Author Archives: admin


Induced Pluripotent Stem Cells Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 – Cole of Duty

Reprocell

Induced Pluripotent Stem Cells Market Competitive Landscape & Company Profiles

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the Induced Pluripotent Stem Cells market.

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Induced Pluripotent Stem Cells market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Induced Pluripotent Stem Cells Market, By Product

Regions Covered in these Report:

Asia Pacific (China, Japan, India, and Rest of Asia Pacific) Europe (Germany, the UK, France, and Rest of Europe) North America (the US, Mexico, and Canada) Latin America (Brazil and Rest of Latin America) Middle East & Africa (GCC Countries and Rest of Middle East & Africa)

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=219183&utm_source=COD&utm_medium=888

Induced Pluripotent Stem Cells Market Research Methodology

The research methodology adopted for the analysis of the market involves the consolidation of various research considerations such as subject matter expert advice, primary and secondary research. Primary research involves the extraction of information through various aspects such as numerous telephonic interviews, industry experts, questionnaires and in some cases face-to-face interactions. Primary interviews are usually carried out on a continuous basis with industry experts in order to acquire a topical understanding of the market as well as to be able to substantiate the existing analysis of the data.

Subject matter expertise involves the validation of the key research findings that were attained from primary and secondary research. The subject matter experts that are consulted have extensive experience in the market research industry and the specific requirements of the clients are reviewed by the experts to check for completion of the market study. Secondary research used for the Induced Pluripotent Stem Cells market report includes sources such as press releases, company annual reports, and research papers that are related to the industry. Other sources can include government websites, industry magazines and associations for gathering more meticulous data. These multiple channels of research help to find as well as substantiate research findings.

Table of Content

1 Introduction of Induced Pluripotent Stem Cells Market

1.1 Overview of the Market 1.2 Scope of Report 1.3 Assumptions

2 Executive Summary

3 Research Methodology

3.1 Data Mining 3.2 Validation 3.3 Primary Interviews 3.4 List of Data Sources

4 Induced Pluripotent Stem Cells Market Outlook

4.1 Overview 4.2 Market Dynamics 4.2.1 Drivers 4.2.2 Restraints 4.2.3 Opportunities 4.3 Porters Five Force Model 4.4 Value Chain Analysis

5 Induced Pluripotent Stem Cells Market, By Deployment Model

5.1 Overview

6 Induced Pluripotent Stem Cells Market, By Solution

6.1 Overview

7 Induced Pluripotent Stem Cells Market, By Vertical

7.1 Overview

8 Induced Pluripotent Stem Cells Market, By Geography

8.1 Overview 8.2 North America 8.2.1 U.S. 8.2.2 Canada 8.2.3 Mexico 8.3 Europe 8.3.1 Germany 8.3.2 U.K. 8.3.3 France 8.3.4 Rest of Europe 8.4 Asia Pacific 8.4.1 China 8.4.2 Japan 8.4.3 India 8.4.4 Rest of Asia Pacific 8.5 Rest of the World 8.5.1 Latin America 8.5.2 Middle East

9 Induced Pluripotent Stem Cells Market Competitive Landscape

9.1 Overview 9.2 Company Market Ranking 9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview 10.1.2 Financial Performance 10.1.3 Product Outlook 10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=219183&utm_source=COD&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Application Lifecycle Management Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Electrostatic Precipitator Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Engineering Plastics Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Go here to see the original:
Induced Pluripotent Stem Cells Market Analysis, Top Manufacturers, Share, Growth, Statistics, Opportunities and Forecast To 2026 - Cole of Duty

Stem Cell Manufacturing Market Share, Size, Trends 2020- Segments worth Observing Aiding Growth Factors | Merck Group, Becton, Dickinson And Company….

Latest Study on Growth of Global Stem Cell Manufacturing Market 2020-2027. A detailed study accumulated to offer Latest insights about acute features of the Stem Cell Manufacturing market. This Report studies the latest industry trends, market development aspects, market gains, and industry scenario during the forecast period. The report provides the details related to fundamental overview, development status, latest advancements, market dominance and market dynamics. While emphasizing the key driving and restraining forces for this market, the report also offers a complete study of the future trends and developments of the market. It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary and SWOT analysis. This Stem Cell Manufacturing Industry report is consist of the worlds crucial region market share, size, trends including the product profit, price, value, production capacity, capability utilization, supply and demand and industry growth rate.

Stem cell manufacturing is forecasted to grow at CAGR of 6.42% to an anticipated value of USD 18.59 billion by 2027 with factors like rising awareness towards diseases like cancer, degenerative disorders and hematopoietic disorders is driving the growth of the market in the forecast period of 2020-2027.

Download Exclusive Sample (350 Pages PDF) Report: To Know the Impact of COVID-19 on this [emailprotected]https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-stem-cell-manufacturing-market&AB

Stem cell manufacturing has shown an exceptional penetration in North America due to increasing research in stem cell. Increasing research and development activities in biotechnology and pharmaceutical sector is creating opportunity for the stem cell manufacturing market.

The Global Stem Cell Manufacturing Market 2020 research provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Global Stem Cell Manufacturing Market Share analysis is provided for the international markets including development trends, competitive landscape analysis, and key regions development status. Development policies and plans are discussed as well as manufacturing processes and cost structures are also analyzed.

Global Stem Cell Manufacturing Market Segematation By Product (Stem Cell Line, Instruments, Culture Media, Consumables), Application (Research Applications, Clinical Applications, Cell and Tissue Banking), End Users (Hospitals and Surgical Centers, Pharmaceutical and Biotechnology Companies, Clinics, Community Healthcare, Others)

List of TOP KEY PLAYERS in Stem Cell Manufacturing Market Report are

Thermo Fisher Scientific Merck KGaA BD JCR Pharmaceuticals Co., Ltd Organogenesis Inc Osiris Vericel Corporation AbbVie Inc AM-Pharma B.V ANTEROGEN.CO.,LTD Astellas Pharma Inc Bristol-Myers Squibb Company FUJIFILM Cellular Dynamics, Inc RHEACELL GmbH & Co. KG Takeda Pharmaceutical Company Limited Teva Pharmaceutical Industries Ltd ViaCyte,Inc VistaGen Therapeutics Inc GlaxoSmithKline plc ..

Complete Report is Available (Including Full TOC, List of Tables & Figures, Graphs, and Chart)@https://www.databridgemarketresearch.com/toc/?dbmr=global-stem-cell-manufacturing-market&AB

The report can help to understand the market and strategize for business expansion accordingly. In the strategy analysis, it gives insights from marketing channel and market positioning to potential growth strategies, providing in-depth analysis for new entrants or exists competitors in the Stem Cell Manufacturing industry. This report also states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins. For each manufacturer covered, this report analyzes their Stem Cell Manufacturing manufacturing sites, capacity, production, ex-factory price, revenue and market share in global market.

The Global Stem Cell Manufacturing Market Trends, development and marketing channels are analysed. Finally, the feasibility of new investment projects is assessed and overall research conclusions offered.

Global Stem Cell Manufacturing Market Scope and Market Size

Stem cell manufacturing market is segmented on the basis of product, application and end users. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Based on product, the stem cell manufacturing market is segmented into stem cell lines, instruments, culture media and consumables. Stem cell lines are further segmented into induced pluripotent stem cells, embryonic stem cells, multipotent adult progenitor stem cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells. Instrument is further segmented into bioreactors and incubators, cell sorters and other instruments.

On the basis of application, the stem cell manufacturing market is segmented into research applications, clinical applications and cell and tissue banking. Research applications are further segmented into drug discovery and development and life science research. Clinical applications are further segmented into allogenic stem cell and autologous stem cell therapy.

On the basis of end users, the stem cell manufacturing market is segmented into hospitals and surgical centers, pharmaceutical and biotechnology companies, research institutes and academic institutes, community healthcare, cell banks and tissue banks and others.

Healthcare Infrastructure growth Installed base and New Technology Penetration

Stem cell manufacturing market also provides you with detailed market analysis for every country growth in healthcare expenditure for capital equipment, installed base of different kind of products for stem cell manufacturing market, impact of technology using life line curves and changes in healthcare regulatory scenarios and their impact on the stem cell manufacturing market. The data is available for historic period 2010 to 2018.

The Global Stem Cell Manufacturing Market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of stem cell manufacturing market for global, Europe, North America, Asia Pacific and South America.

Key Insights in the report:

Historical and current market size and projection up to 2025

Market trends impacting the growth of the global taste modulators market

Analyze and forecast the taste modulators market on the basis of, application and type.

Trends of key regional and country-level markets for processes, derivative, and application Company profiling of key players which includes business operations, product and services, geographic presence, recent developments and key financial analysis

For More Information or Query or Customization Before Buying, Visit @https://databridgemarketresearch.com/inquire-before-buying/?dbmr=global-stem-cell-manufacturing-market&AB

Opportunities in the market

To describe and forecast the market, in terms of value, for various segments, by region North America, Europe, Asia Pacific (APAC), and Rest of the World (RoW)

The key findings and recommendations highlight crucial progressive industry trends in the Stem Cell manufacturing Market, thereby allowing players to develop effective long term strategies

To strategically profile key players and comprehensively analyze their market position in terms of ranking and core competencies, and detail the competitive landscape for market leaders Extensive analysis of the key segments of the industry helps in understanding the trends in types of point of care test across Europe.

To get a comprehensive overview of the Stem Cell manufacturing market.

With tables and figures helping analyses worldwide Global Stem Cell Manufacturing Market Forecast this research provides key statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market. There are 15 Chapters to display the Stem Cell Manufacturing market.

Chapter 1, About Executive Summary to describe Definition, Specifications and Classification of Stem Cell Manufacturing market, By Product Type, by application, by end users and regions.

Chapter 2, objective of the study.

Chapter 3, to display Research methodology and techniques.

Chapter 4 and 5, to show the Stem Cell Manufacturing Market Analysis, segmentation analysis, characteristics;

Chapter 6 and 7, to show Five forces (bargaining Power of buyers/suppliers), Threats to new entrants and market condition;

Chapter 8 and 9, to show analysis by regional segmentation[North America, Europe, Asia-Pacific etc ], comparison, leading countries and opportunities; Regional Marketing Type Analysis, Supply Chain Analysis

Chapter 10, to identify major decision framework accumulated through Industry experts and strategic decision makers;

Chapter 11 and 12, Stem Cell Manufacturing Market Trend Analysis, Drivers, Challenges by consumer behavior, Marketing Channels

Chapter 13 and 14, about vendor landscape (classification and Market Ranking)

Chapter 15, deals with Stem Cell Manufacturing Market sales channel, distributors, Research Findings and Conclusion, appendix and data source.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia or Oceania [Australia and New Zealand]

Contact Us:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:[emailprotected]

Our Upcoming Event:Future of Healthcare Robotics|Digital Conference

HEALTHCARE ROBOTICSis the upcoming future of Medical Sciences. The usage of robotics is already prevalent in surgeries across developed and emerging geographies. It has been quite a while where integration of robotics across healthcare supply chain is being discussed. The Covid 19 Pandemic is expected to speed up the timeline for these innovations and concepts to become reality. With the requirement of telemedicine and robotics in handling samples the healthcare industry is expected to see a digital paradigm shift in the next 2 years. The point here to be discussed is where the future is for healthcare robotics Surgical, Diagnostics or Telemedicine.

REGISTER NOW FOR FREE@https://www.databridgemarketresearch.com/digital-conference/future-of-healthcare-robotics?AB

In the pioneer edition of DBMR Healthcare Robotics Conference come join us in this enriching knowledge fest where experts will speak on new technologies and market dynamics perceptions. Together lets move ahead in the future of medical science and technology.

Read this article:
Stem Cell Manufacturing Market Share, Size, Trends 2020- Segments worth Observing Aiding Growth Factors | Merck Group, Becton, Dickinson And Company....

Biomedicals big year: Grants fund research on skin, heart cells, cancer and more – Binghamton University

By Chris Kocher

June 18, 2020

The Thomas J. Watson School of Engineering and Applied Sciences Department of Biomedical Engineering has earned nearly $4 million in grants from 201820 (as of March 2020). Associate Professor Sha Jin alone received three grants totaling $1.2 million for her diabetes research. Funding agencies include the National Institutes of Health, the National Science Foundation and the National Institute of Standards and Technology.

Guy German

ASSOCIATE PROFESSOR

RESEARCH TOPIC: HUMAN SKIN

THE GOAL: Understanding how different factors can cause the mechanical properties of our skin to change. The human body has many barriers, and skin is arguably the most important, protecting us from the external environment. When skin becomes broken or ruptured, that barrier is lost. It can be caused by surgical incisions, penetrating trauma, diseases that cause lesions and chapping from cold environments. German explores how bacteria can degrade integrity; the effects of chronological- and photo-aging; and how to create bio-inspired materials that control crack propagation and the movement of fluids on their surfaces.

Tracy Hookway

ASSISTANT PROFESSOR

RESEARCH TOPIC: HEART CELLS

THE GOAL: Turning stem cells into functioning cardiac cells.

The human heart does not have the ability to repair itself after heart attacks or similar cardiac events. By merging the fields of stem-cell biology, tissue engineering and cardiovascular physiology, Hookway is trying to make models of cardiovascular tissue in a Petri dish that are more similar to what is in our bodies. One challenge is that the heart is not one cell type; in fact, it is multiple types of cells working together to achieve function.

Sha Jin

ASSOCIATE PROFESSOR

RESEARCH TOPIC: DIABETES

THE GOAL: Generating pancreatic tissue from stem cells.

One experimental treatment for diabetes currently in clinical trials through the U.S. Food and Drug Administration is islet transplantation, but there are fewer donors than needed. Human-induced pluripotent stem cells cells that can self-renew by dividing could offer a renewable source for islets, but they remain a challenge because of limited knowledge about how islets form. Jins lab has been working to direct stem cells to differentiate and mature into pancreatic islet organoids using a variety of approaches; when successful, these islets would be transplanted into humans.

Ahyeon Koh

ASSISTANT PROFESSOR

RESEARCH TOPIC: HUMAN SWEAT

THE GOAL: Utilizing sweat to generate electricity for flexible biosensors and to monitor stress levels.

Kohs research aims to give us real-time information about how our bodies are functioning, such as for glucose monitoring, wound care and post-surgery cardiac health. She is currently working with other Binghamton professors on two microfluidic systems that can collect and use the sweat that our body produces. One of them will have sweat-eating bacteria that will power biosensors, and the other will monitor stress levels by measuring the amounts of the steroid hormone cortisol that are secreted.

