Author Archives: admin


British boy fighting rare cancer is discharged after coming to Singapore for experimental treatment – CNA

SINGAPORE: It was a moment of pure elation for the family of Oscar Saxelby-Lee the six-year-old has finally been discharged from hospital after staying cancer-free for nearly three months.

The British boy has been battling acute lymphoblastic leukaemia since December 2018, and arrived in Singapore forexperimental treatment at the National University Hospital (NUH) that only one other child in the world has received.

Doctors in the UK said that they had exhausted all conventional treatment and that there was only palliative care left for Oscar. Thefamily was told to prepare for the worst.

But after arriving in Singapore in November and starting treatment on Christmas Eve, Oscar has remained MRD (minimal residue disease) negative which means no cancer cells are detected for nearly three months.

He was discharged from hospital on Thursday (Apr 9) and will go back for check-ups every few days.

His mum Olivia told CNA it is the longest period her only son has remained cancer-free since he was diagnosed.

Oscar is defeating the odds. After being told end-of-life care was the only option left for Oscar about eight months ago, he has shown that miracles really do happen, she said.

He is the best he has been in a very long time full of life, living life and enjoying life again.

It has been a huge learning curve, and no doubt will continue to be, but we are grateful. Grateful for this chance, grateful for the team saving Oscars life and also grateful for the experience.

It still feels a little like a dream. We just cant believe it. NUH has saved Oscars life!

NUH TREATMENT WAS OSCARS LAST HOPE

The treatment in Singapore was Oscars last hope. All other treatments had failed to rid him of the cancer - he was still MRD positive after a stem cell transplant and rounds of chemotherapy.

The little boy from Worcester, England flew to Singapore after the family crowdfunded 500,000 (S$885,000) for a new form of treatment, in which immune cells from a patients blood is drawn and equipped with a Chimeric Antigen Receptor (CAR-T).

The receptor binds itself to a specific protein on the cancer cell and activates the CAR-T cells to kill the cancer cells.

This particular form of CAR-T treatment is different and more difficult because the leukaemia cells resemble Oscars immunity system, Associate Professor Allen Yeoh, head of paediatric oncology at NUH, explained previously.

This is compassionate treatment,which means it is not even in the medical trial stage yet.

By the time he arrived in Singapore, Oscar wasweak from the months in hospital isolation and from battling the rare blood cancer.

He got stronger and doctors started treatment on Christmas Eve. On Jan 15, his parents were told he was MRD negative but that was just the first major step towards a full recovery.

Over the last three months, Oscar has battled several conditions as a result of complications and undergone more surgeries and transplants.

He was diagnosed with both Graft versus host disease (GvHD) and Thrombotic microangiopathy(TMA) that caused him shaking spells, pain and weakness.

"WE NEEDED MUM HERE"

Over the last five months, Oscars family has remained in Singapore far from their loved ones in the UK.

Shortly before the COVID-19 pandemic broke out, Oscars grandmother Oomar travelled to Singapore to be with her grandson.

We needed her with us after such a long haul of trauma. She flew knowing of the risks (of contracting COVID-19) and was very worried, Olivia said.

Oomar completed her 14-day stay-home notice and was allowed to see Oscar just as he was overcoming the worst of the TMA.

This was the moment Oscar saw his grandmother for the first time in months:

Oscars life instantly became better, he was ecstatic, said Olivia.

She has been a huge lift for us all, for me especially as well. We all need our mums at times. An extra pair of hands, loving support and someone else to talk to.

The family will remain in Singapore and keep Oscar isolated at the apartmentwhere they've been staying as his immunity system is still recovering, and he will make frequent trips to outpatient clinics in hospital, his mum said.

He isnt out of the woods yet. Being post-transplant puts him even more at risk, and very vulnerable to not just COVID-19, but any cold or illness, she explained.

Thats nearly a year and a half of complete isolation and even in the future, we will have to be very vigilant.

"SINGAPORE IS AN AMAZING COUNTRY"

With the COVID-19 outbreak affecting countries around the world, including the UK and Singapore, the family will stay in Singapore until Oscar has been given the all-clear to fly home.

We all miss home. We miss our friends, our family, our society, our community, Olivia said.

We are really homesick, but we are safe, and we believe we are in the safest place. Singapore is an amazing country, and we feel privileged to be here, even at this difficult time.

We have met so many wonderful people here, from friends, to medics ... each has been an incredible support for us as a family.

Our lives have changed greatly.

The support has been so heartwarming. The well wishes and prayers truly mean so much to us. We are touched by peoples generosity, care and compassion for us as a family and cannot thank everyone both here and back home enough.

Its been one heck of a journey, and Im sure will continue to be, but the support makes it all that little easier.

See the original post:
British boy fighting rare cancer is discharged after coming to Singapore for experimental treatment - CNA

What’s the best COVID-19 treatment? Science *real* science will tell us – Patheos

Erlenmeyer Laboratory Chemistry Science Flasks, from http://maxpixel.freegreatpicture.com/Erlenmeyer-Laboratory-Chemistry-Science-Flasks-606611

Is hydroxychloroquinine an effective treatment for COVID-19*?

Are ventilators effective in treating patients as the disease worsens?

Why are African-Americans dying in greater numbers?

Lets talk science.

How many times have you heard the phrase the science is settled? Thats been repeated endlessly with respect to climate change, but, in fact, the reality of science is that it is never settled.

