Author Archives: admin


Characterization and Immunomodulation of Canine Amniotic Membrane Stem | SCCAA – Dove Medical Press

Alessandra de Oliveira Pinheiro,1 Valria M Lara,1 Aline F Souza,1 Juliana B Casals,2 Fabiana F Bressan,1 Paulo Fantinato Neto,1 Vanessa C Oliveira,1 Daniele S Martins,1 Carlos E Ambrosio1

1Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of So Paulo, Pirassununga, So Paulo, Brazil; 2Private Veterinary Practice, Pirassununga, So Paulo, Brazil

Correspondence: Carlos E AmbrosioDepartment of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of So Paulo, FZEA- Av. Duque de Caxias Norte, 225, ZMV, Pirassununga 13635-900, So Paulo, BrazilTel +55 19 3565-4113 Email ceambrosio@usp.br

Purpose: Amniotic membrane stem cells have a high capacity of proliferation, cell expansion, and plasticity, as well as immunomodulatory properties that contribute to maternal-fetal tolerance. Owing to the lack of research on human amniotic membrane at different gestational stages, the canine model is considered ideal because of its genetic and physiological similarities. We aimed to characterize the canine amniotic membrane (CAM) cell lineage in different gestational stages and evaluate the expression of immunomodulatory genes.Materials and Methods: Twenty CAMs from early (20 30 days) (n=7), mid- (31 45 days) (n=7), and late gestation (46 63 days) (n=6) stages were studied. The cell features were assessed by cell viability tests, growth curve, colony-forming units, in vitro differentiation, cell labeling for different immunophenotypes, and pluripotent potential markers. The cells were subjected to RT-PCR and qPCR analysis to determine the expression of IDO, HGF, EGF, PGE2, and IL-10 genes.Results: CAM cells exhibited a fibroblastoid morphology and adherence to plastic with an average cell viability of 78.5%. The growth curve indicated a growth peak in the second passage and we obtained an average of 138.2 colonies. Osteogenic, chondrogenic, and adipogenic lineages were confirmed by in vitro differentiation assays. Cellular immunophenotyping experiments confirmed the presence of positive mesenchymal markers (CD90 and CD105) and the low or negative expression of hematopoietic markers (CD45 and CD34). Qualitative analysis of the immunomodulatory functions indicated the expression of the IDO, HGF, EGF5, and PGE2 genes. When stimulated by interferon-gamma, CAM cells exhibited higher IDO levels throughout gestation.Conclusion: The CAMs from different gestational stages presented features consistent with mesenchymal stem cell lineage; better results were observed during the late gestation stage. Therefore, the gestational stage is a key factor that may influence the functionality of therapies when using fetal membrane tissues from different periods of pregnancy.

Keywords: canine stem cells, immunomodulation, fetal annexes

This work is published by Dove Medical Press Limited, and licensed under a Creative Commons Attribution License.The full terms of the License are available at http://creativecommons.org/licenses/by/4.0/.The license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Link:
Characterization and Immunomodulation of Canine Amniotic Membrane Stem | SCCAA - Dove Medical Press

Lineage Cell Therapeutics Reports New Data With OpRegen for the Treatment of Dry AMD With Geographic Atrophy – BioSpace

CARLSBAD, Calif.--(BUSINESS WIRE)-- Lineage Cell Therapeutics, Inc. (NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, today announced that updated results from a Phase I/IIa study of its lead product candidate, OpRegen, a retinal pigment epithelium (RPE) cell transplant therapy currently in development for the treatment of dry age-related macular degeneration (AMD), were published online via the ARVOLearn platform as part of the 2020 Association for Research in Vision and Ophthalmology (ARVO) Meeting. The presentation entitled, Phase I/IIa Clinical Trial of Human Embryonic Stem Cell (hESC)-Derived Retinal Pigmented Epithelium (RPE, OpRegen) Transplantation in Advanced Dry Form Age-Related Macular Degeneration (AMD): Interim Results (Abstract # 3363764), was presented by Christopher D. Riemann, M.D., Vitreoretinal Surgeon and Fellowship Director, Cincinnati Eye Institute (CEI) and University of Cincinnati School of Medicine. Dr. Riemanns presentation is available on the Media page of the Lineage website. Lineage will also host a live call with Dr. Riemann, on Monday, May 11, 2020 at 5:00 p.m. ET/2:00 p.m. PT to further discuss the results of treatment with OpRegen. Interested parties can access the call on the Events and Presentations section of Lineages website.

This update is significant as it builds on our earlier reports of gains in visual acuity and provides a more comprehensive picture of treatment with OpRegen for dry AMD, with meaningful improvements in the progression of geographic atrophy, visual acuity, and reading speed observed in our first Cohort 4 patient and first Orbit SDS with thaw-and-inject formulation dosed patient, stated Brian M. Culley, Lineage CEO. As dry AMD is a slow and progressive disease, it takes many months to observe changes to retinal anatomy or visual acuity. With the benefit of longer follow-up, we now can report that some OpRegen treated patients are able to see better, have less growth in their area of GA, and are able to read faster, all of which represent significant enhancements to vision and quality of life metrics. In addition to these individual results, the pooled data continues to suggest a treatment effect in both visual acuity and GA progression. Notably, we also are reporting additional evidence that OpRegen cells remain present for at least 4 years and hope that longer follow-up periods will reinforce a growing body of evidence that OpRegen is well-tolerated and can provide sustained and clinically meaningful benefits with a single dose of RPE cells. Our near-term objective is to treat and monitor the final four patients in Cohort 4 of the current study and utilize these data to direct our clinical, regulatory, and partnership discussions. Our goal is to combine the best cell line, the best production process, and the best delivery system, to position OpRegen as the front-runner in the race to address the unmet need in the potential billion-dollar dry AMD market.

As a principal investigator on the OpRegen clinical study, I am excited to present this most recent update, where all Cohort 4 patients treated with OpRegen had improved Best Corrected Visual Acuity up to one year or at their last visit, demonstrating a substantial treatment response, stated Christopher D. Riemann, M.D. The pooled Cohort 4 data demonstrate a significant, greater than 10-letter sustained visual acuity improvement over the entire followup period. Reading center assessments of GA also suggest a reduction in GA progression in the OpRegen treated eye when compared to fellow eye in Cohort 4. I am encouraged by the results observed in patients treated to date with OpRegen and I look forward to dosing patients in this study at CEI.

