Author Archives: admin


FDA Approves Merck’s KEYTRUDA (pembrolizumab) for the Treatment of Patients with Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma (cSCC) that…

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, announced today that the U.S. Food and Drug Administration (FDA) has approved KEYTRUDA, Mercks anti-PD-1 therapy, as monotherapy for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation. This approval is based on data from the Phase 2 KEYNOTE-629 trial, in which KEYTRUDA demonstrated meaningful efficacy and durability of response, with an objective response rate (ORR) of 34% (95% CI, 25-44), including a complete response rate of 4% and a partial response rate of 31%. Among responding patients, 69% had ongoing responses of six months or longer. After a median follow-up time of 9.5 months, the median duration of response (DOR) had not been reached (range, 2.7 to 13.1+ months).

Cutaneous squamous cell carcinoma is the second most common form of skin cancer, said Dr. Jonathan Cheng, vice president, clinical research, Merck Research Laboratories. In KEYNOTE-629, treatment with KEYTRUDA resulted in clinically meaningful and durable responses. Todays approval is great news for patients with cSCC and further demonstrates our commitment to bringing new treatment options to patients with advanced, difficult-to-treat cancers.

Immune-mediated adverse reactions, which may be severe or fatal, can occur with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis and renal dysfunction, severe skin reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation (HSCT). Based on the severity of the adverse reaction, KEYTRUDA should be withheld or discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see Selected Important Safety Information below.

Data Supporting Approval

The efficacy of KEYTRUDA was investigated in patients with recurrent or metastatic cSCC enrolled in KEYNOTE-629 (NCT03284424), a multi-center, multi-cohort, non-randomized, open-label trial. The trial excluded patients with autoimmune disease or a medical condition that required immunosuppression. The major efficacy outcome measures were ORR and DOR as assessed by blinded independent central review (BICR) according to Response Evaluation Criteria in Solid Tumors (RECIST) v1.1, modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ.

Among the 105 patients treated, 87% received one or more prior lines of therapy and 74% received prior radiation therapy. Forty-five percent of patients had locally recurrent only cSCC, 24% had metastatic only cSCC and 31% had both locally recurrent and metastatic cSCC. The study population characteristics were: median age of 72 years (range, 29 to 95); 71% age 65 or older; 76% male; 71% White; 25% race unknown; 34% Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) of 0 and 66% ECOG PS of 1.

KEYTRUDA demonstrated an ORR of 34% (95% CI, 25-44) with a complete response rate of 4% and a partial response rate of 31%. Among the 36 responding patients, 69% had ongoing responses of six months or longer. After a median follow-up time of 9.5 months, the median DOR had not been reached (range, 2.7 to 13.1+ months).

Patients received KEYTRUDA 200 mg intravenously every three weeks until documented disease progression, unacceptable toxicity or a maximum of 24 months. Patients with initial radiographic disease progression could receive additional doses of KEYTRUDA during confirmation of progression unless disease progression was symptomatic, rapidly progressive, required urgent intervention, or occurred with a decline in performance status. Assessment of tumor status was performed every six weeks during the first year and every nine weeks during the second year.

Among the 105 patients with cSCC enrolled in KEYNOTE-629, the median duration of exposure to KEYTRUDA was 5.8 months (range, 1 day to 16.1 months). Patients with autoimmune disease or a medical condition that required systemic corticosteroids or other immunosuppressive medications were ineligible. Adverse reactions occurring in patients with cSCC were similar to those occurring in 2,799 patients with melanoma or non-small cell lung cancer (NSCLC) treated with KEYTRUDA as a single agent. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence included lymphopenia (11%).

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

Link:
FDA Approves Merck's KEYTRUDA (pembrolizumab) for the Treatment of Patients with Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma (cSCC) that...

Global 3D Cell Culture Market (2019-2024) with COVID-19 After Effects Analysis by Emerging Trends, Industry Demand, Growth, Key Players – Cole of Duty

Global 3D Cell Culture Market 2020 report presents an overview of the market on the basis of key parameters such as market size, revenue, sales analysis and key drivers. The market size of global 3D Cell Culture market is anticipated to grow at large scale over the forecast period from 2020 to 2024. The main purpose of the study report is to give users an extensive viewpoint of the market. So that users can apply strategic processes to benchmark themselves against rest of the world. Key drivers as well as challenges of the market are discussed in the report. Also reports provides an in depth analysis of the 3D Cell Culture market with current and future trends.

Top Leading Key Players are:

Thermo Fisher Scientific Corning Lonza Group Kuraray Co Merck Kgaa Insphero N3d Bioscience Reprocell Incorporated 3D Biotek

Get Sample Copy of the Report @ https://www.reportspedia.com/report/life-sciences/global-3d-cell-culture-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/2238 #request_sample

In addition, study report suggests an array of opportunities for the players participating in the industry. This ultimately leads into the growth of the global 3D Cell Culture market. Furthermore, report offers a comprehensive study on market size, revenue, sales, growth factors and risks involved in the growth of the market during the forecast period. The factors which are influencing the growth the market are mentioned in the report as well as the challenges which can hamper the growth of the 3D Cell Culture market over the forecast period.

