Author Archives: admin


Synthetic Stem Cells Market size 2020 with High CAGR in Coming Years with Review by Business Opportunities, Top manufacturers Entry ,Developments,…

2020 Synthetic Stem Cells Market Region Coverage (Regional Production, Demand & Forecast by Countries etc.): North America, Europe Asia-Pacific, South America Middle East & Africa,LOS ANGELES, United States: Synthetic Stem Cells Market 2020 Detailed Analysis & SWOT analysis, Synthetic Stem Cells Manufacturing Equipment Market Trends 2020-2025, Synthetic Stem Cells Manufacturing Equipment Market Growth 2020, Synthetic Stem Cells Manufacturing Equipment Industry Share 2020, Synthetic Stem Cells Manufacturing Equipment Industry Size, Synthetic Stem Cells Manufacturing Equipment Market Research, Synthetic Stem Cells Manufacturing Equipment Market Analysis, Synthetic Stem Cells Manufacturing Equipment market Report speaks about the manufacturing process. The process is analyzed thoroughly with respect three points, viz. raw material and equipment suppliers, various manufacturing associated costs (material cost, labor cost, etc.) and the actual process of whole Enterprise Synthetic Stem Cells Manufacturing Equipment Market.

Medical CareGlobal Synthetic Stem Cells Industry Outlook Analysis 2020-2024 : Complete brief Synthetic Stem Cells market 2020 research report offers global Synthetic Stem Cells market outlook (2020-2024) analysis supported countries, Structure Analysis, Breakdown Data by Manufacturers, Upcoming Trends and more..

Global Synthetic Stem Cells Market analysis 2020 covers the entire supply chain, focusing on supply, demand, trade and prices by country and product. ;We also provide five-year forecasts for these same market fundamentals. The competitive force is likely to raise in the near future. ; Synthetic Stem Cells market is expected to keep experiencing a greater level of competition with a growing number of players focusing on securing a larger market share. It also discussions about the Marketof different segments and their growth aspects along with growth trends, various stakeholders like investors, CEOs, traders, suppliers, Research amp; media, Global Manager, Director, President, SWOT analysis i.e. Strength, Weakness, Opportunities and Threat to the organization and others.

Get a sample copy of the Synthetic Stem Cells market report 2020

Summary:

Synthetic stem cells offer therapeutic benefits comparable to those from natural stem cells and could reduce some of the risks associated with stem cell therapies. Additionally, these cells have better preservation stability and the technology is generalizable to other types of stem cells.,

Synthetic Stem Cells ;Market competition by Top Countries manufacturers/ Key player Data Profiled:

And More

The global Synthetic Stem Cells market is anticipated to rise at a considerable rate during the forecast period, between 2020 and 2024.

;

Get a Sample PDF of report @ https://www.360marketupdates.com/enquiry/request-sample/14222725

Synthetic Stem Cells Market Segment by Type covers:

Synthetic Stem Cells Market Segment by Applications can be divided into:

Scope of the Synthetic Stem Cells market ;Report:

Fill the Pre-Order Enquiry form for the report @ https:// http://www.360marketupdates.com /enquiry/pre-order-enquiry/14222725

;Regional analysis covers:

Key questions answered in the report:

Key Benefits

And More

The report provides an in-depth knowledge of the Global Synthetic Stem Cells market scenario:

Look into Table of Content of Synthetic Stem Cells Market Report https:// http://www.360marketupdates.com /TOC/14222725#TOC

The next part also sheds light on the gap between supply and consumption. Apart from the mentioned information, ;growth rate ;of Synthetic Stem Cells market in 2024 ;is also explained. ;Additionally, type wise and application wise consumption ;tables and ;figures ;of Synthetic Stem Cells market ;are also given.

Buy this report (Price USD 3480 for a single-user license)@ https:// http://www.360marketupdates.com /purchase/14222725

About 360 Market Updates: ;

360 Market Updates is the credible source for gaining the market research reports that will exponentially accelerate your business. We are among the leading report resellers in the business world committed towards optimizing your business. The reports we provide are based on a research that covers a magnitude of factors such as technological evolution, economic shifts and a detailed study of market segments.

CONTACT US

Mr. Ajay More

Phone: ;+14242530807 / + 44 20 3239 8187

Email: ;[emailprotected]

Read more here:
Synthetic Stem Cells Market size 2020 with High CAGR in Coming Years with Review by Business Opportunities, Top manufacturers Entry ,Developments,...

-Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus – Science Advances

INTRODUCTION

Pluripotency can be sustained in vitro through culture in specific conditions. Mouse embryonic stem cells (ESCs) in conventional serum/leukemia inhibitory factor (LIF) (SL) medium are considered to exhibit nave, preimplantation-like pluripotency because they contribute to chimeras with relative high efficiency upon blastocyst complementation. Yet, only a proportion of ESCs in SL are truly nave at a given time, and the entire population is highly metastable, periodically switching between nave and early post-implantationlike (formative or partially primed) pluripotent states (1, 2). Culture in serum-free medium with mitogen-activated protein kinase kinase (MEK) and glycogen synthase kinase 3 (GSK3) inhibitors, PD0325901 (PD) and CHIR99021 (CHIR), produces a pluripotent ground state that more closely resembles the preimplantation inner cell mass (35). Addition of LIF to the 2i (2iL) facilitates pluripotency maintenance in the ground state but is not strictly necessary. ESCs in 2iL have lower expression of lineage-associated genes and more homogeneous expression of pluripotency genes than in SL (6, 7). They also display genome-wide DNA hypomethylation, reduced histone 3 lysine-27 trimethylation (H3K27me3) at promoters, and tolerate better the suppression of epigenetic/epitranscriptomic factors than ESCs in SL (6, 810). Overall, this suggests a rewiring of regulatory networks that confers additional robustness in 2iL, but the underlying mechanisms are unclear.

Gene transcription in eukaryotes has a highly regulated progression involving initiation, Pol2 pausing in the vicinity of the promoter, release of paused Pol2, gene body elongation, and termination (11). Recruitment of the Pol2 transcription initiation apparatus and Pol2 pause release are rate-limiting steps. Initiation is orchestrated by sequence-specific transcription factors (e.g., the pluripotency transcription factors), which, through chromatin remodeling, allow the recruitment of the basal transcription machinery including general transcription factors and Pol2. For many mammalian genes, Pol2 then pauses 20 to 60 nucleotides after the transcription start site (TSS), requiring pause release for subsequent productive gene body elongation. Pol2 pause release is mediated by CDK9, the catalytic subunit of the positive transcription elongation factor b (P-TEFb) complex. CDK9 resides in a catalytically inactive complex that is activated by different mechanisms; the bromodomain and extraterminal (BET) family member BRD4 plays a critical role in this process (12, 13). Pol2 pausing and the subsequent pause release represent a mechanism for ensuring potent but quick binary-switchable gene expression but, being a multistep process, could render gene transcription vulnerable to perturbation. Notably, both transcription initiation and Pol2 pause release are required for sustaining high expression levels of genes involved in pluripotency maintenance and proliferation/self-renewal of mouse ESCs in SL (12, 1416), but it was unclear whether transcriptional regulation in ground-state culture conditions has the same essential requirements.

Here, we show that -catenin potentiates the recruitment of coregulatorsincluding BRD4, CDK9, mediator, cohesin, and p300to strengthen pluripotency loci in ESCs in 2iL. This enhances transcription initiation at those loci, compensatorily lowering the dependence on Pol2 pause release for productive gene body elongation. By contrast, cell cyclerelated genes are not bound by -catenin and remain addicted to Pol2 pause release in 2iL, making self-renewal highly sensitive to BRD4/CDK9 suppression in both culture conditions. Our findings explain how pluripotency gene transcription is selectively reinforced in the ground state to protect against exogenous perturbation.

To investigate distinctive transcriptional features of mouse ESCs cultured in SL or 2iL, we performed a short hairpin RNA (shRNA) screen for a panel of transcriptional regulators (fig. S1A). This panel included regulators of Pol2 pause release, histone methyltransferases/demethylases, histone acetyltransferases/deacetylases, histone acetylation readers, and splicing regulators, many of which are known to be necessary for ESC maintenance in SL (table S1). The effect of the knockdown was determined by measuring the expression of the core pluripotency markers Oct4 (Pou5f1), Nanog, and Klf2 by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Suppressing most regulators had a stronger effect in reducing pluripotency genes in SL than 2iL (Fig. 1A). In particular, we noticed that knocking down two relevant mediators of Pol2 pause release, BRD4 and CDK9, was better tolerated in 2iL.

(A) Heat map showing the relative expression of Pou5f1, Nanog, and Klf2 in ESCs in SL or 2iL transduced with shRNA for the indicated genes. (B) RT-qPCR for the indicated genes in ESCs in SL or 2iL transduced with shRNA for Luciferase (shLuc) or two shRNAs for Brd4 (shBrd4#1 and shBrd4#2). Data are the mean values SEM with the indicated significance (P value was calculated using two-tailed unpaired Students t test, also for all subsequent experiments unless otherwise noted). n = 3. (C) Growth curve of ESCs in 2iL transduced with shLuc, shBrd4#1, or shBrd4#2 measured by cell counting in triplicate at passage 1 after transduction. n = 2. A representative experiment is shown. (D) Percentage of cells in different cell cycle phases in ESCs in 2iL transduced with shLuc, shBrd4#1, or shBrd4#2 measured by flow cytometry at passage 1 after transduction (mean values SEM, n = 3). (E) Phase contrast and alkaline phosphatase (AP) activity of ESCs in SL or 2iL treated with vehicle [dimethyl sulfoxide (DMSO)] or JQ1 at the indicated doses. Scale bar, 50 m. (F) As in (E) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 3). (G) RT-qPCR for the indicated genes in ESCs in 2iL treated with DMSO or JQ1 at the indicated doses (mean values SEM, n = 3). (H) As in (C) but ESCs were treated with DMSO or JQ1 at the indicated doses for passage 0 (P0) or passage 1 (P1). n = 2. A representative experiment is shown. (I) As in (D) but ESCs were treated with DMSO or JQ1 at the indicated doses (mean values SEM, n = 3). (J) Heat map showing the fold change of pluripotency genes and cell cycle genes measured by RNA sequencing (RNA-seq) in ESCs in SL or 2iL treated with DMSO or 100 nM JQ1. *P < 0.05,**P < 0.01, ***P < 0.001.

We first focused on BRD4 because we and others have reported that it is a master regulator of ESC pluripotency/self-renewal (in SL) and early embryonic development (12, 14, 15). Basal BRD4 expression tested by Western blotting was comparable in SL and 2iL (fig. S1B). We repeated the Brd4 knockdown in both conditions and confirmed that it was effective in reducing mRNA and protein expression (Fig. 1B and fig. S1C). In contrast to SL, ESC colonies in 2iL transduced with Brd4 shRNA remained domed and compact, as well as alkaline phosphatase (AP) positive, even after several passages as single cells (fig. S1, D and E). Likewise, pluripotency genes, measured by RT-qPCR, exhibited little change or up-regulation in 2iL compared to SL (Fig. 1B and fig. S1F), but we observed reduced proliferation in both conditions (albeit more obvious in SL) (Fig. 1C and fig. S1D). This was associated with a significant increase in the number of cells in the G0-G1 phase of the cell cycle (Fig. 1D). Analysis of chromatin immunoprecipitationsequencing (ChIP-seq) for BRD4 showed a similar widespread binding pattern in SL and 2iL (fig. S1, G and H). We then validated the differential effects of Brd4 knockdown in SL and 2iL using two additional ESC lines and two more batches of ESC-qualified serum from different vendors (fig. S2, A to E). These results demonstrated that BRD4 is less required for preserving pluripotency in 2iL than SL but remains necessary for self-renewal (i.e., robust proliferative expansion in vitro) under both conditions.

To further verify the differential sensitivity of pluripotency characteristics to BRD4 suppression in ESCs cultured in SL and 2iL, we used JQ1, a well-known BET inhibitor that binds to the two BRD4 bromodomains to prevent their interaction with acetylated histones (17). At lower doses (100 and 200 nM) for 60 hours, JQ1 notably affected colony morphology, AP activity, and pluripotency gene expression in SL but had little effect in 2iL (Fig. 1, E and F). ESCs in 2iL remained competent for teratoma and chimera formation with 100 nM JQ1 (fig. S3, A and B). However, at higher doses (500 nM and above), pluripotency characteristics were also notoriously affected in 2iL (Fig. 1, E and G), especially upon passage as single cells (fig. S3C). Likewise, JQ1 reduced proliferation in 2iL, although at lower doses, this only became prominent after passaging as single cells (Fig. 1H). This was paralleled by an increase in the percentage of cells in G0-G1 and in apoptosis (Fig. 1I and fig. S3D). RNA sequencing (RNA-seq) confirmed the differential effect of 100 nM JQ1 on pluripotency in SL and 2iL and also showed the down-regulation of cell cycle genes (Fig. 1J and table S2). We confirmed that low doses of JQ1 impair pluripotency in SL but not 2iL using two additional ESC lines and two batches of ESC-qualified serum (fig. S3, E to G).

The experiments with JQ1 suggested that a certain level of BRD4 is necessary for maintaining pluripotency in 2iL. To exclude the possibility that higher doses impair pluripotency characteristics in 2iL through off-target effects, we used an inducible Cre/LoxP system for knocking out Brd4 (fig. S4, A to D). Despite extensive testing, we only obtained heterozygous Brd4fl/ clones in 2iL, which proliferated less and differentiated when changed to SL culture conditions (fig. S4, E and F). We also noticed that, in contrast to wild-type clones, low doses of JQ1 could effectively reduce pluripotency gene expression in heterozygous Brd4 knockout ESCs in 2iL (fig. S4G). We concluded that pluripotency maintenance is more resistant to BRD4 suppression in ESCs in 2iL than in SL, but reducing BRD4 beyond a threshold also affects pluripotency in 2iL.