Many years ago, as a student of history, I had a class in historiography in which the professor aimed to provide readings that would broaden the students understanding in a wider way than merely instruction in research methods. We read about Cargo Cults in a book called Cows, Pigs, Wars, and Witches, and we read about paradigm shifts in the classic The Structure of Scientific Revolutions, by Thomas Kuhn. (Yes, reader, when I read the book, I believed the word was pronounced para-dig-m instead of para-dime.) Heres how Wikipedia summarizes his argument:

Kuhn challenged the then prevailing view of progress in science in which scientific progress was viewed as development-by-accumulation of accepted facts and theories. Kuhn argued for an episodic model in which periods of conceptual continuity where there is cumulative progress, which Kuhn referred to as periods of normal science, were interrupted by periods of revolutionary science. The discovery of anomalies during revolutions in science leads to new paradigms. New paradigms then ask new questions of old data, move beyond the mere puzzle-solving of the previous paradigm, change the rules of the game and the map directing new research.

And permit me to cite two examples from medical research outside the coronavirus.

First, stem cell transplants for breast cancer.

Back, well, when the internet was in its infancy and one learned about news through actual newspapers, I recall reading about stem cell transplants, then watching the process play out for a relative of a friend, who was diagnosed with breast cancer and, as it advanced, treated with a stem cell transplant for those who dont recall, this was a method in which the patients stem cells were removed, then the patient received extremely high doses of chemotherapy, to completely kill the cancer but, as a consequence, destroying the immune system, and then the stem cells were re-infused. The risks of the procedure were great but it was believed that the reward was greater but, as it happened, my friends relative died. Now, doctors were so convinced of the efficacy of the treatment that insurance companies were pressured to cover it despite its experimental nature, and that the usual protocols of randomized controlled trials (RCT) were not followed because, after all, to deny half a test population a lifesaving treatment would consign them unfairly to death.

You may know the end of the story: when a RCT was finally conducted in 2000, it found that this procedure actually offered patients no benefit compared to conventional treatment. (You can read the whole story at Health Affairs.)

Second, research into Alzheimers Disease, and, more specifically, the amyloid hypothesis, that is, the theory that sticky brain plaques cause Alzheimers and that removing or preventing those plaques will cure or prevent the disease.

This theory became entrenched in the research for Alzheimers; a video at STAT describes the manner in which researchers moved from one failed drug trial to the next based on this theory. But heres an editorial at that publication from April of 2019:

If insanity is doing the same thing over and over again but expecting different results, then the last decade or so of Alzheimers disease drug development has been insane. Three carefully designed, well-executed, and fully resourced trials targeting amyloid protein in the brain as the cause of Alzheimers disease have failed. Its long past time to take a new approach to this mind-robbing disease. . . .

A comfortable partnership developed between believers in the amyloid hypothesis, funding agencies, and drug companies, so that only programs supporting this hypothesis were funded. Even today, the largest amount of NIH funding for Alzheimers disease research goes to amyloid-0related research.

Following the advice of their academic advisers most of them members of the amyloid cabal drug companies dutifully developed drugs to target amyloid with the goal of treating Alzheimers disease. Thy believed it was only a matter of time before the Alzheimers problem was solved. . . .

Other ideas were starved of funding or greeted with polite rolling of the eyes. . . .

This is a good place to talk about groupthink, the psychological phenomenon that occurs within a group of people in which the desire for harmony or conformity results in irrational or dysfunctional decision-making. Groupthink describes the funding and execution of Alzheimers disease research and drug development over the last 30 years. Once amyloid became the target, all other ideas were abandoned, shunned, even ridiculed. Although I believe that this dark period is behind us, weve wasted three decades and billions of dollars.

Trump is promoting the possible use of hydroxychloroquinine as a treatment for the disease. Is he doing so recklessly? Are naysayers naysaying for scientific grounds or anti-Trump grounds?

One of the key issues is that there have not yet been RCTs for this treatment. In a disease such as COVID-19, where the large majority of people do recover, one way or the other, touting one treatment or another as a breakthrough without following a protocol of a control group cannot produce valid results, but here the French doctor who has been promoting this treatment, in combination with azithromycin, Didier Raoult, has been doing exactly this, by claiming that his treatment is so clearly successful that it would unethical to deny it to his patients. (See this Forbes article for a distillation of the debate, and a Q&A at The Hospitalist for some further scholarly comments.)

But hydroxychloroquinine is not the only aspect of the pandemic where conventional wisdom and science are at odds.

Second, ventilators: heres a report from STAT on April 8th: With ventilators running out, doctors say the machines are overused for Covid-19.

Even as hospitals and governors raise the alarm about a shortage of ventilators, some critical care physicians are questioning the widespread use of the breathing machines for Covid-19 patients, saying that large numbers of patients could instead be treated with less intensive respiratory support.

If the iconoclasts are right, putting coronavirus patients on ventilators could be of little benefit to many and even harmful to some.

Whats driving this reassessment is a baffling observation about Covid-19: Many patients have blood oxygen levels so low they should be dead. But theyre not gasping for air, their hearts arent racing, and their brains show no signs of blinking off from lack of oxygen.

That is making critical care physicians suspect that blood levels of oxygen, which for decades have driven decisions about breathing support for patients with pneumonia and acute respiratory distress, might be misleading them about how to care for those with Covid-19. In particular, more and more are concerned about the use of intubation and mechanical ventilators. They argue that more patients could receive simpler, noninvasive respiratory support, such as the breathing masks used in sleep apnea, at least to start with and maybe for the duration of the illness.

This is not just a matter of trying to save money or resources by minimizing the use of ventilators. As the article reports, ventilation can actually cause harm: Older patients who do survive risk permanent cognitive and respiratory damage from being on heavy sedation for many days if not weeks and from the intubation.