KOL Call Information and Webcast

Lineage will host a conference call with Dr. Riemann, on Monday, May 11, 2020 at 5:00 p.m. ET/2:00 p.m. PT to further discuss the results following treatment with OpRegen. A live webcast of the conference call will be available online in the Events and Presentations section of Lineages website. Interested parties may also access the conference call by dialing (866) 888-8633 from the U.S. and Canada and (636) 812-6629 from elsewhere outside the U.S. and Canada and should request the Lineage Cell Therapeutics Call. A replay of the webcast will be available on Lineages website for 30 days and a telephone replay will be available through May 19, 2020, by dialing (855) 859-2056 from the U.S. and Canada and (404) 537-3406 from elsewhere outside the U.S. and Canada and entering conference ID number 6597936.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include three allogeneic (off-the-shelf) product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; and (iii) VAC2, a cancer immunotherapy of antigen-presenting dendritic cells in Phase 1 development for the treatment of non-small cell lung cancer. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

Forward-Looking Statements

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to Lineages objectives with respect to OpRegen. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 12, 2020 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200506005264/en/

See the original post:
Lineage Cell Therapeutics Reports New Data With OpRegen for the Treatment of Dry AMD With Geographic Atrophy - BioSpace

Navigating cancer as a young adult: ‘I’m trying to figure out who I am’ – Stanford Medical Center Report

When David Llano was diagnosed with leukemia in June 2014, the news came as a shock.

Then 17, Llano had just finished his junior year of high school, and he was looking forward to a summer of hanging out with friends. Instead, he was immediately hospitalized at Lucile Packard Children's Hospital Stanford.

For the next few months, he was extremely ill, as he received chemotherapy treatments and eventually a stem cell transplant.

I wrote about his experience in a feature story for Stanford Medicine magazine. As the article explains, teens and young adults with cancer face biological and psychosocial challenges distinct from those of other cancer patients, both in treatment and as they recover.

During my reporting, I spoke with Stanford child and adolescent psychologist Emily Ach, PhD, who frequently works with teens who have cancer.

"The rift between the patient's experience and what's happening with their peer group is a real challenge to figure out," she told me.

Llano said he felt this rift when he returned to high school four months after his diagnosis. From the story:

The first day back at school was harder -- weirder, really -- than he expected.

"People I didn't even know would go up to me and hug me, be really touchy with me," he said. "All the kids pitied me."

His experience isn't unusual, psychologist Ach said. "Maybe at college reentry, kids are more sensitive and appropriate, but not necessarily," she said. "In high school, they're pretty reliably not, and being different in any way is really hard."

When Ach is helping patients prepare to return to school, she reminds them that although many aspects of having cancer are outside of their control, they get to choose how much information about their illness to share.

"Kids vary widely in terms of how open they want to be," Ach told me. For instance, some teens are comfortable responding to a question about a scar by saying, "Oh, I was treated for leukemia. That's where I had a port for my chemo." Others might prefer to say, "I don't really want to talk about it. I was sick, and I had a medical procedure."

Regardless of the specifics, planning responses for awkward questions helps, Ach said. "For a lot of kids, coming up with that on the spot is really hard, and the potential to be caught off-guard is so anxiety-provoking," she said.

Like many young cancer patients, Llano initially had trouble seeing what his future would hold: "You don't really have an identity," he said. "You're like, 'I have cancer and I'm trying to figure out who I am.'"

He kept up a few close friendships from before his illness, but decided to complete his senior year of high school at the hospital school at Packard Children's. There, other students had their own challenging medical journeys and wouldn't be surprised by what he'd been through.

Llano also became active in peer advising at the hospital, helping other teens navigate the challenges of cancer.

He is now in good health and planning a career as a child-life specialist.

Photography, including image of cancer survivor David Llano at his Sunnyvale home, by Timothy Archibald

Read the rest here:
Navigating cancer as a young adult: 'I'm trying to figure out who I am' - Stanford Medical Center Report

Orgenesis leads the charge at an exciting time for cell and gene therapy – Proactive Investors USA & Canada

OrgenesisInc () is a global biotech groupfocused on unlocking the potential of personalized therapies and closed processing systems through its cell and gene therapy platform.

The Germantown, Maryland-based companys aim is to provide life-changing treatments at the point-of-care to patients at low cost. It's Cell and Gene Therapy Biotech (CGT) platform has three key elements. The first revolves around point-of-care therapeutics, which consists of a pipeline of licensed cell and gene therapies and scientific knowhow. The second aspect relates to point-of-care technologies, which include a suite of in-licensed technologies engineered to create customized processing systems for affordable therapies.

Finally, the third component rests on a point-of care network, which is a collaborative, international ecosystem of leading research institutes and hospitals committed to supplying cell and gene therapies at the patient bedside. It is an intricate web of affiliated pre-clinical and clinical-stage biopharmaceutical companies, research institutions and hospitals through which Orgenesis is able to in-license technologies or advanced therapy medicinal products (ATMPs) and co-develop them with its partners.

On February 11, 202, Orgenesis completed the sale of subsidiary Masthercell Global Inc, a contract development manufacturing organization (CDMO), to Somerset, New Jersey-based Catalent Pharma Solutions, for around $127 million.

The successful sale has spotlighted Orgenesis boss Vered Caplans considerable leadership skills. She has since been named one of the top 20 inspirational leaders in the field of advanced medicine by The Medicine Maker, which creates an annual Power List of the worlds top drugmakers.

Caplan acquired Masthercell in March 2015 and grew the CDMO segment revenue from a run-rate of just $3 million to a run-rate of around $30 million at the end of 2019, reflecting a compound annual growth rate of 59% under her leadership, and a sale price of more than five times the initial purchase price of around $25 million. Caplan has indicated that she plans to use theMasthercell sale proceeds to grow the groups evolving point-of-care cell therapy business and develop advanced therapy medicinal products.

Orgenesis posted strong financial results for the year ended December 31, 2019, driven by its rapidly expanding point-of-care cellular therapy platform and new collaborations.

Gross profit jumped by 92% to $15 million in fiscal 2019, compared to $7.8 million for fiscal 2018. Gross profit soared 92% to $15 million in FY2019, compared to $7.8 million for FY 2018. The companys growth strategy is working as the point-of-care platform generated $3.1 million in sales, compared to nothing in FY 2018.

The company had cash and equivalents of $11.4 million at the end of 2019, which did not include the $127 million from the sale of its CDMO business in February.

Orgenesis is using theMasthercell sale proceeds to expand the companys point-of-care cell therapy business. Currently, the costs of cell and gene therapies are prohibitive, as illustrated by CAR-T therapies, which cost hundreds of thousands of dollars per patient, per year. To lower costs, Orgenesis is switching from a high-cost centralized manufacturing model to a localized point-of-care model.