Pol2 pausing is mediated by pausing factors including DRB sensitivityinducing factor (DSIF) and negative elongation factor (NELF), whereas pause release is triggered through phosphorylation of Pol2 on serine-2 (Ser2P) by CDK9. A major role of BRD4 is to induce Pol2 pause release by activating CDK9 (13), a target that was also identified as less necessary for 2iL in our shRNA screen (see above Fig. 1A). Consistently, analysis of CDK9 ChIP-seq in SL showed notable overlap with BRD4 ChIP-seq in SL or 2iL (Fig. 2A). Likewise, a sizeable proportion of genes down-regulated by JQ1 in SL or 2iL were cobound by BRD4 and CDK9 (Fig. 2B), including many pluripotency (in SL) and cell cycle genes (in SL and 2iL) (Fig. 2, B and C, and fig. S5A). To confirm the differential CDK9 dependence in SL and 2iL, we repeated the knockdown experiments and also used a specific CDK9 inhibitor [LDC000067; (18)]. As with Brd4 knockdown, Cdk9 knockdown severely affected colony morphology, AP activity, and pluripotency gene expression in SL but had no obvious effect in 2iL (Fig. 2, D and E), and this persisted for several passages (fig. S5, B and C). Proliferation and the cell cycle were significantly affected by Cdk9 knockdown in 2iL too (Fig. 2, F and G), although to a lesser extent than in SL (Fig. 2D). These effects were validated using an additional ESC line (fig. S5, D and E). Similarly, 10 M LDC000067 impaired colony morphology, AP activity, and pluripotency gene expression in SL but not in 2iL (even after multiple passages as single cells), but a higher dose had severe consequences in both conditions (Fig. 2, H and I, and fig. S5, F and G). Likewise, LDC000067 reduced cell growth in SL and 2iL, impaired the cell cycle, and enhanced apoptosis significantly (Fig. 2, H and J to L). The consistent phenotypes of suppressing Brd4 and Cdk9 implied that reducing Pol2 pause release at pluripotency genes is better tolerated in 2iL than SL, suggesting a major change in transcriptional control in the two culture conditions.

(A) Venn diagrams showing the overlap between BRD4 bound sites in ESCs in SL or 2iL and CDK9 bound sites. (B) Venn diagrams showing the overlap between genes down-regulated by 100 nM JQ1 in ESCs in SL or 2iL and BRD4/CDK9 cobound genes. (C) Genome views for a BRD4/CDK9 cobound pluripotency gene (Nanog) and a cell cycle gene (Mdm4) in ESCs cultured as indicated. (D) Phase contrast and AP activity of ESCs in SL or 2iL transduced with shLuc or two shRNAs for Cdk9 (shCdk9#1 and shCdk9#2). Scale bar, 50 m. (E) As in (D) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 5). (F) Growth curve of ESCs in 2iL transduced with shLuc, shCdk9#1, or shCdk9#2 measured by cell counting in triplicate at passage 1 after transduction. n = 2. A representative experiment is shown. (G) Percentage of cells in different cell cycle phases in ESCs in 2iL transduced with shLuc, shCdk9#1, or shCdk9#2 measured by flow cytometry at passage 1 after transduction (mean values SEM, n = 3). (H) Phase contrast and AP activity of ESCs in SL or 2iL treated with DMSO or LDC000067 (CDK9i) at the indicated doses. Scale bar, 50 m. (I) As in (H) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 4). (J) As in (F) but ESCs were treated with DMSO or LDC000067. n = 2. A representative experiment is shown. (K) As in (G) but ESCs were treated with DMSO or LDC000067 (mean values SEM, n = 3). (L) Percentage of apoptotic cells in ESCs in 2iL treated with DMSO or LDC000067 (mean values SEM, n = 4). *P < 0.05, **P < 0.01, ***P < 0.001.

BET inhibitors including JQ1 are a promising therapeutic avenue for cancer, but recent reports have described resistance to BET inhibitors through activation of Wnt/-catenin signaling (19, 20). In this pathway, Wnt ligands trigger stabilization and nuclear translocation of -catenin, which then binds to and transactivates T cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors to switch on gene expression (21). We envisaged that -catenin could also confer resistance to BRD4 suppression in ESCs cultured in 2iL, as, similarly to Wnt ligands, CHIR stabilizes -catenin through GSK3 inhibition (3). Moreover, -catenin has been proposed to promote ground-state pluripotency by alleviating the repressor function of TCF3, which associates with pluripotency transcription factors at target loci (2123). Yet, the specific mechanisms are not well understood. Accordingly, Tcf3 or Gsk3 depletion allow expansion of ESCs in serum-free medium with PD alone (3, 21, 23), whereas -catenin is strictly required for expansion in 2iL medium without LIF (21, 22).

We first studied whether PD alone, CHIR alone, or the 2i added to ESCs in SL could rescue the negative effects of 100 nM JQ1 on colony morphology, AP activity, and pluripotency gene expression, which we tested using two ESC lines. PD alone had some rescue effect on Nanog expression but not on the other genes tested. CHIR was more effective in restoring pluripotency characteristics, but only the combined effect of PD and CHIR achieved a complete rescue (Fig. 3, A and B, and fig. S6A). As for cell proliferation, we observed that the moderate rescue effect of adding 2i to ESCs in SL treated with JQ1 was mostly mediated by PD (Fig. 3C).

(A) Phase contrast and AP activity of ESCs cultured in SL with PD, CHIR, or 2i and treated with DMSO or JQ1. Scale bar, 50 m. (B) As in (A) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 3). P value was calculated using two-way ANOVA with Tukeys multiple comparison posttest. (C) Population doublings of ESCs in SL with PD, CHIR, or 2i, and treated with 500 nM JQ1 for 4 days relative to controls treated with DMSO (mean values SEM, n = 4). (D) Phase contrast and AP activity of wild-type (WT) and Gsk3 knockout (KO) ESCs in SL treated with DMSO or JQ1. Scale bar, 50 m. (E) As in (D) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 3). P value was calculated using two-way ANOVA with Sadiks multiple comparison posttest, also for (H), (J), and (L). (F) Heat map showing the fold change of pluripotency (left) and cell cycle genes (right) measured in RNA-seq of wild-type or Gsk3 knockout ESCs in SL treated with DMSO or 100 nM JQ1. (G) Phase contrast and AP activity of wild-type and Tcf3 knockout ESCs in SL treated with DMSO or JQ1. Scale bar, 50 m. (H) As in (G) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 3). (I) Phase contrast and AP activity of wild-type and S33Y -cateninoverexpressing ESCs in SL treated with DMSO or JQ1. Scale bar, 50 m. (J) As in (I) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 3). (K) Phase contrast and AP activity of wild-type and Ctnnb1 knockout ESCs in 2iL treated with DMSO or 200 nM JQ1. Scale bar, 50 m. (L) As in (K) but shows RT-qPCR result for the indicated genes (mean values SEM, n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

To systematically dissect the role of specific components of the Wnt/-catenin pathway, we treated wild-type ESCs in SL with WNT3A or used several knockout ESC lines lacking either Gsk3 (24), Ctnnb1 (encoding -catenin) (22), or Tcf3 (23). In addition, we used wild-type ESCs overexpressing a mutant form of -catenin (S33Y -catenin) resistant to GSK3-mediated degradation (25). The authentication of Gsk3 and Ctnnb1 knockout ESC lines, and ESCs overexpressing S33Y -catenin, was performed with a -catenin/TCF reporter (fig. S6B), whereas Tcf3 knockout cells were validated by PCR amplification and sequencing (fig. S6C). WNT3A treatment significantly reversed the effects of 100 nM JQ1 on pluripotency characteristics in SL, and Gsk3 knockout achieved a stronger rescue (Fig. 3, D and E, and fig. S6, D and E). The latter was also confirmed by RNA-seq (Fig. 3F and fig. S6F). The stronger effect of Gsk3 knockout compared to WNT3A and CHIR alone is possibly related to the extent and length of GSK3 suppression. Likewise, Tcf3 knockout and S33Y -catenin overexpression induced significant resistance to JQ1 in SL (Fig. 3, G to J). Moreover, Ctnnb1 knockout became sensitive to 200 nM JQ1 in 2iL, but the effect on pluripotency gene expression was not as strong as for wild-type ESCs in SL (Fig. 3, K and L). We also validated the resistance to the CDK9 inhibitor LDC000067 in Gsk3 or Tcf3 knockout ESCs (fig. S6, G and H). Therefore, GSK3 inhibition is the main mediator of the resistance of pluripotency genes to suppression of pause release in 2iL, of which -catenin stabilization is a major component.

To understand how -catenin mediates resistance to suppression of Pol2 pause release at pluripotency loci, we compared -catenin bound sites (table S3) in ChIP-seq (from a study using SL + CHIR) (26) with BRD4 bound sites in 2iL. There was a good genome-wide overlap (Fig. 4A), mostly at distal enhancers but also at promoters (fig. S7A), although the binding of BRD4 was more widespread. Moreover, we noticed that most -catenin/BRD4 cobound genes were not down-regulated by JQ1 in 2iL. We then named -catenin/BRD4 cobound genes that are down-regulated by JQ1 in SL but not 2iL as group 1 genes (Fig. 4B). By contrast, group 2 genes were defined as genes down-regulated by JQ1 in 2iL that are bound by BRD4 but not -catenin. Group 2 included many cell cycle genes, whereas group 1 included many pluripotency regulators (Fig. 4B and table S4). ChIP-qPCR confirmed enhanced -catenin binding at selected group 1 pluripotency loci in 2iL compared to SL, whereas at group 2 cell cyclerelated loci did not change (fig. S7B). ChIP-seq analysis also showed that TCF3 binds to a notable proportion of group 1 genes, whereas most of the group 2 genes were negative (fig. S7C and table S4). These findings suggested that -catenin promotes resistance to Pol2 pause release suppression through cobinding with BRD4/CDK9 at target loci, including pluripotency loci.

(A) Venn diagram showing the overlap between BRD4 bound sites in ESCs in 2iL and -catenin bound sites. (B) Venn diagram showing the overlap between BRD4 bound genes down-regulated by 100 nM JQ1 in ESCs in SL or 2iL and -catenin bound genes. (C) Occupancy plots for genome-wide nuclear run-on sequencing (GRO-seq) signal around the TSS of group 1 and 2 genes in ESCs in SL or 2iL. RPM, reads per million mapped reads. (D) Cumulative plots of GRO-seq signal along the proximal promoter and gene body of group 1 and 2 genes. RPKM, reads per kilobase per million mapped reads. (E) Violin plots showing the corresponding normalized read counts of GRO-seq at the proximal promoter or gene body for group 1 and 2 genes. P value was calculated using Wilcoxon rank sum test, also for all subsequent violin plots and boxplots. (F) As in (E) but shows the TR for group 1 and 2 genes. (G) Genome views from GRO-seq for a pluripotency gene (Nanog) and a cell cycle gene (Stat1) in ESCs in SL or 2iL. (H) ChIP-qPCR for Pol2 Ser5P at the proximal promoter of the indicated pluripotency and cell cycle genes in ESCs in SL or 2iL (mean values SEM, n = 4). (I) As in (H) but shows ChIP-qPCR for Pol2 Ser2P at the gene body (mean values SEM, n = 3). 1 and 2 represent gene body regions 1 and 2, respectively. (J) RT-qPCR for Nanog and Klf2 in ESCs cultured in SL or 2iL treated with 100 or 500 nM THZ1 for the indicated times (mean values SEM, n = 3). (K) RT-qPCR for Nanog and Esrrb in ESCs in 2iL treated with DMSO or 100 nM JQ1 (mean values SEM, n = 3). THZ1 (100 nM) was added for the indicated times before sample collection. *P < 0.05, **P < 0.01, ***P < 0.001.

Next, we sought to elucidate the molecular mechanism underlying the above observations. To rule out the possibility that -catenin compensates for the negative effect of JQ1 on pluripotency genes by enhancing mRNA stability in 2iL (27), we measured a panel of pluripotency mRNAs after actinomycin D treatment, which blocks transcription. Their stability was similar or lower in 2iL compared to SL (fig. S7D). This hinted to -catenin maximizing transcriptional flux at target genes in 2iL as a way to counteract a reduction in Pol2 pause release. So, we turned our attention to potential differences in transcriptional dynamics between ESCs cultured in SL and 2iL. In this regard, a recent Pol2 ChIP-seq study (6) showed a global increase of promoter-proximal signal in 2iL that was not matched in the gene body, concluding that Pol2 pausing is more prevalent in 2iL than in SL. This was attributed to low expression of c-MYC in ESCs in 2iL, as c-MYC induces Pol2 pause release via CDK9 (28). Our reanalysis of this dataset showed a strong increase of Pol2 signal at the proximal promoter in 2iL for both group 1 and group 2 genes (fig. S7, E to G), but this could represent either more Pol2 pausing or more transcriptional initiation. As opposed to Pol2 pausing, more transcriptional initiation implies more gene body elongation if the degree of pausing remains constant and, hence, often associates with increased gene expression. Consistent with the former possibility, the Pol2 signal along the gene body only increased moderately at both groups of genes in 2iL, especially at group 1 (fig. S7, E to G). To define the extent of pausing at these loci more accurately, we used the Pol2 traveling ratio (TR), which compares the ratio in the signal of the proximal promoter and the gene body (12, 28, 29). The TR of both group 1 and group 2 genes was higher in 2iL (fig. S7H), supporting the idea that there is indeed more Pol2 pausing in both groups of genes in 2iL. Yet, it is difficult to reconcile the resistance of group 1 genes to BRD4/CDK9 suppression in 2iL with an increased Pol2 pausing that, in principle, would reduce gene expression. In this regard, we noted several reports describing that, for being a static snapshot, Pol2 ChIP-seq signals cannot effectively distinguish pausing from transcription initiation, nor can they be a measure for effective transcription elongation (29, 30).

We then used genome-wide nuclear run-on sequencing (GRO-seq) (31), which labels nascent RNAs with the synthetic nucleoside 5-bromouridine 5-triphosphate (BrUTP) to accurately map the distribution of transcriptionally engaged Pol2 throughout the genome. Group 1 genes in 2iL displayed enhanced GRO-seq signal not only in the proximal promoter but also in the gene body compared to SL, and the TR did not change significantly (Fig. 4, C to G), together indicating more transcription initiation followed by productive elongation. By contrast, group 2 genes in 2iL showed little difference in the GRO-seq signals in the proximal promoter or the gene body compared to SL, and the TR also remained fairly unchanged (Fig. 4, C to G). The relative pausing level of group 2 genes was higher than that of group 1 genes (Fig. 4F), in agreement with previous reports showing that Pol2 pausing is prevalent at cell cyclerelated genes in both SL and 2iL (29, 32). We also performed ChIP-qPCR for both Pol2 phosphorylated in serine-5 (Ser5P) and Pol2 Ser2P. The former Pol2 modification is mediated by CDK7, a catalytic subunit of the transcription factor H (TFIIH) complex (11), and is considered representative of transcriptional initiation, whereas the latter marks elongating Pol2. Both Pol2 modifications showed a notably increased signal at the Nanog and Esrrb promoter and gene body in 2iL compared with SL (Fig. 4, H and I), but not at two selected cell cyclerelated loci. These results further support the conclusions of the GRO-seq experiment. The GRO-seq of Gsk3 knockout ESCs in SL also showed a pattern consistent with higher transcription initiation and increased gene body elongation at group 1 genes but not group 2 genes compared to the wild-type control (fig. S8, A to D).