And patients with COVID-19 who are placed on ventilators have an extremely high fatality rate: in one instance, 30 of 37 patients placed on mechanical ventilation died within a month. In another, only one out of seven patients older than 70, placed on a ventilator, survived.

Whats more,

one of the most severe consequences of Covid-19 suggests another reason the ventilators arent more beneficial. In acute respiratory distress syndrome, which results from immune cells ravaging the lungs and kills many Covid-19 patients, the air sacs of the lungs become filled with a gummy yellow fluid. That limits oxygen transfer from the lungs to the blood even when a machine pumps in oxygen, [Harvard Medical School physician Dr. Muriel] Gillick said.

All of which leads to the question: should RCTs be conducted for the treatment of using ventilators for COVID-19, rather than doctors assuming that this is an effective treatment because it is used for other respiratory diseases?

And, finally, heres a highly speculative observation coming out of a Facebook group:-thalassaemia (or beta-thalassaemia, or thalassemia without the ae) is a blood disorder which is connected to anemia. (Heres a lay description of the disorder.) This disorder is inherited, and the mild form causes no health issues so that carriers will pass on the disorder; it is common in the Mediterranean and the Middle East in the same manner as sickle-cell anemia is found in Africa and among individuals with African ancestry; in both cases, the mild form of the trait conferred protection against malaria.

What does this have to do with anything? Thalassaemia is prevalent in the Po valley, which is the region in northern Italy which is being hardest hit by COVID-19. At the same time, within the US, blacks (that is, people of African descent) are disproportionately likely to die of COVID-19. Within the US, this is being explained as due to socioeconomic disparities in that population and there clearly are significant disparities but is the paradigm that all health disparities are caused by socioeconomic disparities because race is only a social construct preventing researchers from identifying physiological differences, and, as a result, limiting scientists understanding of how to treat the disease?

In any event, the more I read, the stronger I feel that the answer to the search for a treatment for coronavirus will hinge on our scientists ability to look beyond groupthink and get at the basic science that underlies the disease, whatever that may be.

*Look, Id love to call it the Wuhan Virus, the Chinese Flu, or any other such phrase that communicates the role that China played in causing/exacerbating the pandemic, and I quite like the backronym, or alternative acronym, China-originated virus in December 19 (rather than COronaVIrus Disesase), but, lets face it, we need a common nomenclature.

See the article here:
What's the best COVID-19 treatment? Science *real* science will tell us - Patheos

Stem Cell Therapy Market Size 2020 | Top Companies, Growth Overview, Technology, Latest Trends and Forecast 2026 – Curious Desk

New Jersey, United States:The new report has been added by Verified Market Research to provide a detailed overview of the Stem Cell Therapy Market. The study will help to better understand the Stem Cell Therapy industry competitors, the sales channel, Stem Cell Therapy growth potential, potentially disruptive trends, Stem Cell Therapy industry product innovations and the value / volume of size market (regional / national level, Stem Cell Therapy- Industrial segments), market share of the best actors / products.

Information has been added to the report to provide a realistic view of the industry based on data from Stem Cell Therapy manufacturers, i.e. H. Shipping, price, sales, gross profit, business distribution, etc., SWOT analysis, consumer preference, current developments and trends, drivers and limiting factors, company profile, investment opportunities, analysis of the demand gap, market size value / volume, services and products, Porters five models , socio-economic factors, official regulations in the Stem Cell Therapy branch. Market participants can use the report to take a look at the future of the Stem Cell Therapy market and make significant changes to their operating style and marketing tactics in order to achieve sustainable growth.

Get | Download Sample Copy @ https://www.verifiedmarketresearch.com/download-sample/?rid=24113&utm_source=CDN&utm_medium=003

The report examines the competitive environment scenario observed with key players in Stem Cell Therapy sales, the profile of their business, their earnings, their sales, their business tactics, and the forecasting situations of the Stem Cell Therapy sales industry. According to studies, the Stem Cell Therapy sales market is very competitive and diverse due to global and local suppliers.

The Stem Cell Therapy Sales Market Report mainly contains the following Manufacturers:

Market Competition

The competitive landscape of the Stem Cell Therapy market is examined in detail in the report, with a focus on the latest developments, the future plans of the main players and the most important growth strategies that they have adopted. The analysts who compiled the report have created a portrait of almost all of the major players in the Stem Cell Therapy market, highlighting their key commercial aspects such as production, areas of activity and product portfolio. All companies analyzed in the report are examined on the basis of important factors such as market share, market growth, company size, production, sales and earnings.

Report Highlights

Assessment of sales channels

innovation trends

sustainability strategies

Niche market trends

Market entry analysis

market size and forecast

The geographic department provides data that give you an overview of the turnover of companies and sales figures for the growth activity Stem Cell Therapy for electrical meters. Here are the strengths of the geographic divisions: North America (United States, Canada and Mexico), Europe (Germany, Spain, France, Great Britain, Russia and Italy and more), Asia-Pacific (China, Japan, Korea, India and Southeast Asia) and more ), South America (Brazil, Argentina, Colombia), the Middle East and Africa (Saudi Arabia, United Arab Emirates, Egypt, Nigeria and South Africa) and ROW.

Ask for Discount @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24113&utm_source=CDN&utm_medium=003

Table of Content

1 Introduction of Stem Cell Therapy Market1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology 3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Stem Cell Therapy Market Outlook4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Stem Cell Therapy Market, By Deployment Model5.1 Overview

6 Stem Cell Therapy Market, By Solution6.1 Overview

7 Stem Cell Therapy Market, By Vertical7.1 Overview

8 Stem Cell Therapy Market, By Geography8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Stem Cell Therapy Market Competitive Landscape9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix11.1 Related Research

Complete Report is Available @ https://www.verifiedmarketresearch.com/product/Stem-Cell-Therapy-Market/?utm_source=CDN&utm_medium=003

We also offer customization on reports based on specific client requirement:

1- Free country level analysis for any 5 countries of your choice.