The biotech is currently focused on therapies which span a wide range of treatments, such as cell-based immunotherapies, treatments for metabolic and neurodegenerative diseases and tissue regeneration.

At the start of April, Orgenesis teamed up with regenerative medicine and cell therapy firm RevaTis on a new joint venture to produce certain stem cells. The two firms plan to leverage Orgenesiss autologous Cell and Gene Therapy Biotech platform to advance clinical trials. Under the deal, RevaTis and Orgenesis will use the formers patented technique to obtain muscle-derived mesenchymal stem cells (mdMSC) as a source of exosomes and various other cellular products. Orgenesis and RevaTis are hoping to build on RevaTiss early success in animals to develop therapies and advance human trials using Orgenesiss expertise and point-of-care platform, which include automated systems, 3D printing and bioreactor technologies.

Meanwhile, Orgenesis and ExcellaBio have developed a breakthrough manufacturing process for so-called bioxomes, which are synthetically made exosomes or extracellular vesicles (EVs). The latter are what transfer DNA, RNA, and proteins to other cells, thereby altering the function of targeted cells. Until now, exosome/EV production has been based on conventional, complex and costly methods of ultracentrifugation or ultrafiltration. However, the two companies have demonstrated the scale up of Bioxomes through a proprietary technique, while generating consistent and repeatable results, including uniform particles sizes.

Orgenesisrecently completed the acquisition of Tamir Biotechnology and its broad spectrum antiviral platform, ranpirnase in a cash and stock deal for roughly $21 million. The company will use ranpirnase to target human papillomavirus (HPV), which causes genital warts. A topical version of ranpirnase was evaluated in Phase 1/2 clinical trials and it demonstrated a clear clinical effect and a good safety profile, the group noted.

Going forward, Orgenesis said it plans to move the program through a Phase 2b trial in the US. Additionally, the company will undergo a new clinical trial targeting anal dysplasia, a precusor to anal cancer driven by the HPV virus. Ranpirnase is a member of the superfamily of enzymes that cause the degradation of RNA and mediate biological activities, including cell death.

Orgenesis CEO Vered Caplan noted that the company has dramatically transformed since the beginning of 2020 helped by the Masthercell sale.

The sale was an important step in our strategy to leverage our unique capabilities that directly address the key challenges facing the cell and gene therapy industry, Caplan said in a statement.

Our goal is to transform the delivery of cell and gene therapy through our point-of-care therapeutics, technologies and network, thereby lowering costs and unlocking the power of cell and gene through a more decentralized and integrated approach, she added.

Contact the author Uttara Choudhury at[emailprotected]

Follow her onTwitter:@UttaraProactive

Read the rest here:
Orgenesis leads the charge at an exciting time for cell and gene therapy - Proactive Investors USA & Canada

DIABETES RESEARCH INSTITUTE FOUNDATION RECEIVES $3 MILLION GIFT FROM NORTH AMERICA’S BUILDING TRADES UNIONS TO FUND CELL THERAPY FOR COVID-19 -…

Miami, Fla., May 06, 2020 (GLOBE NEWSWIRE) -- The Diabetes Research Institute Foundation (DRIF) today announced a donation of $3 million from North Americas Building Trades Unions (NABTU), to support specific and urgent research on the use of umbilical cord mesenchymal stem cells to treat COVID-19-related inflammation. The generous gift will accelerate needed clinical trials during this challenging time.

On April 5, 2020, the U.S. Food and Drug Administration (FDA) approved mesenchymal stem cell treatments for seriously ill COVID-19 patients as an expanded access compassionate use. Subsequently, Dr. Camillo Ricordi, Director of the Diabetes Research Institute and Cell Transplant Program, opened the first-of-its-kind clinical trial on the use of umbilical cord mesenchymal stem cells (UC-MSC) to treat COVID-19-related inflammation. The critical study will assess the safety and efficacyincluding clinical outcomes and a variety of pulmonary, biochemical, and immunological testsof the intravenous administration of UC-MSCs in patients with severe cases of COVID-19.

NABTU and its members are proud to stand behind the work of Dr. Ricordi, the Diabetes Research Institute team and their partners around the world as they work to find a cure for diabetes and protect the lives of people affected by COVID-19, said NABTU President Sean McGarvey. As COVID-19 cases show severe implications for high-risk individuals and essential workers, Dr. Ricordis DRI research is essential to treating patients who are facing this life-threatening virus. Our work doesnt stop with this $3 million commitment; NABTU and our members have already begun organizing friends and supporters to raise the $30 million Dr. Ricordi says is required to effectively treat the millions of people who need it and will receive it at no cost to them or their families.

For 35 years, North Americas Building Trades Unions membership has supported the Diabetes Research Institute Foundation, and that longstanding commitment has had a significant impact on our quest for a cure for diabetes, said DRI Foundation CEO Sean Kramer. The continued generosity of NABTUs members over the years has helped fund and develop many clinical trials, including the DRIs prior research on UC-MSCs in patients with type 1 diabetes, but todays gift will truly help all Americans in the midst of this pandemic.

As it has been for decades, whenever we need them, the building trades stand in the breach for their countries and communities, Dr. Ricordi said. This generous donation is another example of how this amazing organization leads by example and how leadership and action can make a difference on the path of cures.

The relationship between DRIF and NABTU began with the Blueprint for Cure in 1984, an unprecedented campaign that supported funding of a state-of-the-art center where scientists would have every tool necessary to conduct research to find a cure for diabetes, a disease afflicting many union members and citizens in North America. Through this initiative, the members of the unions funded and built the Diabetes Research Institute facility in Miami, the most comprehensive diabetes research center in the world. Today, NABTU and its members have donated nearly $60 million to support the DRIFs efforts to find a cure for diabetes.

The DRIF is grateful for NABTUs dedication to our mission and cause, and we are especially appreciative of todays gift, Kramer added. Simultaneously, a therapy for COVID-19 and a cure for type one diabetes are within reach.

To learn more about the DRI mission and research for a cure, visit DiabetesResearch.org.

About the Diabetes Research Institute and Foundation

The mission of the Diabetes Research Institute Foundation is to provide the Diabetes Research Institute with the funding necessary to cure diabetes now. The Diabetes Research Institute at the University of Miami Miller School of Medicine leads the world in cure-focused research. As one of the largest and most comprehensive research centers dedicated to curing diabetes, the DRI is aggressively working to develop a biological cure by restoring natural insulin production in people living with the disease. Researchers have already shown that transplanted islet cells allow patients to live without the need for insulin therapy. Some study participants have maintained insulin independence for more than 10 years. The DRI is now building upon these promising outcomes through its BioHub strategy, a multi-pronged approach that addresses the major challenges standing in the way of a cure. For more information, please visit DiabetesResearch.org or call 800-321-3437.