We next asked whether the increased transcription initiation at group 1 genes in 2iL may directly contribute to their resistance to Pol2 pause release suppression. Supporting this possibility, higher Pol2 occupancy at the promoter-proximal pause site driven by more transcription initiation can result in greater productive elongation if the function of BRD4/CDK9 is not yet saturated (13). It has also been proposed that increased transcription initiation can nudge paused Pol2 out of the proximal promoter to resume gene body elongation at BRD4 bound genes insensitive to JQ1 (30, 33). To study the relative dependence of pluripotency genes on transcription initiation of ESCs in SL and 2iL, we used the CDK7 inhibitor THZ1 (34). Notably, THZ1 down-regulated pluripotency genes more significantly in 2iL than in SL (Fig. 4J). Moreover, a low dose of THZ1 synergized with 100 nM JQ1 to reduce the expression of pluripotency genes in 2iL (Fig. 4K), supporting the idea that increased initiation compensates for the reduction in pause release mediated by BRD4 inhibition. To study whether the link between Wnt/-catenin signaling, transcription initiation, and JQ1 resistance applies to other contexts, particularly cancer cells, we tested a widely used leukemia cell line, THP1. CHIR induced resistance of THP1 cells to JQ1 (fig. S8E) and also rendered them more sensitive to THZ1 (fig. S8F). Likewise, the combination of THZ1 and JQ1 was more effective than either of the two (fig. S8G). In summary, the recruitment of -catenin to BRD4 bound sites in 2iL changes the mode of transcriptional regulation at target loci including pluripotency loci, which then rely more on transcription initiation for gene body elongation in detriment to Pol2 pause release.

We searched -catenin protein interaction networks looking for partners whose recruitment or reinforcement at group 1 genes in 2iL could explain the above phenomena. In addition to chromatin remodeling complexes (35), we observed two modules corresponding to transcription initiation and elongation (Fig. 5, A and B). Among other -catenin interacting proteins in these modules, we noticed Pol2, TATA-binding proteinassociated factors (TAF5/6/7), cohesin components (SMC1A and SMC3), and, interestingly, BRD4 and CDK9 as well. Pol2 and TAFs are critical for transcription initiation (11), whereas cohesin regulates transcription by forming ring-like structures that allow enhancer-promoter looping (36). We also noticed previous reports describing the interaction of -catenin with mediator (37, 38) and p300 (39) in other cell contexts. Mediator was immediately interesting because it is a well-known partner of BRD4 that controls transcription initiation through both cross-talk with TFIIH and enhancer-promoter looping (40). Immunoprecipitation of -catenin followed by Western blotting confirmed the interaction with mediator (MED1 and MED12), cohesin (SMC1A), and BRD4 in ESCs in 2iL (Fig. 5C). Likewise, ChIP-seq analysis showed genome-wide colocalization of -catenin, MED1, SMC1A, and BRD4 in 2iL at many pluripotency genes belonging to group 1 (Fig. 5D and fig. S9, A and B).

(A) Gene Ontology (GO) analysis of -catenin protein-interactome data based on a previous report (35). GO terms associated with transcriptional regulation and ESC identity are shown (Benjamini-Hochberg corrected P value). (B) Functional network of -catenin interacting proteins related to transcriptional regulation based on STRING protein interaction database (60) as visualized by Cytoscape. -Catenin partners found in both STRING database and the above protein interactome data are highlighted in gray. SMC1A and SMC3 also interact with -catenin but belong to the GO term stem cell population maintenance. (C) Western blotting following immunoprecipitation (IP) of -catenin interacting proteins with nuclear extracts from ESCs in 2iL. Immunoglobulin (IgG) was used as negative control. (D) Genome views of ATAC-seq and H3K27ac, -catenin, MED1, SMC1A, BRD4, and p300 ChIP-seq at Nanog in ESCs cultured as indicated. (E) Occupancy plot (top) and boxplot (bottom) showing the normalized read counts for MED1 ChIP-seq signal in ESCs in SL or SL plus 2i (S2iL) around -catenin bound sites. (F) As in (E) but shows SMC1A ChIP-seq signal. (G) As in (E) but shows BRD4 ChIP-seq signal. (H) ChIP-qPCR for MED1 at -catenin bound sites of the indicated pluripotency genes and cell cycle genes in wild-type and Ctnnb1 knockout ESCs in 2iL (mean values SEM, n = 4). (I) As in (H) but ChIP-qPCR for SMC1A (mean values SEM, n = 5). (J) As in (H) but ChIP-qPCR for BRD4 (mean values SEM, n = 3). (K) RT-qPCR for the indicated genes in Ctnnb1 knockout ESCs in 2iL rescued by knock-in of a wild-type (clone 1) or C-terminal truncated (C) (clone 1) form of -catenin. ESCs were treated with DMSO or 100 nM JQ1 (mean values SEM, n = 3). P value was calculated using two-way ANOVA with Sadiks multiple comparison posttest. (L) As in (C) but uses nuclear extracts from Ctnnb1 knockout ESCs in 2iL rescued by knock-in of a wild-type (clone 1) or a C form (clone 1) of -catenin. Specific bands for IP are marked with red arrows. *P < 0.05, **P < 0.01.

To see whether -catenin is actually promoting the recruitment of these coregulators at target loci, we compared ChIP-seq datasets for MED1, SMC1A, and BRD4 in 2iL and SL. We observed higher levels of the three coregulators at -catenin binding sites in 2iL (Fig. 5, E to G). BRD4 also showed increased signal outside -catenin binding sites but less remarkably, consistent with the idea that the 2i cause a global increase in BRD4 (41). In agreement, ChIP-qPCR for the same three coregulators at -catenin binding sites of pluripotency loci showed reduced levels in Ctnnb1 knockout ESCs in 2iL compared to the wild-type control (Fig. 5, H to J). However, binding of these coregulators at group 2 cell cyclerelated genes remained unchanged. A truncated -catenin form (lacking amino acids 727 to 781) without the C-terminal domain responsible for transcriptional activation of TCF/LEF factors (22) was still competent for inducing resistance to JQ1 in 2iL (Fig. 5K and fig. S9, C and D). This truncated -catenin also retained the ability to interact with coregulators in ESCs in 2iL (Fig. 5L). Overall, our findings support a model in which -catenin strengthens transcriptional flux at pluripotency loci by acting as a scaffold for recruiting coregulators rather than forming a canonical -catenindependent activation complex.

We also investigated chromatin features that could further contribute to maximizing transcriptional flux at group 1 genes in 2iL compared to SL. We focused on histone acetylation and DNA hypomethylation because these epigenetic marks associate with chromatin opening, transcription activation, and reduced Pol2 pausing (42, 43). H3K27 acetylation (H3K27ac) around -catenin binding sites was higher in 2iL than in SL (Figs. 5D and 6A), consistent with the recruitment of histone acetyltransferases (e.g., p300) by -catenin (39). Similarly, we observed an increase in H3K27ac in 2iL when comparing the 2-kb to +2-kb region around the TSS of group 1 genes. By contrast, H3K27ac did not increase at group 2 genes in 2iL compared to SL, and group 2 genes in 2iL had lower H3K27ac than group 1 genes (Fig. 6B). Consistent with the changes in H3K27ac, we noticed a clear increase in open chromatin with an assay for transposase-accessible chromatin sequencing (ATAC-seq) at -catenin binding sites in 2iL compared to SL and more moderately also at group 1 genes, whereas, at group 2 genes, it was slightly reduced in 2iL (Figs. 5D and 6, C and D). Notably, DNA methylation at -catenin binding sites was lower in 2iL than in SL (Fig. 6E). Yet, this effect extended to the entire locus of not only group 1 but also group 2 genes (Fig. 6F), indicating that it is not directly mediated by -catenin. The latter is in agreement with the existence of global DNA hypomethylation in 2iL, which is mostly driven passively through the suppression of UHRF1 protein stability induced by PD (44). In this regard, the limited number of sites actively demethylated by the ten-eleven translocation (TET) enzymes in the conversion of ESCs from SL to 2iL (44) included few -catenin binding sites (fig. S9E). Accordingly, Tet1/2 double and Tet1/2/3 triple knockout ESCs (45) did not show increased sensitivity of pluripotency genes to JQ1 in 2iL compared to the control (fig. S9, F to H). We concluded that permissive chromatin features, some of which are induced by -catenin, likely contribute to strengthening pluripotency gene transcription in 2iL by facilitating the assembly of multiprotein complexes (see schematic in Fig. 7).

(A) Occupancy plot (left) and boxplot (right) showing the normalized read counts for H3K27ac ChIP-seq signal in ESCs in SL or 2iL around -catenin bound sites. (B) Occupancy plot (left and middle) and boxplot (right) showing the normalized read counts for H3K27ac ChIP-seq in ESCs in SL or 2iL around the TSS of group 1 and 2 genes. (C) Occupancy plot (left) and boxplot (right) showing the normalized read counts for ATAC-seq signal in ESCs in SL or 2iL around -catenin bound sites. (D) Occupancy plot (left and middle) and boxplot (right) showing the normalized read counts for ATAC-seq signal in ESCs in SL or 2iL around the TSS of group 1 and 2 genes in ESCs in SL and 2iL. (E) Occupancy plot (left) and boxplot (right) showing the normalized read counts for DNA methylation in ESCs in SL or 2iL around -catenin bound sites. (F) Occupancy plot (left and middle) and boxplot (right) showing the normalized read counts for DNA methylation in ESCs in SL or 2iL around the TSS of group 1 and 2 genes.

(Top) Transcription of pluripotency genes in ESCs in SL requires transcription initiation mediated by recruitment of the Pol2 transcription initiation apparatus, which includes TFIIH, and subsequent pause release mediated by BRD4/CDK9. TCF3 associated with pluripotency transcription factors [including OCT4, SOX2, and NANOG (OSN)] acts as a repressor, presumably by interfering with the proper recruitment of coregulators. (Bottom) In 2iL, -catenin stabilized by GSK3 inhibition is recruited to pluripotency loci. -Catenin facilitates transcription initiation by supplying coregulators including mediator, cohesin, and BRD4, among others, at pluripotent loci. This effect possibly contributes to forming phase-separated condensates resistant to dissociation. The increase in transcription initiation reduces the need for Pol2 pause release mediated by BRD4/CDK9 for productive gene body elongation in 2iL. Higher H3K27ac and DNA hypomethylation renders chromatin genome-wide more accessible in 2iL, potentially facilitating both the recruitment of coregulators and gene body elongation to maximize transcriptional flux at pluripotency genes.

In addition to the recruitment of coregulators and the chromatin changes, other mechanisms may participate in inducing transcriptional resilience at pluripotency loci in 2iL. For example, alternative RNA splicing is a cotranscriptional event that can influence the speed with which Pol2 moves along the gene body (46), and it has also been shown that specific splicing regulators participate in Pol2 pause release (47). Likewise, Gsk3 knockout in ESCs in SL reduces the amount of alternative splicing due to impaired GSK3-mediated phosphorylation of splicing factors (48). We did not observe any notable difference in the number of alternatively spliced genes regulated by GSK3 between group 1 and group 2 genes (fig. S9I). Yet, we noticed that -catenin interacts with multiple splicing regulators including SRSF3 and TRA2B (fig. S9J) (35), both of which also appeared in our screen as differentially required in SL and 2iL (see above Fig. 1A). We validated that Srsf3 and Tra2b knockdown is better tolerated in 2iL compared to SL (fig. S9K). This observation suggests that -catenin helps stabilize splicing regulators at pluripotency genes to render ESCs more resistant to a splicing reduction in 2iL. Although a potential role in modifying the speed of gene body elongation would need to be investigated, these results support the model depicting -catenin as a scaffold that strengthens transcription at pluripotency loci in 2iL.

Mouse ESC pluripotency can be viewed as a continuum of hierarchical interconvertible states on the road to a somatic phenotype. The more nave or closer to inner cell mass characteristics, the more pluripotency is consolidated, but the underlying mechanisms are poorly understood. We have shown here that -catenin stabilized by CHIR selectively reinforces the pluripotency gene network in 2iL by potentiating the recruitment of BRD4, CDK9, mediator, cohesin, p300, and other transcriptional coregulators to pluripotency loci. This selectively heightens transcription initiation at pluripotency loci, enhancing gene body elongation in 2iL and making it morealbeit not completelyindependent of Pol2 pause release by BRD4/CDK9 than in SL. The enhanced transcriptional elongation in 2iL likely explains why expression of multiple pluripotency genes is higher than in SL and potentially also why there is less oscillation in gene expression (an underlying cause of metastability) (7). The removal of TCF3 from pluripotency loci causes a similar transcriptional consequence to -catenin stabilization, conceivably by allowing closer interactions between coregulators and the pluripotency transcription factors or by removing detrimental epigenetic activities [e.g., histone deacetylases (49)]. PD also contributes to inducing resistance to suppression of Pol2 pause release in 2iL possibly by inducing Nanog mRNA and stabilizing NANOG protein (50). The former effect might be caused by preventing extracellular signalregulated kinasemediated phosphorylation and dissociation of coregulators including MED24 from Pol2-containing complexes at the Nanog locus (51). As opposed to pluripotency genes, proliferation genes are not bound by -catenin and, thus, remain very sensitive to suppression of Pol2 pause release in 2iL.

In recent years, it has become evident that phase-separated biomolecular condensates compartmentalize biochemical reactions within cells, including transcription (52). This is caused by multivalent interactions between proteins, many of which have intrinsically disordered regions (IDRs) that confer the physicochemical properties of the condensate. In this regard, it was recently proposed that, thanks to its two disorganized domains at the N-terminal (amino acids 1 to 141) and C-terminal (amino acids 727 to 781) ends, -catenin is attracted to stable chromatin phase-separated condensates formed by mediator and BRD4 to execute its signaling role in ESCs in 2iL (53). Our findings suggest that -catenin might be a priming event for the stabilization of these condensates in ESCs in 2iL by enhancing the cooperative and multivalent interactions between coregulators at pluripotency loci (Fig. 7). This is consistent with our observation that the C-terminal domain of -catenin containing one of its IDRs is not necessary for the resiliance of ESCs in 2iL to JQ1 and the fact that -catenin IDRs are much shorter than those of BRD4 and MED1 (53, 54). The physicochemical forces created within these condensates and the interaction with -catenin could cause a remnant of BRD4, CDK9, and other coregulators to tend to localize to pluripotency loci despite genome-wide depletion induced by shRNAs or chemical inhibitors.