2- Free Competitive analysis of any market players.

3- Free 40 analyst hours to cover any other data points

About us:

Verified market research partners with the customer and offer an insight into strategic and growth analyzes, Data necessary to achieve corporate goals and objectives. Our core values are trust, integrity and authenticity for our customers.

Analysts with a high level of expertise in data collection and governance use industrial techniques to collect and analyze data in all phases. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise and years of collective experience to produce informative and accurate research reports.

Contact us:

Mr. Edwyne FernandesCall: +1 (650) 781 4080Email: [emailprotected]

Get Our Trending Report

https://www.marketresearchblogs.com/

https://www.marktforschungsblogs.com/

Tags: Stem Cell Therapy Market Size, Stem Cell Therapy Market Trends, Stem Cell Therapy Market Forecast, Stem Cell Therapy Market Growth, Stem Cell Therapy Market Analysis

Follow this link:
Stem Cell Therapy Market Size 2020 | Top Companies, Growth Overview, Technology, Latest Trends and Forecast 2026 - Curious Desk

Animal Stem Cell Therapy Market Forecast 2020-2025, Latest Trends and Opportunities – Express Journal

Growth Analysis Report onAnimal Stem Cell Therapy Market size | Industry Segment by Applications (Veterinary Hospitals and Research Organizations), by Type (Dogs, Horses and Others), Regional Outlook, Market Demand, Latest Trends, Animal Stem Cell Therapy Industry Share & Revenue by Manufacturers, Company Profiles, Growth Forecasts 2025.Analyzes current market size and upcoming 5 years growth of this industry.

TheAnimal Stem Cell TherapyMarketAnalysis report attempts to offer foremost and deep understandings into the current market scenario and the advanced development dynamics. The report onAnimal Stem Cell Therapy Marketaims to provides the extensive view of the market landscape. The comprehensive research will enable the well-established as well as the emerging players to expand their business approaches and achieve their targeted goals.

This report on Animal Stem Cell Therapy Market covers the manufacturers data including shipment, revenue, gross profit, business distribution etc., these data help the consumer know about the competitors better. This report also covers topmost regions and countries of the world, which shows a regional development status, including Animal Stem Cell Therapy market size, volume and value as well as price data.

Request Sample Copy of this Report @ https://www.express-journal.com/request-sample/41316

List of Major Key playersoperating in the Animal Stem Cell Therapy Market are:

The objectives of this report are:

Animal Stem Cell Therapy Market Segmentation by Product Type:

Industry Segmentation by end user:

Most significant topics covered in Animal Stem Cell Therapy market report are:

The foremost points are labelled in detail which are covered in this Animal Stem Cell Therapy Market Report:

Request Customization on This Report @ https://www.express-journal.com/request-for-customization/41316

Link:
Animal Stem Cell Therapy Market Forecast 2020-2025, Latest Trends and Opportunities - Express Journal

Team to Advance Stem Cell Therapies in New Space Station Lab – Lab Manager Magazine

International Space Station (ISS) as seen from Space Shuttle Discovery in 2007.

A three-year, nearly $5 million award from NASA will allow researchers at the Sanford Stem Cell Clinical Center at UC San Diego Health, Sanford Consortium for Regenerative Medicine and their partners at Space Tango to develop a new integrated space stem cell orbital research laboratory within the International Space Station (ISS) and launch three collaborative research projects within it.

Stem cells self-renew, generating more stem cells, and specialize into tissue-specific cells, such as blood, brain and liver cells, making them ideal for biological studies far from Earth's resources. The goal of the new effort is to leverage microgravity and these unique properties of stem cells to better understand how space flight affects the human body. The studies will also inform how aging, degenerative diseases, cancers, and other conditions develop in a setting with increased exposure to ionizing radiation and pro-inflammatory factors. The findings from these studies may speed the development of new therapeutics for a broad array of degenerative diseases on Earth.

"We envision that the next thriving ecosystem of commercial stem cell companies, the next nexus for biotechnology, could be created 250 miles overhead by the establishment of these capabilities on the ISS," said Catriona Jamieson, MD, PhD, co-principal investigator of the award and Koman Family Presidential Endowed Chair in Cancer Research, deputy director of Moores Cancer Center, director of the Sanford Stem Cell Clinical Center and director of the CIRM Alpha Stem Cell Clinic at UC San Diego Health.

The project's first flight to the ISS is planned for mid-2021. The ISS stem cell lab is expected to be fully operational and self-sustaining by 2025.

With hardware designed by Space Tango, a developer of fully automated, remote-controlled systems for research and manufacturing on orbit, initial projects in the new lab will include investigations of:

Blood cancers and immune reactivation syndromes, led by Jamieson, who is also a member of the Sanford Consortium for Regenerative Medicine, and Sheldon Morris, MD, MPH, clinical professor of family medicine and public health and infectious diseases at UC San Diego School of Medicine.

In what's known as the NASA Twins Study, investigators around the nation assessed identical twin astronauts Scott and Mark Kelly. Scott flew aboard the ISS for 342 days in 2015 and 2016, while his identical twin brother, Mark, remained on Earth. In a paper published in Science in early 2019, researchers, including UC San Diego School of Medicine's Brinda Rana, PhD, described the many ways Scott's body differed from Mark's due to his time spent in microgravity, including signs of pre-cancer.