About NABTU

North Americas Building Trades Unions is an alliance of 14 national and international unions in the building and construction industry that collectively represent over 3 million skilled craft professionals in the United States and Canada. Each year, our unions and our signatory contractor partners invest over $1.6 billion in private-sector money to fund and operate over 1,900 apprenticeship training and education facilities across North America that produce the safest, most highly trained, and productive, skilled craft workers found anywhere in the world. NABTU is dedicated to creating economic security and employment opportunities for its construction workers by safeguarding wage and benefits standards, promoting responsible private capital investments, investing in renowned apprenticeship and training, and creating pathways to the middle class for women, communities of color and military veterans in the construction industry. For more information, please visit http://www.nabtu.org, and to learn more about the building trades efforts during this pandemic, please follow the hashtag #buildingtradeswhateverittakes.

###

See the rest here:
DIABETES RESEARCH INSTITUTE FOUNDATION RECEIVES $3 MILLION GIFT FROM NORTH AMERICA'S BUILDING TRADES UNIONS TO FUND CELL THERAPY FOR COVID-19 -...

End-use Industries of Stem Cell Assay Product Witness Unparalleled Slowdown Induced by Global Outbreak of COVID-361 – 3rd Watch News

In 2029, the Stem Cell Assay market is spectated to surpass ~US$ xx Mn/Bn with a CAGR of xx% over the forecast period. The Stem Cell Assay market clicked a value of ~US$ xx Mn/Bn in 2018. Region is expected to account for a significant market share, where the Stem Cell Assay market size is projected to inflate with a CAGR of xx% during the forecast period.

In the Stem Cell Assay market research study, 2018 is considered as the base year, and 2019-2029 is considered as the forecast period to predict the market size. Important regions emphasized in the report include region 1 (country 1, country2), region 2 (country 1, country2), and region 3 (country 1, country2).

The report on the Stem Cell Assay market provides a birds eye view of the current proceeding within the Stem Cell Assay market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Stem Cell Assay market and offers a clear assessment of the projected market fluctuations during the forecast period.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2543934&source=atm

Global Stem Cell Assay market report on the basis of market players

The report examines each Stem Cell Assay market player according to its market share, production footprint, and growth rate. SWOT analysis of the players (strengths, weaknesses, opportunities and threats) has been covered in this report. Further, the Stem Cell Assay market study depicts the recent launches, agreements, R&D projects, and business strategies of the market players including

The following manufacturers are covered:GE HealthcarePromega CorporationThermo Fisher ScientificMerck KGaACell BiolabsHemogenixStemcell TechnologiesBio-Rad LaboratoriesBio-Techne CorporationCellular Dynamics International

Segment by RegionsNorth AmericaEuropeChinaJapanSoutheast AsiaIndia

Segment by TypeDermatology Stem Cell AssayCardiovascular Stem Cell AssayCentral Nervous System Stem Cell AssayOncology Stem Cell AssayOther

Segment by ApplicationRegenerative Medicine & Therapy DevelopmentDrug Discovery and DevelopmentClinical ResearchOther

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2543934&source=atm

The Stem Cell Assay market report answers the following queries:

The Stem Cell Assay market report provides the below-mentioned information:

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2543934&licType=S&source=atm

Research Methodology of Stem Cell Assay Market Report

The global Stem Cell Assay market study covers the estimation size of the market both in terms of value (Mn/Bn USD) and volume (x units). Both top-down and bottom-up approaches have been used to calculate and authenticate the market size of the Stem Cell Assay market, and predict the scenario of various sub-markets in the overall market. Primary and secondary research has been thoroughly performed to analyze the prominent players and their market share in the Stem Cell Assay market. Further, all the numbers, segmentation, and shares have been gathered using authentic primary and secondary sources.

Read more:
End-use Industries of Stem Cell Assay Product Witness Unparalleled Slowdown Induced by Global Outbreak of COVID-361 - 3rd Watch News

FDA Approves Tabrecta, the First Targeted Drug for Patients with Non-Small Cell Lung Cancer and MET exon 14 – Curetoday.com

Tabrecta (capmatinib) will treat patients with metastatic non-small cell lung cancer that has a mutation leading to MET exon 14 skipping. The drug is the first targeted option for patients with lung cancer and this type of mutation.

Tabrecta is the first therapy approved by the FDA specifically to treat NSCLC with mutations that lead to epithelial-mesenchymal transition (EMT), which is MET exon 14 skipping.

Tabrecta is approved for patients who are new to treatment and also those who have received previous therapies, regardless of prior treatment type.

Along with the drug approval, the FDA gave the green light to a companion diagnostic, the FoundationOne CDx assay, which can identify these mutations in patients.

In epithelialmesenchymal transition(EMT), the cells that line an organ lose their polarity and ability to adhere to other cells, giving them the ability to invade tissues and organs. MET exon 14 skipping means that a segment of RNA that should prompt the production of a specific protein stops sending those messages.

The spread of cancer consists of a sequential series of events and MET exon 14 skipping is recognized as a critical event in this process, the FDA stated in a press release about the approval. Mutations leading to MET exon 14 skipping are found in 3% to 4% of patients with lung cancer, the agency stated.

Lung cancer is increasingly being divided into multiple subsets of molecularly defined populations with drugs being developed to target these specific groups, said Dr. Richard Pazdur, director of the FDAs Oncology Center of Excellence and acting director of the Office of Oncologic Diseases in the FDAs Center for Drug Evaluation and Research, in the release.

Taken orally, Tabrecta works by blocking a key protein that drives metastatic NSCLC in these patients. The FDA approved it based on the results of a clinical trial involving patients with NSCLC who had mutations leading to MET exon 14 skipping; their tumors did not express the proteins EGFR or ALK.

The evaluated study population included 28 patients who had never undergone treatment for NSCLC and 69 previously treated patients. The overall response rate (ORR; the percentage of participants who experienced a prespecified amount of tumor shrinkage) for the 28 participants was 68%, with 4% having a complete response and 64% having a partial response.

The ORR for the 69 participants was 41%, with all having a partial response. Of the responding participants who had never undergone treatment for NSCLC, 47% had a duration of response lasting 12 months or longer compared with 32.1% of the responding participants who had been previously treated.

