Thapa R, Khanal S, Tan HS, Thapa SS, van Rens G. Prevalence, pattern and risk factors of retinal diseases among an elderly population in Nepal: the Bhaktapur retina study. Clin Ophthalmol. 2020;14:210918.
PubMed PubMed Central Google Scholar
Chen TC, Huang DS, Lin CW, Yang CH, Yang CM, Wang VY, et al. Genetic characteristics and epidemiology of inherited retinal degeneration in Taiwan. NPJ Genom Med. 2021;6(1):16.
Article CAS PubMed PubMed Central Google Scholar
Fleckenstein M, Schmitz-Valckenberg S, Chakravarthy U. Age-related macular degeneration: a review. JAMA. 2024;331(2):14757.
Article CAS PubMed Google Scholar
Tang Z, Zhang Y, Wang Y, Zhang D, Shen B, Luo M, et al. Progress of stem/progenitor cell-based therapy for retinal degeneration. J Transl Med. 2017;15(1):99.
Article PubMed PubMed Central Google Scholar
Molday RS, Zhang K. Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res. 2010;49(4):47692.
Article CAS PubMed PubMed Central Google Scholar
Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40.
Article PubMed PubMed Central Google Scholar
Mody S, Joshi A. Age-related macular degeneration and its association with neurodegenerative disorders. Cureus. 2023;15(2): e34920.
PubMed PubMed Central Google Scholar
Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration. Med Clin North Am. 2021;105(3):47391.
Article PubMed Google Scholar
Liu W, Liu S, Li P, Yao K. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies. Int J Mol Sci. 2022;23(9):4883.
Article CAS PubMed PubMed Central Google Scholar
Wu X, Yan N, Zhang M. Retinal degeneration: molecular mechanisms and therapeutic strategies. Curr Med Chem. 2022;29(40):612540.
Article CAS PubMed Google Scholar
Walia S, Fishman GA. Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 2009;30(2):638.
Article PubMed Google Scholar
Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology. 2003;110(6):11518.
Article PubMed Google Scholar
Sharma A, Jaganathan BG. Stem cell therapy for retinal degeneration: the evidence to date. Biologics. 2021;15:299306.
PubMed PubMed Central Google Scholar
ner A. Stem cell treatment in retinal diseases: recent developments. Turk J Ophthalmol. 2018;48(1):338.
Article MathSciNet PubMed PubMed Central Google Scholar
Huang X, Gao H, Xu H. Editorial: stem cell-based therapy in retinal degeneration. Front Neurosci. 2022. https://doi.org/10.3389/fnins.2022.879659.
Article PubMed PubMed Central Google Scholar
Hinkle JW, Mahmoudzadeh R, Kuriyan AE. Cell-based therapies for retinal diseases: a review of clinical trials and direct to consumer cell therapy clinics. Stem Cell Res Ther. 2021;12(1):538.
Article CAS PubMed PubMed Central Google Scholar
Soltani Khaboushan A, Shakibaei M, Kajbafzadeh A-M, Majidi ZM. Prenatal neural tube anomalies: a decade of intrauterine stem cell transplantation using advanced tissue engineering methods. Stem Cell Rev Rep. 2022;18(2):75267.
Article PubMed Google Scholar
Barker TH, Stone JC, Sears K, Klugar M, Leonardi-Bee J, Tufanaru C, et al. Revising the JBI quantitative critical appraisal tools to improve their applicability: an overview of methods and the development process. JBI Evid Synth. 2023;21(3):494.
Article PubMed Google Scholar
Shi J, Luo D, Weng H, Zeng X-T, Lin L, Chu H, et al. Optimally estimating the sample standard deviation from the five-number summary. Res Synth Methods. 2020;11(5):64154.
Article PubMed Google Scholar
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.
Article PubMed PubMed Central Google Scholar
Heeren TFC. The eye package for R: a tool to facilitate analysis of ophthalmic data. 2021.
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):103846.
Article CAS PubMed Google Scholar
Arcieri R, Messias K, Castro V, Siqueira R, Jorge R, Messias A. Intravitreal autologous bone-marrow stem cells in retinitis pigmentosa patients: one-year results. Investig Ophthalmol Vis Sci. 2013;54(15):643.
Google Scholar
Arturo J, Perez C, Segura O, Guerrero OS, Bastidas Y, Larios L. Endovascular retinal infusion of bone marrow hematopoietic stem cells for pigmentous retinitis. Cytotherapy. 2014;16:S64.
Article Google Scholar
Banin E, Barak A, Boyer DS, Do DV, Ehrlich R, Jaouni T, et al. Phase I/IIa clinical trial of human embryonic stem Cell (hESC)-derived retinal pigmented epithelium (RPE, OpRegen) transplantation in advanced dry form age-related macular degeneration (AMD): interim results. Investig Ophthalmol Vis Sci. 2019;60(9):6402.
Google Scholar
Beliakouski P, Pozniak N, Kovchel N. The influence of mesechymal stem cells in macular degeneration. Acta Ophthalmol. 2012;90:4.
Google Scholar
Bharti K. Autologous iPSC-derived RPE transplantation for dry AMD. Investig Ophthalmol Vis Sci. 2018;59(9):3906.
Google Scholar
Coffey P. Human embryonic stem cell derived retinal pigment epithelium transplantation in severe exudative age-related macular degeneration: So far so visual. Investig Ophthalmol Vis Sci. 2017;58(8):4770.
Google Scholar
Cotrim CC, Jorge R, Messias A, De Sousa MV, Toscano L, Siqueira RC. Intravitreal autologous bone-marrow stem cells in nonexudative macular degeneration (dry AMD) patients: results after 3 months follow-up. Invest Ophthalmol Vis Sci. 2015;56(7):3783.
