired an 80% stake in Octane and according to Abraham has significantly advanced the system since.

The main activities have been improving the systems robustness and readiness for commercial sale and clinical manufacturing. This included full qualification of the system, passing all regulatory, safety and quality requirements, scaling up manufacturing, obtaining EU CE marking as well as DMF submission to the FDA, and much more.

Now that the system is launched and proven, we are hard at work, further developing it and enabling additional key capabilities, which will make it even more compelling and efficient. These include capabilities such as adding integrated magnetic cell separation and integrated cell electroporation (using the Lonza Nucleofector system).

Autologous CAR-T therapies such as Novartis Kymriah (tisagenlecleucel) and Gilead/Kites Yescarta (axicabtagene ciloleucel), both of which have been commercialized come at a cost. The personalized nature of the therapy gives rise to the adage the product is the process which, roughly translated, means scaling up manufacturing is difficult if not impossible and the cost is high.

Thus, the only way to truly scale cell therapy manufacturing is automation, said Abraham. The scalability of cell therapy manufacturing will become be critical as more cell therapies continue to reach late phase clinical trials and are commercialized.

He continued: Adding more Cocoon systems will not require much additional footprint thanks to the Cocoon tree, which allows to array multiple cocoons on a central axis. Up to 10 individual processes will be able to be run within approximately 1 m2.

On top of Sheba, other cell therapy developers have therefore turned to Lonza and its Cocoon technology to address this problem. Lonza inked a research collaboration with Stanford University School of Medicine, Fred Hutchinson Cancer Research Center, and Parker Institute for Cancer Immunotherapy earlier this year. And in March, Triumvira Immunologic announced a deal to utilize the Cocoon system, with Triumvira CEO Paul Lammers stating at the time that it is critical to leverage innovative technology to automate manufacturing processes to improve consistency, accelerate logistics, reduce footprint, and reduce cost.

Abraham added Lonza is working with other undisclosed partners to place their patient scale cell therapies into the Cocoon system for clinical manufacturing and expects to enter many more Cocoon collaborations whether with a centralized or decentralized manufacturing model.

Link:
Automation needed to truly scale cell therapies, Lonza - Bioprocess Insider - BioProcess Insider