Gretchen Mahler

ASSOCIATE PROFESSOR

RESEARCH TOPIC: ORGAN-ON-A-CHIP

THE GOAL: Creating 3D microfluidic cell-culture chips that simulate the mechanics and physiological response of organs and tissues.

Mahlers current research which has applications for cardiovascular disease and cancer focuses on how disruptions in a tissues mechanical or chemical environment can lead to disease initiation and progression. She currently is working with three other professors two from Watson, one from Harpur College of Arts and Sciences on a National Science Foundation-funded study of calcific aortic valve disease, and she also is interested in how food additives alter gastrointestinal health.

Kaiming Ye

PROFESSOR AND DEPARTMENT CHAIR

RESEARCH TOPIC: CANCER VACCINE

THE GOAL: Developing a vaccine that will slow or halt the growth of future tumors.Yes research is targeting the protein CD47, which is part of the membrane that covers human cells. It also sends a dont eat me signal to a bodys immune system normally a good thing, but a problem when cells become cancerous. In a 2019 study using mice treated with their experimental vaccine, Ye and his co-investigators found a two-fold reduction in tumor growth rates and five-fold reduction in size in the tumors that did form.

Read more:
Biomedicals big year: Grants fund research on skin, heart cells, cancer and more - Binghamton University

Cell and gene therapy-focused OpenCell Technologies hires MilliporeSigma executive Kevin Gutshall as new CEO – PRNewswire

ST. LOUIS, June 18, 2020 /PRNewswire/ -- OpenCell Technologies, an R&D-stage biomedical venture, has announced the hiring of Kevin Gutshall as CEO. Kevin leaves his role as MilliporeSigma's director of life science business development and M&A focusing on the cell and gene therapy business unit, to join OpenCell and lead its efforts to translate and commercialize its core technology platform, POROS.

OpenCell was established based on technology developed at the Georgia Institute of Technology, by Engineering faculty and company co-founders Mark Meacham, PhD, Andrei Fedorov, PhD, and Levent Degertekin, PhD. Dr. Meacham was subsequently recruited to Washington University in St. Louis, and OpenCell relocated to the BioGenerator Labs in the Cortex Innovation Community adjacent to the Washington University School of Medicine. The company's core technology, which has broad applications ranging from fuel and energy to life sciences, is focused on the rapidly emerging cell and gene therapy market.

"I am thrilled to join OpenCell, as it is now poised to move from an R&D stage to a commercial business," said Gutshall. "I believe that the POROS platform will be a disruptive technology platform in the cell and gene therapy marketplace."

During its seed stage, the company benefitted from BioGenerator Entrepreneurs-in-Residence (EIR) that brought key expertise to the company as it pivoted from the research tools market to cell and gene therapy applications. Paul Olivo, MD, PhD, a former BioGenerator EIR and current Venture Partner at Synchrony Bio, which also participated in the current financing, serves as a key advisor to OpenCell, managing the company's research team. In her role as BioGenerator EIR, Heather Holeman, PhD, now CEO of Lifespan Biosciences, facilitated key business development connections for the company. Concurrent with the financing, Charlie Bolten, Senior Vice President of BioGenerator, joins OpenCell's board of directors.

"Together with Synchrony Bio, BioGenerator's investment in OpenCell is the culmination of extensive due diligence and hands-on support by our investment, Entrepreneur-in-Residence and Grants-2-Business teams," said Bolten. "With the successful recruitment of a CEO with deep experience in commercialization, business development and M&A, we are pleased to see OpenCell take an important step toward commercializing the POROS platform."

"I am excited to welcome Kevin as the new CEO of OpenCell," added Chad Stiening, OpenCell Executive Chairman and Managing Director at Synchrony Bio. "His professional background and personal passion in the cell and gene therapy space is a perfect fit for the company as it seeks to realize the full potential of its technology and enable the development and manufacturing of promising new therapies in this dynamic market."

In addition to investments from BioGenerator and Synchrony Bio, the company has leveraged significant Federal grant funding over $3M total to help secure equity financing and achieve key milestones that helped attract strategic partnering interest as well as its new CEO.

About OpenCellOpenCell Technologies provides efficient, high-throughput and scalable transfection tools to the Life Science Industry, enabling it to use difficult-to-transfect cells (e.g., primary and cancer stem cell cultures) in development of cell-based analysis techniques and discovery of new therapeutic cell-based therapies. Unlike currently available products, the OpenCell technology features precise control of biophysical actions on a single-cell basis without sacrificing throughput. OpenCell's vision is to realize a novel, cost-effective approach to transfection that will overcome existing research and development obstacles.Our mission is to make cellular therapies effective, affordable and scalable for the clinical and research communities. Visit opencelltech.com for more information.

About BioGenerator BioGenerator, the investment arm of BioSTL, produces a sustained pipeline of successful bioscience companies and entrepreneurs in St.Louis by creating, growing and investing in promising new enterprises. Visit biogenerator.org for additional information, and follow us on LinkedIn and Twitter.

About Synchrony BioSynchrony Bio seeks to achieve consistently superior investor returns in early-stage biomedical and life science ventures by aligning seasoned talent, staged investment capital, and process efficiencies.Careful and coordinated alignment of all three is key to overcoming unique challenges faced by medical device and diagnostics ventures, in order to realize significant upside and superior returns.Synchrony's extended network of experts and advisors includes professionals with deep, cross-functional experience and backgrounds. Visit synchronybio.com for additional information.

SOURCE BioSTL

http://www.biostl.org

View original post here:
Cell and gene therapy-focused OpenCell Technologies hires MilliporeSigma executive Kevin Gutshall as new CEO - PRNewswire

Orca Bio breaches the surface with $192M for ‘high precision’ cell therapies – FierceBiotech

Bone marrow transplants can save patients lives by essentially giving them a new immune system to fight off cancer. But they can also cause life-threatening side effects, so their use is relegated to the sickest of patients. Orca Bio wants to change that by taking aim at how these treatments are made.

The Bay Area biotech is coming out of stealth with a $192 million series D round that will propel a pipeline of high precision allogeneic cell therapies and the manufacturing technology behind those treatments. Founded in 2016, Orca Bio zeroed in on manufacturing to make bone marrow transplants safer and more effective.

Theres a bit of a trade-off: You can have precision and a few cells, or you can have lots of cells and sacrifice precision, Orca CEO and co-founder Ivan Dimov, Ph.D., told Fierce Biotech. Most folks out there deal with less precision in order to get the sheer number of cells to treat patients We focused on technology to process extremely large numbers of cells while still having single-cell precision.

Submit your entry to demonstrate innovative technologies and services that have the potential to make the greatest impact for biotech and pharma companies.

RELATED: AACR: A look at next-gen CAR-T therapies for blood cancers

Orcas proposition is to take donor T cells and stem cells, sort them into their different subtypes and combine them in the right mixture to treat disease.

We dont genetically modify them. But if we now take these cells and build a proprietary mix of them with single-cell precision, we can define the function of what theyre going to do, Dimov said. We can elicit powerful curative effects and control toxicities in a precise way to enhance safety and efficacy in patients that essentially need a whole new blood and immune system.

Dimov likens the processto assembling different kinds of soldiers into the right army unit to give patients so they have a new immune system to seek and destroy cancers while not seeking and destroying the patient themselves and their own tissue.

Because the manufacturing process is quick and uses donor cells, Orcas treatments could eventually reach more patients than CAR-T therapies and other engineered cell therapies can. Some cancer patients may not have enough T cells, or T cells of good enough quality, to turn into a treatment, while others simply do not live long enough for the treatment to be made.

RELATED: BIO: Meet Refuge Biotech, the company developing 'intelligent' cell therapies

The series D, drawn from Lightspeed Ventures, 8V, DCVC Bio, ND Capital, Mubadala investment Company, Kaiser Foundation Hospitals, Kaiser Permanente Group Trust and IMRF, brings Orcas total raised to nearly $300 million. That haulwill bring its lead program, TRGFT-201, through clinical development. The program is in a phase 1/2 study in patients with blood cancers, while a second program, OGFT-001, is in a phase 1 study, also in blood cancers.

Orcas first two programs are designed for patients with terminal blood cancers, but they could move earlier in the cancer care timeline if they prove to be safer than traditional bone marrow transplants. Beyond cancer, the approach could be applied to a range of genetic disorders of the blood and immune system. The companyhasnt decided where to go next, but Dimov said the approach could be useful in treating autoimmune diseases like Crohns disease or Type 1 diabetes.

See the article here:
Orca Bio breaches the surface with $192M for 'high precision' cell therapies - FierceBiotech

COVID-19: Potential impact on Musculoskeletal Disorder Stem Cell Therapy Market Estimated to Record Highest CAGR by 2019-2025 – Personal Injury Bureau…

The global Musculoskeletal Disorder Stem Cell Therapy market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Musculoskeletal Disorder Stem Cell Therapy market player in a comprehensive way. Further, the Musculoskeletal Disorder Stem Cell Therapy market report emphasizes the adoption pattern of the Musculoskeletal Disorder Stem Cell Therapy across various industries.

The Musculoskeletal Disorder Stem Cell Therapy market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.

The report on the Musculoskeletal Disorder Stem Cell Therapy market provides a birds eye view of the current proceeding within the Musculoskeletal Disorder Stem Cell Therapy market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Musculoskeletal Disorder Stem Cell Therapy market and offers a clear assessment of the projected market fluctuations during the forecast period.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.researchmoz.com/enquiry.php?type=S&repid=2692084&source=atm

segment by Type, the product can be split into Allogeneic Autologous Market segment by Application, split into Muscle disease Skeletal disease

Market segment by Regions/Countries, this report covers North America Europe China Japan Southeast Asia India Central & South America

The study objectives of this report are: To analyze global Musculoskeletal Disorder Stem Cell Therapy status, future forecast, growth opportunity, key market and key players. To present the Musculoskeletal Disorder Stem Cell Therapy development in North America, Europe, China, Japan, Southeast Asia, India and Central & South America. To strategically profile the key players and comprehensively analyze their development plan and strategies. To define, describe and forecast the market by type, market and key regions.

In this study, the years considered to estimate the market size of Musculoskeletal Disorder Stem Cell Therapy are as follows: History Year: 2015-2019 Base Year: 2019 Estimated Year: 2020 Forecast Year 2020 to 2026 For the data information by region, company, type and application, 2019 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.researchmoz.com/enquiry.php?type=E&repid=2692084&source=atm

The Musculoskeletal Disorder Stem Cell Therapy market report offers a plethora of insights which include:

The Musculoskeletal Disorder Stem Cell Therapy market report answers important questions which include:

The Musculoskeletal Disorder Stem Cell Therapy market report considers the following years to predict the market growth:

You can Buy This Report from Here @ https://www.researchmoz.com/checkout?rep_id=2692084&licType=S&source=atm

Why Choose Musculoskeletal Disorder Stem Cell Therapy Market Report?

Musculoskeletal Disorder Stem Cell Therapy Market Reportfollows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.

Originally posted here:
COVID-19: Potential impact on Musculoskeletal Disorder Stem Cell Therapy Market Estimated to Record Highest CAGR by 2019-2025 - Personal Injury Bureau...

Impact of COVID-19 on Avascular Necrosis Market Potential Growth and Forecast Period 2020-2027 | By Leading Players Boehringer Ingelheim GmbH, Bayer…

Notice:This Content doesnt contains all the Information of the Report please fill the form (via link) and get all interesting information just one click in PDF with latest update with chart and Table of Content

The report offers a systematic presentation of the existing trends, growth opportunities, market dynamics that are expected to shape the growth of the Avascular Necrosis market. The various research methods and tools were involved in the market analysis, to uncover crucial information about the market such as current & future trends, opportunities, business strategies and more, which in turn will aid the business decision-makers to make the right decision in future.

This Report Covers Leading Companies Associated in Worldwide Avascular Necrosis Market: Bone Therapeutics, Boehringer Ingelheim GmbH, Bayer AG, Enzo Biochem Inc., Ethicon Inc., Eli Lilly and Company, Grifols SA, Integra LifeSciences Corporation, K-Stemcell Co Ltd., Medtronic Plc, Merck KGaA, Pfizer Inc., Sanofi SA, Stryker Corporation, Wright Medical Group N.V., and Zimmer Biomet Holdings. Manufacturers are focusing on advancements in treatment technologies such as gene therapy and stem cell-based treatment for avascular necrosis.

We Do Offer Sample of this report. Kindly go through the follow information in order to access the report.

Note- This report sample includes:

Brief Introduction to the research report.

Table of Contents (Scope covered as a part of the study)

Top players in the market

Research framework (Structure Of The Report)

Research methodology adopted by Coherent Market Insights

Request Sample Copy of this Report: https://www.coherentmarketinsights.com/insight/request-sample/2218

The report begins with a brief introduction and market overview of the Avascular Necrosis industry followed by its market scope and size. Next, the report provides an overview of market segmentation such as type, application, and region. The drivers, limitations, and opportunities for the market are also listed along with current trends and policies in the industry.

The key players profiled in this report include: Bone Therapeutics, Boehringer Ingelheim GmbH, Bayer AG, Enzo Biochem Inc., Ethicon Inc., Eli Lilly and Company, Grifols SA, Integra LifeSciences Corporation, K-Stemcell Co Ltd., Medtronic Plc, Merck KGaA, Pfizer Inc., Sanofi SA, Stryker Corporation, Wright Medical Group N.V., and Zimmer Biomet Holdings. Manufacturers are focusing on advancements in treatment technologies such as gene therapy and stem cell-based treatment for avascular necrosis.

Regions included:

o North America (United States, Canada, and Mexico)

o Europe (Germany, France, UK, Russia, and Italy)

o Asia-Pacific (China, Japan, Korea, India, and Southeast Asia)

o South America (Brazil, Argentina, Colombia)

o Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)

The PDF Research only provides Table of Contents (ToC), scope of the report and research framework of the report.

Get a PDF Brochure of this Report: https://www.coherentmarketinsights.com/insight/request-pdf/2218

Key Benefits:

o This study gives a detailed analysis of drivers and factors limiting the market expansion of Avascular Necrosis

o The micro-level analysis is conducted based on its product types, end-user applications, and geographies

o Porters five forces model gives an in-depth analysis of buyers and suppliers, threats of new entrants & substitutes and competition amongst the key market players

o By understanding the value chain analysis, the stakeholders can get a clear and detailed picture of this Avascular Necrosis market

The research study can answer the following Key questions:

Table of Contents

Report Overview: It includes the Avascular Necrosis market study scope, players covered, key market segments, market analysis by application, market analysis by type, and other chapters that give an overview of the research study.

Executive Summary: This section of the report gives information about Avascular Necrosis market trends and shares, market size analysis by region and analysis of global market size. Under market size analysis by region, analysis of market share and growth rate by region is provided.