In the new ISS lab, Jamieson and Morris will use stem cell-derived blood and immune cells to look for biomarkerstell-tale molecular changesas cancer develops and immune cells malfunction in microgravity. They will also work with experts in the Jacobs School of Engineering at UC San Diego and Space Tango to build special microscopes and bioreactors that fit the ISS lab space and transmit images to Earth in near real-time.

"If we can find early predictors of cancer progression on the ISS, we are ideally positioned to rapidly translate them into clinical trials in our Sanford Stem Cell Clinical Center back on Earth," Jamieson said.

Brain stem cell regeneration and repair, led by Alysson R. Muotri, PhD, professor of pediatrics and cellular and molecular medicine and director of the Stem Cell Program at UC San Diego School of Medicine and a member of the Sanford Consortium for Regenerative Medicine, and Erik Viirre, MD, PhD, professor of neurosciences and director of the Arthur C. Clarke Center for Human Imagination.

This project will build on a previous proof-of concept flight that sent a payload of stem cell-derived human brain organoids to the ISS in 2019. Brain organoidsalso called mini-brainsare 3D cellular models that represent aspects of the human brain in the laboratory. Brain organoids help researchers track human development, unravel the molecular events that lead to disease and test new treatments.

Since their last trip to space, the UC San Diego team has significantly advanced the brain organoids' levels of neural network activityelectrical impulses that can be recorded by multi-electrode arrays.

"All the research models we currently use to study aging in a laboratory dish rely on artificial things, such as increasing oxidative stress or manipulating genes associated with aging," said Muotri, who is also co-principal investigator on the award. "Here, we're taking a different approach to speed up the aging process and study how it plays a role in developmental diseases and neurodegenerative conditions such as Alzheimer's."

Liver cell injury and repair, led by David A. Brenner, MD, vice chancellor of health sciences at UC San Diego, and Tatiana Kisseleva, MD, PhD, associate professor of surgery at UC San Diego School of Medicine.

On Earth, Brenner and Kisseleva study ailments of the liver, such as liver fibrosis and steatohepatitis, a type of fatty liver disease. Liver diseases can be caused by alcohol use, obesity, viral infection, and a number of other factors. They are interested in determining the impact microgravity may have on liver function, which could provide insights into diseases on Earth, as well as potential effects during space travel. In the future, the team may test therapies for steatohepatitis in the new ISS lab, where microgravity mimics aging and can lead to liver cell injury.

"These insights may allow us to develop new ways to stop the progression of liver disease and cirrhosisconditions that affect approximately 4.5 million people in the U.S.," Brenner said.

Once the ISS stem cell lab is validated, the team said it will replicate the Earth-based Sanford Consortium for Regenerative Medicine, a "collaboratory" in La Jolla, Calif. that brings together experts from five research institutions: UC San Diego, Scripps Research, Salk Institute for Biological Studies, Sanford Burnham Prebys Medical Discovery Institute, and La Jolla Institute for Immunology.

- This press release was originally published on theUC San Diego Health website

See the rest here:
Team to Advance Stem Cell Therapies in New Space Station Lab - Lab Manager Magazine

Hackensack Meridian Health Studying the Blood of COVID-19 Survivors – P&T Community

NUTLEY, N.J., April 10, 2020 /PRNewswire/ --Researchers and clinical experts at Hackensack Meridian Health, New Jersey's largest and most comprehensive health network, are looking into the blood of COVID-19 survivors, as a potential treatment for current COVID-19 patients.

The work will scrutinize the antibodies within the serum of the surviving patients, in an attempt to discover more about the disease, and perhaps develop new ways to fight it.

"I'm so proud of our robust and innovative response to this unprecedented global challenge, from our front-line care teams to our support staff, and our exceptional researchers," said Robert C. Garrett, FACHE, chief executive officer of Hackensack Meridian Health. "Our scientists have been at the forefront of the latest innovations, including developing our own test and taking part in clinical trials of antiviral drugs. Now they're taking a leadership role in this advanced antibody work, which could prove to be a breakthrough."

"It really is a race against time," said Michele Donato, M.D., FACP, CPE, chief of stem cell transplantation and cellular therapy at John Theurer Cancer Center, part of Hackensack University Medical Center, and who is leading the potential treatment part of the work. "People are getting sick right now, and we are working night and day to save as many lives as possible."

Convalescent plasma treatments have previously been used to fight other viral outbreaks, including those of severe acute respiratory syndrome (SARS), caused by a virus that's a cousin to the one responsible for COVID-19, and which sickened thousands in 2002-2003.

At Hackensack Meridian Health, the researchers will first seek a small blood sample from those recovered or recovering patients who volunteer for the study, with the goal of finding those who developed the highest levels of targeted antibodies in response to the virus.

Those patients with the highest level of antibodies will be asked to return to provide a larger plasma donation, which may be utilized to infuse into very sick COVID-19 patients.

Taking part in this work will be experts from Hackensack Meridian John Theurer Cancer Center including Donato, who are experts in stem cell transplantation and cellular therapy, as well as scientists from Hackensack Meridian Health Center for Discovery and Innovation (CDI), who have developed a high-titer test to assess the presence and levels of the antibodies. The CDI also previously developed a diagnostic test for detecting the virus which has been used to diagnose more than a thousand patients so far in the Hackensack Meridian Heath network.

"This is applied science in 'real-time,' as this pandemic continues to spread," said David S. Perlin, Ph.D., the chief scientific officer and senior vice president of the CDI. "Our scientists at the CDI are responding to needs, and we're hoping to save lives."