The main objective of this research report is to present the comprehensive analysis about the factors which are responsible for the growth of the global 3D Cell Culture market. The study report covers all the recent developments and innovations in the market. The global keyword market is likely to provide insights for the major strategies which is also estimated to have an impact on the overall growth of the market. Several strategies such as the PESTEL analysis and SWOT analysis is also being covered for the global market. These strategies have an impact on the overall 3D Cell Culture market.

Hurry Up!!!To get a Massive Discount Just Click @ https://www.reportspedia.com/discount_inquiry/discount/2238

Global 3D Cell Culture market is segmented based by type, application and region.

Segmentation Based on Type,

Scaffold-based Scaffold-free

Segmentation Based on application,

Cancer Research Stem Cell Research Drug Discovery Regererative Medicine

The research report on global 3D Cell Culture market ensures users to remain competitive in the market. Also report helps to identify the new innovations and developments by existing key players to increase the growth of the global 3D Cell Culture market.

Inquiry Here for the Report Click @: https://www.reportspedia.com/report/life-sciences/global-3d-cell-culture-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/2238 #inquiry_before_buying

Study report covers all the geographical regions where competitive landscape exists by the players such as: North America, Europe, Latin America, Asia-Pacific and Middle East Africa. Thus report helps to identify the key growth countries and regions.

In addition, report presents quantitative as well as qualitative narration of global 3D Cell Culture market. The research report is beneficial for educators, researchers, strategy managers, academic institutions and analysts. Thus report helps all types of users to identify the strategic initiatives so that they can understand how to expand the global 3D Cell Culture market business across the globe for the product development. Moreover, research report provides in depth analysis of all the segments which can impact on the market growth.

View Report TOC In detail: https://www.reportspedia.com/report/life-sciences/global-3d-cell-culture-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/2238 #table_of_contents

Read the rest here:
Global 3D Cell Culture Market (2019-2024) with COVID-19 After Effects Analysis by Emerging Trends, Industry Demand, Growth, Key Players - Cole of Duty

Global Cell Expansion Supporting Equipment Market Research with COVID-19 After Effects – Cole of Duty

Researchstore.biz has published an exclusive report named Global Cell Expansion Supporting Equipment Market 2020 by Manufacturers, Regions, Type and Application, Forecast to 2025 which consists of overall market scenario with prevalent and future growth prospects. The report delivers the analytical elaboration and other industry-linked information in an aim to supply specific and reliable analysis on the global Cell Expansion Supporting Equipment market. The report focuses on market dynamics, growth-driving factors, restraints, and limitations this market is currently facing and is expected to face in the coming years (2020-2025). The report is further divided by company, by country, and by application/types for the competitive landscape analysis. It estimates production chain, manufacturing capacity, sales volume, and revenue.

The report provides a detailed analysis of global market size, regional and country-level market size, segmentation market growth, market share, competitive landscape, sales analysis, the impact of domestic and global market players. It contains advanced information associated with the global Cell Expansion Supporting Equipment market status, trends analysis, segment, and forecasts from 2020-2025. It explains market scenarios, comparative pricing between major players, cost, and profit of the specified market regions.

NOTE: This report takes into account the current and future impacts of COVID-19 on this industry and offers you an in-dept analysis of Cell Expansion Supporting Equipment market.

DOWNLOAD FREE SAMPLE REPORT: https://www.researchstore.biz/sample-request/30516

Key Players Analysis:

The report analyzes the top manufacturers, exporters, and retailers (if applicable) around the world concerning their company profile, product portfolio, capacity, price, cost, and revenue. For competitor segment, the report covers the following global Cell Expansion Supporting Equipment market key players and some other small players: Beckman Coulter, Inc. (U.S.), STEMCELL Technologies, Inc. (Canada), GE Healthcare (U.K.), Becton, Dickinson and Company (U.S.), Miltenyi Biotec (Germany), Corning, Inc. (U.S.), Thermo Fisher Scientific, Inc. (U.S.), Merck KGaA (Germany), Lonza (Switzerland), Terumo BCT, Inc. (U.S.)

In market segmentation by types, the report covers: Flow cytometer, Cell counters, Centrifuges, Others,

In market segmentation by applications, the report covers the following uses: Regenerative Medicine and Stem Cell Research, Cancer and Cell-based Research, Others,

Regionally, this report focuses on several key regions: North America (United States, Canada and Mexico), Europe (Germany, France, UK, Russia and Italy), Asia-Pacific (China, Japan, Korea, India, Southeast Asia and Australia), South America (Brazil, Argentina, Colombia), Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)

Moreover, the report exhaustively investigates business opportunities, market scope, threats, and barriers. The report aims to help companies in strategizing their decisions in a better way and finally attains their business goals. The research answers important business questions like how the global Cell Expansion Supporting Equipment market will perform in the existing market scenario. It also presents the potential industry supply, market demand, market value, market competition, key market players, and the industry estimate from 2020-2025.

ACCESS FULL REPORT: https://www.researchstore.biz/report/global-cell-expansion-supporting-equipment-market-30516

Important Key Questions Answered In The Market Report:

Customization of the Report: This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

About Us

Researchstore.biz is a fully dedicated global market research agency providing thorough quantitative and qualitative analysis of extensive market research.Our corporate is identified by recognition and enthusiasm for what it offers, which unites its staff across the world.We are desired market researchers proving a reliable source of extensive market analysis on which readers can rely on. Our research team consist of some of the best market researchers, sector and analysis executives in the nation, because of which Researchstore.biz is considered as one of the most vigorous market research enterprises. Researchstore.biz finds perfect solutions according to the requirements of research with considerations of content and methods. Unique and out of the box technologies, techniques and solutions are implemented all through the research reports.