Profiles of International Players: Here, key players of the Avascular Necrosis market are studied on the basis of gross margin, price, revenue, corporate sales, and production. This section gives a business overview of the players and shares their important company details.

Regional Study: All of the regions and countries analyzed in the Avascular Necrosis market report is studied on the basis of market size by application, the market size by product, key players, and market forecast.

Get Offer on Report: https://www.coherentmarketinsights.com/insight/request-discount/2218

Thanks for reading this article, you can also get individual chapter wise section or region wise report version like North America, LATAM, West Europe, MENA Countries, Southeast Asia or Asia Pacific.

About Us:

Coherent Market Insights is a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.

Contact Us: Coherent Market Insights, 1001 4th Ave, #3200 Seattle, WA 98154, U.S. Email: [emailprotected] Phone: US +1-206-701-6702/UK +44-020 8133 4027

Here is the original post:
Impact of COVID-19 on Avascular Necrosis Market Potential Growth and Forecast Period 2020-2027 | By Leading Players Boehringer Ingelheim GmbH, Bayer...

Sernova Highlights Positive Results Presented at the American Diabetes Association’s Virtual 80th Scientific Sessions – TheNewswire.ca

LONDON, ONTARIO - TheNewswire - June 18, 2020 - Sernova Corp. (TSXV:SVA) (OTC:SEOVF) (FSE:PSH), a clinical-stage regenerative medicine therapeutics company, highlights positive results from its submitted abstract entitled "Clinical Validation of the Implanted Pre-Vascularized Cell Pouch(TM) as a Viable, Safe Site for Diabetes Cell Therapy," selected for presentation at the American Diabetes Association's (ADA) 80th Scientific Sessions held virtually June 12-16, 2020.

"Sernova was honored that its abstract was selected under peer review to be presented at the prestigious ADA Scientific Sessions. The findings reported in diabetic patients, demonstrate that human donor islets transplanted into Sernova's Cell Pouch consistently demonstrate islet survival and the ability to produce the array of hormones required to treat diabetes," said Dr. Philip Toleikis, President and CEO of Sernova.

The following provides the background of our scientific presentation:

- Cellular transplantation therapy has the potential to treat severe, chronic diseases such as Type 1 Diabetes (T1D). The transplantation site and device approach are major factors influencing successful clinical outcomes;

- With new cell-based emerging technologies, there continues to be a need to find a safe, retrievable, biologically compatible device for cellular transplantation and we believe Sernova's Cell Pouch System may provide such a solution;

- The transplantation of insulin-producing islets is a cellular replacement therapy for severe T1D in patients who experience life-threatening severe hypoglycemia unawareness events;

- In this clinical indication, Sernova has conducted a physician sponsored first-in-human study in Canada and currently has an ongoing company-sponsored Phase I/II human clinical study at the University of Chicago. In both clinical studies, patients with T1D were implanted with both sentinel (small devices removed to assess cell survival) and larger therapeutic devices, anywhere between 1 to 6 months;

- After being placed on immunosuppression, islets were isolated from donor pancreata and transplanted into patients within the device chambers. When possible, a pre-transplant sample of islets was saved for comparison to post-explant Cell Pouch islets; and

- Cell Pouches were explanted from patients, anywhere between 14-90 days post-transplant. The Cell Pouches were prepared, and sections were stained and imaged, and then reviewed by an independent clinical pathologist to assess the transplanted tissue for micro-vessel formation and vascularization; the presence of islets with insulin, C-peptide, and other endocrine hormones (such as glucagon and somatostatin); and exocrine tissue (such as pancreatic ductal tissue).

The data presented clinically demonstrate that the vascularized Cell Pouch provides a consistently safe and biologically suitable, retrievable environment for the transplantation and survival of functional islets. Specific findings based on a detailed histopathological analysis of nine Sernova Cell Pouches explanted from patients with T1D diabetes include:

- Explanted Cell Pouches show abundant, viable, organized islet cells intimately associated with blood vessels within a natural collagen matrix following transplantation without obvious rejection or infection;

- 100% showed present or abundant blood vessels;

- 89% showed present or abundant insulin;

- 78% showed present or abundant endocrine cells;

- 100% showed present or abundant ductal tissue;

- Islet cells required to control diabetes within the Cell Pouches consistently express insulin and other endocrine hormones, such as glucagon, somatostatin, and C-peptide, when identified histologically;

- Pre-transplant islet samples that show strongly expressed insulin, as well as other endocrine markers, were similarly identified in the explanted Cell Pouches following transplant; and

- The amount of islet/exocrine tissue within pre-transplanted samples was similar to that found in the Cell Pouch following transplantation.

In summary, the transplanted samples, when explanted and examined, demonstrate healthy, surviving islets with multiple cell types within the islets capable of producing the hormones that control blood sugar levels when housed in the vascularized tissue matrix of the Cell Pouch. Exocrine ductal tissue, when transplanted, also survived. The findings demonstrate the pre-transplant samples are consistent with the histology observed upon explantation of the Cell Pouch at different time points. These clinical findings demonstrate that the Cell Pouch is a viable, safe site for diabetes cell therapy.

Dr. Toleikis said, "The positive results reported in patients in this diabetes indication, implanted with Sernova's Cell Pouch and transplanted with islets, continue to validate our Cell Pouch System cell therapy therapeutics approach. Within the emerging cell therapy field, Sernova, with its advancing cell therapies including locally immune protected stem cell-derived cells, continues to position itself as a leader in the development of a 'functional cure' for all patients with diabetes and other chronic diseases."

A recording of Sernova's ADA Scientific Session presentation is available at http://www.sernova.com/updates.

ABOUT SERNOVA'S CLINICAL TRIAL

Sernova is conducting a Phase I/II non-randomized, unblinded, single-arm, company-sponsored trial at the University of Chicago to assess the safety and tolerability of islet transplantation into the company's patented Cell Pouch in diabetic subjects with hypoglycemia unawareness. The secondary objective is to assess efficacy through a series of defined measures. Patients enrolled in Sernova's clinical trial are incapable of producing c-peptide, a biomarker for insulin produced by islet cells.

Eligible subjects are implanted with Cell Pouches. Following the development of vascularized tissue chambers within the Cell Pouch, subjects are then stabilized on immunosuppression, and a dose of purified islets, under strict release criteria, are transplanted into the Cell Pouch.

A sentinel pouch is removed for an early assessment of the islet transplant. Subjects are followed for additional safety and efficacy measures for approximately six months. At this point, a decision is made with regard to the transplant of a second islet dose with subsequent safety and efficacy follow up. Patients are then further followed for one year to assess longer-term safety and efficacy.

For more information on this clinical trial, please visit http://www.clinicaltrials.gov/ct2/show/NCT03513939. For more information on enrollment and recruitment details, please visit http://www.pwitkowski.org/sernova.

ABOUT SERNOVA'S CELL POUCH SYSTEM

The Cell Pouch, as part of the Cell Pouch System, is a novel, proprietary, scalable, implantable macro- encapsulation device solution designed for the long-term survival and function of therapeutic cells. The device upon implantation is designed to incorporate with tissue, forming highly vascularized tissue chambers for the transplantation and function of therapeutic cells, which then release proteins and hormones as required to treat disease. The Cell Pouch, along with therapeutic cells, has been shown to provide long-term safety and efficacy in small and large animal models of diabetes and has been proven to provide a biologically compatible environment for insulin-producing cells in humans in a Canadian first-in-human study. Sernova is currently conducting a Phase I/II study at the University of Chicago.

ABOUT SERNOVA CORP.

Sernova Corp is developing regenerative medicine therapeutic technologies using a medical device and immune protected therapeutic cells (i.e., human donor cells, corrected human cells and stem cell-derived cells) to improve the treatment and quality of life of people with chronic metabolic diseases such as insulin-dependent diabetes, blood disorders including hemophilia, and other diseases treated through replacement of proteins or hormones missing or in short supply within the body. For more information, please visit http://www.sernova.com.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Dominic Gray

Sernova Corp.

Tel: (519) 858-5126

dominic.gray@sernova.com

http://www.sernova.com

FORWARD-LOOKING INFORMATION

This release contains statements that, to the extent they are not recitations of historical facts, may constitute "forward-looking statements" that involve various risks, uncertainties, and assumptions, including, without limitation, statements regarding the prospects, plans, and objectives of the company. Wherever possible, but not always, words such as "expects", "plans", "anticipates", "believes", "intends", "estimates", "projects", "potential for" and similar expressions, or that events or conditions "will", "would", "may", "could" or "should" occur are used to identify forward-looking statements. These statements reflect management's beliefs with respect to future events and are based on information currently available to management on the date such statements were made. Many factors could cause Sernova's actual results, performances or achievements to not be as anticipated, estimated or intended or to differ materially from those expressed or implied by the forward-looking statements contained in this news release. Such factors could include, but are not limited to, the company's ability to secure additional financing and licensing arrangements on reasonable terms, or at all; ability to conduct all required preclinical and clinical studies for the company's Cell Pouch System and/or related technologies, including the timing and results of those trials; ability to obtain all necessary regulatory approvals, or on a timely basis; ability to in-license additional complementary technologies; ability to execute its business strategy and successfully compete in the market; and the inherent risks associated with the development of biotechnology combination products generally. Many of the factors are beyond our control, including those caused by, related to, or impacted by the novel coronavirus pandemic. Investors should consult the company's quarterly and annual filings available on http://www.sedar.com for additional information on risks and uncertainties relating to the forward-looking statements. Sernova expressly disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

Visit link:
Sernova Highlights Positive Results Presented at the American Diabetes Association's Virtual 80th Scientific Sessions - TheNewswire.ca

Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells – Science Advances

INTRODUCTION

Stochasticity in gene expression, also known as gene expression noise, induces substantial cell-to-cell heterogeneity in gene expression and introduces phenotypic diversity in unicellular organisms, improving species fitness by hedging against sudden environmental changes (1, 2). Gene expression noise is observed in a wide range of multicellular organisms as well (1, 3). For example, to acquire color vision during fly eye development, stochastic expression of a single transcription factor, Spineless, results in the mosaic expression of photoreceptors in individual ommatidia that detect light of different wavelengths (4). Similarly, the mosaic expression of olfactory receptors is well characterized in the olfactory system of several organisms, including humans (5). There are two orthogonal sources of gene expression noise: (i) intrinsic noise associated with stochasticity in biochemical reactions (such as transcription and translation) and (ii) extrinsic noise induced by true cell-to-cell variation (such as differences in microenvironment, cell size, cell cycle phase, and cellular component concentration) (3, 6, 7).

Transcription is the first step in gene expression, and its stochasticity is believed to be a major gene expression noise source (3). Noise at the transcription level, or transcription noise, is reflected in the production of RNA polymerase II (Pol II)mediated transcripts. Any transcription, by either a single Pol II or multiple Pol II complexes, so-called transcriptional bursting, could contribute to transcription noise. In a simplified model, transcriptional bursting is mediated by the stochastic switch between the ON and OFF states of a promoter (Fig. 1A), and multiple transcripts are produced only during the ON state (3, 811). The ON state typically occurs with short pulses between long periods of the OFF state, causing dynamic changes in gene expression and heterogeneity in gene expression between cells and even between two alleles in a diploid genome (Fig. 1, B and C). Transcriptional bursting is thus considered to be a major source of both transcription and intrinsic noises and has been observed in various organisms (3, 813). Transcriptional bursting kinetics can be expressed by the frequency of the promoter present in the active state (burst frequency, f) and the mean number of transcripts produced per burst (burst size, b). Assuming that transcriptional bursting is a main source of intrinsic noise, transcriptional bursting kinetics (f and b) can be estimated from intrinsic noise (int2), the mean mRNA expression level (), and RNA degradation rate (m; see Materials and Methods) (12, 14). Transcriptional bursting kinetics has also been studied using single-molecule fluorescence in situ hybridization (smFISH), MS2 system, and destabilized reporter proteins (810, 15, 16). These reports have indicated that mammalian genes are transcribed with broadly different transcriptional bursting kinetics and that the bursting can be influenced by the local chromatin environment (14). As for the mechanism of transcriptional bursting, promoter reactivation suppression has been proposed to be essential for its control (17), while cis-regulatory elements (such as the TATA box) and chromatin accessibility at the core promoter can regulate transcriptional bursting kinetics (11, 13, 17, 18). Imaging and genome-wide analyses have suggested that promoter and enhancer elements regulate burst size and frequency, respectively (10, 11).

(A) Schematic diagram of gene expression with stochastic switching between ON and OFF states. (B) Schematic representations of the dynamics of transcript levels of a gene with or without transcriptional bursting. (C) Transcriptional bursting induces inter-allelic and intercellular heterogeneity in gene expression (left). Scatter plots of the individual allele-derived transcript numbers (right). (D) Schematic representation of scRNA-seq using hybrid mESCs. (E) Scatter plot of mean normalized read counts and normalized intrinsic noise of individual transcripts revealed by scRNA-seq. (F) Representative scatter plots of normalized individual allelic read counts of high and low intrinsic noise transcripts. N. int. noise, normalized intrinsic noise. (G) Scatter plot of burst size and burst frequency of individual transcripts. (H) Schematic representation of KI of GFP and iRFP gene cassette into individual alleles of mESC derived from inbred mice. Targeted genes are listed in the lower panel. Asterisks indicate genes in which KI cassettes were inserted immediately downstream of the start codon. (I to L) Scatter plots of the mean number of transcripts of targeted genes in KI cell lines counted by smFISH versus mean normalized read counts of corresponding genes in hybrid mESCs revealed by scRNA-seq (I) or versus mean expression levels of targeted genes in KI cell lines revealed by flow cytometry (K). Scatter plots of normalized intrinsic noise of targeted gene transcripts in KI cell lines revealed by smFISH versus that of corresponding genes in hybrid mESCs revealed by scRNA-seq (J) or versus that of targeted genes in KI cell lines revealed by flow cytometry (L).

Mouse embryonic stem cells (mESCs) are derived from the inner cell mass of the preimplantation embryo. A large number of genes in mESCs, cultured on gelatin in standard (Std) medium containing serum and leukemia inhibitory factor (LIF), show expression with cell-to-cell heterogeneity (19). For example, several genes encoding key transcription factors, including Nanog, display heterogeneous expression in the inner cell mass and mESCs (19). Heterogeneity in gene expression has been proposed to break the symmetry within the system and prime cells for subsequent lineage segregation (19). Previously, we have quantified Nanog transcriptional bursting kinetics in live cells using the MS2 system and determined intrinsic noise as a major cause of heterogeneous NANOG expression in mESCs (20). A recent study using intron-specific smFISH has revealed that most of the genes in mESCs are transcribed through bursting kinetics (21). However, a comprehensive understanding of how the kinetic properties of transcriptional bursting (burst size, frequency, and intrinsic noise) are regulated at the molecular level is still lacking.