"Research at Hackensack Meridian Health is more important than ever, and we are hopeful it will give us the edge against this pandemic," said Ihor Sawczuk, M.D., FACS, president of Hackensack MeridianHealth'sNorthern Market, and the chief research officer of the network.

The patients sought for the studies will be between the ages of 18 and 60, and have a prior laboratory diagnosis of COVID-19. They must also be at least 14 days without symptoms, according to the guidelines.

Potential donors can fill out an online form available here for the initial screening.

ABOUTHACKENSACKMERIDIAN HEALTH

Hackensack Meridian Health is a leading not-for-profit health care organization that is the largest, most comprehensive and truly integrated health care network in New Jersey, offering a complete range of medical services, innovative research and life-enhancing care.

Hackensack Meridian Health comprises 17 hospitals from Bergen to Ocean counties, which includes three academic medical centers Hackensack University Medical Center in Hackensack, Jersey Shore University Medical Center in Neptune, JFK Medical Center in Edison; two children's hospitals - Joseph M. Sanzari Children's Hospital in Hackensack, K. Hovnanian Children's Hospital in Neptune; nine community hospitals Bayshore Medical Center in Holmdel, Mountainside Medical Center in Montclair, Ocean Medical Center in Brick, Palisades Medical Center in North Bergen, Pascack Valley Medical Center in Westwood, Raritan Bay Medical Center in Old Bridge, Raritan Bay Medical Center in Perth Amboy, Riverview Medical Center in Red Bank, and Southern Ocean Medical Center in Manahawkin; a behavioral health hospital Carrier Clinic in Belle Mead; and two rehabilitation hospitals - JFK Johnson Rehabilitation Institute in Edison and Shore Rehabilitation Institute in Brick.

Additionally, the network has more than 500 patient care locations throughout the state which include ambulatory care centers, surgery centers, home health services, long-term care and assisted living communities, ambulance services, lifesaving air medical transportation, fitness and wellness centers, rehabilitation centers, urgent care centers and physician practice locations. Hackensack Meridian Health has more than 34,100 team members, and 6,500 physicians and is a distinguished leader in health care philanthropy, committed to the health and well-being of the communities it serves.

The network's notable distinctions include having four hospitals among the top 10 in New Jersey by U.S. News and World Report. Other honors include consistently achieving Magnet recognition for nursing excellence from the American Nurses Credentialing Center and being named to Becker's Healthcare's "150 Top Places to Work in Healthcare/2019" list.

The Hackensack Meridian School of Medicine at Seton Hall University, the first private medical school in New Jersey in more than 50 years, welcomed its first class of students in 2018 to its On3 campus in Nutley and Clifton. Additionally, the network partnered with Memorial Sloan Kettering Cancer Center to find more cures for cancer faster while ensuring that patients have access to the highest quality, most individualized cancer care when and where they need it.

Hackensack Meridian Health is a member of AllSpire Health Partners, an interstate consortium of leading health systems, to focus on the sharing of best practices in clinical care and achieving efficiencies.

For additional information, please visit http://www.HackensackMeridianHealth.org.

About the Center for Discovery and Innovation

The Center for Discovery and Innovation, a newly established member of Hackensack Meridian Health, seeks to translate current innovations in science to improve clinical outcomes for patients with cancer, infectious diseases and other life-threatening and disabling conditions. The CDI, housed in a fully renovated state-of-the-art facility, offers world-class researchers a support infrastructure and culture of discovery that promotes science innovation and rapid translation to the clinic.

About John Theurer Cancer Center at Hackensack University Medical Center

John Theurer Cancer Center at Hackensack University Medical Center is New Jersey's largest and most comprehensive center dedicated to the diagnosis, treatment, management, research, screenings, and preventive care as well as survivorship of patients with all types of cancers. The 14 specialized divisions covering the complete spectrum of cancer care have developed a close-knit team of medical, research, nursing, and support staff with specialized expertise that translates into more advanced, focused care for all patients. Each year, more people in the New Jersey/New York metropolitan area turn to John Theurer Cancer Center for cancer care than to any other facility in New Jersey.John Theurer Cancer Center is amember of the Georgetown Lombardi Comprehensive Cancer Center Consortium,one of just 16 NCI-approved cancer research consortiabased at the nation's most prestigious institutions. Housed within a 775-bed not-for-profit teaching, tertiary care, and research hospital, John Theurer Cancer Center provides state-of-the-art technological advances, compassionate care, research innovations, medical expertise, and a full range of aftercare services that distinguish John Theurer Cancer Center from other facilities.For additional information, please visitwww.jtcancercenter.org.

View original content to download multimedia:http://www.prnewswire.com/news-releases/hackensack-meridian-health-studying-the-blood-of-covid-19-survivors-301038764.html

SOURCE Hackensack Meridian Health

Continued here:
Hackensack Meridian Health Studying the Blood of COVID-19 Survivors - P&T Community

Cyborg computer chips will get their brain from human neurons – SYFY WIRE

A.I.has already gotten to almost sci-fi levels of emulating brain activity, so much so that amputees can experience mind-controlled robotic arms, and neural networks might soon be a thing. That still wasnt enough for the brains behind one ambitious startup, though.

Cortical Labs sounds like it could have been pulled from the future. Co-founder and CEO Hong Wen Chong and his team are merging biology and technology by embedding real neurons onto a specialized computer chip. Instead of being programmed to act like a human brain, it will use those neurons to think and learn and function on its own. The hybrid chips will save tremendous amounts of energy with an actual neuron doing the processing for them.

Biological neural networks can solve problems in unfamiliar situations independent of acquired knowledge due to their self-organizing properties, says the companys website. Fluid intelligence is an essential requirement for autonomous robots.