Contact Us Mark Stone Head of Business Development Phone: +1-201-465-4211 Email: [emailprotected] Web: http://www.researchstore.biz

Read this article:
Global Cell Expansion Supporting Equipment Market Research with COVID-19 After Effects - Cole of Duty

Stem Cell And Regenerative Therapy Market : Segmentation, Industry Trends and Development size COVID-19 2024 – 3rd Watch News

he globalstem cell and regenerative medicines marketshould grow from $21.8 billion in 2019 to reach $55.0 billion by 2024 at a compound annual growth rate (CAGR) of 20.4% for the period of 2019-2024.

Report Scope:

The scope of this report is broad and covers various type of product available in the stem cell and regenerative medicines market and potential application sectors across various industries. The current report offers a detailed analysis of the stem cell and regenerative medicines market.

The report highlights the current and future market potential of stem cell and regenerative medicines and provides a detailed analysis of the competitive environment, recent development, merger and acquisition, drivers, restraints, and technology background in the market. The report also covers market projections through 2024.

The report details market shares of stem cell and regenerative medicines based on products, application, and geography. Based on product the market is segmented into therapeutic products, cell banking, tools and reagents. The therapeutics products segments include cell therapy, tissue engineering and gene therapy. By application, the market is segmented into oncology, cardiovascular disorders, dermatology, orthopedic applications, central nervous system disorders, diabetes, others

The market is segmented by geography into the following regions: North America, Europe, Asia-Pacific, South America, and the Middle East and Africa. The report presents detailed analyses of major countries such as the U.S., Canada, Mexico, Germany, the U.K. France, Japan, China and India. For market estimates, data is provided for 2018 as the base year, with forecasts for 2019 through 2024. Estimated values are based on product manufacturers total revenues. Projected and forecasted revenue values are in constant U.S. dollars, unadjusted for inflation.

Request for Report Sample:https://www.trendsmarketresearch.com/report/sample/11723

Report Includes:

28 data tables An overview of global markets for stem cell and regenerative medicines Analyses of global market trends, with data from 2018, estimates for 2019, and projections of compound annual growth rates (CAGRs) through 2024 Details of historic background and description of embryonic and adult stem cells Information on stem cell banking and stem cell research A look at the growing research & development activities in regenerative medicine Coverage of ethical issues in stem cell research & regulatory constraints on biopharmaceuticals Comprehensive company profiles of key players in the market, including Aldagen Inc., Caladrius Biosciences Inc., Daiichi Sankyo Co. Ltd., Gamida Cell Ltd. and Novartis AG

Summary

The global market for stem cell and regenerative medicines was valued at REDACTED billion in 2018. The market is expected to grow at a compound annual growth rate (CAGR) of REDACTED to reach approximately REDACTED billion by 2024. Growth of the global market is attributed to the factors such as growingprevalence of cancer, technological advancement in product, growing adoption of novel therapeuticssuch as cell therapy, gene therapy in treatment of chronic diseases and increasing investment fromprivate players in cell-based therapies.

In the global market, North America held the highest market share in 2018. The Asia-Pacific region is anticipated to grow at the highest CAGR during the forecast period. The growing government funding for regenerative medicines in research institutes along with the growing number of clinical trials based on cell-based therapy and investment in R&D activities is expected to supplement the growth of the stem cell and regenerative market in Asia-Pacific region during the forecast period.

Reasons for Doing This Study

Global stem cell and regenerative medicines market comprises of various products for novel therapeutics that are adopted across various applications. New advancement and product launches have influenced the stem cell and regenerative medicines market and it is expected to grow in the near future. The biopharmaceutical companies are investing significantly in cell-based therapeutics. The government organizations are funding research and development activities related to stem cell research. These factors are impacting the stem cell and regenerative medicines market positively and augmenting the demand of stem cell and regenerative therapy among different application segments. The market is impacted through adoption of stem cell therapy. The key players in the market are investing in development of innovative products. The stem cell therapy market is likely to grow during the forecast period owing to growing investment from private companies, increasing in regulatory approval of stem cell-based therapeutics for treatment of chronic diseases and growth in commercial applications of regenerative medicine.

Products based on stem cells do not yet form an established market, but unlike some other potential applications of bioscience, stem cell technology has already produced many significant products in important therapeutic areas. The potential scope of the stem cell market is now becoming clear, and it is appropriate to review the technology, see its current practical applications, evaluate the participating companies and look to its future.

The report provides the reader with a background on stem cell and regenerative therapy, analyzes the current factors influencing the market, provides decision-makers the tools that inform decisions about expansion and penetration in this market.

More Info of Impact[emailprotected]https://www.trendsmarketresearch.com/report/covid-19-analysis/11723

Read more here:
Stem Cell And Regenerative Therapy Market : Segmentation, Industry Trends and Development size COVID-19 2024 - 3rd Watch News

Animal Stem Cell Therapy Market Size Estimation, Industry Demand, Growth Trend, Chain Structure, Supply and Demand Forecast (2020-2027) – Morning Tick

The report on the Animal Stem Cell Therapy market gives an in-depth statistical analysis to examine the fastest growing sectors in the market while speculating the demand and supply, consumption power, spending capacity and distribution channel globally. The report identifies the overall growth in the import and export and derives the future trends that the industry might witness. The study also applies primary and secondary research methods to assess the annual and financial performance of the top vendors and insights from market leaders. The researcher also discusses the recent trends and developments including joint ventures, collaborations, investments, product launches and acquisitions and mergers constitute a substantial part of the research on the Animal Stem Cell Therapy market for the forecast period from 2020 to 2027. The report will empower companies to understand the opportunities, adapt to their consumer demands, needs, and concentrate on their best end-users.