In the present study, we performed single-cell RNA sequencing (scRNA-seq) (22) using hybrid mESCs to obtain the parameters for intrinsic noise and mean mRNA levels to investigate transcriptional bursting kinetics. We identified the genes with high intrinsic noise, and their promoters and gene bodies were positively associated with the polycomb repressive complex 2 (PRC2) and/or negatively associated with transcription elongation factors, based on informatics analysis using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. In addition, CRISPR library screening revealed that the Akt/mitogen-activated protein kinase (MAPK) pathway regulates transcriptional bursting via modulation of the transcription elongation efficiency.

To study the genome-wide kinetic properties of transcriptional bursting, we analyzed allele-specific mRNA levels in 447 individual 129/CAST hybrid mESCs [grown on Laminin-511 (LN511) without feeder cells in the G1 phase] by single-cell (sc) random displacement amplification sequencing (RamDA-seq)a highly sensitive RNA sequencing (RNA-seq) method (Fig. 1D and figs. S1A and S2, A to E) (22). A subset of genes have transcript variants with different transcription start sites (TSSs). Because the kinetic properties of transcriptional bursting may differ depending on the promoter, we mainly used transcript-level abundance, rather than gene-level abundance, to estimate the kinetic properties of transcriptional bursting (see Materials and Methods; fig. S1, B to H). Intrinsic noise, which is mainly induced by transcriptional bursting (9, 12, 13), was estimated from distribution of the number of mRNAs produced by the two alleles (see Materials and Methods) (6, 7). We also normalized intrinsic noise based on the expression level and transcript length of the gene (Fig. 1E and fig. S1, B to H). We excluded low abundance transcripts (with a mean read count of less than 20) from downstream analysis, as it is difficult to distinguish whether technical or biological noise contributed to the measured heterogeneity of allele-specific expression. We ranked the genes based on their normalized intrinsic noise and defined the top and bottom 5% transcripts as high and low intrinsic noise transcripts, respectively (Fig. 1E). As expected, high intrinsic noise transcripts showed larger inter-allelic expression heterogeneity than low intrinsic noise transcripts (Fig. 1F and tables S1 and S2).

Because mRNA degradation rate could affect intrinsic noise (see Materials and Methods), we checked the relationship between the published mRNA degradation rate in mESCs (23) and the normalized intrinsic noise that we measured; however, no correlation was observed (fig. S1H). Following this, we estimated the burst size and frequency of each transcript based on the published mRNA degradation rate, intrinsic noise, and mean expression levels (fig. S2, F to K; see Materials and Methods) (12, 14). As expected, transcripts with larger burst size and lower burst frequency tended to show higher normalized intrinsic noise and vice versa (Fig. 1G). Thus, normalized intrinsic noise was positively correlated with the ratio of burst size to the burst frequency (Spearmans rho = 0.869).

To determine whether the intrinsic noise measured by scRNA-seq indicated true gene expression noise, we first chose 25 genes with medium expression levels and diverse intrinsic noise. Using CRISPR-Cas9 genome editing, we integrated a green fluorescent protein (GFP) and a near-infrared fluorescent protein (iRFP) reporter gene separately into both alleles of those genes in an inbred mESC line [knock-in (KI) mESC line; Fig. 1H and fig. S3]. It would be worth noting that the GFP and iRFP reporter cassettes were flanked by a 2A peptide and a degradation-promoting sequence, and were inserted immediately upstream of the stop codon of each allele (except one cell line, in which reporter cassettes were knocked in immediately downstream of the start codon; see Fig. 1H and fig. S3). The 2A peptide separated the reporter protein from the endogenous gene product. The degradation-promoting sequence ensured rapid degradation of GFP or iRFP reporter so that the amount of fluorescent protein produced in the cell would reflect the cellular mRNA levels. Using these cell lines, we measured mean expression levels and normalized intrinsic noise of the 25 genes with smFISH and found that the two parameters showed a significant correlation with scRNA-seqbased measurements (Fig. 1, I and J; fig. S1I; and table S3). Furthermore, flow cytometry analysis confirmed that the mean expression level and normalized intrinsic noise at the protein level also showed a significant correlation with the smFISH-based measurements (Fig. 1, K and L, and fig. S1J). There was a substantial correlation between expression level of the endogenous target protein and that of the knocked-in fluorescent protein in all tested genes as well (fig. S1, K and L). These validation experiments demonstrated the reliability of scRNA-seq in determining intrinsic noise and revealed that heterogeneity in expression of the tested genes largely originated from variation of the mRNA levels.

Recently, it has been reported that intrinsic noise can be buffered by nuclear retention of mRNA molecules (24). Here, we investigated the relationship between subcellular localization of mRNA and normalized intrinsic noise in KI mESC lines by smFISH (fig. S1M). We observed no correlation between nuclear retention rate of mRNA and intrinsic noise, total noise, or normalized intrinsic noise at either mRNA or protein level (fig. S1N). Thus, it is unlikely that nuclear retention of mRNA would play a role in buffering intrinsic noise for the 25 genes tested in mESCs.

It has been reported that promoters with a TATA box tend to show higher burst size and gene expression noise than those without in yeast and mESCs (11, 13, 17, 18). To confirm whether our results were consistent with the previous findings, we compared the kinetic properties of transcriptional bursting between genes with and without a TATA box. Although no significant difference was observed in burst frequency, both burst size and normalized intrinsic noise were significantly higher in the promoters with TATA box than in those without (Fig. 2, A to C). These data, which are consistent with those of previous reports, validated the quality of our results and supported the involvement of TATA box in burst size and gene expression noise (Fig. 2, A to C).

(A to C) Kinetic properties of transcriptional bursting of genes either with or without a TATA box. (D) Schematic representation of calculating reads per million (RPM) at the promoter and gene body from ChIP-seq data. In addition, similar calculations were also performed for enhancers (see Materials and Methods). (E) Heat maps of Spearmans rank correlation between promoter-, gene body, or enhancer-associated factors and either normalized intrinsic noise (N. int. noise), burst size, or burst frequency (burst freq.). (F) Effect of the Pol II pause release inhibitor, DRB, and flavopiridol treatment on the kinetic properties of transcriptional bursting. normalized intrinsic noise, burst size, and burst frequency are residuals of normalized intrinsic noise, burst size, and frequency of inhibitor-treated cells from that of control cells, respectively. Error bars indicate 95% confidence interval. (G) Effect of Suz12 K/O on normalized intrinsic noise. Suz12 K/O cell lines derived from Dnmt3l, Dnmt3b, Peg3, and Ctcf KI cell lines were established. Upper panel represents the result of Western blotting. In the lower part of the panel, the normalized intrinsic noise, burst size, and burst frequency compared with the control (cont1) are shown. Error bars indicate 95% confidence interval. Asterisks indicate significance at P < 0.05.

We next compared the kinetic properties of transcriptional bursting to genome-wide transcription factorbinding patterns (Fig. 2D; see Materials and Methods). Specifically, we calculated Spearmans rank correlations between the kinetic properties of transcriptional bursting and ChIP-seq enrichment in the promoter, gene body, or enhancer elements (Fig. 2E). We found that the localization of several transcription regulators (such as EP300, ELL2, and MED12) in the promoter showed substantial positive correlations with burst size. However, the correlation coefficients between the burst size and transcription regulators bound to enhancers were overall relatively low. This was consistent with the findings of a report showing that burst size is mainly controlled by the promoter region (11). Distal enhancers are reported to be important for regulating burst frequency (10). In our analysis, the localization of several factors (such as BRD9, TAF3, AFF4, and CTR9) in enhancers showed relatively lower yet positive correlations with burst frequency.

We found that localization of transcription elongation factors [such as trimethylated histone H3 at lysine 36 (H3K36me3), BRD4, AFF4, SPT5, and CTR9] on the gene body was positively correlated with burst frequency (Fig. 2E). Transcription is well known to occur in at least three stages: initiation, elongation, and termination. During early elongation, Pol II often pauses near the promoter region, a phenomenon known as Pol II promoter-proximal pausing (25). The paused Pol II transitions into productive elongation by the activity of positive transcription elongation factor b (P-TEFb), which phosphorylates serine-2 in the heptaptide (Tyr-Ser-Pro-Thr-Ser-Pro-Ser) repeats of the C-terminal domain. The extent of Pol II pausing, estimated by the pausing index, had a negative correlation with burst frequency (Fig. 2E).

To dissect the link between Pol II pause release and burst frequency, we inhibited P-TEFb with 5,6-dichloro-1--d-ribofuranosylbenzimidazole (DRB) and flavopiridol in KI mESC lines cultured in 2i conditions (26). Two days after DRB and flavopiridol treatment, cells were subjected to flow cytometry analysis (fig. S4, A and B). DRB and flavopiridol treatment increased the normalized intrinsic noise and burst size in most of the cell lines (Fig. 2F). However, the effects of DRB and flavopiridol treatment on burst frequency were highly gene specific, suggesting that Pol II pause release likely contributes to the regulation of both burst size and frequency, whereas the regulation of burst frequency by Pol II pause release is more context dependent.

Promoter localization of PRC2 subunits (EZH2, SUZ12, and JARID2) correlated inversely with burst frequency, while they correlated positively with burst size and normalized intrinsic noise (Fig. 2E), thus suggesting a possible link between PRC2 and intrinsic noise. To test how PRC2 regulates transcriptional bursting, we inactivated PRC2 functionality by knocking out SUZ12 (27) in Dnmt3l, Dnmt3b, Peg3, and Ctcf KI cell lines (Fig. 2G). These targeted genes showed relatively high trimethylated histone 3 at lysine residue 27 (H3K27me3) enrichment in the promoter compared to the other available KI-targeted genes. Loss of H3K27me3 modification in Suz12 knockout (K/O) cell lines was confirmed by Western blotting (Fig. 2G). Next, we quantified GFP and iRFP expression levels by flow cytometry in the Suz12 K/O and control cell lines and found that normalized intrinsic noise and burst size of Dnmt3l and Dnmt3b were significantly reduced by Suz12 K/O (Fig. 2G). In contrast, Suz12 K/O significantly increased normalized intrinsic noise and burst size of Peg3. No significant change was observed for Ctcf. While the burst frequency of Dnmt3l was increased significantly, that of Peg3 was markedly reduced by Suz12 K/O. These results suggest that PRC2-mediated control of the kinetic properties of transcriptional bursting is also possibly context dependent.

To study the combinatorial regulations underlying the kinetic properties of transcriptional bursting, we first classified the genetic and epigenetic features, based on the sequence and transcription regulatory factor binding patterns at the promoter and gene body of high intrinsic noise transcripts, into 10 clusters (Fig. 3). To identify the features that can distinguish a cluster of high intrinsic noise transcripts from low intrinsic noise transcripts, we performed orthogonal partial least squares discriminant analysis (OPLS-DA) modeling, which is a useful method for identifying features that contribute to class differences (28). In 8 of the 10 clusters, the model successfully separated the high intrinsic noise transcripts from the low intrinsic noise transcripts (Fig. 3). Specifically, we obtained the top three positively and negatively contributing factors using S-plot (Fig. 3). For example, in cluster 3, promoter binding of PRC2-related factors (SUZ12, EZH2, and H3K27me3) was a positive contributor to intrinsic noise, while the gene body localization of TAF1, BRD4, and CTR9 was a negative contributor. This result suggested that promoter localization of PRC2-related factors influences bursting properties in a gene-specific manner.

The left side of the panel shows a heat map of promoter and the gene body (GB) localization of various factors with high and low intrinsic noise transcripts. The high intrinsic noise transcripts were classified into 10 clusters, and each cluster of high intrinsic noise transcripts and low intrinsic noise transcripts was subjected to OPLS-DA modeling. The right side of the panel represents score plots of OPLS-DA [the first predictive component (t1) versus the first orthogonal component (to1)] and S-plots constructed by presenting the modeled covariance (p[1]) against modeled correlation {p(corr)[1]} in the first predictive component. In clusters 5 and 6, the first orthogonal component was not significant (NS).

In cluster 10, promoter localization of H3K36me3, a histone mark associated with transcriptional elongation, and promoter and gene body localization of CTR9, a subunit of the PAF1 complex involved in Pol II pausing and transcription elongation, were the positive contributors (Fig. 3). In contrast, promoter localization of negative elongation factor complex member A (NELFA) was a strong negative contributor (Fig. 3). These results implied that transcriptional elongation is involved in the regulation of normalized intrinsic noise in this cluster. We similarly identified the factors regulating burst size and frequency and found them to be also affected by a combination of promoter- and gene bodybinding factors (fig. S5). Collectively, the kinetic properties of transcriptional bursting in mammalian cells appear to be regulated by a combinatory suite of promoter- and gene bodybinding factors in a context-dependent manner.