Finley et al. recently reported that BRD4 is dispensable for pluripotency and self-renewal in the ground state (41). A reduced rather than abolished requirement for BRD4 in the early embryo is perhaps easier to understand from a developmental point of view, as it is supported by the observation that Brd4 null mouse embryos cannot maintain the inner cell mass (15, 55). Finley et al. also proposed that a strengthened network of pluripotency transcription factors and the recruitment of TET enzymes partially contribute to the resistance to BRD4 suppression in 2iL. The former mechanism fits well with our observations, as transcription factors can recruit coregulators and enhance transcription initiation (11). Yet, we did not observe any evidence for TET involvement, which may be related to variations among ESC lines or in the culture conditions. Despite the differences, both studies are relevant and highlight the striking similarities in transcriptional adaptation upon network perturbation between ESCs in the ground state and cancer cells. Further mechanistic knowledge will mutually contribute to understand ground-state pluripotency and cancer cell resistance to drugs. For example, ESCs in 2iL may prove to be a useful model to identify either more effective anticancer drugs or synergistic combinations. In this regard, our findings with ESCs in 2iL suggest that treatment of BRD4-addicted cancers with a combination of JQ1 and inhibitors of transcription initiation might be a more robust and applicable anticancer therapy for a general patient base than JQ1 alone.

In the future, it will be important to study whether the molecular interface regulating the interaction between -catenin and transcriptional coregulators can be used to develop specialized anticancer drugs. It will also be interesting to test whether the principles presented here can yield optimized methods for sustaining ground-state pluripotency in vitro in a broad spectrum of mammals.

Human embryonic kidney293T (HEK293T) cells were purchased from the American Type Culture Collection and maintained in Dulbeccos modified Eagles medium (DMEM)/high glucose (Corning, 10-017-CVR) containing 10% fetal bovine serum (FBS; Biowest). THP1 cells were purchased from the Cell Bank of Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China) and maintained in RPMI 1640 medium (Thermo Fisher Scientific, C11875500CP) supplemented with 10% FBS (Biowest), GlutaMAX (Gibco, 35050079), penicillin/streptomycin (Hyclone, SV30010), and -mercaptoethanol (Gibco, 2198503). ESCs in SL medium were cultured in DMEM/high glucose containing 15% FBS (Biological Industries; unless otherwise specified), GlutaMAX, penicillin/streptomycin, nonessential amino acids (Gibco, 11140050), sodium pyruvate (Corning, 25-000-CI), -mercaptoethanol, and LIF (1000 U/ml) on mitomycin-Ctreated mouse embryonic fibroblasts (as feeders); they were split onto 0.2% gelatin-precoated plates before each experiment. ESCs in 2iL medium were cultured in a 1:1 mix of DMEM/F12 (Hyclone, SH30023.01) and Neurobasal medium (Gibco, 21103049) with N2 (Gibco, 17502048) and B27 (Gibco, 17504044) supplements, GlutaMAX, penicillin/streptomycin, nonessential amino acids, sodium pyruvate, -mercaptoethanol, LIF (1000 U/ml), 3 M CHIR99021 (StemRD, CHIR-50), and 1 M PD0325901 (StemRD, PD-50) on 0.2% gelatin-precoated plates. SL and 2iL media were changed daily. ESCs cultured in SL medium were cryopreserved in CELLBANKER 2 (Amsbio, 11891). After cell thawing, the same vial was used for culture in SL or 2iL. For the latter, ESCs cultured in SL were adapted to 2iL for three passages before each experiment. ESCs in SL or 2iL were passaged as single cells using 0.05% trypsin (Gibco, 25300054) every 3 days. The other two types of serum for SL medium were purchased from Fisher Scientific and Biowest; both were tested for ESC maintenance beforehand in the Esteban laboratory. Other inhibitors including JQ1 (BPS Bioscience, 27402), LDC000067 (Selleck Chemicals LLC, S7461), THZ1 (MedChemExpress, HY-80013), and actinomycin D (Sigma-Aldrich, A1410) were dissolved in dimethyl sulfoxide and added into the medium at the indicated concentrations. JQ1 and LDC000067 were added for 60 hours unless otherwise specified. E14gt2a (E14) ESCs were provided by I. Samokhvalov (Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China); they were used for all experiments unless otherwise specified. 129 and OG2 ESCs were provided by J. Liu (Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China). Tcf3 knockout ESCs (23) were provided by B. Merrill (University of Illinois at Chicago, USA). Gsk3 knockout ESCs, S33Y -cateninoverexpressing ESCs, Ctnnb1 knockout ESCs, Ctnnb1 knockout ESCs rescued by either a wild-type or a C-terminal truncated form of -catenin, Tet1/2 double knockout ESCs, and Tet1/2/3 triple knockout ESCs were previously reported (21, 24, 25, 45) .

For shRNA experiments, ESCs cultured in SL or 2iL medium were infected with lentiviruses generated from HEK293T cells. Samples were extracted 96 hours after infection unless otherwise specified. shRNA inserts were cloned into pLKO.1 lentiviral vectors. All shRNA target sequences and RT-qPCR primers are listed in table S5. RNA samples were isolated using TRIzol reagent (Thermo Fisher Scientific, 15596026). RT-qPCR was performed using the SYBR Premix ExTaq Kit (Takara, RR420A) with an ABI 7500 real-time PCR machine. Data were analyzed in triplicate and normalized on the basis of Actb values. RNA-seq was performed by RiboBio Co. Ltd., China.

Animal experiments were compliant with all relevant ethical regulations regarding animal research and were conducted under the approval of the Animal Care and Use Committee of the Guangzhou Institutes of Biomedicine and Health under license number 2016012. For teratomas, ESCs were trypsinized, and 2 106 cells were injected into the flanks of immunocompromised nude mice. Mice were euthanized when the tumor diameter reached 1.5 cm, and the teratomas were processed for histological analysis. Chimeras were produced by injecting ESCs into blastocysts followed by implantation into a pseudopregnant C57BL/6J mice.

For proliferation assays, 60,000 ESCs were seeded, unless otherwise specified, per well of a six-well plate (three wells per time point). ESCs were counted at the indicated time points with a Bright-Line hemacytometer (Marienfeld). Cell cycle experiments were performed with propidium iodide staining (Beyotime, C1052) followed by flow cytometry analysis. Apoptosis experiments were performed with the Annexin VFITC (fluorescein isothiocyanate) Apoptosis Detection Kit (Vazyme Biotech, A211) followed by flow cytometry analysis. Flow cytometry data were analyzed with FlowJo (v10.4) software. AP activity was detected with the BCIP-NBT Alkaline Phosphatase Color Development Kit (Roche, 11681451001).

Plasmid construction. Dual single guide RNAs (sgRNAs) were designed to target upstream and downstream intron of exon 5, respectively. Two sets of sgRNAs were designed, and the more efficient set was used for the experiments. sgRNAs were cloned into pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene, 42230). PKD-EF1-CreER with a puromycin resistance gene was obtained by subcloning pCAG-CreERT2 (Addgene, 14797) into a PKD-EF1 lentiviral backbone plasmid. The left and right homologous arms of the mouse genome and a fragment containing LoxP-exon5-FRT-PGK-Neo-FRT-LoxP were cloned into pMD-19 T donor plasmid (Takara, 6013).

Generation of Brd4fl/fl clones. ESCs cultured in 2iL medium were transduced with the donor and PX330-CAS9-sgRNA plasmids using Lipofectamine 3000 (Invitrogen, L3000015). G418 (Merk, 108321-42-2) was added 24 hours after transduction for selection. After selection, the remaining cells were seeded into a 96-well plate for genotyping. To obtain Brd4fl/fl clones, the remaining cells were again transfected with pCAG-FlpeGFP plasmid (Addgene, 13788) and the green fluorescent protein (GFP)positive cells were sorted out to remove the selective marker Neo that was already integrated. Cells were then transduced with the donor and PX330-CAS9-sgRNA plasmids for a second round. After selection with G418, all the remaining cells were seeded again into a 96-well plate for genotyping. For Brd4fl/fl clones, the left-LoxP-exon5containing fragment and right-LoxPcontaining fragment were amplified for Sanger sequencing to make sure that the sequence and position of the LoxPs and exon 5 were correctly modified.

Generation of Brd4 fl/ and Brd4/ clones. Brd4fl/fl clones were transduced with the PKD-EF1-CreER plasmid and selected with puromycin (InvivoGen, ant-pr-1) for 2 days. The expression level of CreER was tested by RT-qPCR. Cells were seeded into a 96-well plate, and 4-hydroxytamoxifen was added to induce deletion of the floxed alleles. Genotyping was performed to obtain Brd4 fl/ and Brd4/ clones. Brd4 fl/ clones were transduced with pCAG-CreGFP plasmid (Addgene, 13776), and GFP-positive cells were sorted 72 hours later. The sorted GFP-positive cells were seeded into a 96-well plate for genotyping to get Brd4/ clones. All primers are listed in table S5.

Ten million cells were cross-linked in freshly prepared formaldehyde solution (1% final concentration for 10 min at room temperature) and then quenched with 125 mM glycine (for 5 min at room temperature). Fixed cells were washed with cold phosphate-buffered saline (PBS), harvested, flash-frozen in liquid nitrogen, and stored at 80C for further use. For -catenin, Pol2 Ser5P, and Pol2 Ser2P ChIP-qPCR, immunoprecipitation was performed as reported by Ward et al. (56). For MED1, SMC1A, and BRD4 ChIP-qPCR, immunoprecipitation was performed as reported by Finley et al. (41). After elution of antibody-bound complexes from the beads, cross-linking was reversed by overnight incubation at 65C. Samples were diluted in TE (Tris-EDTA) buffer and then treated with ribonuclease A (Sigma-Aldrich, R6513) for 1 hour at 37C, followed by incubation with proteinase K (Thermo Fisher Scientific, 25530049) for 2 hours at 55C. DNA was purified using the QIAquick PCR Purification Kit (Qiagen, 28106). Antibodies used for ChIP-qPCR were immunoglobulin G (Abcam, ab172730), anti-catenin (Abcam, ab32572), antiPol2 Ser5P (Abcam, ab5131), antiPol2 Ser2P (Abcam, ab5095), anti-MED1 (Bethyl, A300-793), anti-SMC1A (Bethyl, A300-055), and anti-BRD4 (Bethyl, A301-985A). Primers for ChIP-qPCR are listed in table S5.

GRO-seq was performed as previously described (57). Briefly, nuclei from 107 ESCs were extracted and run-on-transcribed with BrUTP (Sigma-Aldrich, B7166) and other nucleoside 5-triphosphates at 30C for 5 min. Nascent RNA was enriched by agarose-coated anti-BrUTP (Santa Cruz Biotechnology, sc-32323). Poly(A) tail was added to the nascent RNA by poly(A) polymerase (New England Biolabs, M0276S) to synthesize complementary DNA with oligo(dT) primers. GRO-seq libraries were amplified by PCR for 10 cycles and separated with 10% tris-borate EDTA polyacrylamide gels. Bands ranging from 160 to 300 base pairs (bp) were cut and purified by isopropanol precipitation. Sequencing of GRO-seq libraries was performed by Berry Genomics Co. Ltd., China.

Cells (107) were lysed in 250 l of TNE lysis buffer [50 mM tris-HCl (pH 7.5), 250 mM NaCl, 0.5% NP-40, and 1 mM EDTA] containing protease inhibitor cocktail (Roche, 04693132001) on ice for 15 min. Lysates were homogenized by a 0.4-mm syringe needle and centrifuged at 13,000g for 15 min at 4C. Supernatants were diluted with TNEG buffer [50 mM tris-HCl (pH 7.5), 50 mM NaCl, 0.5% NP-40, 20% glycerol, and 1 mM EDTA] and then incubated with the relevant antibodies overnight at 4C. The next day, 30 l of prewashed Protein A/Gconjugated beads (Thermo Fisher Scientific, 10001D and 10003D) was added and incubated for 3 hours at 4C. Beads were then washed three times with wash buffer 1 [20 mM tris-HCl (pH 7.4), 125 mM NaCl, and 0.1% NP-40] and two times with wash buffer 2 (1 PBS with 0.02% NP-40) for 5 min under rotation at 4C (for each wash). Last, the proteins were eluted with 60 l of SDS loading buffer and boiled for Western blotting. The following primary antibodies were used for immunoprecipitation or Western blotting: anti-BRD4 (Bethyl, A301-985A), anti-tubulin (Sigma-Aldrich, T5201), anti-catenin (Abcam, ab32572), anti-MED1 (Bethyl, A300-793), anti-MED12 (Bethyl, A300-774A), and anti-SMC1A (Bethyl, A300-055).

Cells (50,000) were washed once with cold PBS and resuspended in 50 l of lysis buffer [10 mM tris-HCl (pH 7.4) 10 mM NaCl, 3 mM MgCl2, and 0.1% (v/v) IGEPAL CA-630]. The suspension was then centrifuged at 500g for 10 min at 4C, followed by addition of 50 l of transposition reaction mix of the TruePrep DNA Library Prep Kit (Vazyme Biotech, TD502). Samples were then incubated at 37C for 30 min. Transposition reactions were cleaned up using the MinElute PCR Purification Kit (Qiagen, 28004). ATAC-seq libraries were subjected to five cycles for preamplification and amplified by PCR for an appropriate number of cycles. The amplified libraries were purified using the QIAquick PCR Purification Kit (Qiagen, 28104). Library concentration was measured using the VAHTSTM Library Quantification Kit (Vazyme Biotech, NQ101). Libraries were sequenced by Berry Genomics Co. Ltd., China.