This is the most recent report inclusive of the COVID-19 effects on the functioning of the market. It is well known that some changes, for the worse, were administered by the pandemic on all industries. The current scenario of the business sector and pandemics impact on the past and future of the industry are covered in this report.

Looking for more information on this Animal Stem Cell Therapy market? Get FREE sample copy@ https://www.marketographics.com/sample-enquiry-form/4606

This report focuses on the global top players, covered

VETSTEM BIOPHARMA MediVet Biologic J-ARM Celavet Magellan Stem Cells U.S. Stem Cell Cells Power Japan ANIMAL CELL THERAPIES Animal Care Stem Cell Therapy Sciences VetCell Therapeutics Animacel Aratana Therapeutics

Apart from the above mentioned content the researchers go an extra mile to define the distinct usage occasions and lists the customer segments to leverage the brand and identify future opportunities. Besides, the subject matter expert segment the target customers purely based on their consumption patterns.

Animal Stem Cell Therapy Market split by Type, can be divided into:

Dogs Horses Others

Animal Stem Cell Therapy Market split by Application, can be divided into:

Veterinary Hospitals Research Organizations

!!! Limited Time DISCOUNT Available!!! Get Your Copy at Discounted Price@ https://www.marketographics.com/discount-enquiry-form/4606

Scope of the report

The study draws a forecast of the growth of the Animal Stem Cell Therapy market by evaluating the market size, share, demand, trends, and gross revenue of the industry. It also focuses on the positions of the major companies against the competitive landscape and their individual share in the global market. The report segments the industry based on product type, application and end-use. It highlights the recent trends and technological developments in the sector that will potentially influence the industry. The research offers a detailed outlook of the trends observed in the market, the contributing factors, major stakeholders, key companies and prime areas that exhibit a potential for growth.

Helping you establish a strong foothold in the industry

The Animal Stem Cell Therapy report highlights set of information related to pricing and the category of customers who are more than willing to pay for certain products and services. The information on opportunities as well as product features, determine which offerings or benefits command sale and identify the communications channels used by the market leaders to create premium positioning strategies as well as attract broadest share.

Market Segment by Regions, regional analysis covers

North America (United States, Canada and Mexico)

Europe (Germany, France, UK, Russia and Italy)

Asia-Pacific (China, Japan, Korea, India and Southeast Asia)

South America (Brazil, Argentina, Colombia)

Study aims at providing data about key category dynamics such as user awareness and a buyers purchase intent, as well as tries to list down the relative influence of certain trends on the demand for a certain product or service.

If you are a Animal Stem Cell Therapy vendor than this article will help you understand the Sales Volume with Impacting Trends. Click To get FREE SAMPLE PDF (Including Full TOC, Table & Figures) @ https://www.marketographics.com/sample-enquiry-form/4606

The study objectives of this report are:

#Animal Stem Cell Therapy Market Report to grow your business needs and avail 15% FREE customization on the report: Now Purchase @ https://www.marketographics.com/request-customization-form/4606

To summarize, the global Animal Stem Cell Therapy market report studies the contemporary market to forecast the growth prospects, challenges, opportunities, risks, threats, and the trends observed in the market that can either propel or curtail the growth rate of the industry. The market factors impacting the global sector also include provincial trade policies, international trade disputes, entry barriers, and other regulatory restrictions.

About Us:With reports from over 500 prominent publishers as well as daily updates on our collection, intended to empower companies and individuals catch-up with vital insights on industries operating across different geographies, along with the trends, share, size and growth rate of market verticals and numerous other services, we have our fingers dipped in just about everything market research-related. Besides meticulously curated research reports, our clients can also access our specialized services without any additional charges to gain vital market insights.

Contact Us: John Watson Head of Business Development Office No, 203 Chandan Nagar, Kharadi Pune, Maharashtra 411014 Direct Line:+918484002482 Visit our News Site: http://newssucceed.com

Read this article:
Animal Stem Cell Therapy Market Size Estimation, Industry Demand, Growth Trend, Chain Structure, Supply and Demand Forecast (2020-2027) - Morning Tick

Sussex eye surgeon’s guide to glaucoma, the leading cause of irreversible blindness in the UK – Bognor Regis Observer

Glaucoma is a condition where the optic nerve that carries visual information from the back of the eye to the brain is damaged. The most common cause of glaucoma is high pressure inside the eye.

Director of Innovation Eye Clinic and Head of Glaucoma at Queen Victoria Hospital, East Grinstead, Mr Gok Ratnarajan

Glaucoma is the leading cause of irreversible blindness in the UK and worldwide. Around half-a-million people in the UK are currently diagnosed with glaucoma. Probably about that same number have glaucoma but do not know they have the condition because of the lack of symptoms.