To identify genes regulating intrinsic noise in an unbiased manner, we performed high-throughput screening with the CRISPR K/O library (29). The lentiviral CRISPR library targeting genes in the mouse genome was introduced into Nanog, Dnmt3l, and Trim28 KI cell lines. Although genes with high intrinsic noise showed a larger variation in the expression levels of one allele (such as GFP) and the other allele (such as iRFP) perpendicular to the diagonal line (Fig. 1, C and F), we found that the loss of genomic integrity (such as by loss of function of p53) induced instability in the number of alleles, resulting in an unintended increase in intrinsic noise levels in a pilot study. Therefore, to reduce false negatives and selectively enrich cell populations with suppressed intrinsic noise, we first sorted out cells showing expression levels close to the diagonal line of GFP and iRFP expression by fluorescence-activated cell sorting (FACS; Fig. 4A). After expanding the sorted cells for a week, the cells were sorted again. These sorting and expansion procedures were repeated four times in total to selectively enrich cell populations with suppressed intrinsic noise. Even for genes with high intrinsic noise, a large fraction of cells showed a smaller variation in the expression levels of one allele (such as GFP) and the other allele (such as iRFP) perpendicular to the diagonal line (Fig. 1, C and F). Therefore, enrichment of cells with low intrinsic noise by repeated sorting procedures appeared to reduce false positives. Last, we compared the targeted K/O gene profile in the sorted cells with that in an unsorted control by high-throughput genomic DNA sequencing (Fig. 4A). To gain a comprehensive picture of the genes involved in intrinsic noise regulation, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) (30) pathway enrichment analysis of the enriched (top 100) and depleted targeted genes (bottom 100) in the three cell lines (Fig. 4, B and C). We found that the mammalian target of rapamycin (mTOR) and MAPK signaling pathways were involved in promoting intrinsic noise in all three cell lines (Fig. 4C). Previous studies demonstrated that mTOR and MAPK pathways are involved in Proteoglycans in Cancer and Sphingolipid signaling pathways and cross-talk with each other via the PI3/Akt pathway (Fig. 4D) (31). To test whether these signaling pathways are involved in intrinsic noise regulation, we conditioned Nanog, Trim28, and Dnmt3l KI cells with inhibitors for the MAPK, mTOR, and Akt pathways (Fig. 4, D to F). When treated with the Akt inhibitor MK-2206 alone, normalized intrinsic noise decreased in all three cell lines (Fig. 4F). Furthermore, treatment with MK-2206 and MAPK kinase (MEK) inhibitor PD0325901 (PD-MK condition) resulted in a substantial decrease in the normalized intrinsic noise in all three cell lines (Fig. 4F). In addition, normalized intrinsic noise was reduced in most of the other KI cell lines under the PD-MK condition (Fig. 4G), while mRNA degradation rates were largely unaltered (fig. S6). Under PD-MK and 2i culture conditions, one and three genes, respectively, showed log10 (normalized intrinsic noise) > 0.05 (Fig. 4G), hence suggesting that more genes showed reduced normalized intrinsic noise under the PD-MK condition than under the 2i condition. It should be noted that the PD-MK condition, which decreased the burst size, increased the burst frequency for most genes, although the extent of changes varied depending on the genes. Therefore, decrease in normalized intrinsic noise under the PD-MK condition is likely caused by changes in both burst size and burst frequency.

(A) Schematic diagram of CRISPR lentivirus library screening. Screening was performed independently for each of the three (Nanog, Trim28, and Dnmt3l) KI cell lines. (B) Ranked differentially expressed (DE) score plots obtained by performing CRISPR screening on three cell lines. The higher the DE score, the more the effect of enhancing intrinsic noise. (C) KEGG pathway enrichment analysis. KEGG pathway enrichment analysis was performed using clusterProfiler (see Materials and Methods), with the upper or lower 100 genes of DE score obtained from the CRISPR screening (referred as posi and nega, respectively). The pathways shown in red indicate hits in multiple groups of genes. Genes corresponding to these pathways are labeled in (B). (D) Simplified diagram of MAPK, Akt, and mTOR signaling pathways. These pathways are included in the pathways highlighted in red in (C) and cross-talk with each other. (E) Western blot of cells treated with signal pathway inhibitors. (F) normalized intrinsic noise of cells treated with signal pathway inhibitors against control [dimethyl sulfoxide (DMSO)treated] cells. Error bars indicate 95% confidence interval. (G) Twenty-four KI cell lines were conditioned to 2i or PD-MK conditions and subjected to flow cytometry analysis. normalized intrinsic noise, burst size, and burst frequency against control (DMSO-treated) cells are shown. Error bars indicate 95% confidence interval.

The phenotype observed under PD-MK treatment could be due to its effects on cell viability and/or pluripotency. We observed that PD-MK treatment substantially reduced the proliferation rates of mESCs (Fig. 5A), consistent with the function of Akt or MAPK pathways in cell cycle progression (31). However, we did not observe increased cell apoptosis after the PD-MK treatment (Fig. 5B). Cell cycle distribution was also unaffected by the PD-MK treatment (Fig. 5C), suggesting a global slowdown of individual cell cycle phases under the PD-MK condition. Thus, the reduced intrinsic noise caused by PD-MK does not appear to be the result of cell death or cell cycle arrest. We also analyzed the expression of pluripotent markers and found that they were largely unaffected under the PD-MK condition (Figs. 4E and 5D). Furthermore, we were able to generate chimeric mice using mESCs cultured in the PD-MK condition, indicating that PD-MK treatment does not affect mESC pluripotency (Fig. 5E).

(A) Growth curve of mESC conditioned to Std, 2i, and PD-MK conditions. Error bars indicate SD (n = 3). (B) Percentage of apoptotic cells of mESC conditioned to Std, 2i, and PD-MK conditions. Error bars indicate SD (n = 3). (C) Cell cycle distribution of mESCs conditioned to Std, 2i, and PD-MK conditions. (D) Immunofluorescence of pluripotency markers (NANOG, OCT4, and SSEA1) of mESCs conditioned to Std, 2i, and PD-MK conditions. The images show maximum intensity projections of stacks. Scale bar, 50 m. (E) Chimeric mice with black coat color generated from C57BL/6NCr ES cells conditioned to the PD-MK condition and then to the Std condition before injection into albino host embryos. Photo credit: T. Okamura (National Center for Global Health and Medicine).

To further characterize how the PD-MK condition affects mESC gene expression programs, we performed RNA-seq analysis of mESCs cultured in Std, 2i, and PD-MK conditions (Fig. 6A). Flow cytometry analysis revealed that more genes showed decreased normalized intrinsic noise under the PD-MK condition than under the 2i condition (Fig. 4G). To obtain a comprehensive view of the genes involved in intrinsic noise suppression under the PD-MK condition compared to that under the 2i condition, we performed gene ontology (GO) analysis and found that the transcription elongation factor complexrelated genes were significantly enriched in the up-regulated genes under PD-MK (Fig. 6, B and C). Furthermore, the up-regulated genes were enriched in factors involved in transcriptional regulation (Fig. 6B), consistent with our observation of a positive correlation between gene body localization of transcription elongation factor and burst frequency (Fig. 2C). Thus, it is possible that up-regulation of transcription elongation factors promotes burst frequency, thereby reducing the intrinsic noise under the PD-MK condition. We also found that the expression of Aff1 and Aff4, which encode subunits of the super elongation complex (SEC) that regulates Pol II pause release and transcription elongation rate (32), was significantly up-regulated under the PD-MK condition (Fig. 6C).

(A) Comparison of transcriptome of cells conditioned to Std, 2i, and PD-MK conditions. (B) GO analysis of genes whose expression significantly increased in the PD-MK condition against the 2i condition. BP, biological process; CC, cellular components; MF, molecular function. (C) Expression levels of genes encoding transcriptional elongation factors were elevated under the PD-MK condition as compared to the 2i condition. (D) Effect of RNA Pol II pause release inhibitor flavopiridol and SEC inhibitor KL-2 treatment on normalized intrinsic noise, burst size, and frequency. The KI cell lines conditioned to PD-MK were treated with flavopiridol or KL-2 for 2 days and analyzed by flow cytometry, and normalized intrinsic noise, burst size, and frequency were calculated. normalized intrinsic noise, burst size, and burst frequency are residuals of normalized intrinsic noise, burst size, and frequency of inhibitor-treated cells from that of control cells (PD-MK condition), respectively. Error bars indicate 95% confidence interval. (E) Schematic summary of the determination of kinetic properties of transcriptional bursting (including intrinsic noise, burst size, and burst frequency) by a combination of promoter- and gene bodybinding proteins, including PRC2 and transcription elongation factors.

To examine the contribution of SEC in the regulation of bursting, we treated cells cultured under the PD-MK condition with the P-TEFb inhibitor flavopiridol or AFF1/4 inhibitor KL-2 (32) for 2 days and then compared the intrinsic noise in these cells with that in control cells under the PD-MK condition (Fig. 6D and fig. S4, C and D). We found that the normalized intrinsic noise was significantly increased in most of the genes, although a decrease was also observed in a small fraction of genes (Fig. 6D). We next examined how the chemical inhibitors could affect the burst size and frequency. For most of the genes, burst sizes, which are residuals of burst size of inhibitor-treated cells from that of control cells, were small, while the burst frequency was substantially reduced overall. This suggested that PD-MK treatment enhances Pol II pause release and transcription elongation efficiency without strongly affecting the burst size, at least in the genes tested here. Because P-TEFb and SEC inhibitors affected burst frequency, which is a residual of burst frequency of inhibitor-treated cells from that of control cells, in a similar fashion in most genes analyzed, SEC is probably responsible for regulating Pol II pause release in these genes. It should be noted here that most genes displayed reduced burst sizes under the PD-MK condition (Fig. 4G), suggesting that Pol II pause release is not the only downstream effector of Akt and MAPK pathways regulating the normalized intrinsic noise.

The hybrid mESC line F1-21.6 (129Sv-Cast/EiJ, female), a gift from J. Gribnau, was grown on either LN511 (BioLamina, Stockholm, Sweden) or gelatin-coated dish in either Std medium [15% fetal bovine serum (FBS; Gibco), 0.1 mM -mercaptoethanol (Wako Pure Chemicals, Osaka, Japan), and LIF (1000 U/ml; Wako Pure Chemicals, Osaka, Japan)] or 2i medium [StemSure Dulbeccos modified Eagles medium (DMEM; Wako Pure Chemicals, Osaka, Japan), 15% FBS, 0.1 mM -mercaptoethanol, 1 MEM nonessential amino acids (Wako Pure Chemicals), a 2 mM l-alanyl-l-glutamine solution (Wako Pure Chemicals), LIF (1000 U/ml; Wako Pure Chemicals), gentamicin (20 mg/ml; Wako Pure Chemicals), 1 M PD0325901 (CS-0062, ChemScene), and 3 M CHIR99021 (034-23103, Wako Pure Chemicals)]. This cell line was previously described in (38).

Wild-type (WT) mESCs derived from inbred mouse (Bruce 4 C57BL/6J, male, EMD Millipore, Billerica, MA) and other KI derivatives were cultured on either LN511 or gelatin-coated dish under either Std, 2i, or PD-MK medium [StemSure DMEM (Wako Pure Chemicals, Osaka, Japan), 15% FBS, 0.1 mM -mercaptoethanol, 1 MEM nonessential amino acids (Wako Pure Chemicals), a 2 mM l-alanyl-l-glutamine solution (Wako Pure Chemicals), LIF (1000 U/ml; Wako Pure Chemicals), gentamicin (20 mg/ml; Wako Pure Chemicals), 1 M PD0325901 (CS-0062, ChemScene), and 4 M MK-2206 2HCl (S1078, Selleck Chemicals, Houston TX)]. Inhibitors were added at the following concentrations: 40 M DRB (D1916, Sigma-Aldrich, St. Louis, MO), 0.25 M flavopiridol (CS-0018, ChemScene, Monmouth Junction, NJ) in the 2i condition, 0.125 M flavopiridol in the PD-MK condition, 3 M CHIR99021 (034-23103, Wako Pure Chemicals) in Std medium, 1 M PD0325901 (CS-0062, ChemScene) in Std medium, 5 M BGJ398 (NVP-BGJ398; S2183, Selleck Chemicals) in Std medium, 1 M rapamycin (R-5000, LC Laboratories, MA, USA) in Std medium, 0.2 M INK128 (11811, Cayman Chemical Company, MI, USA) in Std medium, and 4 M MK-2206 2HCl (S1078, Selleck Chemicals) in Std medium. C57BL/6NCr mESCs (male) were cultured on gelatin-coated dish under the PD-MK condition.

To quantify the intrinsic noise level of a particular gene, it is necessary to establish a cell line with the GFP and iRFP reporter genes individually knocked into both alleles of the target genes. Therefore, on the basis of the scRNA-seq data, 25 genes (Fig. 1H) with medium expression levels and variable intrinsic noise levels were manually selected.

GFP/iRFP KI cell lines were established using CRISPR-Cas9 or transcription activator-like effector nuclease (TALEN) expression vectors and targeting vectors [with about 1-kbp (kilobase pair) homology arms]. Vectors used in this study are listed in table S4. C57BL/6J mESCs (5 105) conditioned to 2i medium were plated onto gelatin-coated six-well plates. After 1 hour, the cells were then transfected with 1 g each of GFP and iRFP targeting vectors (table S4), 1 g total of nuclease vectors (table S4), and pKLV-PGKpuro2ABFP (puromycin resistant, Addgene, plasmid #122372) using Lipofectamine 3000 (catalog no. L3000015, Life Technologies, Gaithersburg, MD), according to the manufacturers instructions. Cells were selected by adding puromycin (1 g/ml) to the 2i medium 24 hours after transfection. After another 24 hours, the medium was exchanged. The medium was exchanged every 2 days. At 5 days after transfection, cells were treated with 25 M biliverdin (BV). BV is used for forming a fluorophore by iRFP670. Although BV is a molecule ubiquitous in eukaryotes, the addition of BV to culture medium increases the fluorescence intensity. Twenty-four hours later, cells were trypsinized and subjected to FACS analysis, and GFP/iRFP double-positive cells were sorted and seeded on a gelatin-coated 6-cm dish. The medium was exchanged every 2 days. One week after sorting, 16 colonies were picked for downstream analysis and checking gene targeting. Polymerase chain reaction (PCR) was carried out using primers outside the homology arms, and cells that seemed to be successfully knocked into both alleles were selected. Thereafter, candidate clones were further analyzed by Southern blotting as described before (fig. S3) (20). Restriction enzymes and genomic regions used for Southern blot probes are listed in table S4. Probes were prepared using the PCR DIG Probe Synthesis Kit (Roche Diagnostics, Mannheim, Germany).

ICR mice were purchased from CLEA Japan (Tokyo, Japan). All mice were housed in an air-conditioned animal room under specific pathogenfree conditions, with a 12-hour light/12-hour dark cycle. All mice were fed a standard rodent CE-2 diet (CLEA Japan, Tokyo, Japan) and had ad libitum access to water. All animal experiments were approved by the President of the National Center for Global Health and Medicine, following consideration by the Institutional Animal Care and Use Committee of the National Center for Global Health and Medicine (approval ID no. 17043), and were carried out in accordance with the institutional procedures, national guidelines, and the relevant national laws on the protection of animals.

To construct the lentiCRISPRv2-sgSuz12_1, lentiCRISPRv2-sgSuz12_2, lentiCRISPRv2-sgSuz12_3, and lentiCRISPRv2_sgMS2_1 plasmids, which are single-guide RNA (sgRNA) expression vectors, we performed inverse PCR using R primer (5-GGTGTTTCGTCCTTTCCACAAGAT-3) and either of F primers (5-AAAGGACGAAACACCGCGGCTTCGGGGGTTCGGCGGGTTTTAGAGCTAGAAATAGCAAGT-3, 5-AAAGGACGAAACACCGGCCGGTGAAGAAGCCGAAAAGTTTTAGAGCTAGAAATAGCAAGT-3, 5-AAAGGACGAAACACCGCATTTGCAACTTACATTTACGTTTTAGAGCTAGAAATAGCAAGT-3, or 5-AAAGGACGAAACACCGGGCTGATGCTCGTGCTTTCTGTTTTAGAGCTAGAAATAGCAAGT-3), respectively, and lentiCRISPR v2 (Addgene, plasmid #52961) as a template, followed by self-circularization using the In-Fusion HD Cloning Kit (catalog no. 639648, Clontech Laboratories, Mountain View, CA, USA).