For RNA-seq gene expression quantification, data were first aligned with STAR (v2.5.2) and quantified according to GENCODE vM15 in an RSEM-based pipeline (58). Differentially expressed genes were determined by DESeq2 (v1.18.1) and were defined as absolute fold change of >2 and q value of <0.1. Functional annotation was further performed by ClusterProfiler (v3.6.0) (59). For ChIP-seq and ATAC-seq, data were first aligned to the mm10 mouse genome assembly using Bowtie2 (v2.2.5) with the settings --very-sensitive. Low-quality mapped reads were removed using Samtools with the settings -q 30. Duplicated reads were collapsed using Picard (v1.9.0). For ChIP-seq, binding sites were called using MACS2 (v2.1.0) with the settings --keep-dup 1 -q 0.01. Peaks were annotated to all genes within 2 kb and the single closest gene within 20 kb, and duplicate genes were removed. Peaks were considered as overlapping if they intersect with each other. For GRO-seq, adaptors were first trimmed with fastp (v0.20.0), and only read 1 was kept for further analysis. PCR duplicates were collapsed using FASTX-Toolkit. A 20-bp polyA sequence and an 8-bp random sequence were trimmed from 3 end. Clean data were then aligned to the mm10 mouse genome assembly using Bowtie2. For quantification of Pol2 ChIP-seq and GRO-seq signals, the proximal promoter was considered as the 100- to +300-bp region around the annotated TSS, and the gene body was considered as the +300-bp to +2-kb region downstream of the annotated TSS. Reads were first normalized as reads per million mapped reads or reads per kilobase per million mapped reads using deepTools (v 3.3.1) and further assigned to the corresponding regions, while the top 1% of the values were trimmed. For whole-genome bisulfite sequencing analysis, data were aligned to the mm10 mouse genome assembly using BSMAP with the settings -v 0.1 -g 1 -p 8 -R -u and further assigned to corresponding regions. Occupancy plots were generated by deepTools. Cumulative plots, violin plots, and boxplots were generated by ggplot2 (v2.2.1); the black central line of boxplots is the median, the boxes indicate the upper and lower quartiles, and the whiskers indicate the 1.5 interquartile range.

ESCs were seeded 12 hours before transfection on gelatin-precoated 24-well plates at a density of 30,000 cells per well. TOPflash or FOPflash report plasmids (Millipore, 17-285) and Renilla luciferase plasmids were transduced using Lipofectamine 3000. Twenty-four hours after transfection, luciferase activity was measured using a Dual-Luciferase Reporter Assay System (Promega, E1910).

CCK-8 Cell Counting Kit (Vazyme Biotech, A311-02) was used to evaluate the cell viability of THP1 cells. THP1 cells (8,000 per well) were seeded in a 96-well plate. For measurements, 10 l of CCK-8 solution was added to each well, and the plates were incubated for 1 to 4 hours at 37C before the absorbance was measured at 450 nm using an Epoch 2 microplate spectrophotometer from BioTek.

Data of bar charts are represented as mean SEM. The P value was calculated using the unpaired two-tailed Students t test or two-way analysis of variance (ANOVA). The number of replicates for each experiment is indicated in the figure legends. For violin plots and boxplots, the P value was calculated using Wilcoxon rank sum test.

Acknowledgments: We thank all members of the Esteban laboratory for their comments. We also thank M. Oren (Weizmann Institute of Science, Israel) for technical advice and J. T. Lis (Cornell University, USA) and X. Fu (University of California, USA) for helpful comments on this manuscript. We also thank the technical support from the Guangzhou Branch of the Supercomputing Center of Chinese Academy of Science and the Experimental Animal Center of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences. Funding: This work was supported by the National Key Research and Development Program of China (2016YFA0100102, 2016YFA0100701, 2016YFA0100300, and 2018YFA0106903), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), the National Natural Science Foundation of China (31671537, 31571524, 31501192, 31430049, 31850410463, 31970619, 31950410553, and 31900617), the Guangdong Province Science and Technology Program (2014A030312001, 2015A030308007, 2016B030229007, 2016A050503037, and 2017B050506007), the Guangzhou Science and Technology Program (201807010066), the Innovative Team Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR110103001), and the Science and Technology Planning Project of Guangdong Province, China (2017B030314056). J.H.H. was funded by Pascal and Ilana Mantoux, Helen and Martin Kimmel Institute for Stem Cell Research, Flight Attendant Medical Research Council (FAMRI), European Research Council (ERC-CoG), and an Israel-China Israel Science Foundation (ISF) grant. C.W. was supported by a Zhujiang Overseas Young Talents Postdoctoral Fellowship. S.K. was supported by a Chinese Academy of Sciences Presidents International Fellowship. M.M.A., D.P.I., and M.T. were supported by the Chinese Academy of SciencesThird World Academy of Sciences (TWAS) Presidents PhD Fellowship. A.S. was supported by the Deutsche Forschungsgemeinschaft (REBIRTH and SFB738). Author contributions: M.A.E., M.Z., and Y. Lai conceived the idea and designed the experiments. M.Z. conducted most of the experiments and Y. Lai performed most of the bioinformatics study. M.A.E., M.Z., and Y. Lai analyzed the data. V.K. and L.C. contributed critically to the experiments. P.G., X.G., Jianguo Zhou, Y.X., Z.Y., L.L., A.J., W.L., M.M.A., G.M., N.L., X.F., Y. Lv., M.J., M.T., S.K., H.L., X.X., H.Z., Y.H., L.W., S.C., I.A.B., Z.L., D.W., T.Z., C.W., M.H., D.P.I., Y. Li, Jiajian Zhou, J.Y., Y.F., K.A., U.D.V., F.G., A.P.H., and G.V. contributed to the experiments and/or the analyses. X.B., G.W., A.S., H.W., H.S., B.Q., A.P.H., B.W.D., C.H., M.P.C., Y.Q., G.-L.X., R.C., and G.V. provided relevant advice, essential materials, and/or infrastructural support. M.A.E. supervised the study and provided most of the financial support. J.H.H. contributed to the supervision and also provided financial support. M.A.E. wrote the manuscript with help from M.Z. and Y. Lai. M.A.E. approved the final version of the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. RNA-seq, GRO-seq, and ATAC-seq data have been deposited in the Gene Expression Omnibus database under the accession number GSE123692. Published datasets used in this study are listed in table S6.

Read this article:
-Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus - Science Advances

Ozzy Osbourne Recovering from Recent Health Issues and Working on New Album – mxdwn.com

Ariel King July 18th, 2020 - 8:30 PM

Ozzy Osbourne is currently recovering from recent health issues related to Parkinsons, according to his wife, Sharon Osbourne. Ozzy Osbourne is also currently working on a new album.Sharon Osbourne made the comment in an interview on Steve-Os Wild Ride! Sharon Osbourne remarked on Osbournes upcoming album.

Hes starting his second album with Andrew Watt right now, Sharon Osbourne said. And you cant stop him. Hes doing it.

Ozzy Osbournes last album, Ordinary Man, had been released last February, with Andrew Watt producing the album. Ordinary Man had been Osbournes first solo album in ten years. The singer first announced plans to begin working on a new album only a few days after the release of Ordinary Man.

Hes doing really, really good, Sharon Osbourne said. Hes had a terrible, terrible injury. At one point, they thought he would never walk again, but he is hes walking and hes doing great. Hes been hit by so much medically, but hes doing good. Hes getting stronger every day.

Ozzy Osbourne had suffered a fall in 2019, while he had a year left until the completion of his farewell tour. The fall resulted in a spinal injury which resulted in surgery, with Sharon Osbourne saying it sparked off Ozzy Osbournes Parkinsons disease.

Osbourne revealed he had been diagnosed with Parkinsons at the beginning of this year, the singer undergoing stem cell treatments to mitigate the symptoms. His daughter, Kelly Osbourne, revealed in April that the treatment had been working with remarkable results. Shortly after being diagnosed, Ozzy Osbourne had cancelled his last tour, the singer hoping to resume dates prior to the pandemic.

See original here:
Ozzy Osbourne Recovering from Recent Health Issues and Working on New Album - mxdwn.com

What the research says about Covid-19 treatments – ETHealthworld.com

NEW DELHI: There is no cure yet for Covid-19. Doctors and scientists are scrambling to find treatments and drugs that can save the lives of infected people and perhaps prevent infection. Even the most promising treatments to date only help certain groups of patients, and await validation from further trials. Here are 16 major treatments assessed by The New York Times, and what the latest research says about them.

BLOCKING THE VIRUS Antiviral drugs can stop viruses such as HIV and hepatitis C from hijacking our cells. Scientists are searching for antivirals that work against the new coronavirus. Remdesivir (Promising evidence) It stops viruses from replicating by inserting itself into new viral genes. While it didnt fulfill its original purpose of fighting Ebola and hepatitis C, preliminary data suggests it can reduce hospital stay in severe cases from 15 to 11 days. The latest data also hints that it might reduce death rates among those who are very ill.

77027170

Favipiravir (Tentative or mixed evidence) Favipiravir is a flu drug that blocks a viruss ability to copy its genetic material. A small study in March indicated that it might clear out the coronavirus from the airway, but results from larger, well-designed clinical trials are still pending.

EIDD-2801 (Tentative or mixed evidence) Another antiviral originally designed to fight the flu, EIDD-2801 has had promising results against the new coronavirus in studies in cells and on animals. It is still being tested in humans. Recombinant ACE-2 (Tentative or mixed evidence) The coronavirus enters a cell by latching on to a human protein called ACE-2. Recombinant (artificial) ACE-2 proteins might be able to lure it away from vulnerable cells. They have shown promising results in experiments on cells, but not yet in animals or people. Lopinavir-Ritonavir (Not promising) At first, this combination of HIV drugs seemed to stop the new coronavirus from replicating, but clinical trials in patients proved disappointing and the WHO suspended them this month. However, the drugs might still play a role as a preventive and in treating patients with mild symptoms. Hydroxychloroquine and Chloroquine (Not promising) At the start of the pandemic, researchers found that these old anti- malaria drugs could stop the coronavirus from replicating in cells. A few small studies on patients also offered hope that hydroxychloroquine could treat Covid. However, data from randomised clinical trials shows hydroxychloroquine didnt help people with Covid-19 get better or prevent healthy people from contracting the coronavirus. Also, giving hydroxychloroquine to people right after being diagnosed didnt reduce the severity of their disease. The US Food and Drug Administration (FDA) now warns that the drug can cause serious side effects to the heart and other organs when used to treat Covid-19. MIMICKING THE IMMUNE SYSTEM Most patients fight off the virus with a strong immune response. Drugs might help people who cant mount an adequate defense

Convalescant Plasma (Tentative or mixed evidence) A century ago, doctors used plasma from the blood of recovered flu patients to treat people sick with flu. The same strategy has been tried on severely ill Covid patients and the early results are promising. The FDA has authorised plasma therapy for very sick Covid patients.

Monoclonal antibodies (Tentative or mixed evidence) Convalescent plasma contains a mix of antibodies, only some of which can fight the coronavirus. Researchers have identified the most potent Covid antibodies and their synthetic copies known as monoclonal antibodies can be manufactured in bulk and injected into patients. Safety trials for this treatment have only just begun.

Interferons (Tentative or mixed evidence) Interferons are molecules that our cells produce to make the immune system attack viruses. Injecting synthetic interferons is now a standard treatment for immune disorders. Experiments in mice and cells suggest that interferon injections could be used both as a preventive and a treatment for Covid-19.

PUTTING OUT FRIENDLY FIRE The most severe symptoms of Covid-19 are the result of the immune systems overreaction to the virus. Scientists are testing drugs that can rein in its attack

Dexamethasone (Promising evidence) This cheap and widely available steroid blunts many types of im- mune responses. Doctors have long used it to treat allergies, asthma and inflammation. A study of more than 6,000 people found that dexametha- sone reduced deaths by one-third in patients on ventilators, and by one- fifth in patients on oxygen.

Cytokine inhibitors(Tentative or mixed evidence) The body produces molecules called cytokines to fight off diseases. But in excess, they can trigger a cy- tokine storm, which causes the immune system to overreact to in- fections. Researchers have created several drugs to halt cytokine storms, including tocilizumab, sari- lumab and anakinra. While a few have offered modest help in some trials, others have faltered. The drug company Regeneron recently announced that a branded version of sarilumab, Kevzara, failed Phase 3 clinical trials.

Cytosorb (Tentative or mixed evidence) Cytosorb is a cartridge that filters cytokines from the blood in an at tempt to cool cytokine storms. The machine can purify a patients entire blood supply about 70 times in a 24-hour period.

Stem cells (Tentative or mixed evidence) Certain kinds of stem cells can secrete anti-inflammatory molecules. Researchers have tried to use them to treat cytokine storms, and now dozens of clinical trials are under way to see if they can help Covid-19 patients. But stem cell treatments havent worked well in the past, and its not clear yet if theyll work against the coronavirus.

OTHER TREATMENTS Doctors and nurses often administer other supportive treatments to help patients with Covid-19.

Prone positioning (Widely used) The simple act of flipping Covid-19 patients onto their bellies opens up the lungs. The manoeuvre might help some individuals avoid the need for ventilators entirely.

Ventilators (Widely used) Devices that help people breathe are an essential tool. Some patients do well if they get an extra supply of oxygen through the nose or via a mask connected to an oxygen ma- chine. Patients in severe respira- tory distress may need to have a ventilator breathe for them until their lungs heal.

Anticoagulants (Tentative or mixed evidence) The coronavirus can invade cells in the lining of blood vessels, leading to tiny clots that can cause strokes. Anticoagulants are commonly used to slow the formation of clots, and doctors sometimes use them on Covid-19 patients with clots.

Original post:
What the research says about Covid-19 treatments - ETHealthworld.com

Stem Cells for Everyone: Revolutionizing Regenerative …

Induced pluripotent stem cells (iPS cells or iPSCs) are stem cells induced from somatic cells that are reprogrammed to an embryonic stem cell-like state by introducing special factors (genes). iPSCs are able to become any type of cells in the body and proliferate almost indefinitely, like an embryonic stem cell. Unlike embryonic stem cells, iPSCs can be made from matured cells in the body, such as skin or blood cells, from anyone. iPSCs-derived cell therapy generated from a patient's own cells minimizes the risk of immune rejection. It is expected to change the course of regenerative medicine, drug discovery, and personalized medicine.

Unlike other stem cells such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), iPSCs can differentiate into all tissue and cell types, can be made with a small amount of cells, and can be grown to quantities necessary. These unique abilities make iPSCs unrivaled as stem cells of choice for patient-specific cell therapy and drug discovery. For example, COVID19/SARS-CoV-2-targeted lung cells, differentiated from patient-derived iPSCs, are a valuable in vitro disease model and can be used for drug and vaccine discovery for SARS-CoV-2.

There are numerous ongoing preclinical and clinical studies involving iPSCs for diseases such as age-related macular degeneration, spinal cord injury, heart failure, GvHD, etc. with several of them yielding positive results. However, the manufacturing of high quality, clinical-grade iPSCs currently faces a bottleneck. The iPSCs used in the first clinical trial in Japan cost approximately one million USD and took one year to generate. At this cost and the rate of production, personalized stem cell-based medicine would not be practical.