Glaucoma often does not have any symptoms until the disease is already quite advanced. For this reason, glaucoma is sometimes known as the silent thief of sight. The peripheral field of vision is often affected first which can be hard to detect without an eye examination. Rarely, the pressure inside the eye can build up very quickly (called an acute attack of glaucoma), this can cause severe pain. If this occurs you should get your eyes examined immediately.

Glaucoma can be diagnosed after having a full eye examination where the eye pressure, optic nerve and field of vision are assessed. This can be performed by an optician, who will then refer you to an eye doctor (ophthalmologist) if something suspicious is picked up on the eye examination. Glaucoma is more common as you get older and can run in families. If you are over 60, or have a close family member with glaucoma and you are over 40 you should get your eyes tested with your optician every year, and this is covered by the NHS.

As glaucoma cannot currently be cured, the key is early diagnosis. For many decades the main treatment for glaucoma was eye drops. In more recent years with the advent of new lasers and minimally invasive glaucoma surgery (MIGS) we now have many more treatment options available.

Any new developments or treatments in glaucoma?

Yes, indeed. New glaucoma lasers and safer, less invasive operations are now available which can often prevent glaucoma getting worse, and results in less patients needing lifelong eye drops. Innovations and advancements in glaucoma treatment is my passion and where a lot of my clinical research is focused. It is really quite exciting to be able to offer safer and more effective treatments. Progress is also being made to further understand the genetics of glaucoma. This may mean we can identify those most at risk of glaucoma even before damage to the optic nerve has occurred. The holy grail is to repair an optic nerve that is already damaged from glaucoma. Although promising stem cell research is underway, no cure for glaucoma is available at present.

Glaucoma Awarenerss Week 2020 runs from June 29 until July 5.

Mr Ratnarajan said: Glaucoma is a serious condition that can lead to irreversible sight loss. Early diagnosis is the key to protecting your eyesight. Raise awareness of glaucoma by sharing this article with friends and family members, and most importantly get your eyes tested regularly.

More information on glaucoma can be found at http://www.innovationeyeclinic.co.uk/glaucomaUntil end of September, Mr Gok Ratnarajan is offering a 150 discount to any reader of this newspaper who wishes to have a consultation. His office can be contacted on 07495522011 or info@innovationeyeclinic.co.uk

See the original post:
Sussex eye surgeon's guide to glaucoma, the leading cause of irreversible blindness in the UK - Bognor Regis Observer

Outlook on the Worldwide Regenerative Medicine Industry to 2024 – Rising Global Healthcare Expenditure Presents Opportunities – GlobeNewswire

June 22, 2020 06:39 ET | Source: Research and Markets

Dublin, June 22, 2020 (GLOBE NEWSWIRE) -- The "Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024)" report has been added to ResearchAndMarkets.com's offering.

This report provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Region Coverage:

Company Coverage:

Regenerative medicines emphasise on the regeneration or replacement of tissues, cells or organs of the human body to cure the problem caused by disease or injury. The treatment fortifies the human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimer's, diabetes, Parkinson's, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Key Topics Covered:

1. Executive Summary

2. Introduction 2.1 Regenerative Medicine: An Overview 2.2 Regeneration in Humans: An Overview 2.3 Expansion in Peripheral Industries of Regenerative Medicine 2.4 Approval System for Regenerative Medicine Products 2.5 Regenerative Medicine Segmentation

3. Global Market Analysis 3.1 Global Regenerative Medicine Market: An Analysis 3.1.1 Global Regenerative Medicine Market by Value 3.1.2 Global Regenerative Medicine Market by Products (Cell Therapy, Tissue Engineering, Gene Therapy and Small Molecules and Biologics) 3.1.3 Global Regenerative Medicine Market by Material (Biologically Derived Material, Synthetic Material, Genetically Engineered Materials and Pharmaceuticals) 3.1.4 Global Regenerative Medicine Market by Region (North America, Europe, Asia Pacific and ROW)

3.2 Global Regenerative Medicine Market: Product Analysis 3.2.1 Global Cell Therapy Regenerative Medicine Market by Value 3.2.2 Global Tissue Engineering Regenerative Medicine Market by Value 3.2.3 Global Gene Therapy Regenerative Medicine Market by Value 3.2.4 Global Small Molecules and Biologics Regenerative Medicine Market by Value

3.3 Global Regenerative Medicine Market: Material Analysis 3.3.1 Global Biologically Derived Material Market by Value 3.3.2 Global Synthetic Material Market by Value 3.3.3 Global Genetically Engineered Materials Market by Value 3.3.4 Global Regenerative Medicine Pharmaceuticals Market by Value

4. Regional Market Analysis 4.1 North America Regenerative Medicine Market: An Analysis 4.2 Europe Regenerative Medicine Market: An Analysis 4.3 Asia Pacific Regenerative Medicine Market: An Analysis 4.4 ROW Regenerative Medicine Market: An Analysis

5. COVID-19 5.1 Impact of Covid-19 5.2 Response of Industry to Covid-19 5.3 Variation in Organic Traffic 5.4 Regional Impact of COVID-19

6. Market Dynamics 6.1 Growth Drivers 6.1.1 Growth in Geriatric Population 6.1.2 Rising Global Healthcare Expenditure 6.1.3 Increasing Diabetic Population 6.1.4 Escalating Number of Cancer Patients 6.1.5 Rising Prevalence of Cardiovascular Disease 6.1.6 Surging Obese Population 6.2 Challenges 6.2.1 Legal Obligation 6.2.2 High Cost of Treatment 6.3 Market Trends 6.3.1 3D Bio-Printing 6.3.2 Artificial Intelligence to Advance Regenerative Medicine