129/CAST hybrid mESCs need to be maintained on feeder cells in the gelatin/Std condition. To eliminate the need for feeder cells, we decided to maintain the hybrid mESCs on dishes coated with LN511, enabling maintenance of mESCs without feeder cells in the Std condition. To compare the transcriptomes of mESCs cultured on gelatin-coated dish and those cultured on LN511-coated dish, we performed RNA-seq analysis as follows. First, C57BL/6J WT mESCs were conditioned on either gelatin- or LN511-coated dish in either Std or 2i medium for 2 weeks. Next, RNA was recovered from 1 106 cells using the NucleoSpin RNA Kit (Macherey-Nagel, Dren, Germany). The RNA was sent to Eurofins for RNA-seq analysis. RNA-seq reads were aligned to the mouse reference genome (mm10) using TopHat (version 2.1.1) (https://ccb.jhu.edu/software/tophat/index.shtml). Fragments per kilobase per million mapped reads (FPKM) values were quantified using Cufflinks (version 2.1.1) (http://cole-trapnell-lab.github.io/cufflinks/) to generate relative gene expression levels. Hierarchical clustering analyses were performed on FPKM values using CummeRbund (v2.18.0) (https://bioconductor.org/packages/release/bioc/html/cummeRbund.html). In comparison, the transcriptomes of mESCs cultured on gelatin-coated dish and those cultured on LN511-coated dishes showed no considerable difference in expression patterns (fig. S1A).

Library preparation for single-cell RamDA-seq was performed as described previously (22). Briefly, hybrid mESC line F1-21.6 (129Sv-Cast/EiJ) conditioned to the LN511/Std condition was dissociated with 1 trypsin (Thermo Fisher Scientific, Rochester, NY) with 1 mM EDTA at 37C for 3 min. The dissociated cells were adjusted to 1 106 cells/ml and stained with Hoechst 33342 dye (10 g/ml; Sigma-Aldrich) in phosphate-buffered saline (PBS) at 37C for 15 min to identify the cell cycle. After Hoechst 33342 staining, the cells were washed once with PBS and stained with propidium iodide (PI; 1 g/ml; Sigma-Aldrich) to remove dead cells. Single-cell sorting was performed using MoFlo Astrios (Beckman Coulter; table S4). Recent studies of scRNA-seq using mESCs have suggested that genes related to the cell cycle demonstrate considerable heterogeneity in expression (35). Therefore, to minimize this variation, 474 cells only in the G1 phase were collected (table S4). Single cells were collected in 1 l of cell lysis buffer [1 U of RNasin Plus (Promega, Madison, WI), RealTime ready Cell Lysis Buffer (10%; catalog no. 06366821001, Roche), 0.3% NP-40 (Thermo Fisher Scientific), and ribonuclease (RNase)free water (Takara, Japan)] in a 96-well PCR plate (BIOplastics).

The cell lysates were denatured at 70C for 90 s and held at 4C until the next step. To eliminate genomic DNA contamination, 1 l of genomic DNA digestion mix [0.5 PrimeScript Buffer, 0.2 U of DNase I Amplification Grade, and 1:5,000,000 ERCC RNA Spike-In Mix I (Thermo Fisher Scientific) in RNase-free water] was added to 1 l of the denatured sample. The mixtures were agitated for 30 s at 2000 rpm using ThermoMixer C at 4C, incubated in a C1000 thermal cycler at 30C for 5 min, and held at 4C until the next step. One microliter of RT-RamDA mix [2.5 PrimeScript Buffer, 0.6 pmol of oligo(dT)18 (catalog no. SO131, Thermo Fisher Scientific), 8 pmol of 1st-NSRs (22), 100 ng of T4 gene 32 protein (New England Biolabs), and 3 PrimeScript enzyme mix (catalog no. RR037A, TAKARA Bio Inc.) in RNase-free water] was added to 2 l of the digested lysates. The mixtures were agitated for 30 s at 2000 rpm and 4C and incubated at 25C for 10 min, 30C for 10 min, 37C for 30 min, 50C for 5 min, and 94C for 5 min. Then, the mixtures were held at 4C until the next step. After RT (reverse transcription), the samples were added to 2 l of second-strand synthesis mix [2.5 NEBuffer 2 (New England Biolabs), 0.625 mM each dNTP mixture (Takara), 40 pmol of 2nd-NSRs (22), and 0.75 U of Klenow Fragment (3 5 exo-; New England Biolabs) in RNase-free water]. The mixtures were agitated for 30 s at 2000 rpm and 4C and incubated at 16C for 60 min, 70C for 10 min, and then 4C until the next step. Sequencing library DNA preparation was performed using the Tn5 tagmentation-based method with one-fourth volumes of the Nextera XT DNA Library Preparation Kit (catalog nos. FC-131-1096, FC-131-2001, FC-131-2002, FC-131-2003, and FC-131-2004, Illumina, San Diego, CA) according to the manufacturers protocol. The above-described double-stranded complementary DNAs (cDNAs) were purified by using 15 l of AMPure XP SPRI beads (catalog no. A63881, Beckman Coulter) and a handmade 96-well magnetic stand for low volumes. Washed AMPure XP beads attached to double-stranded cDNAs were directly eluted using 3.75 l of 1 diluted Tagment DNA Buffer (Illumina) and mixed well using a vortex mixer and pipetting. Fourteen cycles of PCR were applied for the library DNA. After PCR, sequencing library DNA was purified using 1.2 the volume of AMPure XP beads and eluted into 24 l of TE buffer.

All the RamDA-seq libraries prepared with Nextera XT DNA Library Preparation were quantified and evaluated using a MultiNA DNA-12000 kit (Shimadzu, Kyoto, Japan) with a modified sample mixing ratio (1:1:1; sample, marker, and nuclease-free water) in a total of 6 l. The length and yield of the library DNA were calculated in the range of 161 to 2500 bp. The library DNA yield was estimated as 0.5 times the value quantified from the modified MultiNA condition. Subsequently, we pooled each 110 fmol of library DNA in each well of a 96-well plate. The pooled library DNA was evaluated on the basis of the averaged length and concentration using the Bioanalyzer Agilent High-Sensitivity DNA Kit (catalog no. 5067-4626) in the range of 150 to 3000 bp and the KAPA Library Quantification Kit (catalog no. KK4824, Kapa Biosystems, Wilmington, MA). Pooled library DNA (1.5 pM) was sequenced using Illumina HiSeq2000 (single-read 50-cycle sequencing).

Trypsinized cells (2 105) were transferred onto LN511-coated round coverslips and cultured for 1 hour at 37C and 5% CO2. Cells were washed with PBS, fixed with 4% paraformaldehyde in PBS for 10 min, and washed with PBS two times. Then, cells were permeabilized in 70% ethanol at 4C overnight. Following a wash with 10% formamide dissolved in 2 saline sodium citrate buffer, the cells were hybridized to probe sets in 60 l of hybridization buffer containing 2 saline sodium citrate, 10% dextran sulfate, 10% formamide, and each probe set (table S4). Hybridization was performed for 4 hours at 37C in a moist chamber. The coverslips were washed with 10% formamide in 2 saline sodium citrate solution and then with 10% formamide in 2 saline sodium citrate solution with Hoechst 33342 (1:1000). Hybridized cells were mounted in catalase/glucose oxidase containing mounting media [0.4% glucose in 10 mM tris, 2 saline sodium citrate, glucose oxidase (37 g/ml), and 1/100 catalase (Sigma-Aldrich, C3155)]. Images were acquired using a Nikon Ti-2 microscope with a CSU-W1 confocal unit, a 100 Nikon oil-immersion objective of 1.49 numerical aperture (NA), and an iXon Ultra EMCCD camera (Andor, Belfast, UK), with laser illumination at 405, 561, and 637 nm, and were analyzed using NIS-elements software (version 5.11.01, Nikon, Tokyo, Japan); 101 z planes per site spanning 15 m were acquired. Images were filtered with a one-pixel-diameter three-dimensional median filter and subjected to background subtraction via a rolling ball radius of 5 pixels, using FIJI software. Detection and counting of smFISH signals were performed using FISH-quant software version 3 (https://bitbucket.org/muellerflorian/fish_quant/src/master/). FISH-quant quantifies the number of mRNAs in the cell nucleus and cytoplasm. Mixtures of mNeonGreen and iRFP670 probes conjugated with CAL Fluor Red 590 and Quasar 670 were obtained from Biosearch Inc. (Novato, CA) and used at 0.25 M. Probe sequences are shown in table S4. Intrinsic noise was calculated as described in the Estimation of the kinetic properties of transcriptional bursting using transcript-level count data section. Because smFISH has almost the same average value, correction between alleles was not carried out. The count normalized log ratios of intrinsic noise (normalized intrinsic noise) were calculated as the residuals of the regression line (fig. S1I). Normalization by gene length had not been applied for the smFISH data.

On the day before flow cytometry, cells were treated with 25 M BV. Cells that became 80% confluent were washed with PBS, trypsinized, inactivated with FluoroBrite DMEM (Thermo Fisher Scientific) containing 10% FBS, and centrifuged to collect the cells. Cells were suspended in PBS to be 1 106 to 5 106 cells/ml. Fluorescence data of side scatter (SSC), forward scatter (FSC), GFP, and iRFP were obtained with BD FACSAria III. Cells were gated on the basis of FSC and SSC using a linear scale to gate out cellular debris. Among GFP and iRFP data, extreme values indicating 20 * interquartile range or more were excluded from analysis. The mean value of the negative control data of WT mESC was subtracted from the data to be analyzed, and the data that fell below zero were excluded. We confirmed that the mean number of GFP and iRFP mRNAs in the KI cell lines are almost exactly matched that obtained in the smFISH analysis, suggesting that the expression levels of GFP and iRFP proteins are also similar. Therefore, we applied a correction using the following equations so that the mean fluorescence intensity between GFP and iRFP was consistentGFPn=GFPGFPiRFPGFPiRFPn=iRFPGFPiRFPiRFP

Here, the ith element of vectors GFP and iRFP contains the fluorescence intensities of GFP and iRFP, respectively, of the ith cell in the sample. GFPn and iRFPn represent mean normalized GFP and iRFP, respectively. Then, intrinsic noise is calculated as described in the Estimation of the kinetic properties of transcriptional bursting using transcript-level count data section. The relationship between mean fluorescence intensities and intrinsic noise was plotted (fig. S1J). The fluorescence intensity normalized log ratios of intrinsic noise (normalized intrinsic noise) were calculated as the residuals of the regression line (fig. S1J).

On the day before immunostaining, Trim28, Dnmt3l, Klf4, Peg3, Npm1, Dnmt3b, Nanog, Rad21, and Hdac1 KI cell lines at ~70% confluence were treated with 25 M BV. After 24 hours, 1 105 cells were plated onto the eight-well Lab-Tek II chambered coverglass (Thermo Fisher Scientific) coated with LN511. For immunostaining of C57BL/6J WT mESCs conditioned to Std/LN511, 2i/LN511, and PD-MK/LN511 conditions, cells were plated 1 105 onto an eight-well Lab-Tek II chambered coverglass coated with LN511. After 1 hour, cells were washed once with PBS and fixed with 4% paraformaldehyde for 10 min at room temperature. Fixed cells were washed with BBS buffer [50 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 280 mM NaCl, 1.5 mM Na2HPO42H2O, and 1 mM CaCl2] two times and blocked for 30 min in BBT-BSA buffer [BBS with 0.5% bovine serum albumin (BSA), 0.1% Triton, and 1 mM CaCl2] at room temperature. Cells with primary antibodies were incubated overnight at 4C at the following dilutions: anti-TRIM28 (1:500; GTX102227, GeneTex, RRID:AB_2037323), anti-DNMT3L (1:250; ab194094, Abcam, Cambridge, MA, RRID:AB_2783649), anti-KLF4 (1:250; ab151733, Abcam, RRID:AB_2721027), anti-PEG3 (1:500; BS-1870R, Bioss Antibodies, RRID:AB_10855800), anti-NPM1 (1:100; A302-402A, Bethyl Laboratories Inc., RRID:AB_1907285), anti-DNMT3B (1:500; 39207, Active Motif, RRID:AB_2783650), anti-NANOG (1:500; 14-5761-80, eBioscience, RRID:AB_763613), anti-RAD21 (1:500; GTX106012, GeneTex, RRID:AB_763613), anti-HDAC1 (1:500; GTX100513, GeneTex, RRID:AB_1240929), antiOCT-4A (1:400; 2840, Cell Signaling Technology, RRID:AB_2167691), and anti-SSEA1 (1:1000; 4744, Cell Signaling Technology, RRID:AB_1264258). Cells were washed and blocked in BBT-BSA. Then, for KI cell lines, cells were incubated with Alexa Fluor 594conjugated secondary antibodies (1:500; Life Technologies). For C57BL/6J WT mESCs, cells were incubated with Alexa Fluor 488 goat anti-mouse immunoglobulin G (IgG), Alexa Fluor 594 goat anti-rabbit IgG, and Alexa Fluor 647 goat anti-rat IgG secondary antibodies (1:500; Life Technologies). Images were acquired using a Nikon Ti-2 microscope with a CSU-W1 confocal unit, a 100 Nikon oil-immersion objective of 1.49 NA, and an iXon Ultra EMCCD camera (Andor, Belfast, UK).

Dnmt3l, Dnmt3b, Peg3, and Ctcf KI cell lines conditioned to the gelatin/2i condition were trypsinized and plated onto a 24-well plate at 5 105 cells per 500 l each. One hour later, for Suz12 K/O, 330 ng each of lentiCRISPRv2-sgSuz12_1, lentiCRISPRv2-sgSuz12_2, and lentiCRISPRv2-sgSuz12_3 and 300 ng of pCAG-mTagBFP2 (Addgene, plasmid #122373) plasmids or, for control, 1000 ng of lentiCRISPRv2_sgMS2_1 and 300 ng of pCAG-mTagBFP2 (Addgene, plasmid #122373) plasmids were transfected using Lipofectamine 3000 into each cell line. Two days later, blue fluorescent protein (BFP)positive cells were sorted by FACS and plated onto a 6-cm dish. After 1 week, we picked up eight colonies for Suz12 K/O and four colonies for control for downstream analysis. We checked the expression of PRC2-related proteins by Western blotting (see below). Then, cells were conditioned to LN511/Std medium for at least 2 weeks. As described above, flow cytometry analysis was performed to calculate normalized intrinsic noise, burst size, and burst frequency.