Common side effects for patients taking Tabrecta included swelling of the legs, nausea, fatigue, vomiting, shortness of breath and decreased appetite.

Tabrecta may cause serious side effects including scarring or inflammation of the lungs. It may also cause damage to liver cells or harm a developing fetus or newborn baby. Patients may be more sensitive to sunlight when they take Tabrecta and should take precautions to cover their skin and use sunscreen.

Tabrecta was approved under theFDAs accelerated approval, breakthrough designation and priority review programs, which provide for a quicker review of drugs that treat serious or life-threatening diseases and represent a meaningful advantage over existing treatments.

Continued approval for this indication may be contingent upon verification of these results in confirmatory clinical trials.

Check back for what you need to know regarding this approval.

Read more:
FDA Approves Tabrecta, the First Targeted Drug for Patients with Non-Small Cell Lung Cancer and MET exon 14 - Curetoday.com

What is the Value of iPSC Technology in Cardiac… – The Doctor Weighs In

According to the World Health Organization (WHO), cardiovascular disease, specifically ischemic heart disease, is one of the leading causes of death worldwide. Cardiovascular diseases result in an estimated 17.9 million deaths each year. This is about 31% of all deaths worldwide (1). Medical researchers are continually working on ways to reduce those numbers, including the development of new technologies to combat premature deaths from cardiovascular diseases. This article will focus, in particular, on the value of induced pluripotent stem cells (iPSCs) in cardiac research.

iPSCs are a type of pluripotent stem cell. These are master cells that can differentiate into any cell or tissue the body needs. They are generated directly from somatic cells through ectopic expression of various transcription factors, such as

Theyve become key tools to model biological processes, particularly in cell types that are difficult to access from living donors. Many research laboratories are working to enhance reprogramming efficiency by testing different cocktails of transcription factors.

iPSCs have become essential in a number of different research fields, including cardiac research.

They are a valuable and advantageous technologic development for two main reasons:

Most people have heard of embryonic stem cells, which are one variation of pluripotent cells. Like iPSCs, they can be used to replace or restore tissues that have been damaged.

The problem is that embryonic stem cells are only found in preimplantation stage embryos (3). Whereas iPSCs are adult cells that have been genetically modified to work like embryonic stem cells. Thus, the term, inducedpluripotent stem cells.

The development of iPSCs was helpful because embryos are not needed. This reduces the controversy surrounding the creation and use of stem cells. Further, iPSCs from human donors are also more compatible with patients than animal iPSCs, making them even closer to their embryonic cousins.

The Japanese inventor of iPSCs, Professor Shinya Yamanaka earned a Nobel Prize in 2012 for the discovery that mature cells can be reprogrammed to become pluripotent. (4) The Prize was awarded to Dr. Yamanaka because of the significant medical and research implications this technology holds.

iPSCs hold a lot of promise for transplantation medicine. Further, they are highly useful in drug development and modeling of diseases.

iPSCs may become important in transplantation medicine because the tissues developed from them are a nearly identical match to the cell donors. This can potentially reduce the chances of rejection by the immune system (5).

In the future, and with enough research, it is highly possible that researchers may be able to perfect the iPSC technology so that it can efficiently reprogram cells and repair damaged tissues throughout the body.

iPSCs forgo the need for embryos and can be made to match specific patients. This makes them extremely useful in both research and medicine.

Every individual with damaged or diseased tissues could have their own pluripotent stem cells created to replace or repair them. Of course, more research is needed before that becomes a reality. To date, the use of iPSCs in therapeutic transplants has been very limited.

One of the most significant areas where iPSCs are currently being used is in cardiac research. With appropriate nutrients and inducers, iPSC can be programmed to differentiate into any cell type of the body, including cardiomyocyte. This heart-specific cell can then serve as a great model for therapeutic drug screening or assay development.

Another notable application of iPSCs in cardiac research is optical mapping technology. Optical mapping technology employs high-speed cameras and fluorescence microscopy to examines the etiology and therapy of cardiac arrhythmias in a patient-like environment. This is typically done by looking into electrical properties of multicellular cardiac preparations., e.g. action potential or calcium transient, at high spatiotemporal resolution (6).

Optical mapping technology can correctly record or acquire data from iPSCs. iPSCs are also useful in mimicking a patients cardiomyocytes with their specific behaviors, resulting in more reliable and quality data of cardiac diseases.

iPSCs are vital tools in cardiac research for the following reasons:

iPSCs are patient-specific because they are 100% genetically identical with their donors. This genomic make-up allows researchers to study patients pathology further and develop therapeutic agents for treating their cardiac diseases.

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), help researchers predict the cardiotoxicity of drugs like with widely used chemotherapy reagents (10). Predictions like this were close to impossible before iPSC technology entered the research game.

iPSCs really come into play with their ability to model diseases. Because iPSCs are genetic matches to their living donors, they are uniquely useful for the study of genetic cardiac diseases like monogenic disorders. iPSCs help researchers understand how disease genotypes at the genetic level manifest as phenotypes at the cellular level (5).

Long QT syndrome, a condition that affects the repolarization of a patients heart after a heartbeat, is a notable example of iPSC-based disease modeling (7). This syndrome has been successfully modeled using iPSCs and is an excellent model for other promising target diseases (7).

Long QT syndrome is not the only disease that has been modeled by iPSCs. Other cardiac diseases like Barth syndrome-associated cardiomyopathy and drug-induced kidney glomerular injuries have been modeled as well (8).

The advent of iPSC technology has created a wealth of new opportunities and applications in cardiovascular research and treatments. In the near future, researchers hope that iPSC-derived therapies will be an option for thousands, if not millions of patients worldwide.

More from this author: The Promising Future of Nanomedicine and Nanoparticles

**LOVE OUR CONTENT?SIGN UP FOR OUR NEWSLETTER HERE**

The rest is here:
What is the Value of iPSC Technology in Cardiac... - The Doctor Weighs In

Scientists finally explained one of the strangest coronavirus symptoms – BGR

One of the qualities of the novel coronavirus that makes it so dangerous is that it doesnt have many specific symptoms that are telltale signs of an infection. Instead, the most common symptoms include signs that present with other viral infections, including the flu. Fever, cough, and shortness of breath might make you think youve been infected, but it can be something else entirely. The sudden loss of taste or smell is the closest thing we have to a telltale COVID-19 symptom, but it doesnt present itself in all those infected.