7. Competitive Landscape 7.1 Global Regenerative Medicine Market Players: A Financial Comparison 7.2 Global Regenerative Medicine Market Players' by Research & Development Expenditure

8. Company Profiles 8.1 Bristol Myers Squibb (Celgene Corporation) 8.1.1 Business Overview 8.1.2 Financial Overview 8.1.3 Business Strategy 8.2 Medtronic Plc 8.2.1 Business Overview 8.2.2 Financial Overview 8.2.3 Business Strategy 8.3 Smith+Nephew (Osiris Therapeutics, Inc.) 8.3.1 Business Overview 8.3.2 Financial Overview 8.3.3 Business Strategy 8.4 Novartis AG 8.4.1 Business Overview 8.4.2 Financial Overview 8.4.3 Business Strategy

For more information about this report visit https://www.researchandmarkets.com/r/w15smu

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Read more from the original source:
Outlook on the Worldwide Regenerative Medicine Industry to 2024 - Rising Global Healthcare Expenditure Presents Opportunities - GlobeNewswire

Stem cell therapy: why we need to be suspicious about cure-all claims – The Irish Times

If you were to read many of the adverts for stem cell therapy that you can find online, you would be forgiven for believing that stem cell therapy is nothing short of a panacea. It is, according to those ads, able to improve all sorts of conditions, from knee pain and osteoarthritis, hair loss to heart disease, diabetes and even autism.

Theres just one problem theres little science behind many of the claims.

Stem cells are only approved for use in treating certain cancers and blood disorders, yet a search for the term on Facebook or Google will return details of a large number of clinics offering treatments for many other conditions.

The harsh reality is that while there is a lot of promising research being undertaken in this area, nobody should be parting with large sums of money for what may be currently no more than snake oil treatments, according to Noel Caplice, who is professor of cardiovascular sciences in the department of medicine at University College Cork and a consultant cardiologist.

Caplice, who has more than 20 years experience monitoring stem cell research as part of his studies into heart disease, told The Irish Times that we should all be suspicious about the range of different ailments clinics are willing to treat with stem cells.

There should be red lights flashing and alarm bells ringing. No therapy treats everything from Parkinsons disease to multiple sclerosis to heart disease to knee pain thats idiotic. Medicine just doesnt work like that.

True stem cell therapy is extremely complex because you have to refine the type of cell youre going to give to the organ it will be used in, and there are different challenges in different organs. Legitimate scientists are working on these things, but they are not there yet. Its an incredibly difficult area of research.

Stem cells have long been considered a great hope of medicine. They are the bodys building blocks, the cells from which other types of cells develop. Under the right conditions they can be encouraged to become any other type of cell found in the body, such as blood cells, brain cells, heart muscle cells and so on.

At its simplest, stem cell therapy involves cultivating stem cells in the lab, guiding them to grow into specific types of other cells, and then injecting those healthy cells into diseased parts of the body where in certain circumstances they have been shown to help the bodys own cells to fight disease.

This effect was first shown around 30 years ago in experiments on mice. However, things have not been all plain sailing since then.

The initial promise of stem cells has not been fulfilled, and whats happened in the meantime is that commercial clinics offering treatments have gotten ahead of the science, said Caplice.

The first trials in mice showed incredible regeneration, but their progress turned out not to be so straightforward. When the initial trials were replicated, the researchers couldnt reproduce the same early data.

While research is ongoing and there have been a few significant breakthroughs using stem cells, notably in the case of combined stem cell and gene therapy for thalassemia and leukaemia, that has not stopped unscrupulous clinics from marketing all sorts of treatments under the banner of stem cell therapy.

In the private world anything goes. There are people spinning this therapy for multiple sclerosis, Parkinsons, solid organ deterioration a whole range of problems. Ten years ago there was even a boat operating off the west Cork coast that was treating people for multiple sclerosis using stem cells. This has been going on for decades in this parallel world, and its mostly driven by money, Caplice said.

According to Frank Barry, professor of cellular therapy at the regenerative medicine institute with NUI Galway, a negative side effect of the off-label use of stem cells is that it makes it harder for researchers to raise money for research.

It damages our reputation to have people doing this. We all get painted with the same brush, and it makes it much harder to raise money. When these maverick clinics are exposed for their bad practices, there is a blow-back effect on us even though were completely unconnected, he said.

The sad thing is that there are genuinely quite exciting applications of stem cell therapy that will be possible in the future. All of these are undergoing scientifically-designed clinical trials that are carefully done, carefully managed, are placebo-controlled, double blind the works. Some of these trials are going quite well and suggest that the outcome will be good.

The biopharmaceutical company Takeda Ireland, for example, is currently developing a treatment for inflammatory bowel disease using the results of a trial that was conducted into stem cells.

Thats a dreadful condition that blights peoples lives. This is a new treatment so thats very exciting. That project achieved market authorisation because of careful work done over many years in high quality clinical trials, said Barry.

My own work is in the treatment of arthritis with stem cell therapy, and thats also going well. Were in the middle of a big trial thats been running in a number of clinical sites around Europe, and we think that when its finished itll be positive.