I Peace'snovel methodology to manufacture clinical-grade iPSCs in an automated closed, compact, and modular device provides the scalability required formass parallel production of personalized clinical-grade iPSC lines within the I PeaceGMP facility. I Peace will shortly begin gradually increasing its production capability while carefully examining logistical issues associated with mass production of iPSCs. This technology enables dramatic cost reduction and efficient production of clinical-grade iPSCs from multiple donors at the same time,paving the way for a future of global personalized stem cell-based medicine.

Background on the development of the Fully Closed Automatic iPSC Mass Manufacturing System

Existing methods of iPSC generation are labor and cost-intensive, with low efficiency. Clinical-grade iPSC manufacturing requires exclusive use of a whole clean room for just one donor over a long period of time, which meant that mass production was not practical and the associated cleanroom costs were enormous. This is a large barrier in making iPSC-derived medical treatments available to all.

Due to these factors, it was challenging to efficiently mass-produce iPSCs from multiple donors. As a result, only a limited number of clinical-grade iPSC lines were available, with their very high cost as barrier to widespread use, up until now.

Outline of the device

The fully closed automated iPSC manufacturing system that I Peace has successfully developed is different from an automated iPSC culturing system, which simply grows the iPSCs generated elsewhere. Instead, our compact closed-system is capable of reprogrammingcarrying out the full sequence of processes required to change the cell fate of donor cells into iPSCs. The devicecarries no risk of cross-contamination between donors or from outside. Being modular and scalable with a small footprint, many units can be operated in parallel to carry out mass production of clinical-grade iPSCs from a large number of donors simultaneously in a single room. The whole systemfrom the individual biological steps to the overall operationis automated, and the joint development project with FANUC CORPORATIONincluded the creation of an automated operating system using robots.

This technology will revolutionize both allogeneic and personalized regenerative medicine. Unclogging the bottleneck of a limited number of available clinical-grade iPSC lines, this technology will allow us to offerresearchers and institutions a steady supply ofdifferent clinical-grade iPSC lines from which they can select the iPSC line(s) best suited for their particulararea of clinical research. This will be game-changing in accelerating the pace of clinical research using iPSCs. Additionally, the system's ability to simultaneously produce iPSCs from different donors makes personalized medicine possible. The technology will also accelerate drug discovery. Whereas up until now, drug discovery and regenerative medicine research have relied ona limited number of disease-specific iPSC lines, it will now be possible to prepare large libraries of iPSCs from patients and healthy individuals, which we believe will lead to faster discovery of better drugs.

Adopting as its motto 'Peace of mind with iPSCs,' I Peace, Inc. has been working to create a world in which iPSC-based medical treatments are available to everyone. Theclosed-system automated iPSC production device makes iPSCmass productionat dramatically reduced cost possible, which represents a great step forward toward a world where iPSC treatments are available to everyone.

Going forward, the demand for iPSCs is expected to grow further as research progresses into regenerative medicine, new drug development, and a wide variety of other areas where iPSCs are utilized. To meet the iPSC demand expected in areas such as cell therapy, drug discovery research, and clinical trials, I Peace isworking to have the system up and running by the end of 2020. I Peace iscommitted to working towards our vision of a future where each person has their own iPSCs banked for immediate use when necessary.

Supporting Information

Key Takeaways:

About I Peace, Inc.

I Peace, Inc. was founded in 2015at Palo Alto, California. I Peace's mission is to alleviate the suffering of diseased patients and help healthy people maintain a high quality of life. I Peace's proprietary manufacturing platform enables the fully-automated mass production of discrete iPSCs from multiple donors in a single room. Increasing the available number of clinical-grade iPSC lines allows our customers to take differentiation propensity into account to select the most appropriate iPSC line for their clinical research at a significantly reduced cost. Our goal is to give every individual the possibility of their own source of personalized stem cells for life through the creation of iPSCs.

Headquarters: Palo Alto, California Website: https://www.ipeace.com

AboutFounder and CEO Dr. Koji Tanabe

Dr. Koji Tanabe obtained his Ph.D. from Kyoto University Graduate School of Medicine, working in the laboratory of Professor Shinya Yamanaka, 2012 Nobel Prize Winner in Physiology/Medicine. There, he spent eight years researching iPS cells starting in 2006 the early days of iPSC development and became the second author of the scientific paper reporting the world's first successful generation of human iPSCs. After getting his Ph.D., Dr. Tanabe moved to the United States and joined the Dr. Marius Wernig Laboratory, part of the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University Medical School, where the world's first successful direct reprogramming from skin cells to neural cells was achieved. Dr. Tanabe's post-doctoral work at Dr. Wernig's lab was on direct reprogramming of blood cells to neural cells and the iPSC reprogramming mechanism, where he also contributed to numerous scientific papers on iPSCs and on direct reprogramming to neural cells. After a period as a guest researcher at Stanford, Dr. Tanabe assumed his present position as CEO of I Peace. He has been awarded an Overseas Research Fellowship by the Japan Society for the Promotion of Science.

SOURCE I Peace, Inc.

Home

More:
Stem Cells for Everyone: Revolutionizing Regenerative ...

Mesenchymal Stem Cells for Regenerative Medicine for …

1. Introduction

Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle wasting disorder caused by mutations in the DMD gene [1, 2], affecting 1 in 35005000 male births. Serum creatine kinase (CK) levels are elevated at birth, and motor milestones are delayed. Reduced motor skills between age 3 and 5years provoke diagnostic evaluation. Quality of life for boys with DMD is further affected early in life, with the inability to keep up with peers of early school age and loss of ambulation by 12years of age; premature death occurs at 2030years of age due to respiratory and cardiac complications (https://www.duchenne.com/about-duchenne;https://ghr.nlm.nih.gov/condition/duchenne-and-becker-muscular-dystrophy).

Mutations of the DMD gene cause complete (Duchenne) or partial (Becker) loss of dystrophin protein at the sarcolemma [3]. In normal muscle cells, dystrophin forms a complex with glycoproteins at the sarcolemma, forming a critical link between the extracellular matrix (ECM) and the cytoskeleton [4]. Without the complex, the sarcolemma becomes fragile and is easily disrupted by mechanical stress [4, 5].

Except for corticosteroids, there is currently no effective treatment for DMD [7]. In this chapter, we discuss the potential of mesenchymal stem cells as a therapeutic tool for DMD patients. Many researchers prefer the term mesenchymal stromal cells or mesenchymal progenitors to mesenchymal stem cells because mesenchymal stem cells with self-renewal and trilineage differentiation potential are a minor subpopulation in tissue-derived primary cultures of mesenchymal cells. In this chapter, however, we uniformly refer to them as mesenchymal stem cells.

The absence of dystrophin causes loss of the dystrophin-associated protein complex (DAPC) at the sarcolemma. The sarcolemma lacking the complex becomes vulnerable to mechanical stress. In addition, signalling through dystrophin-DAPC-associated molecules such as nNOS is disturbed [4, 5]. As a result, myofibres die in large numbers by contraction-induced mechanical stress, and to regenerate injured myofibres, inflammatory cells begin to remove debris of the muscle tissue; at the same time, muscle satellite cells are activated, proliferate and fuse with damaged myofibres. In the case of DMD, however, the cycle of degeneration and regeneration of myofibres repeats throughout life. Therefore, secondary pathological changes gradually develop, including perturbation of calcium homeostasis, activation of Ca2+-dependent proteases, mitochondrial dysfunction in myofibres, impaired regeneration of myofibres due to exhaustion of satellite cells, prolonged inflammation, disturbed immune response, fibrosis and fatty infiltration, with poor vascular adaptation and functional ischaemia [7]. These secondary pathological changes accelerate the disease course of DMD, resulting in severe loss of myofibres and muscle atrophy. Therefore, in addition to the restoration of dystrophin protein by gene therapy or stem cell therapy, blockage of secondary pathological events is an important therapeutic strategy for DMD (Figure 1).

Deficiency of dystrophin protein at the sarcolemma causes multiple pathological changes in DMD muscle [6, 7].

Upon injury, muscle satellite cells are activated, proliferate, and either fuse with damaged myofibres or fuse with each other to form new myofibres [8]. In DMD muscle, satellite cells compensate for muscle fibre loss in the early stages of the disease but eventually are exhausted. As a result, in DMD muscle, the myofibres are gradually replaced with fibrous and fatty connective tissue. Therefore, stem cell transplantation is expected to be a potential therapy for DMD [9].

There are different kinds of stem cells with myogenic potential in skeletal muscle. Muscle satellite cells are authentic unipotent skeletal muscle-specific stem cells [8]. Muscle-derived stem cells (MDSCs) [10] and mesangioblasts [11] were reported to be multipotent and transplantable via circulation; therefore, they are expected to be promising tools for cell-based therapies for DMD. Recently, muscle progenitors were induced from pluripotent stem cells as a cell source for cell-based therapy of DMD because induced pluripotent stem cells (iPSCs) can be expanded without losing pluripotency [12]. Myogenic cells induced from iPSCs are usually at a foetal stage and poorly engraft in the muscle of immunodeficient DMD model mice [13, 14].

In addition, muscles affected by muscular dystrophies are in a state of continuous inflammation and are characterised by marked and sustained infiltration of inflammatory and immune cells with fibrosis and adipose replacement. Such pathological microenvironments would not support survival, proliferation, and differentiation of the transplanted stem cells. Therefore, researchers have started to consider not only the properties of stem cells but also the microenvironment.

Skeletal muscle regenerates when it is injured. The regeneration process is complex but well organised, depending on the interaction among different types of cells: muscle stem/progenitor cells, muscle-resident mesenchymal progenitors and cells involved in inflammatory and innate and adaptive immune responses. Dynamic extracellular matrix (ECM) remodelling is also required for successful muscle regeneration. In the case of a minor traumatic injury, muscle regeneration is rapidly completed by the interplay of these cells. In muscular dystrophies, however, the degeneration/regeneration process is repeated for a long time, causing exhaustion of muscle satellite cells and finally resulting in severe atrophy of skeletal muscles with a loss of myofibres and extensive fibrosis and fat deposition [15].

Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stem (or stromal or progenitor) cells [16, 17]. Recently, the necessity of FAPs for skeletal muscle regeneration and maintenance was demonstrated using mouse models [18]. The authors demonstrated that depletion of FAPs resulted in loss of expansion of muscle stem cells (MuSCs) and haematopoietic cells after injury and impaired skeletal muscle regeneration [18]. Furthermore, FAP-depleted mice under homeostatic conditions exhibited muscle atrophy and a loss of MuSCs, revealing that FAPs are essential for long-term homeostatic maintenance of skeletal muscle and the MuSC pool [18].

FAPs have dual functions [19, 20]. In small-scale traumatic muscle injury, they are activated, expand and promote muscle regeneration. When regeneration is completed, FAPs are cleared from the regenerated muscle. In pathological conditions, such as muscular dystrophies, they continue to proliferate and contribute to fibrosis and fatty tissue accumulation.

How is the fate of FAPs regulated? Apparently, FAPs are regulated by signals from myogenic cells and immune cells. Altered signals from these cells in dystrophic muscle change the pro-regenerative FAPs to fibrotic and adipogenic types. Recently, Hogarth et al. reported that annexin A2 accumulation in the myofibre matrix promotes adipogenic replacement of FAPs in dysferlin-deficient LGMD2B model mice. The authors also showed that an MMP-14 inhibitor, Batimastat, inhibited adipogenesis of FAP. The authors speculate that Annexin A2 and MMP-14 both prolong the inflammatory environment, therefore causing excessive expansion of FAP in diseased muscle [21]. Pharmacological inhibition of FAP expansion may be a good strategy to prevent fibro/adipogenic changes in dystrophic muscles.

The signals that regulate FAPs remain largely unclear. Interestingly, treating FAPs of young mdx mice with trichostatin A (TSA), a histone deacetylase inhibitor, blocked their fibrotic and adipogenic differentiation and promoted a myogenic fate [22] by changing chromatin structure [23]. TSA treatment decreased the expression of adipogenic genes and upregulated myogenic genes in FAPs [22].

Inflammatory and immune cells (neutrophils, eosinophils, basophils, macrophage NK cells, dendritic cells, T cells, B cells, etc.) are key regulators of muscle regeneration. In particular, macrophages orchestrate the regeneration process. In the early phase of muscle regeneration, M1 (inflammatory) macrophages remove necrotic tissues by phagocytosis and inhibit fusion of myogenic precursor cells. In the later stage, M2 (regulatory) macrophages gradually replace M1 macrophages and play anti-inflammatory and pro-regenerating roles by promoting the differentiation of myogenic cells and the neovascularization of regenerating muscle regeneration [24].

DMD muscle, which remains dystrophin-deficient, experiences continuous cycles of necrosis and regeneration of myofibres. This causes chronic inflammation and evokes T cell-mediated immune responses, which involves the coexistence of both M1 and M2 macrophages and T cells in the muscle, and it further damages myofibres and exacerbates fibrosis and adipocyte infiltration [6, 25, 26]. Therefore, pharmacological inhibition of excess inflammation and immune response is a reasonable therapeutic strategy for DMD.

As a therapeutic tool for regenerative medicine, mesenchymal stem cells (MSCs) have received significant attention in the recent years due to their high growth potential, paracrine effects, immunomodulatory function and few reported adverse effects [27, 28]. Since MSCs show relatively low immunogenicity due to low expression of major histocompatibility (MHC) antigens and their immunomodulation function, they are being used even in allogeneic settings.

To facilitate research on MSCs, the International Society of Cellular Therapy (ISCT) formulated minimal criteria for defining multipotent MSCs in 2006 [29]. First, MSCs must be plastic adherent when maintained in standard culture conditions. Second, MSCs must express CD105, CD73 and CD90 and must not express CD45, CD34, CD14, CD11b, CD79alpha, CD19 and HLA-DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes and chondrocytes under standard in vitro differentiation protocols [29].

Historically, MSCs were isolated from bone marrow [30, 31, 32, 33]. Currently, MSCs are shown to exist in the perivascular niche in nearly all tissues and are prepared from a variety of tissues, such as the umbilical cord [34], placenta [35], adipose tissue [36] and dental tissues [37]. Preparation of MSCs from those tissues is less invasive than it is from BM. MSCs from different tissues have similar functions, but detailed comparative studies revealed that MSCs of different origins possess different properties [38].