Other symptoms that can appear in COVID-19 cases can include sore throat, headache, muscle pain, and chills, but these can also develop in other conditions. Then there are gastrointestinal symptoms, including diarrhea and vomiting. The CDC doesnt include them in the list of COVID-19 symptoms but does mention that children might experience them. These gastrointestinal symptoms are unusual for respiratory diseases, but researchers have finally explained why it happens.

Scientists from Hubrecht Institute in Utrecht, Erasmus MC University Medical Center Rotterdam, and Maastricht University in the Netherlands have been able to grow an artificial gut (an organoid) from adult stem cells. they then tried to infect it with the SARS-CoV-2 virus that causes the COVID-19 disease. The researchers discovered that the virus can bind to epithelial cells of the intestine by hooking up to the same ACE2 receptor that lets them enter the lungs. They published their findings in Science Magazine.

Once these cells are invaded, the virus can continue to replicate and increase in number just like it does in the lungs. Moreover, the whole thing starts generating an immune response when the body detects the pathogen. These organoids contain the cells of the human intestinal lining, making them a compelling model to investigate infection by SARS-CoV-2, Hubrecht Institutes Hans Clevers told SciTech Daily.

Gastrointestinal symptoms can appear in up to one-third of COVID-19 patients, the report notes. There are worries that the virus can spread via fecal-oral transmission. Also, other studies theorized that fecal aerosols in bathrooms could infect other people.

Using electron microscopy, the scientists were able to determine the presence of the virus on gastrointestinal cells and found them replicating over time. The white regions in the image above indicate the presence of the coronavirus inside the cells of the organoid, which is colored in blue and green.

The researchers discovered that the virus can enter cells regardless of the level of ACE2 receptors. Even cells with low levels of ACE2 may become the host of replication for the virus. The researchers also looked at the response of the intestinal cells with RNA sequencing. They found that interferon-stimulated genes are activated after an infection, or genes that are known to fight a viral infection.

The observations made in this study provide definite proof that SARS-CoV-2 can multiply in cells of the gastrointestinal tract, Erasmus MCs Bart Haagmans told the blog. However, we dont yet know whether SARS-CoV-2, present in the intestines of COVID-19 patients, plays a significant role in transmission. Our findings indicate that we should look into this possibility more closely.

While the new study is definitely interesting, its unclear what sort of viral concentration in food is required to lead to diarrhea and nausea. Also, its unclear how infectious patients showing such symptoms are for other people. Not to mention that the research cant explain how fast the immune system would clear the gut. But the study proves yet again that good hygiene is of utmost importance whether theres an epidemic around or not.

On a related note, weve discussed before that ordering food from restaurants is safe even if said food is covered with the novel coronavirus. Thats because COVID-19 is a viral disease, and serious complications can arise only after the lungs are infected. Moreover, the actual cooking of food will also destroy all traces of the virus, which is why you should reheat your food at home if you want to be extra safe.

Image Source: Seth Wenig/AP/Shutterstock

Chris Smith started writing about gadgets as a hobby, and before he knew it he was sharing his views on tech stuff with readers around the world. Whenever he's not writing about gadgets he miserably fails to stay away from them, although he desperately tries. But that's not necessarily a bad thing.

Go here to read the rest:
Scientists finally explained one of the strangest coronavirus symptoms - BGR

What Do New Neurons in the Brains of Adults Actually Do? – The Scientist

In the spring of 2019, neuroscientist Heather Cameron set up a simple experiment. She and her colleagues put an adult rat in the middle of a plastic box with a water bottle at one end. They waited until the rat started drinking and then made a startling noise to see how the animal would respond. The team did this repeatedly with regular rats and with animals that were genetically altered so that they couldnt make new neurons in their hippocampuses, a brain region involved in learning and memory. When the animals heard the noise, those that could make new hippocampal neurons immediately stopped slurping water and looked around, but the animals lacking hippocampal neurogenesis kept drinking. When the team ran the experiment without the water bottle, both sets of rats looked around right away to figure out where the sound was coming from. Rats that couldnt make new neurons seemed to have trouble shifting their attention from one task to another, the researchers concluded.

Aging humans, in whom neurogenesis is thought to decline, often have trouble remembering details that distinguish similar experiences.

Its a very surprising result, says Cameron, who works at the National Institute of Mental Health (NIMH) in Bethesda, Maryland. Researchers studying neurogenesis in the adult hippocampus typically conduct experiments in which animals have had extensive training in a task, such as in a water maze, or have experienced repetitive foot shocks, she explains. In her experiments, the rats were just drinking water. It seemed like there would be no reason that the hippocampus should have any role, she says. Yet in animals engineered to lack hippocampal neurogenesis, the effects are pretty big.

The study joins a growing body of work that challenges the decades-old notion that the primary role of new neurons within the adult hippocampus is in learning and memory. More recently, experiments have tied neurogenesis to forgetting, one possible way to ensure the brain doesnt become overloaded with information it doesnt need, and to anxiety, depression, stress, and, as Camerons work suggests, attention. Now, neuro-scientists are rethinking the role that new neurons, and the hippocampus as a whole, play in the brain.

Most of the research into neurogenesis involves boosting or inhibiting animals generation of new neurons, then training animals on a complex memory task such as finding a treat in a maze, and later retesting the animals. Decreasing neurogenesis tends to hamper the animals ability to remember.

Alzheimers disease, Parkinsons disease

Training mice or rats on a memory task before manipulating neurogenesis has also been found to affect the strength of the trained memory. Boosting neurogenesis reduced the memorys strength, perhaps an extreme form of forgetting that at normal levels avoids the remembering of unnecessary details.

Alzheimers disease and other forms of dementia

Research has linked decreased neurogenesis with more anxious and depressive behaviors in mice. Stress can reduce neurogenesis, ultimately leading mice to be more anxious in future stressful situations.

PTSD, anxiety, depression

Research has linked decreased neurogenesis with trouble switching focus.

Autism

The first hint that adult animal brains may make new neurons appeared in the early 1960s, when MIT neurobiologist Joseph Altman used radioactive labeling to track the proliferation of nerve cells in adult rats brains.Other data published in the 1970s and 1980s supported the conclusion, and in the 1990s, Fred Rusty Gage and his colleagues at the Salk Institute in La Jolla, California, used an artificial nucleotide called bromodeoxyuridine (BrdU) to tag new neurons born in the brains of adult rats and humans. Around the same time, Elizabeth Gould of Princeton University and her collaborators showed that adult marmoset monkeys made new neurons in their hippocampuses, specifically in an area called the dentate gyrus. While some researchers questioned the strength of the evidence supporting the existence of adult neurogenesis, most of the field began to shift from studying whether adult animal brains make new neurons to what role those cells might play.