Cells are washed twice with PBS, trypsinized, and collected by centrifugation. Cells were counted and then washed twice with PBS. Last, cells were lysed in the lysis buffer [0.5% Triton X-100, 150 mM NaCl, and 20 mM tris-HCl (pH 7.5)] to obtain 1 106 cells per 100 l. Then, the lysates were incubated at 95C for 5 min and filtered by QIAshredder homogenizer (Qiagen). The extracted proteins were analyzed by 5 to 20% gradient SDSpolyacrylamide gel electrophoresis and transferred onto Immobilon Transfer Membranes (Millipore, Billerica, MA, USA) for immunoblotting analyses. The primary antibodies used were anti-SUZ12 (1:1000; 3737, Cell Signaling Technology, RRID:AB_2196850), anti-EZH2 (1:1000; 5246, Cell Signaling Technology, RRID:AB_10694683), antihistone H3K27me3 (1:1000; 39155, Active Motif, RRID:AB_2561020), anti-GAPDH (1:5000; 5174, Cell Signaling Technology, RRID:AB_10622025), antiphospho-MEK1/2 (Ser217/Ser221; 1:1000; 9154, Cell Signaling Technology, RRID:AB_2138017), anti-MEK1/2 (1:1000; 8727, Cell Signaling Technology, RRID:AB_10829473), anti-p44/42 MAPK (Erk1/2; 1:1000; 4695, Cell Signaling Technology, RRID:AB_390779), antiphospho-p44/42 MAPK (Erk1/2; Thr202/Tyr204; 1:2000; 4370, Cell Signaling Technology, RRID:AB_2315112), antiphospho-4E-BP1 (Thr37/Thr46; 1:1000; 2855, Cell Signaling Technology, RRID:AB_560835), antiphospho-Akt (Ser473; 1:1000; 4060, Cell Signaling Technology, RRID:AB_2315049), antiphospho-Akt (Thr308; 1:1000; 13038, Cell Signaling Technology, RRID:AB_2629447), anti-Akt (pan; 1:1000; 4691, Cell Signaling Technology, RRID:AB_915783), antic-Myc (1:1000; ab32072, Abcam, RRID:AB_731658), anti-FoxO1 (1:1000; 14952, Cell Signaling Technology, RRID:AB_2722487), anti-FOXO3A (1:2500; ab12162, Abcam, RRID:AB_298893), anti-Nanog (1:500; 14-5761-80, eBioscience, RRID:AB_763613), antiOCT-4A (1:500; 2840, Cell Signaling Technology, RRID:AB_2167691), and anti-SOX2 (1:1000; ab97959, Abcam, RRID:AB_2341193).

Nanog, Trim28, and Dnmt3L KI cells were transduced with the Mouse CRISPR K/O Pooled Library (GeCKO v2; Addgene, #1000000052) (29) via spinfection as previously described. We used only Mouse library A gRNA. Briefly, 3 106 cells per well (a total of 1.2 107 cells) were plated into an LN511-coated 12-well plate in the Std media supplemented with polybrene (8 g/ml; Sigma-Aldrich). Each well received a virus amount equal to a multiplicity of infection (MOI) of 0.3. The 12-well plate was centrifuged at 1000g for 2 hours at 37C. After the spin, media were aspirated and fresh media (without polybrene) were added. Cells were incubated overnight. Twenty-four hours after spinfection, cells were detached with trypsin and replated into four of LN511-coated 10-cm dishes with puromycin (0.5 g/ml) for 3 days. Media were refreshed daily. At 6 days after transduction, cells were treated with 25 M BV. After 24 hours, at least 1.75 105 cells showing GFP/iRFP expression ratio close to 1 were sorted by FACS and plated on 12-well plates (LN511/Std condition). Unsorted cells were passaged to 10-cm plates, 5 105 each. After the expansion of these sorted cells for 1 week, cells with GFP/iRFP expression ratio close to 1 were sorted again. These sorting and expansion procedures were repeated four times in total. At 3 days after the fourth sorting, 2 105 cells were collected and genomic DNA was extracted. PCR of the virally integrated sgRNA coding sequence was performed on genomic DNA at the equivalent of approximately 2000 cells per reaction in 48 parallel reactions using KOD FX Neo (TOYOBO, Japan). Amplification was carried out with 22 cycles. Primers are listed as follows: forward primer, AATGATACGGCGACCACCGAGATCTACACTCTTTC CCTACACGACGCTCTTCCGATCTNNNNNNNN(18-bp stagger) GTGGAAAGGACGAAACACCG; reverse primer, CAAGCAGAAGACGGCATACGAGATNNNNNNNN GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTGGGCGATGTGCGCTCTG (8-bp index read barcode indicated in italics). PCR products from all 48 reactions were pooled, purified using a PCR purification kit (Qiagen, Hilden, Germany), and gel-extracted using the Gel Extraction Kit (Qiagen, Hilden, Germany). The resulting libraries were deep-sequenced on Illumina HiSeq platform with a total coverage of >8 million reads passing filter per library.

Cells (4 105) were seeded on LN511-coated six-well plates. After overnight culture, the cells were incubated for 1 hour with 5-ethynyl-2-deoxyuridine (EdU) diluted to 10 M in the indicated embryonic stem (ES) cell media. All samples were processed according to the manufacturers instructions (Click-iT Plus EdU Alexa Fluor 647 Flow Cytometry Assay Kit, catalog no. C10634, Thermo Fisher Scientific). EdU incorporation was detected by Click-iT chemistry with an azide-modified Alexa Fluor 647. Cells were resuspended in EdU permeabilization/wash reagent and incubated for 30 min with Vybrant DyeCycle Violet (Thermo Fisher Scientific). Flow cytometry was performed on FACSAria III (BD Biosciences) and analyzed with Cytobank (www.cytobank.org; Cytobank Inc., Santa Clara, CA).

Annexin V staining was performed using Annexin V Apoptosis Detection Kit APC (catalog no. 88-8007-72, Thermo Fisher Scientific) as described in the manufacturers manual. Briefly, cells were trypsinized and centrifuged, and then the supernatant was removed. The remaining cells were resuspended in PBS and counted. Cells were washed once with PBS and then resuspended in 1 Annexin V binding buffer at 1 106 to 5 106 cells/ml. Pellets were resuspended in 100 l of Annexin V buffer to which 5 l of fluorochrome-conjugated Annexin V was added. Cells were incubated in the dark at room temperature for 15 min, washed in 1 Binding Buffer, and resuspended in 200 l of 1 Binding Buffer. PI Staining Solution (5 l) was added and immediately analyzed by flow cytometry.

C57BL/6J WT mESCs conditioned to LN511/Std or LN511/PD-MK conditions were treated with 400 M 4-thiouridine (4sU) for 20 min. Then, RNA was extracted from more than 1 107 cells using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA). Three biological replicates were prepared for each condition. We synthesized mRuby2 RNA for spike-in RNA by standard PCR, in vitro transcription using the T7 High Yield RNA Synthesis Kit (catalog no. E2040, New England Biolabs), and purification with RNeasy Plus Mini Kit (Qiagen, Valencia, CA). Biotinylation of 4sU-labeled RNA was carried out in RNase-free water with 10 mM tris-HCl (pH 7.4), 1 mM EDTA, and Biotin-HPDP (0.2 mg/ml; catalog no. 341-09101, Dojindo) at a final RNA concentration of 1 g/l extracted RNA (a total of 125 g) with spike-in RNA (125 ng/l) for 3 hours in the dark at room temperature. To purify biotinylated RNA from an excess of Biotin-HPDP, a phenol:chloroform:isoamylalcohol (v/v = 25:24:1; Nacalai Tesque, Kyoto, Japan) extraction was performed. Phenol:chloroform:isoamylalcohol was added to the reaction mixture in a 1:1 ratio, followed by vigorous mixing, and centrifuged at 20,000g for 5 min at 4C. The RNA containing aqueous phase was removed and transferred to a fresh, RNase-free tube. To precipitate RNA, 1/10 reaction volume of 5 M NaCl and an equal volume of 2-propanol were added and incubated for 10 min at room temperature. Precipitated RNA was collected through centrifugation at 20,000g for 30 min at 4C. The pellet was washed with an equal volume of 75% ethanol and precipitated again at 20,000g for 20 min. Last, RNA was reconstituted in 25 to 50 l of RNase-free water. For removing of biotinylated 4sU-RNA, streptavidin-coated magnetic beads (Dynabeads MyOne Streptavidin C1 beads, Thermo Fisher Scientific) were used according to the manufacturers manual. To avoid unfavorable secondary RNA structures that potentially impair the binding to the beads, the RNA was first denatured at 65C for 10 min followed by rapid cooling on ice for 5 min. Dynabeads magnetic beads (200 l per sample) were transferred to a new tube. An equal volume of 1 B&W [5 mM tris-HCl (pH 7.5), 0.5 mM EDTA, 1 M NaCl] was added to the tube and mixed well. The tube was placed on a magnet for 1 min, and the supernatant was discarded. The tube was removed from the magnet. The washed magnetic beads were resuspended in 200 l of 1 B&W. The bead washing step was repeated for a total of three times. The beads were washed twice in 200 l of solution A [diethyl pyrocarbonate (DEPC)treated 0.1 M NaOH and DEPC-treated 0.05 M NaCl] for 2 min. Then, the beads were washed once in 200 l of solution B (DEPC-treated 0.1 M NaCl). Washed beads were resuspended in 400 l of 2 B&W Buffer. An equal volume of 20 g of biotinylated RNA in distilled water was added. The mixture was incubated for 15 min at room temperature with gentle rotation. The biotinylated RNA-coated beads were separated with a magnet for 2 to 3 min. Unbound (unbiotinylated) RNA from the flow-through was recovered using the RNeasy MinElute Kit (Qiagen) and reconstituted in 25 l of RNase-free water. cDNA was synthesized with the ReverTra Ace qPCR RT Kit (catalog no. FSQ-101, TOYOBO, Japan) from both total RNA and unbound (unbiotinylated) RNA. The relative amount of existing RNA (unbiotinylated RNA)/total RNA was quantified by quantitative PCR (qPCR) with THUNDERBIRD SYBR qPCR Mix (catalog no. QPS-201, TOYOBO). cDNAs were derived from total and unbound RNA, and primers used are listed in table S4.

C57BL/6NCr ES cells derived from C57BL/6NCr (Japan SLC, Hamamatsu, Japan) were cultured in PD-MK medium on a gelatin-coated dish for 2 weeks. The day before injection, the culture medium was changed to Std medium. mESCs were microinjected into eight-cellstage embryos from ICR strain (CLEA Japan, Tokyo, Japan). The injected embryos were then transferred to the uterine horns of appropriately timed pseudopregnant ICR mice. Chimeras were determined by the presence of black eyes at birth and by coat color around 10 days after birth.

For each scRamDA-seq library, the FASTQ files of sequencing data with 10 pg of RNA were combined. Fastq-mcf (version 1.04.807) (https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md) was used to trim adapter sequences and generate read lengths of 50 nucleotides with the parameters -L 42 -l 42 -k 4 -q 30 -S. The reads were mapped to the mouse genome (mm10) using HISAT2 (version 2.0.4) (https://ccb.jhu.edu/software/hisat2/index.shtml) with default parameters. We confirmed that there was no large difference in the number of reads and mapping rates across the cell samples (table S4). We removed 27 abnormal samples showing abnormal gene body coverage of sequencing reads by human curation. Using the remaining data derived from 447 cells, allelic gene expressions were quantified using EMASE (version 0.10.11) with default parameters (https://github.com/churchill-lab/emase). 129 and CAST genomes by incorporating single-nucleotide polymorphisms and indels into reference genome and transcriptome were created by Seqnature (https://github.com/jaxcs/Seqnature). Bowtie (version 1.1.2) (http://bowtie-bio.sourceforge.net/index.shtml) was used to align scRamDA-seq reads against the diploid transcriptome with the default parameters.

To calculate intrinsic noise using the equations indicated below, we used three normalization steps. First, the global allelic bias in expression level was subjected to the Trimmed Means of M values (TMM) normalization method implemented in the R package edgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html; see the next section). This normalization removes global allelic bias in expression level as well as differences in sequencing depth in each cell. The total noise (tot2) for each transcript was calculated using the following equation (6)tot2=a12+a222a1a22a1a2

Here, the ith element of vectors a1 and a2 contains the read counts of transcript from allele 1 or allele 2, respectively, of the ith cell in the sample. Global normalization did not substantially change the shape of the read counttotal noise distribution (fig. S1B). Second, the read counts were subjected to quantile normalization between alleles at each transcript by the normalize.quantiles.robust method using the Bioconductor preprocessCore package (version 1.38.1; https://bioconductor.org/packages/release/bioc/html/preprocessCore.html). Third, we performed a correction using the following equations so that the mean read counts among the alleles were consistentagn1=ag1ag1ag2ag1agn2=ag2ag1ag2ag2

Here, the ith element of vectors ag1 and ag2 contains the globally and allelically normalized read counts of transcript from allele 1 or allele 2, respectively, of the ith cell in the sample. agn1 and agn2 represent the mean normalized ag1 and ag2, respectively. Angled brackets denote means over the cell population. From these read count matrices, the intrinsic noise (int2) for each transcript was calculated using the following equation (6, 7)int2=(agn1agn2)22agn1agn2

Transcripts showing a relatively large difference in expression level between alleles before correction (the average prenormalized expression level between alleles was >100 read counts) were excluded from subsequent analysis. A large fraction of transcripts (25,481 transcripts) showed intrinsic noise below Poisson noise (fig. S1C). Theoretically, intrinsic noise cannot be below Poisson noise (17). These transcripts are extremely similar in expression between the alleles, resulting in very low intrinsic noise values (fig. S1D). The expression level of each allele was originally calculated using the polymorphisms contained in the sequencing reads (see the previous section). However, if the sequencing reads for a particular transcript does not contain polymorphisms, the expression levels for each allele cannot be accurately calculated, and the expression levels for each allele are considered equal. Thus, transcripts with intrinsic noise below Poisson noise were excluded from the downstream analysis. A decrease in intrinsic noise was observed as the expression level increased, as theoretically expected (fig. S1C). To investigate the factors involved in the intrinsic noise and bursting properties independent of expression level, the count normalized log ratios of intrinsic noise were calculated as the residuals of a regression line that was calculated using a dataset with more than 1 mean read count (fig. S1E). In addition, a global correlation was found between the length of the transcript and the count normalized intrinsic noise (fig. S1F). Thus, the count and transcript length normalized log ratios of intrinsic noise were calculated as the residuals of a regression line (fig. S1, F and G). We call these read count and transcript length normalized intrinsic noise simply normalized intrinsic noise. For transcripts with low expression levels, it is difficult to distinguish whether their heterogeneity in expression level is due to technical or biological noise. Therefore, transcripts with read counts less than 20 were excluded from the downstream analysis (remaining 5992 transcripts).