Bio-computing was first switched on with neurons from mouse embryos, but can now use human neurons. Cortical Labs can morph human skin cells back into stem cells and then induce them to grow into actual human neurons. This was a process originally developed by Japanese scientists who were looking to eliminate the controversy that comes with using human embryonic stem cells. These cells are so useful because they havent yet decided what their function will be. That means they can be manipulated into just about anything.

After the skin cells undergo their transformation into neurons, a nourishing liquid medium is used to embed them onto a tiny metal oxide chip that has an even tinier grid of 22,00 electrodes. It is these electrodes that speak to programmers about when to zap electrical inputs to the neurons, letting them know what kind of outputs they are getting.

Artificially created neurons turn out the same as neurons that would (hypothetically) be taken from your gray matter, except there is no brain invasion required. Something like that would cross over from science fiction to science horror.

Right now, these chips are close to processing things like a dragonfly brain, so there are still upgrades to be made. Remember spending hours at the arcade playing Pong? Chong is determined to teach the chips to play that retro Atari game, and being powered by neurons uses just a fraction of what they would if they were only functioning on computerized intelligence. Think about it. The human brain has over a billion neurons, and our level of intelligence runs on only about 20 watts of power. Thats more than enough to play a marathon session of Pong.

Biological computing is the new frontier of computational power efficiency, the website says.

By the way, this wasnt the first time Pong got scientific star power. A.I. company DeepMind used it, along with other early Atari games that might be collecting dust in your basement somewhere, to demo how algorithms modeled after human neuron functions could perform. DeepMinds software scored high enough to convince Google into buying it. Now Google is using that tech to control the monster air conditioning units in its data centers, where it gets unbearably hot from servers devouring enough energy to keep entire cities running.

Cortical Labs is currently using mouse neurons on its quest to get hybrid chips to play Pong, but it probably wont be long before they use mutant human neurons. Gnarly.

(via Business Insider/Cortical Labs)

Visit link:
Cyborg computer chips will get their brain from human neurons - SYFY WIRE

Stem Cells Market Expected to Boost the Global Industry Growth in the Near Future – Germany English News

Advance Market Analyticsreleased the research report ofGlobal Stem CellsMarket, offers a detailed overview of the factors influencing the global business scope.Global Stem Cells Market research report shows the latest market insights with upcoming trends and breakdown of the products and services.The report provides key statistics on the market status, size, share, growth factors of the Global Stem Cells.This Report covers the emerging players data, including: competitive situation, sales, revenue and global market.

Free Sample Report + All Related Graphs & Charts @ https://www.advancemarketanalytics.com/sample-report/72815-global-stem-cells-market-1

The stem cell is used for treating chronic diseases such as cardiovascular disorders, cancer, diabetes, and others. Growing research and development in stem cell isolation techniques propelling market growth. For instance, a surgeon from Turkey developed a method for obtaining stem cells from the human body without enzymes which are generally used for the isolation of stem cells. Further, growing healthcare infrastructure in the developing economies and government spending on the life science research and development expected to drive the demand for stem cell market over the forecasted period.

The Global Stem Cellsis segmented by following Product Types:

Type (Adult Stem Cells (Neuronal, Hematopoietic, Mesenchymal, Umbilical Cord, Others), Human Embryonic Stem Cells (hESC), Induced Pluripotent Stem Cells, Very Small Embryonic-Like Stem Cells), Application (Regenerative Medicine (Neurology, Orthopedics, Oncology, Hematology, Cardiovascular and Myocardial Infraction, Injuries, Diabetes, Liver Disorder, Incontinence, Others), Drug Discovery and Development), Technology (Cell Acquisition (Bone Marrow Harvest, Umbilical Blood Cord, Apheresis), Cell Production (Therapeutic Cloning, In-vitro Fertilization, Cell Culture, Isolation), Cryopreservation, Expansion and Sub-Culture), Therapy (Autologous, Allogeneic)

Region Included are: North America, Europe, Asia Pacific, Oceania, South America, Middle East & Africa

Country Level Break-Up: United States, Canada, Mexico, Brazil, Argentina, Colombia, Chile, South Africa, Nigeria, Tunisia, Morocco, Germany, United Kingdom (UK), the Netherlands, Spain, Italy, Belgium, Austria, Turkey, Russia, France, Poland, Israel, United Arab Emirates, Qatar, Saudi Arabia, China, Japan, Taiwan, South Korea, Singapore, India, Australia and New Zealand etc.Enquire for customization in Report @:https://www.advancemarketanalytics.com/enquiry-before-buy/72815-global-stem-cells-market-1

Strategic Points Covered in Table of Content of Global Stem Cells Market:

Chapter 1: Introduction, market driving force product Objective of Study and Research Scope the Global Stem Cells market

Chapter 2: Exclusive Summary the basic information of the Global Stem Cells Market.

Chapter 3: Displayingthe Market Dynamics- Drivers, Trends and Challenges of the Global Stem Cells

Chapter 4: Presenting the Global Stem Cells Market Factor Analysis Porters Five Forces, Supply/Value Chain, PESTEL analysis, Market Entropy, Patent/Trademark Analysis.

Chapter 5: Displaying the by Type, End User and Region 2013-2018

Chapter 6: Evaluating the leading manufacturers of the Global Stem Cells market which consists of its Competitive Landscape, Peer Group Analysis, BCG Matrix & Company Profile

Chapter 7: To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries in these various regions.

Chapter 8 & 9: Displaying the Appendix, Methodology and Data Source

Finally, Global Stem Cells Market is a valuable source of guidance for individuals and companies.