In 2011, Ren Hen at Columbia University and colleagues created a line of transgenic mice in which neurons generated by neuro-genesis survived longer than in wildtype mice. This boosted the overall numbers of new neurons in the animals brains. The team then tested the modified mices cognitive abilities. Boostingnumbers of newly born neurons didnt improve the mices performances in water mazes or avoidance tasks compared with control mice. But it did seem to help them distinguish between two events that were extremely similar. Mice with more new neurons didnt freeze as long as normal mice when put into a box that was similar to but not exactly the same as one in which theyd experienced a foot shock in earlier training runs.

These results dovetailed with others coming out at the time, particularly those showing that aging humans, in whom neurogenesis is thought to decline, often have trouble remembering details that distinguish similar experiences, what researchers call pattern separation. The line of thinking is that the memories that are most likely to be impacted by neurogenesis are memories that are really similar to each other, says Sarah Parylak, a staff scientist in Gages lab at the Salk Institute.

As insights into pattern separation emerged, scientists were beginning to track the integration of new rodent neurons into existing neural networks. This research showed that new neurons born in the dentate gyrus had to compete with mature neurons for connections to neurons in the entorhinal cortex (EC), a region of the brain with widespread neural networks that play roles in memory, navigation, and the perception of time. (See Memories of Time on page 32.) Based on detailed anatomical images, new dentate gyrus neurons in rodents appeared to tap into preexisting synapses between dentate gyrus neurons and EC neurons before creating their own links to EC neurons.

To continue exploring the relationship between old and new neurons, a group led by the Harvard Stem Cell Institutes Amar Sahay, who had worked with Hen on the teams 2011 study, wiped out synapses in the dentate gyruses of mice. The researchers overexpressed the cell deathinducing protein Krppel-like factor 9 in young adult, middle-aged, and old mice to destroy neuronal dendritic spines, tiny protrusions that link up to protrusions of other neurons, in the brain region. Those lost connections led to increased integration of newly made neurons, especially in the two older groups, which outperformed age-matched, untreated mice in pattern-separation tasks. Adult-born dentate gyrus neurons decrease the likelihood of reactivation of those old neurons, Sahay and colleagues concluded, preventing the memories from being confused.

Parylak compares this situation to going to the same restaurant after it has changed ownership. In her neighborhood in San Diego, theres one location where shes dined a few times when the restaurant was serving different cuisine. Its the same location, and the building retains many of the same features, so the experiences would be easy to mix up, she says, but she can tell them apart, possibly because of neurogenesiss role in pattern separation. This might even hold true for going to the same restaurant on different occasions, even if it served the same food.

Thats still speculative at this point. Researchers havent been able to watch neurogenesis in action in a living human brain, and its not at all clear if the same thing is going on there as in the mouse brains they have observed. While many scientists now agree that neurogenesis does occur in adult human brains, there is little consensus about what it actually does. In addition to the work supporting a role for new neurons in pattern separation, researchers have accumulated evidence that it may be more important for forgetting than it is for remembering.

In recent years, images and videos taken with state-of-the-art microscopy techniques have shown that new neurons in the dentate gyrus of the hippocampus go through a series of changes as they link up to existing networks in the brain.

A neural stem cell divides to generate a new neuron (green).

As the new neuron grows, it rotates from a horizontal to a vertical position and connects to an interneuron (yellow) in a space called the hilus that sits within the curve of the dentate gyrus. The young neuron also starts making connections with well-established dentate gyrus neurons (blue) as well as neurons in the hippocampus (red).

Once connections are formed, mature neurons send signals into the new neuron, and the cell starts firing off more of its own signals. At around four weeks of age, the adult-born neuron gets hyperexcited, sending electrical signals much more often than its well-established neuronal neighbors do.

As the new neuron connects with still more neurons, interneurons in the hilus start to send it signals to tamp down its activity.

It seems counterintuitive for neurogenesis to play a role in both remembering and forgetting, but work by Paul Frankland of the Hospital for Sick Children Research Institute in Toronto suggests it is possible. In 2014, his team showed that when mice made more new neurons than normal, they were more forgetful. He and his colleagues had mice run on wheels to boost levels of neurogenesis, then trained the animals on a learning task. As expected, they did better than control mice who hadnt exercised. (See How Exercise Reprograms the Brain, The Scientist, October 2018.) In other animals, the researchers boosted neurogenesis after the mice learned information thought to be stored, at least in the short term, in the hippocampus. When we did that, what we found was quite surprising, Frankland says. We found a big reduction in memory strength.

His team was puzzled by the result. Adding to the confusion, the researchers had observed a larger effect in memory impairment with mice that learned, then exercised, than they had seen in memory improvement when the mice ran first and then learned. As he dug into the literature, Frankland realized the effect was what other neuroscientists had called forgetting. He found many theoretical papers based on computational modeling that argued that as new neurons integrate into a circuit, the patterns of connections in the circuit change, and if information is stored in those patterns of connections, that information may be lost. (See Memory Munchers on page 21.)

The notion surprised other neuroscientists, mainly because up to that point theyd had two assumptions related to neurogenesis and forgetting. The first was that generating new neurons in a normal animal should be good for memory. The second was that forgetting was bad. The first assumption is still true, Frankland says, but the second is not. Many people think of forgetting as some sort of failure in our memory systems, he explains. Yet in healthy brains theres tons of forgetting happening all of the time. And, in fact, its important for memory function, Frankland says. It would actually be disadvantageous to remember everything we do.

Experiments have tied neurogenesis to forgetting, anxiety, depression, stress, and attention.

Parylak says this idea of forgetting certainly has provoked a lot of discussion. Its unclear, for example, whether the mice in Franklands experiments are forgetting, or if they are identifying a repeat event as something novel. This is the point, she explains, where doing neurogenesis research in humans would be beneficial. You could ask a person if theyd actually forgotten or if they are making some kind of extreme discrimination.

Despite the questions regarding the results, Frankland and his colleagues continued their work, testing mices forgetfulness with all types of memories, and more recently they asked whether the forgetting effect jeopardized old and new memories alike. In experiments, his team gave mice a foot shock, then boosted hippocampal neurogenesis (with exercise or a genetic tweak to neural progenitor cells), and put the mice in the same container theyd been shocked in. With another group of mice, the researchers waited nearly a month after the foot shock before boosting neurogenesis and putting the mice back in the container. Boosting the number of new neurons, the team found, only weakened the newly made memory, but not one that had been around for a while. This makes a lot of sense, Frankland says. As our memories of everyday events gradually get consolidated, they become less and less dependent on the hippocampus, and more dependent on another brain region: the cortex. This suggests that remote memories are less sensitive to changes in hippocampal neurogenesis levels.