Running trials like these takes a lot of time and a lot of money. In the meantime bad actors are stepping into the gap that exists between promising early results and actual rigorous and robust science.

The harsh reality is that you cant recommend that a patient has stem cell therapy for anything that isnt directly authorised. If someone does that now theyre getting it off-label, so to speak, and basically theyre taking their chances, said Barry.

I can understand why someone might want to do that, but its not authorised. I would hold out a great deal of hope that when all the work is done there will be strong proof supporting this kind of treatment. But at the moment you can spend a huge amount of money essentially for nothing because there isnt the evidence to support treatment.

Go here to see the original:
Stem cell therapy: why we need to be suspicious about cure-all claims - The Irish Times

Over $8M in 2020 Stem Cell Funding Awards Continue to Fuel Marylands Leading Cell Therapy Industry – BioBuzz

The Maryland Stem Cell Research Commission (The Commission) recently announced over $7M in Maryland Stem Cell Research Fund (MSRCF) grant awards for its second round of 2020 MSCRF fund recipients. The MSCRF, which is a program of the Maryland Technology Development Corporation (TEDCO), has awarded $157M in funding to BioHealth Capital Region (BHCR) companies seeking to accelerate stem cell research, therapies and commercialization of products since 2007.

The $7M in new funding follows MSCRFs announcement in September 2019 of over $1.3M in grants for the first cohort of 2020 recipients, bringing the total 2020 MSCRF award tally to approximately $8.3M for the year. The financial awards are delivered across a wide range of areas, including clinical, commercialization, validation, launch, discovery, and post-doctoral fellowships. The first cohort of funding included three commercialization and two validation awards; the second, larger recipient pool included one clinical, one commercialization, one validation, four launches, 11 discovery, and five post-doctoral awards.

Notable BHCR MSCRF recipients included:

Dr. Luis Garza of Johns Hopkins University (JHU) received a clinical grant to support clinical trials for his autologous volar fibroblast injection into the stump site of amputees. The trials are exploring ways to make the skin where a prosthetic limb meets the stump site tougher and less irritable to the wearer. Skin irritation is a major issue for those with prosthetic limbs and is often a cause for individuals to stop wearing their prosthesis.

Vita Therapeutics, a company that spun out of JHU, was awarded a 300K MSCRF grant to support the commercialization of the companys satellite stem cell therapy for limb-girdle Muscular Dystrophy. According to the National Organization for Rare Disorders (NORD), Limb-girdle muscular dystrophies (LGMD) are a group of rare progressive genetic disorders that are characterized by wasting (atrophy) and weakness of the voluntary muscles of the hip and shoulder areas (limb-girdle area). Vita Therapeutics is led by CEO Douglass Falk, who is a JHU alum.

Jamie Niland, VP of Baltimore, Marylands Neoprogen Inc. received part of $892,080K in funding that was part of MSCRFs first 2020 grant round. Jamie is the son of Bill Niland, Neoprogens current CEO and the former leader of Baltimore, Maryland life science community anchor Harpoon Medical, which was acquired by Edwards Scientific in 2017. The award was for Neoprogens neonatal cardiac stem cells for the heart tissue regeneration program.

Dr. Brian Pollok of Rockville, Marylands Propagenix, Inc., was also the recipient of a commercialization award for his Apical Surface-Outward (ASO) airway organoids, which is a potential novel cell system for drug discovery and personalized medicine. Propagenix develops innovative new technologies that address unmet needs in epithelial cell biologyfor applications in life science research as well as in precision diagnostics, and next-generation therapeutics such as immune-oncology, tissue engineering, and regenerative medicine, according to the companys website.

In addition, Dr. Ines Silva, R&D Manager of REPROCELL, USA received an MSCRF commercialization grant for its work on building a commercial neural cell bank from patient-derived induced pluripotent stem cells. REPROCELL was founded in Japan in 2003 and acquired BioServe in Beltsville, Maryland in 2014.

Dr. Sashank Reddy, the founder of JHU startup LifeSprout and Medical Director, Johns Hopkins Technology Ventures Johns Hopkins University, received a portion of the $1,334,462 distributed for launch grants in 2020. The grant will go to support the launch of regenerative cell therapies for soft tissue restoration. LifeSprout recently closed a $28.5M seed round.

Past MSCRF grant recipients include Frederick, Marylands RoosterBio, Inc. and Theradaptive, Inc., and Baltimore, Marylands Gemstone Biotherapeutics and Domicell, Inc., among others.

TEDCOs MSRF program continues to lend its deep support and ample funding to build and grow Marylands burgeoning and exciting regenerative medicine industry. Well be keeping a close eye on these companies as they grow and make future contributions to the thriving BHCR biocluster.

Steve has over 20 years experience in copywriting, developing brand messaging and creating marketing strategies across a wide range of industries, including the biopharmaceutical, senior living, commercial real estate, IT and renewable energy sectors, among others. He is currently the Principal/Owner of StoryCore, a Frederick, Maryland-based content creation and execution consultancy focused on telling the unique stories of Maryland organizations.

Link:
Over $8M in 2020 Stem Cell Funding Awards Continue to Fuel Marylands Leading Cell Therapy Industry - BioBuzz

Should You Delay Cancer Treatment Because of COVID-19? Study Says Most Treatments Dont Worsen Coronavirus Infection – On Cancer – Memorial Sloan…

Summary

A review of 423 patients treated at MSK finds that most people with cancer dont fare any worse if they get COVID-19 than other people who are hospitalized for that infection.