Google Scholar
Cotrim CC, Messias AMV, Jorge R, Siqueira RC. Intravitreal use of a bone marrow mononuclear fraction (BMMF) containing cd34+cells in patients with Stargardt type macular dystrophy. Stem Cells Int. 2020. https://doi.org/10.1155/2020/8828256.
Article PubMed PubMed Central Google Scholar
Cotrim CC, Toscano L, Messias A, Jorge R, Siqueira RC. Intravitreal use of bone marrow mononuclear fraction containing CD34+ stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol. 2017;11:9318.
Article PubMed PubMed Central Google Scholar
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):32837.
Article PubMed Google Scholar
DaCruz L, Fynes K, Georgiadis O, Nommiste B, Carr AJF, Ramsden C, et al. Improvement and stabilization of vision for 18 months after Human Embryonic Stem-cell (hESC) derived, RPE-sheet transplantation on a synthetic basement membrane for trestment of severe, wet age-related macular degeneration. Investig Ophthalmol Visual Sci. 2018;59(9):2985.
Google Scholar
De Sousa MV, Jorge R, Messias A, Cotrim CC, Rodrigues MW, Siqueira RC. Intravitreal autologous bone marrow derived stem cells in ischemic macular edema-results after 6 months follow-up. Invest Ophthalmol Vis Sci. 2015;56(7):4718.
Google Scholar
Francis PJ, Birch DG, Davis JL, Lam BL, Spencer R, Stout JT, et al. A phase 1 open-label, non-comparative study evaluating the safety of a single, unilateral subretinal administration of CNTO2476 (human umbilical tissue-derived cells hUTC ) in advanced retinitis pigmentosa (RP). Investig Ophthalmol Vis Sci. 2010;51(13):4789.
Google Scholar
Garca Inesta N, Iniesta F, Garca AV, Marn JM, Garca C, Rodrguez M, et al. Intravitreal injection of autologous bone marrow stem cells in retinitis pigmentosa patients. preliminary results of a phase I clinical trial. Bone Marrow Transplant. 2016;51:S3178.
Google Scholar
Georgiadis O, Fynes K, Luo Y, Nommiste B, Zhong J, Ramsden C, et al. Human embryonic stem Cell-derived retinal pigment epithelium sheet transplantation in severe neovascular age-related macular degeneration: 18-month survival and structural outcomes. Investig Ophthalmol Vis Sci. 2018;59(9):2984.
Google Scholar
Heier JS, Ho AC, Samuel MA, Chang T, Riemann CD, Kitchens JW, et al. Safety and efficacy of subretinally administered palucorcel for geographic atrophy of age-related macular degeneration phase 2b study. Ophthalmol Retina. 2020;4(4):38493.
Article PubMed Google Scholar
Ho AC, Chang TS, Samuel M, Williamson P, Willenbucher RF, Malone T. Experience with a subretinal cell-based gossmark therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol. 2017;179:6780.
Article PubMed Google Scholar
Jain V, Kadam S. Bestrophinopathies: fighting blindness with stem cells. Cytotherapy. 2018;20(5):S42.
Article Google Scholar
Kahraman NS, Oner A. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol. 2020;13(9):14239.
Article PubMed PubMed Central Google Scholar
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, et al. One-year follow-up in a phase 1/2a clinical trial of an allogeneic rpe cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol. 2021;10(10):13.
Article PubMed PubMed Central Google Scholar
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.
Article PubMed Google Scholar
Kashani AH, Uang J, Mert M, Rahhal F, Chan C, Avery RL, et al. Surgical method for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy: experience from a phase 1/2a study. Ophthalmol Retina. 2020;4(3):26473.
Article PubMed Google Scholar
Kumar A, Midha N, Mohanty S, Chohan A, Seth T, Gogia V, et al. Evaluating role of bone marrow-derived stem cells in dry age-related macular degeneration using multifocal electroretinogram and fundus autofluorescence imaging. Int J Ophthalmol. 2017;10(10):15528.
PubMed PubMed Central Google Scholar
Kuppermann BD, Boyer DS, Mills B, Yang J, Klassen HJ. Safety and activity of a single, intravitreal injection of human retinal progenitor cells (jCell) for treatment of retinitis pigmentosa. Investig Ophthalmol Vis Sci. 2018;59(9):2987.
Google Scholar
Kwon NJ, Song W, Choi J, Chung SY, Kim HJ, Lee JH. The embryonic stem cell derived retinal pigment epithelial cell trial for Stargardt macular dystrophy: preliminary phase 1 results in Asian. Acta Ophthalmol. 2014. https://doi.org/10.1111/j.1755-3768.2014.F017.
Article Google Scholar
Li SY, Liu Y, Wang L, Wang F, Zhao TT, Li QY, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years follow-up. Cell Prolif. 2021. https://doi.org/10.1111/cpr.13100.
Article PubMed PubMed Central Google Scholar
Liao D, Boyer DS, Kaiser P, Kuppermann BD, Heier J, Mehta M, et al. Intravitreal injection of allogeneic human retinal progenitor cells (hRPC) for treatment of retinitis pigmentosa: a prospective randomized controlled phase 2b trial. Investig Ophthalmol Vis Sci. 2021;62(8):3240.
Google Scholar
Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget. 2016;7(30):4691323.
Article PubMed PubMed Central Google Scholar
Limoli PG, Limoli CSS, Morales MU, Vingolo EM. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: Clinical and rehabilitative prognostic aspects. Restor Neurol Neurosci. 2020;38(3):22337.
See the rest here:
Cell therapy for retinal degenerative disorders: a systematic review and three-level meta-analysis - Journal of ... - Journal of Translational...