The hippocampus tracks whats happened to you, Frankland says. Much of thats forgotten because much of it is inconsequential. But every now and then something interesting seems to happen, and its these eventful memories that seem to get backed up in other areas of the brain.

Researchers think neurogenesis helps the brain distinguish between two very similar objects or events, a phenomenon called pattern separation. According to one hypothesis, new neurons excitability in response to novel objects diminishes the response of established neurons in the dentate gyrus to incoming stimuli, helping to create a separate circuit for the new, but similar, memory.

At NIMH, one of Camerons first studies looking at the effects of neurogenesis tested the relationship between new neuronal growth and stress. She uncovered the connection studying mice that couldnt make new neurons and recording how they behaved in an open environment with food at the center. Just like mice that could still make new neurons, the neuro-genesis-deficient mice were hesitant to go get the food in the open space, but eventually they did. However, when the animals that couldnt make new neurons were stressed before being put into the open space, they were extremely cautious and anxious, whereas normal mice didnt behave any differently when stressed.

Cameron realized that the generation of new neurons also plays a role in the brain separate from the learning and memory functions for which there was growing evidence. In her experiments, we were looking for memory effects and looked for quite a while without finding anything and then stumbled onto this stress effect, she says.

The cells in the hippocampus are densely packed with receptors for stress hormones. One type of hormone in particular, glucocorticoids, is thought to inhibit neurogenesis, and decreased neurogenesis has been associated with depression and anxiety behaviors in rodents. But there wasnt a direct link between the experience of stress and the development of these behaviors. So Cameron and her colleagues set up an experiment to test the connection.

When the team blocked neurogenesis in adult mice and then restrained the animals to moderately stress them, their elevated glucocorticoid levels were slow to recover compared with mice that had normal neurogenesis. The stressed mice that could not generate new neurons also acted oddly in behavioral tests: they avoided food when put in a new environment, became immobile and increasingly distressed when forced to swim, and drank less sugary water than normal mice when it was offered to them, suggesting they dont work as hard as normal mice to experience pleasure. Impaired adult neurogenesis, the experiments showed, played a direct role in developing symptoms of depression, Cameron says.

The notion that neurogenesis and stress might be tied directly to our mental states led Cameron to look back into the literature, where she found many suggestions that the hippocampus plays a role in emotion, in addition to learning and memory. Even Altman, who unexpectedly identified neurogenesis in adult rodents in the 1960s, and colleagues suggested as much in the 1970s. Yet the argument has only appeared sporadically in the literature since then. Stress is complicated, Cameron says; its hard to know exactly how stressful experiences affect neurogenesis or how the generation of new neurons will influence an animals response to stress. Some types of stress can decrease neurogenesis while others, such as certain forms of intermittent stress, can increase new neuronal growth. Last year, Cameron and colleagues found that generating new neurons helps rats used to model post-traumatic stress disorder recover from acute and prolonged periods of stress.

Neurogenesis appears to play a role in both remembering and forgetting.

Her work has also linked neurogenesis to other characteristics of rodent behavior, including attention and sociability. In 2016, with Gould at Princeton and a few other collaborators, she published work suggesting that new neurons are indeed tied to social behavior. The team created a hierarchy among rats, and then deconstructed those social ranks by removing the dominant male. When the researchers sacrificed the animals and counted new neurons in their brains, the rats from deconstructed hierarchies had fewer new neurons than those from control cages with stable ranks. Rats with uncertain hierarchies and fewer new neurons didnt show any signs of anxiety or reduced cognition, but they werent as inclined as control animals to spend time with new rats put into their quarters, preferring to stick with the animals they knew. When given a drugoxytocinto boost neurogenesis, they once again began exploring and spending time with new rats that entered their cages.

The study from Camerons lab on rats ability to shift their attention grew out of the researchers work on stress, in which they observed that rodents sometimes couldnt switch from one task to the next. Turning again to the literature, Cameron found a study from 1969 that seemed to suggest that neurogenesis might affect this task-switching behavior. Her team set up the water bottle experiments to see how well rats shifted attention. Inhibiting neurogenesis in the adult mice led to a 50 percent decrease in their ability to switch their focus from drinking to searching for the source of the sound.

This paper is very interesting, says J. Tiago Gonalves, a neuroscientist at Albert Einstein College of Medicine in New York who studies neurogenesis but was not involved in the study. It could explain the findings seen in some behavioral tasks and the incongruences between findings from different behavioral tasks, he writes in an email to The Scientist. Of course, follow-up work is needed, he adds.

Cameron argues that shifting attention may be yet another behavior in which the hippocampus plays an essential role but that researchers have been overlooking. And there may be an unexplored link between making new neurons and autism or other attention disorders, she says. Children with autism often have trouble shifting their attention from one image to the next in behavioral tests unless the original image is removed.

Its becoming clear, Cameron continues, that neurogenesis has many functions in the adult brain, some that are very distinct from learning and memory. In tasks requiring attention, though, there is a tie to memory, she notes. If youre not paying attention to things, you will not remember them.

Many, though not all, neuroscientists agree that theres ongoing neurogenesis in the hippocampus of most mammals, including humans. In rodents and many other animals, neurogenesis has also been observed in the olfactory bulbs. Whether newly generated neurons show up anywhere else in the brain is more controversial.

There had been hints of new neurons showing up in the striatum of primates in the early 2000s. In 2005,Heather Cameronof the National Institute of Mental Health and colleagues corroborated those findings, showing evidence of newly made neurons in therat neocortex, a region of the brain involved in spatial reasoning, language, movement, and cognition, and in the striatum, a region of the brain involved in planning movements and reacting to rewards, as well as self-control and flexible thinking (J Cell Biol, 168:41527). Nearly a decade later, using nuclear-bomb-test-derivedcarbon-14 isotopesto identify when nerve cells were born,Jonas Frisnof the Karolinska Institute in Stockholm and colleagues examined the brains of postmortem adult humans and confirmed thatnew neurons existed in the striatum(Cell, 156:107283, 2014).

Those results are great, Cameron says. They support her idea that there are different types of neurons being born in the brain throughout life. The problem is theyre very small cells, theyre very scattered, and therere very few of them. So theyre very tough to see and very tough to study.

See the article here:
What Do New Neurons in the Brains of Adults Actually Do? - The Scientist