MSCs are multipotent stem cells that undergo self-renewal and differentiate into multiple tissues of the mesenchymal lineage and into a non-mesenchymal lineage, including neurons, glia, endothelial cells, hepatocytes and cells in the pancreas [27]. This wide range of differentiation capacities is one reason why mesenchymal stem cells are being tested in almost 1000 clinical trials in regenerative medicine for the musculoskeletal system, nervous system, myocardium, liver, skin and immune diseases (http://ClinicalTrial.gov). Importantly, the differentiation potential of MSCs varies according to their origin, method of isolation and in vitro propagation procedures [39, 40, 41].

MSCs secrete a variety of bioactive molecules, such as growth factors, chemokines and cytokines. These molecules regulate the survival, proliferation and differentiation of target cells, promote angiogenesis and tissue repair and modulate inflammation and innate or acquired immunity. It is widely accepted that the therapeutic effects of MSCs in preclinical and clinical trials are largely due to their paracrine function [27]. Importantly, the secretome of MSCs varies depending on the age of the donor and the niches where the cells reside [42]. Therefore, it is expected that the therapeutic effects of MSCs with different origins exert will be different.

Recently, there has been considerable interest in the clinical application of MSCs for the treatment of muscle diseases. However, the myogenic potential of MSCs is controversial.

Sassoli et al. found that myoblast proliferation was greatly enhanced in coculture with bone marrow MSCs [43]. Myoblasts after coculture expressed higher levels of Notch-1, a key determinant of myoblast activation and proliferation. Interestingly, the effects were mediated by vascular endothelial growth factor (VEGF) secreted by MSCs [43]. A VEGFR2 inhibitor, KRN633, inhibited the positive effects of MSC-CM on C2C12 cell growth and Notch-1 signalling [43]. Linard et al. showed successful regeneration of rump muscle by local transplantation of bone marrow MSCs (BM-MSCs) after severe radiation burn using a pig model [44]. The authors speculate that locally injected BM-MSCs secreted growth factors such as VEGF and promoted angiogenesis. The authors also showed that MSCs supported the maintenance of the satellite cell pool and created a good macrophage M1/M2 balance. Nakamura et al. reported that transplantation of MSCs promoted the regeneration of skeletal muscle in a rat injury model without differentiation into skeletal myofibres. The report suggests that MSCs contribute to the regeneration of skeletal muscle by paracrine mechanisms [45]. Maeda et al. reported that BM-MSCs transplanted into peritoneal cavities of dystrophin/utrophin double-knockout (dko) mice strongly suppressed dystrophic pathology and extended the lifespan of treated mice [46]. The authors speculated that CXCL12 and osteopontin from BM-MSCs improved muscle regeneration. Bougl et al. also reported that human adipose-derived MSCs improved the muscle phenotype of DMD mice via the paracrine effects of MSCs [47].

In addition to soluble factors, recent studies demonstrated that MSCs secrete a large number of exosomes for intercellular communication [48, 49]. These exosomes are now expected to be a therapeutic tool for many diseases [50, 51]. Nakamura et al. reported that exosomes from MSCs contained miRNAs that promoted muscle regeneration and reduced the fibrotic area [45]. Bier et al. reported that intramuscular transplantation of PL-MSCs in mdx mice decreased the serum CK level, reduced fibrosis in the diaphragm and cardiac muscles and inhibited inflammation, partly via exosomal miR-29c [49]. Thus, MSC exosomes or MSC cytokines may provide a cell-free therapeutic strategy as an alternative to transplanting MSCs.

On the other hand, Saito et al. reported that BM-MSCs and periosteum MSCs differentiated into myofibres and restored dystrophin expression in mdx mice, although the efficiency was low (3%) [52]. Liu et al. showed that FLK-1+ adipose-derived MSCs restored dystrophin expression in mdx mice [53]. Feng et al. reported that intravenously delivered BM-MSCs increased dystrophin expression in mdx mice [54]. Vieira et al. reported that intravenously injected human adipose-derived MSCs successfully reached the muscle of golden retriever muscular dystrophy (GRMD) dogs and that they expressed human dystrophin [55]. Furthermore, Park et al. reported that human tonsil-derived MSCs (T-MSCs) differentiated into myogenic cells in vitro, and transplantation promoted the recovery of muscle function, as demonstrated by gait assessment (footprint analysis); furthermore, such treatment restored the shape of skeletal muscle in mice with a partial myectomy of the gastrocnemius muscle [56]. These reports suggest that MSCs directly contribute to the regeneration of myofibres and restore dystrophin expression.

In response to damage signals, perivascular MSCs are activated and recruit inflammatory and immune cells and promote inflammation. At a later stage, MSCs begin to suppress inflammation and the immune response. On the other hand, MSCs in circulation are reported to selectively home towards damaged tissue [57]. Once homed, the inflammatory environment stimulates MSCs to produce a large amount of bioactive molecules or to directly interact with inflammatory and immune cells to regulate inflammation and the immune response.

The therapeutic effects of MSCs in preclinical or clinical trials are thought to be partly the result of modulation of innate and adaptive immunity [27], especially through monocyte/macrophage modulation [28]. Inflammation and immune response are part of the pathology of DMD muscle. Therefore, the immunomodulatory functions of MSCs might be useful for the treatment of DMD.

MSCs are supposed to modulate inflammation and the immune response by (a) suppressing the maturation and function of dendritic cells [58, 59, 60], (b) promoting macrophage differentiation towards an M2-like phenotype with high tissue remodelling potential and anti-inflammatory activity [61], (c) inhibiting Th17 generation and function [62, 63], (d) inhibiting Th1 cell generation [64], (e) suppressing NK [65, 66] and T cytotoxic cell function [66], (f) stimulating the generation of Th2 cells [67] and (g) inducing Treg cells [64, 66, 68].

Pinheiro et al. investigated the effects of adipose-derived mesenchymal stem cell (AD-MSC) transplantation on dystrophin-deficient mice. Local injection of AD-MSCs improved histological phenotypes and muscle function [69]. AD-MSCs decreased the muscle content of TNF-, IL-6, TGF-1 and oxidative stress but increased the levels of VEGF, IL-10 and IL-4 [69]. MSC-derived IL-4 and IL-10 are reported to convert M1 (pro-inflammatory) macrophages to the M2 (anti-inflammatory) type and promote satellite cell differentiation [70]. These results suggest that transplanted AD-MSCs ameliorated the dystrophic phenotype partly by modulating inflammation.

In a clinical trial of gene therapy using a dystrophin transgene, T cells specific to epitopes of pre-existing dystrophin in revertant fibres were detected, suggesting the existence of autoreactive T-cell immunity against dystrophin before treatment [71]. Currently, exon skipping therapy to restore the reading frame of the DMD gene, and readthrough therapy of premature stop codons (e.g. aminoglycosides or ataluren), is being tested in patients with DMD. The treated patients start to produce dystrophin, which provides new epitopes to them. Suppression of undesirable immune responses against newly produced dystrophin might improve the efficiency of gene therapy.

Transplantation of myogenic cells also evokes innate and acquired immune responses against transplanted cells in the recipient. Therefore, immunosuppression by MSCs is expected to improve the engraftment of transplanted cells and the therapeutic effects of cell therapy. In addition, MSCs support the survival, proliferation, migration and differentiation of myogenic cells by secreting trophic factors.

Although BM-MSCs are well studied and widely tested in regenerative medicine, the collection procedure for bone marrow is invasive and painful. In addition, adult BM-MSCs cannot be expanded in culture beyond 10 passages [72]. To obtain MSCs with higher proliferative potential, other sources of MSCs are gaining attention, such as the umbilical cord and the placenta. MSCs from these sources proliferate better than BM-MSCs but still show limited proliferative activity [38].

hiPSCs can be expanded in vitro without loss of pluripotency and are therefore an ideal source for deriving mesenchymal stem cells of high quality in a large quantity [73, 74, 75]. In addition, unlike human ES cells, iPSCs are not accompanied by ethical concerns. To date, many protocols have been reported for the deviation of mesenchymal stem cells from human ES cells/iPS cells [73, 74, 75, 76, 77], although the difference in properties among iMSCs induced by different protocols remains to be determined [73, 74, 77]. For clinical use, iMSCs would be generated from well-characterised, pathogen-free, banked iPSCs with known HLA types or from patient-specific iPSCs.

MSCs induced from human iPS cells are generally characterised as reprogrammed, rejuvenated MSCs with high proliferative activity [78]. A previous study reported that MSCs from human iPSCs could be expanded for approximately 40 passages (120 population doublings) without obvious loss of plasticity or onset of replicative senescence [79]. In addition, iMSCs have been shown to exhibit potent immune-modulatory function and therapeutic properties (Table 1) [80]. Spitzhorn et al. reported that iMSCs did not form tumours after transplantation into the liver [81], but to exclude residual undifferentiated iPS cells, purification of MSCs by FACS using MSC markers and careful evaluation of the risk of tumour formation would be required for each preparation.

Comparison of properties of human iMSCs with human BM-MSCs.

The therapeutic potential of iMSCs has been tested in bone regeneration [80, 84], intestinal healing [85], myocardial disorders [86, 87], limb ischaemia [79] and autoimmune disease [88, 89]. In these studies, iMSCs showed therapeutic effects that were comparable or superior to those of tissue MSCs. In the muscular dystrophy field, there are only a small number of reports so far. Jeong et al. reported that iMSCs transplanted into the tibialis anterior of mdx mice decreased oxidative damage, as evidenced by a reduction in nitrotyrosine levels, and achieved normal dystrophin expression levels [90]. Since direct differentiation of MSCs into myogenic cells is generally limited, the observed effects of iMSCs might be due to the secretion of bioactive molecules that exert immunomodulatory effects and provide trophic support to myogenic cells.

Importantly, however, Liu et al. recently reported that transplantation of BM-MSCs from C57BL/6 mice aggravated inflammation, oxidative stress and fibrosis and impaired regeneration of contusion-injured C57/Bl6 muscle [91]. Although the mechanisms are not clear, the microenvironment in contusion-damaged muscle might induce the transformation of MSCs into the fibrotic phenotype. Caution might be warranted in the clinical application of MSCs to highly fibrotic muscle.

MSCs are multifunctional cells. MSCs secrete trophic factors that help regenerate myofibres. In addition, MSCs suppress inflammation and the immune response in dystrophic mice to protect muscle. MSCs are also expected to support the engraftment of transplanted myogenic cells in recipient muscle. Fortunately, recent technology gives us an option to derive MSC-like cells from pluripotent stem cells. Thus, MSCs are a promising next-generation tool for cell-based therapy of DMD (Figure 2).

Mesenchymal stem cells ameliorate the dystrophic phenotype of DMD muscle. Mesenchymal stem-like cells can be derived from human iPSCs (iMSCs). MSCs, which arrive in the muscle either through direction transplantation or via circulation, secrete a variety of bioactive molecules that promote angiogenesis and support the proliferation and differentiation of satellite cells, thereby promoting muscle regeneration. MSCs also suppress excess inflammatory and immune responses. Whether transplanted MSCs can directly modulate the phenotype of FAPs (resident MSCs) to inhibit fibrosis and fatty replacement remains to be determined. Abbreviations: DC, dendritic cells; NK, natural killer cells; Neu, neutrophil; M, macrophage; T, T lymphocytes; B, B lymphocyte.

A.E. is supported by the Channel System Program (CPS) of the Egyptian and Japanese governments. This study was supported by (1) Research on refractory musculoskeletal diseases using disease-specific induced pluripotent stem (iPS) cells from the Research Center Network for Realization of Regenerative Medicine, Japan Agency for Medical Research and Development (AMED), (2) Grants-in-aid for Scientific Research (C) (16K08725 and 19K075190001) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and (3) Intramural Research Grants (30-9) for Neurological and Psychiatric Disorders of NCNP.

The authors declare no conflicts of interest.

Read the original post:
Mesenchymal Stem Cells for Regenerative Medicine for ...

RoosterBio Regenerative Human Bone Marrow Stem Cell …

In the medical field, there have been numerous attempts to get regenerative medicine to work. Regenerative medicine is a branch of medication that deals with the research into the processes involved in replacing or regenerating of the human cells, organs, or tissues.

The effect of this is the reestablishment of the original order of the human body systems. It is a field that holds a lot of promise to engineer damaged or worn out tissues by stimulating the body to repair these tissues.

Regenerative medicine is a branch that also includes growing of the same tissues and organs in a laboratory and implanting them in a patient whose body cannot regenerate the organs by itself.

It is a branch of medication that holds the potential to solve the issue of tissue shortage and also the issue of rejected organs during a transplant.

It is this branch of medication that RoosterBio has involved itself in. The passion of the company is to increase the empowerment of cures that could potentially save lives. They aim to do the same by providing platforms for stem cells that will allow rapid commercial and clinical translation. This will have the effect of rapidly increasing the cell based bio-economy.

The team is comprised of experts that have dedicated themselves in the success of their customers. The staff is also one that is committed to reimagining what the future of stem cells could be. The team is highly responsible and respectful, and works together as a unit to achieve the best results possible.

The company also borrows heavily form the advice of experts. They often consult with the experts in the world of regenerative medicine to ensure that all their products ascribe to the highest standards possible.

The company produces tissues and stem cells that are derived from the human bone marrow and also the human adipose tissue. These cells are specifically known as mesenchymal stem cells and multipotent stem cells respectively.

The company is also highly involved in the production of formulations that are highly engineered to promote the expansion of the same cells.

The company produces the highest volume HMCS. These HMCS are offered by the company in a large variety of formats. The purpose of these cells is to speed up the process of development of the stem cells.

Every vial of cells that you take comes with a guarantee. A guarantee that it will expand 10-fold within a week if you pair it up with the media systems provided by the company.

The media that are sold by the company are designed to accelerate the rapid expansion of mesenchymal cells. The media contain a low volume of very potent serum and also a cocktail of growth factors that are known to mitigate HMSCs. The media from the company is custom built to give you a rapid proliferation rate. This will result in high cell volumes within a brief period of time.

The company also provides you with a donor screening kit. These kits are plug and play and are not complicated. They, therefore, have the effect of saving you a lot of money. The company works with you hand-in-hand to increase the development of your product all the way to the clinic. The purpose of all this is to save you time and money.

The company also has top of the range Clinical Control bioprocess media. These are designed for the 2D batch and 3D fed-batch. They also facilitate easy translation between platforms with the effect of standardizing the results.