Intrinsic noise is a function of the mRNA degradation rate (9, 12, 14). The mRNA degradation rate in mESC has been genome-wide analyzed (23). Genes whose degradation rate is unknown were provisionally assigned a median value. The burst size (b) and burst frequency (f) of each transcript can be estimated by the mRNA degradation rate (m), intrinsic noise (int2), and mean number of mRNA () according to the following equations (9, 12, 14)b=(int2)1f=mint21

Previous studies have reported the estimation of the burst size and burst frequency for each allele using a Poisson-Beta hierarchical model with scRNA-seq data of hybrid cells (11, 40). To evaluate the validity of the parameters derived from the abovementioned equations, we used our hybrid mESC scRNA-seq data and the SCALE software (version 1.3.0) that enables the estimation of the burst frequency and burst size per allele using a Poisson-Beta hierarchical model (40). Because the SCALE software always sets the RNA degradation rate to 1, the resulting parameters can be considered as RNA degradation ratenormalized parameters. Therefore, for comparison, the burst frequency calculated from intrinsic noise was divided by the RNA degradation rate to obtain RNA degradation ratenormalized burst frequency (see above formula). The SCALE- and intrinsic noisebased parameters were well correlated (R > 0.8; fig. S2, F to K), suggesting that the burst size and burst frequency calculated using intrinsic noise are valid. In hybrid cells, as the expression levels of alleles can vary depending on the polymorphisms present in the genome (41), a three-step normalization was used before the calculation as mentioned above. To determine whether the intrinsic noise measured by scRNA-seq of hybrid mESCs indicates true gene expression noise, we integrated GFP and iRFP reporter genes separately into both alleles of 25 genes in an inbred mESC line (KI mESC lines; Fig. 1H and fig. S3). Using these cell lines, the mean expression levels and normalized intrinsic noise of the 25 genes were measured by smFISH, resulting in a significant correlation with scRNA-seqbased measurements (Fig. 1, I and J; table S3). These validation experiments also confirmed the conclusions derived from the intrinsic noise calculation.

As noted above, TMM normalization, commonly used in bulk RNA-seq analysis, was used to normalize the global allelic bias in expression levels of scRNA-seq. TMM normalization is based on the construction of the size factor, which represents the ratio at which each cell is normalized by a reference cell constructed by some kind of averaging across all other cells per cell. scRNA-seq generally has fewer reads per sample and is prone to generate dropout events, where expressed transcripts stochastically appear to have zero reads due to technical limitations. Therefore, the size factors of TMM may be inappropriately large or equal to zero when applied to scRNA-seq. Hence, normalization methods optimized for scRNA-seq have been developed (42). To validate our use of TMM normalization on scRNA-seq data, we normalized scRNA-seq data using scran (http://bioconductor.org/packages/release/bioc/html/scran.html; version 1.14.5), a normalization tool optimized for scRNA-seq data. We then used the scran-normalized data to calculate intrinsic noise and compare the results with those previously obtained through TMM normalization. Among the transcripts with an average expression level of more than 20, the average expression (R = 0.97), intrinsic noise (R = 0.95), and normalized intrinsic noise (R = 0.94) derived from TMM-normalized dataset were highly correlated with those from scran-normalized dataset. TMM, scran, and other scRNA-seqoptimized normalization methods have been reported to not show large differences in performance when there are relatively few DE genes among samples (42). In this case, the target dataset for normalization is derived from cells of the same cell type in the G1 phase; therefore, the difference in expression levels between samples is considered to be relatively small. Hence, we consider the use of TMM normalization appropriate to calculate intrinsic noise in this case.

It is thought that the RNA detected by smFISH is not a specific transcript and contains multiple transcript variants. Therefore, intrinsic noise data calculated using transcript-level count data could not be compared to those from smFISH data. To solve this problem, scRamDA-seq data for each transcript were summed up for each gene, and intrinsic noise was recalculated. For this purpose, global allelic bias in expression level was first normalized as described above. Then, data of each transcript were summed up for each gene at this time point. Next, the read counts were normalized between alleles at each gene by the normalize.quantiles.robust method using the Bioconductor preprocessCore package. Furthermore, correction was made so that the mean read counts among the alleles were consistent as described above. From these read count matrices, the intrinsic noise for each gene can be calculated as described above. Data with intrinsic noise below Poisson noise were excluded from the downstream analysis. To investigate the factors involved in the intrinsic noise and bursting properties independent of expression level, the count normalized log ratios of intrinsic noise were calculated as the residual of a regression line that is calculated using a dataset with more than 1 mean read counts. Then, the count and gene length normalized log ratios of intrinsic noise were calculated as the residual of a regression line. We call these read count and gene length normalized intrinsic noise simply normalized intrinsic noise. The burst size (b) and burst frequency (f) of each gene can be estimated as described above.

We used FindM (https://ccg.epfl.ch/ssa/findm.php) to determine whether a sequence of 50 bp upstream from the TSS of transcripts, with an average read count of more than 20 in our scRNA-seq, contained a TATA box.

We used bioinformatics tools freely available on Galaxy Project platform (https://galaxyproject.org/). Various ChIP-seq data were obtained from the bank listed in table S4. Then, we mapped them to mm10 genome with Bowtie (Galaxy version 1.1.2) and converted them to bam file with SAM-to-BAM tool (Galaxy version 2.1). Reads per million mapped reads (RPM) data from 1000 to +100 from TSS and gene body of individual transcripts were analyzed by ngs.plot (version 2.61; https://github.com/shenlab-sinai/ngsplot). Of these, extreme outliers (100 times the average value) were excluded from analysis. In addition, we also considered the replication timing, promoter proximal pausing of RNA Pol II, considered to be related to the characteristics of transcriptional bursting. To determine the pausing index of Pol II, GRO-seq (global run-on sequencing) data in mESCs were used [Gene Expression Omnibus (GEO) ID: GSE48895]. We obtained the fastq file from the bank [ENA (European Nucleotide Archive) accession number (fastq.gz): PRJNA 21123]. As described previously, after removing the adapter sequence with the Cutadapt tool (version 2.4; https://cutadapt.readthedocs.io/en/stable/index.html), reads were mapped to mm10 genome with Bowtie (Galaxy version 1.1.2) and converted to bam file with SAM-to-BAM tool (Galaxy version 2.1). These data were analyzed with the pausingIndex function of the groHMM tool (size, 500; up, 250; down, 250; http://bioconductor.org/packages/release/bioc/html/groHMM.html; version 1.10.0). Data of replication timing of mESCs were obtained from the following source (GEO ID: GSM450272). Spearmans rank correlation coefficient between either normalized intrinsic noise, burst size, or burst frequency and either promoter or gene body localization degree (RPM) of various factors at the upper and lower 5% transcripts of normalized intrinsic noise, burst size, and burst frequency was calculated. Next, the promoter-interacting distal enhancers were considered. Enhancers are believed to regulate gene expression by physical interaction with the promoter (10). Candidate distal cis-regulatory elements that interact with specific genes have been identified using capture Hi-C in mESCs (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0727-9). These data contain regions that interact with promoters and may include insulators and other elements in addition to enhancers. To identify the enhancers from regions that interact with the promoter of a particular gene, we manually screened for enhancers with relatively high RPM of H3K27ac ChIP-seq (RPM > 1.5; fig. S2L). Using these data, the RPM of other ChIP-seq data was calculated in the same manner as mentioned above in the candidate enhancers. Extreme outliers (with values 100 times the average) were excluded from the analysis. These enhancer data do not correspond to each transcript; instead, they rather correspond to each gene. Thus, the intrinsic noise, burst size, and burst frequency calculated using the gene-level count data were applied at this stage. Spearmans rank correlation coefficient of normalized intrinsic noise, burst size, and burst frequency with localization degree (RPM) of various factors in the upper and lower 5% enhancer of normalized intrinsic noise, burst size, and burst frequency of corresponding genes were calculated.

First, we classified promoter- and gene bodyassociated features of high (either intrinsic noise, burst size, or burst frequency) transcripts into 10 clusters. Then, to identify the most contributing features for characterization of a cluster of high transcripts (either intrinsic noise, burst size, or burst frequency) against low transcripts (either intrinsic noise, burst size, or burst frequency), we performed OPLS-DA modeling using ropls R package with 500 random permutations (version 1.8.0; https://bioconductor.org/packages/release/bioc/html/ropls.html). One predictive component and one orthogonal component were used. To find the most influential variables for separation of high groups (either intrinsic noise, burst size, or burst frequency) against low groups (either intrinsic noise, burst size or burst frequency), an S-plot with loadings of each variable on the x axis and correlation of scores to modeled x matrix [p(corr)[1]=Corr(t1,X),t1 = scores in the first predictive component] on the y axis was constructed. Three each of the top and bottom variables with absolute value of loadings were selected.

After primer trimming with the Cutadapt software (https://cutadapt.readthedocs.io/en/stable/guide.html), read counts were generated and statistical analysis was performed using MAGeCK (v0.5.5) (https://sourceforge.net/p/mageck/wiki/Home/). DE scores were calculated from the gene-level significance returned by MAGeCK with the following formula: DE score = log10(gene-level depletion P value) log10(gene-level enrichment P value). Genes with allelically normalized mean read count less than 10 from scRamDA-seq analysis were excluded from the downstream analysis. Then, genes were ranked by DE score. Subsequently, the top and bottom 100 genes were subjected to KEGG pathway enrichment analysis using an R package, clusterProfiler (v3.9.2; https://github.com/GuangchuangYu/clusterProfiler).

mRNA half-life can be determined using the following equation (37)T12=tln(2)ln(111+existingtotalnewtotal)where t, existing, new, and total indicate the 4sU treatment time and amounts of existing, newly synthesized, and total RNA, respectively. Here, t is 1/3; new/total is 1 (existing/total)T12=13ln(2)ln(111+existingtotal1existingtotal)(1)

All samples contained spike-in RNA. Because they are unlabeled by 4sU and biotin, they are not trapped by streptavidin beads, except for nonspecific adsorption and technical loss. Therefore, by normalization with the amount of spike-in RNA in total and unbound (existing), the true ratio of total and unbound transcript can be obtained using the following equationNorm.Ratio(existing/total)=[unbound(target)/unbound(spikein)]/[total(target)/total(spike-in)]=[unbound(target)/total(target)]/[unbound(spike-in)/total(spike-in)]

Unbound (target)/total (target) and unbound (spike-in)/total (spike-in) can be obtained by qPCR. Although most of the genes showed Norm.Ratio(existing/total) of more than 1, this is theoretically impossible (fig. S6B). It is possible that reverse transcription efficiency is drastically decreased by biotinylation of RNA. Here, we assumed that the presence of biotinylated RNA during reverse transcription may trap reverse transcriptase and that the efficiency of reverse transcription is further reduced globally. We assume that the global suppression effect of reverse transcriptase trapping is Ig (global inhibitory effect). Moreover, the reverse transcription inhibitory effect of biotinylated RNA itself is defined as Is. Also, we defined N, E, T, and Reff as the amount of biotinylated (newly synthesized) RNA, the amount of existing unbiotinylated RNA, the amount of reverse transcriptase, and reverse transcription efficiency of reverse transcriptase, respectively. From these definitions, the cDNA amount derived from total and existing RNA can be determined by the following equationstotalcDNA=ETReffIg+NTReffIgIsexistingcDNA=ETReffexistingcDNAtotalcDNA=EEIg+NIgIs=EIg(E+NIs)(2)

Next, a known value is introduced into Eq. 1 to solve coefficients. The half-life of Nanog mRNA under Std conditions has been reported to be approximately 4.7 hours (20). Therefore, the ideal ratio of existing/total Nanog mRNA amount is approximately 0.95203. In this case, the ideal relationship between newly synthesized and existing RNA is as followsEE+N=0.95203N=0.0503871E

The mean ratio of existing/total Nanog cDNA revealed by qPCR was 3.436867. Therefore, the relationship between Is and Ig is as follows from Eq. 2Ig=0.2909630.0503871Is+1

To determine the appropriate value of Is, several values were assigned to Is, and mRNA half-lives in the Std condition were compared with the previously reported mRNA half-lives (fig. S6C) (23). We found that the scaling of mRNA half-lives in the Std condition and that of previously reported mRNA half-lives were quite similar when Is is 0.1 and Ig is 0.289. Using Eqs. 1 and 2, the half-lives of mRNA can be obtained on the basis of the data using the value obtained from qPCR (fig. S6D). No significant difference in mRNA half-life was observed between Std and PD-MK conditions for the genes examined.

Read the original post:
Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells - Science Advances

Stem Cells Without Ethical Implications Are Ready for the Spotlight – Press Release – Digital Journal

Induced Pluripotent Stem Cells Forming an Emerging Market

WELLESLEY, Mass. - June 16, 2020 - (Newswire.com)

The global market for induced pluripotent stem cells (iPSCs), should reach $3.8 billion, growing 9.2% annually, according to the latest report by BCC Research, Induced Pluripotent Stem Cells: Global Markets.

iPSCs are reprogrammed cells from a patients body and are not harvested from embryos, thus avoiding the ethical debates associated with embryonic stem cells. Like other stem cells, they hold the immense promise of transforming into various types of human tissue cells and potentially representing highly effective treatments for serious illnesses.

Report Highlights

Read the full report here: https://www.bccresearch.com/market-research/biotechnology/induced-pluripotent-stem-cells-report.html

As a breakthrough technology recognized by the Nobel Prize in Physiology or Medicine 2012, iPSCstechnology has brought a revolutionary change to modern medicine, write BCC Research analysts. iPSC-related products are forming an emerging market despite the fact that clinical applications are still at their early stage. The potential scope of the iPSC market is becoming clear.

About BCC Research BCC Research publishes market research reports that provide organizations with intelligence to drive smart business decisions. By partnering with industry experts worldwide, BCC Research provides unbiased measurements and assessments of global markets covering current and emerging industrial and technology sectors. For more information about BCC Research, visit bccresearch.com.

Press Release Service by Newswire.com

Original Source: Stem Cells Without Ethical Implications Are Ready for the Spotlight

View post:
Stem Cells Without Ethical Implications Are Ready for the Spotlight - Press Release - Digital Journal