In the early days of the COVID-19 pandemic, many doctors worried that people undergoing treatment for cancer would do particularly poorly if they became infected with the virus that causes the disease. Thats because treatments for cancer, especially chemotherapy, can lower a persons immune defenses and put them at higher risk for all kinds of infections.

But according to a new study from Memorial Sloan Kettering published June 24 in Nature Medicine, most people in active cancer treatment dont fare any worse if they get COVID-19 than other people who are hospitalized with the infection. Further research is needed to look at the effects of certain drugs mainly immunotherapies called checkpoint inhibitors, which did seem to make COVID-19 worse. But the researchers say their findings suggest that no one should delay cancer treatment because of concerns about the virus.

If youre an oncologist and youre trying to figure out whether to give patients chemotherapy, or if youre a patient who needs treatment, these findings should be very reassuring, says infectious disease specialist Ying Taur, one of the studys two senior authors.

Infectious disease expert Ying Taur has cared for many MSK patients who were hospitalized with COVID-19.

The study looked at 423 MSK patients diagnosed with COVID-19 between March 10 and April 7, 2020. Overall, 40% were hospitalized for COVID-19, and 20% developed severe respiratory illness. About 9% had to be placed on a mechanical ventilator, and 12% died. The investigators found that patients taking immunotherapy drugs called immune checkpoint inhibitors were more likely to develop severe disease and require hospitalization. But other cancer treatments, including chemotherapy and surgery, did not contribute to worse outcomes.

The big message now is clear: People should stay vigilant but not stop or postpone checkpoint immunotherapy or any other cancer treatment.

Factors that did make COVID-19 worse were the same as those seen in studies of people who didnt have cancer. We found that being older, as well as preexisting conditions like heart disease and diabetes, are all drivers of severe COVID-19 illness, says MSK Chief Medical Epidemiologist Mini Kamboj, the studys other senior author. This wasnt surprisingbecause these connections are well established.

Although the study wasnt large enough to make determinations about every treatment and every cancer type, patterns did emerge. Dr. Taur says there was initially great concern about people receiving high doses of chemotherapy for leukemia, especially those who had recently undergone bone marrow or stem cell transplants. Thats because transplants require a persons entire immune system to be wiped out with chemotherapy before they receive new blood cells, leaving them susceptible to all kinds of infections.

Surprisingly, though, Dr. Taur cared for recent transplant recipients who were infected with COVID-19 but didnt have any symptoms. If you think about it more, it makes sense, he says. Most of the complications seen in people with COVID-19 seem to be caused by the bodys immune response to the virus.

On the other hand, immunotherapy drugs called checkpoint inhibitors work by freeing up the immune system to attack cancer. Patients receiving these agents may develop a more robust reaction to the virus that causes COVID-19. This may explain why this study observed higher rates of complications in people with COVID-19 infection who were treated with checkpoint inhibitors.

Even with immune checkpoint inhibitors, though, these findings should not affect whether patients get treated. Everyone who needs these drugs should still receive them, Dr. Kamboj says. Its just important for doctors to be extra vigilant about testing and monitoring for the virus and for people with cancer to take extra precautions to avoid infection.

A study published in May 2020 by MSK immunotherapy expert Matthew Hellmann focused exclusively on people with lung cancer who got COVID-19. The researchers didnt find the same risks from immune checkpoint drugs as this Nature Medicine study. But that study included data on far fewer patients treated at MSK, which could explain the difference.

Dr. Kamboj notes that one aspect of this research that sets it apart from other studies is that it included at least 30 days of follow-up after a COVID-19 diagnosis. Also, it reported severe respiratory illness as a main outcome rather than death.

Having that follow-up time is something that a lot of other studies have not included because everyone is in a rush to get their data out. In addition, reporting death rates can overestimate infection-related mortality, especially in the early phase of an epidemic, Dr. Kamboj says. Also, the clinical spectrum and course of this disease is still not fully understood, especially in people with cancer. We wanted to give patients enough time to recover and make sure they didnt need to be readmitted to the hospital.

Even with immune checkpoint inhibitors, though, these findings should not affect whether patients get treated. Everyone who needs these drugs should still receive them.

She adds that another strength of the study is that patient outcomes were not affected by constraints caused by a lack of space or supplies even though MSK is in the heart of the COVID-19 epicenter in New York City, where other hospitals faced overcrowding and other issues. This gave researchers a true picture of how cancer patients fare with COVID-19. We saw a surge during the peak of the epidemic in New York, but everyone got the care they needed, Dr. Kamboj explains. We had enough ventilators for everyone who needed them. We never had to make decisions about who to admit to intensive care because of a lack of critical equipment.

Drs. Taur and Kamboj agree that this is just one of many studies that will need to be done on the connections between cancer and COVID-19. We still need to find out more. We need to look at the connections between COVID-19 and particular types of cancer as well as outcomes related to specific chemotherapy drugs, Dr. Taur concludes. But the big message now is clear: People should stay vigilant but not stop or postpone checkpoint immunotherapy or any other cancer treatment.

Read the original post:
Should You Delay Cancer Treatment Because of COVID-19? Study Says Most Treatments Dont Worsen Coronavirus Infection - On Cancer - Memorial Sloan...