The company provides the researchers with the cells at a much larger volume. This means that the researchers can conduct their research at a much faster rate. This is as compared to other companies that only provide the cultures in small quantities. The cells produced by the company are also quite affordable, thereby enabling the researchers to purchase numerous vials.

The customers of the company benefit from both their expertise in manufacturing of stem cells as well as benefitting from the economies of scale offered by the company.

There are no foreseeable downsides, only that the abundance of the cells could raise some flags.

RoosterBio has the aim of providing the researchers into regenerative medicine with enough material to do their research. This availability of material could potentially change the medical world.

[vc_btn title=Click Here To See Our #1 Recommended Omega 3 Fish Oil style=3d shape=square color=juicy-pink size=lg align=center i_icon_fontawesome=fa fa-info-circle link=url:https%3A%2F%2Fsupplementpolice.com%2Ftop-omega-fish-oil|title:Our%20#1%20Recommended%20Fish%20Oil|target:%20_blank button_block=true add_icon=true]

Read this article:
RoosterBio Regenerative Human Bone Marrow Stem Cell ...

3D Cell Culture Market Is Booming Worldwide, Industry analysis with Leading Players Thermo Fisher Scientific, Reprocell Incorporated, Kuraray Co,…

The3D Cell Culture Marketresearch Report is a valuable supply of perceptive information for business strategists. This Premium Tyres Market study provides comprehensive data which enhances the understanding, scope and application of this report.

The key market segments along with its subtypes are provided in the report. This report especially focuses on the dynamic view of the market, which can help to manage the outline of the industries. Several analysis tools and standard procedures help to demonstrate the role of different domains in market. The study estimates the factors that are boosting the development of 3D Cell Culture companies.

You can get the sample copy of this report now @https://www.reportsintellect.com/sample-request/896482

Key Companies Covered : Thermo Fisher Scientific, Reprocell Incorporated, Kuraray Co, Corning, N3d Bioscience, Lonza Group, Insphero, Merck Kgaa, 3D Biotek

You get the detailed analysis of the current market scenario for 3D Cell Culture and a market forecast till 2025 with this report. The forecast is also supported with the elements affecting the market dynamics for the forecast period. This report also details the information related to geographic trends, competitive scenarios and opportunities in the 3D Cell Culture market. The report is also equipped with SWOT analysis and value chain for the companies which are profiled in this report.

Most Important Types : Scaffold-based, Scaffold-free

Most Important Application : Cancer Research, Stem Cell Research, Drug Discovery, Regererative Medicine

Get Instant discount @https://www.reportsintellect.com/discount-request/896482

Global 3D Cell Culture Market Size, Status and Forecast 2020 2025

1 Market Overview

2 Manufacturers Profiles

3 Global 3D Cell Culture Sales, Revenue, Market Share and Competition by Manufacturer

4 Global 3D Cell Culture Market Analysis by Regions

5 North America 3D Cell Culture by Countries

6 Europe 3D Cell Culture by Countries

7 Asia-Pacific 3D Cell Culture by Countries

8 South America 3D Cell Culture by Countries

9 Middle East and Africa 3D Cell Culture by Countries

10 Global 3D Cell Culture Market Segment by Type

11 Global 3D Cell Culture Market Segment by Application

12 3D Cell Culture Market Forecast

13 Sales Channel, Distributors, Traders and Dealers

14 Research Findings and Conclusion

15 Appendixes

Reasons for Buying this Report:

About Us:

Reports Intellect is your one-stop solution for everything related to market research and market intelligence. We understand the importance of market intelligence and its need in todays competitive world.

Our professional team works hard to fetch the most authentic research reports backed with impeccable data figures which guarantee outstanding results every time for you.

So whether it is the latest report from the researchers or a custom requirement, our team is here to help you in the best possible way.

Contact Us:

[emailprotected]

PH +1-706-996-2486

US Address:

225 Peachtree Street NE,

Suite 400,

Atlanta, GA 30303

Visit link:
3D Cell Culture Market Is Booming Worldwide, Industry analysis with Leading Players Thermo Fisher Scientific, Reprocell Incorporated, Kuraray Co,...

Newest Clinic Opens Today at The Villages in Central …

SUNRISE, FL April 9, 2018 U.S. Stem Cell, Inc. (OTC: USRM), a leader in the development of proprietary, physician-based stem cell therapies and novel regenerative medicine solutions, today announced the opening its first USRM clinic in North Central Florida.

The U.S. Stem Cell Clinic of The Villages will offer alternatives to chronic pain management using USRMs proprietary AdipoCell TM product in a minimally invasive procedure utilizing a patients own (autologous) stem cells. Medical director for the clinic will be Dr. Rosemary Daly, an interventional spine/pain management physician who is board certified in Anesthesiology and Pain Medicine. Dr. Daly, who graduated from the New York College of Osteopathic Medicine, is also medical director for the Regenerative Wellness Clinic (RWC) in West Palm Beach, which is also in the USRM network of stem cell treatment centers.

Expansion of our regenerative healing centers to The Villages is an opportunity to directly serve an active community that is very proactive about seeking ways to increase their quality of life, said Dr. Kristin Comella, USRMs Chief Science Officer. We look forward to serving this vibrant community by offering holistic stem cell therapy for neurological, autoimmune, orthopedic and degenerative conditions.

Our vision at USRM has always been to expand access of autologous stem cell treatments to as many people as possible, said Mike Tomas, President and CEO of U.S. Stem Cell, Inc. Now that we are seeing a steady increase in demand for stem cell therapy, which has driven our progress in reaching milestones that allow for growth, we are ready to continue expanding our network of clinics. The clinic at The Villages represents that next step.

USRM has been instrumental in performing more than 10,000 stem cell procedures in the past 19 years for a variety of indications. USRM also trains and certifies physicians in stem cell therapy to date, more than 700+ physicians worldwide and has a growing network of 288 physicians and clinics utilizing the USRM technologies, protocols and products. Dr. Comella continues to enhance USRMs visibility worldwide for autologous stem cell treatments, as well as developing and bringing USRMs proprietary Adipocell TM product to market: a stem cell kit which enables physicians to separate potent stem cells from a patients own fat cells, which are harvested and reinserted in a minimally invasive, two-hour procedure without general anesthesia.

Dr. Comella is also well published in the scientific literature and has been recognized by her peers as an innovator and world leader in the development and clinical practice of stem cell products and therapies. Most recently, she presented a summary of peer-reviewed publications at the Academy of Regenerative Practices Conference in Weston, Florida.

U.S. Stem Cells novel advancements in stem cell therapy, in managements opinion, could be a significant alternative to the explosive opioid crisis in America a direct results of Americas failed attempt at pain management. According to The New York Times, drug overdose is now the leading cause of death in the United States for patients under the age of 50, while the October 15, 2017, edition of 60 Minutes reports that the opioid crisis has claimed 200,000 lives in the United States over the past few decades.

U.S. Stem Cell, Inc. is an emerging leader in the regenerative medicine / cellular therapy industry specializing in physician training and certification and stem cell products including its lead product Adipocell TM , as well as veterinary stem cell training and stem cell banking and creation and management of stem cell clinics. To managements knowledge, USRM has completed more clinical treatments than any other stem cell company in the world.

Read the original:
Newest Clinic Opens Today at The Villages in Central ...

The Play On Omeros – Seeking Alpha

Without education, we are in a horrible and deadly danger of taking educated people seriously." G.K. Chesterton

Today, we revisit a name we have covered often over the past two years. The company has been maddening for investors as the shares trade at the same level as a year ago even as the company continues to push forward its main development asset. We update our investment thesis on this 'Tier 3' concern and outline our investment strategy around its stock in the paragraphs below.

Omeros (OMER) is a Seattle, Washington-based biopharmaceutical company that IPO'd in 2009. The firm is somewhat unique in that it's not focusing on a single therapeutic area or drug platform, rather the company is looking to build a robust, diverse pipeline of first-in-class small-molecule and antibody therapeutics. The company is developing drugs for orphan indications, large-market, and where there's no approved treatments. Omeros currently has one approved therapeutic on the market called Omidria. The drug is designed to prevent miosis in cataract surgery and to reduce postoperative pain. Furthermore, the drug has demonstrated the ability to reduce complications, to prevent intraoperative floppy iris syndrome, and to reduce the need for opioids, pupil-expansion devices and postoperative steroids.

The company's pipeline is currently comprised of 7 product candidates, most of which are in the early stages of development. The lead product candidate is called Narsoplimab, which is being tested in a variety of indications. Omeros has a market capitalization of roughly $800 million and trades for around $14.50 a share.

Pipeline

Narsoplimab

Narsoplimab is a human monoclonal antibody targeting mannan-binding lectin-associated serine protease-2, aka MASP-2. MASP-2 is the effector enzyme of the lectin pathway of the complement system. The lectin pathway is one of the principal pathways of the complement system and is triggered mainly by tissue damage and microbial infection. Critically, inhibition of MASP-2 does not affect the classical complement pathway, which is a critical component of the immune response to infection. This means that the drug can prevent complement-mediated inflammation and endothelial damage while leaving entirely intact the important functions of the other pathways of innate immunity. The drug is being evaluated in a variety of indications: hematopoietic stem cell transplant-associated TMA, IgA nephropathy, atypical hemolytic uremic syndrome, and lupus nephritis/other renal diseases. In the United States, Narsoplimab has been granted FDA Breakthrough Therapy designation in patients who have high-risk HSCT-TMA, and for igA nephropathy; Orphan Drug designation for the prevention of complement-mediated TMAs, for the treatment of HSCT-TMA, and for igA nephropathy; and the drug has received FDA Fast Track designation for the treatment of aHUS. In the European Union, Narsoplimab has been designated an Orphan Medicinal Product for treatment in hematopoietic stem cell transplantation, and for IgA nephropathy. Recently, the company submitted the second part of their rolling BLA for Narsoplimab for the treatment of hematopoietic stem cell transplant-associated thrombotic microangiopathy. The submission was comprised of information on the chemistry, manufacturing and controls of Narsoplimab.

Source: Company Presentation

On March 3rd, the company reported clinical data from their pivotal trial of Narsoplimab for the treatment of hematopoietic stem cell transplant-associated thrombotic microangiopathy. The drug significantly exceeded the FDA-agreed upon threshold for the primary efficacy endpoint of a 15% complete response rate. Furthermore, the drug was well tolerated with adverse events comparable to those typically seen in the post-transplant population.

Source: Company Presentation

In addition to its HSCT-TMA lead program, Omeros is conducting ongoing Phase 3 clinical trials of Narsoplimab for immunoglobulin A nephropathy and atypical hemolytic uremic syndrome. However, due to COVID-19, enrollment has slowed while previously enrolled patients are continuing in the trials. Despite this, Omeros recently reaffirmed that they are targeting next year for the IgA nephropathy trial readout.

Source: Company Presentation

Looking ahead, Omeros believes that they will complete their BLA sometime this quarter. Given the Breakthrough Therapy designation, it's expected that the FDA will grant the BLA priority review. After FDA approval, the company will submit their European marketing authorization application. Commercial preparations are underway. The company is busy finalizing distribution, pricing, their launch strategy, hiring team members, and performing market research. Also, Omeros is assessing expansion of Narsoplimab into other endothelial injury syndromes, like diffuse alveolar hemorrhage and Graft-versus-host disease.

Source: Company Presentation

As of March 31st, 2020, Omeros had cash, cash equivalents and short-term investments of $53.9 million, compared to $60.7 million on December 31st, 2019. Research and development expenses for the first quarter were $28.9 million, compared to $26.2 million in Q1 of 2019. Selling, general and administrative expenses were $18 million in the quarter, compared to $14.6 million in the same quarter of 2019. Product sales came in at $23.5 million, compared to $21.7 million in Q1 of 2019. Record sales of $33.4 million were hit in Q4 of 2019, but they have since declined due to inventory utilization by ASCs and hospitals in anticipation of the COVID-19-related shutdown of elective surgical procedures. Overall, the company reported a net loss of $29 million for Q1 of 2020, compared to a net loss of $24.3 million for Q1 of 2019. The last time the company raised money was when they launched an equity offering in December of 2019.

Analysts are mixed on Omeros at the moment with three Buy ratings and two Holds over the past few months. The consensus price target on Wall Street is just north of $25.00, however. The latest rating comes from Wedbush on June 9th. The firm reiterated their hold rating and placed a $17 price target on the name. On May 12th, Needham & Company reiterated their hold rating. Lastly, on the same day as Needham & Company, HC Wainwright reiterated their buy rating and $34 price target. HC Wainwright has long had a price target in the $30's. In the analyst's valuation model, Omidria makes up roughly a third of the value and Narsoplimab makes up the other two thirds. Risks to the $34 price target, as outlined by the analyst at HC Wainwright, include: "(1) trial delays; (2) adverse clinical results; (3) inability to obtain approval for OMS721 and other candidates; (4) inability to achieve more OMIDRIA market traction; and (5) earlier-than-anticipated introduction of OMIDRIA generics in the U.S."

There are a couple of near term potential catalysts on the horizon. The first is completion of the company's rolling BLA on Narsoplimab for its first of hopefully many indications. The second is getting pass through status for Omidria past September 30th when it expires. Management sounded very confident this was going to happen by summer through a legislative effort that would garner Omidria the coveted status for an additional five years. The stock should get a boost from both of these events.

I think the company could then raise additional capital via a secondary offering to fund the rollout of Narsoplimab which I still believe has blockbuster potential. A good way to add exposure to Omeros is via a covered call strategy like the one outlined below.

Option Strategy

Here is how I have added exposure to OMER within my own personal accounts to make money even if the shares remain range bound. Using the February $15 call strikes fashion a Buy-Write order with a net debit in the $11.00 to $11.50 range (net stock price - option premium). This strategy provides approximately 20% downside risk (at the midpoint of the range) and just over 30% potential return in approximately seven months, again at the midpoint of the range. Liquidity in this name can vary significantly from day to day, so you may have to place your order more than once to fill.

The sad truth about humanity...is that people believe what they're told. Maybe not the first time, but by the hundredth time, the craziest of ideas just becomes a given." Neal Shusterman, UnWholly

Bret Jensen is the Founder of and authors articles for the Biotech Forum, Busted IPO Forum, and Insiders Forum

Live Chat on The Biotech Forum has been dominated by discussion of these type of buy-write opportunities over the past several months. To see what I and the other season biotech investors are targeting as trading ideas real-time, just join our community atThe Biotech Forum by clicking HERE.

Disclosure: I am/we are long OMER. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

See the original post:
The Play On Omeros - Seeking Alpha