Data Sources & Methodology

The primary sources involves the industry experts from the Global Stem Cells Market including the management organizations, processing organizations, analytics service providers of the industrys value chain. All primary sources were interviewed to gather and authenticate qualitative & quantitative information and determine the future prospects.

In the extensive primary research process undertaken for this study, the primary sources Postal Surveys, telephone, Online & Face-to-Face Survey were considered to obtain and verify both qualitative and quantitative aspects of this research study. When it comes to secondary sources Companys Annual reports, press Releases, Websites, Investor Presentation, Conference Call transcripts, Webinar, Journals, Regulators, National Customs and Industry Associations were given primary weight-age.

Get More Information: https://www.advancemarketanalytics.com/reports/72815-global-stem-cells-market-1

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Author:

Advance Market Analytics is Global leaders of Market Research Industry provides the quantified B2B research to Fortune 500 companies on high growth emerging opportunities which will impact more than 80% of worldwide companies revenues.

Our Analyst is tracking high growth study with detailed statistical and in-depth analysis of market trends & dynamics that provide a complete overview of the industry. We follow an extensive research methodology coupled with critical insights related industry factors and market forces to generate the best value for our clients. We Provides reliable primary and secondary data sources, our analysts and consultants derive informative and usable data suited for our clients business needs. The research study enable clients to meet varied market objectives a from global footprint expansion to supply chain optimization and from competitor profiling to M&As.

Contact Us:

Craig Francis (PR & Marketing Manager)AMA Research & Media LLPUnit No. 429, Parsonage Road Edison, NJNew Jersey USA 08837Phone: +1 (206) 317 1218[emailprotected]

Connect with us athttps://www.linkedin.com/company/advance-market-analyticshttps://www.facebook.com/AMA-Research-Media-LLP-344722399585916https://twitter.com/amareport

Follow this link:
Stem Cells Market Expected to Boost the Global Industry Growth in the Near Future - Germany English News

Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance – Science Advances

Abstract

Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.

TP53 is the gene most frequently mutated in human tumors (1), and germ lineinactivating p53 mutations cause the Li-Fraumeni syndrome of cancer predisposition (2). In addition, accelerated tumorigenesis has been associated with polymorphisms increasing the expression of MDM2 or MDM4, the essential p53 inhibitors (3, 4). Alterations of the p53/MDM2/MDM4 regulatory node are, thus, mainly known to promote cancer. Unexpectedly, however, we recently found that mice expressing p5331, a hyperactive mutant p53 lacking its C terminus, recapitulated the complete phenotype of patients with dyskeratosis congenita (DC) (5).

DC is a telomere biology disorder characterized by the mucocutaneous triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia; patients are also at very high risk of bone marrow failure, pulmonary fibrosis, and cancer, especially head and neck squamous cell carcinoma (HNSCC) and acute myeloid leukemia (AML) (6). Patients with DC are known to exhibit disease diversity in terms of age of onset, symptoms, and severity due to the mode of inheritance and causative gene (7, 8). DC is caused by germline mutations in genes encoding key components of telomere biology: the telomerase holoenzyme (DKC1, TERC, TERT, NOP10, and NHP2), the shelterin telomere protection complex (ACD, TINF2, and POT1), telomere capping proteins (CTC1 and STN1), and other proteins interacting with these cellular processes (RTEL1, NAF1, WRAP53, and PARN) (6). Twenty to 30% of affected individuals remain unexplained at the molecular level.

Our finding that p5331/31 mice were remarkable models of DC was initially unexpected for two reasons. First, an increased p53 activity was not expected to cause telomere dysfunction, given the well-accepted notion that p53 acts as the guardian of the genome. However, p53 is now known to down-regulate the expression of many genes involved in genome maintenance (5, 9, 10), and this might actually contribute to its toolkit to prevent tumor formation (11). Second, telomere biology diseases are usually difficult to model in mice because of differences in telomere length and telomerase expression between mice and humans. Mice that lack telomerase exhibited short telomeres only after three or four generations (G3/G4) of intracrosses (12, 13). However, mice with a telomerase haploinsufficiency and a deficient shelterin complex exhibited telomere dysfunction and DC features in a single generation (G1) (14). Because DC features were observed in G1 p5331/31 mice, we supposed that p53 might exert pleiotropic effects on telomere maintenance. Consistent with this, we found that murine p53 down-regulates several genes implicated in telomere biology (5, 9). Because some of these genes were also down-regulated by p53 in human cells (5, 9), our data suggested that an activating p53 mutation might cause features of DC in humans. However, this conclusion remained speculative in the absence of any clinical evidence.

Here, we report the identification of a germline missense mutation in MDM4, encoding an essential and specific negative regulator of p53, in a family presenting some DC-like phenotypic traits. We used a mouse model to demonstrate that this mutation leads to p53 activation, short telomeres, and bone marrow failure. Together, our results provide compelling evidence that a germline mutation affecting a specific p53 regulator may cause DC-like features in both humans and mice.

Family NCI-226 first enrolled in the National Cancer Institute (NCI) inherited bone marrow failure syndrome (IBMFS) cohort in 2008 (Fig. 1A and table S1). At the time, the proband (226-1) was 17 years of age and had a history of neutropenia, bone marrow hypocellularity, vague gastrointestinal symptoms, and chronic pain. His mother (226-4) also had intermittent neutropenia and a hypocellular bone marrow. Notably, his maternal aunt (226-7) had a history of melanoma and died at age 52 because of AML. The maternal aunts daughter (probands cousin, 226-8) had HNSCC at age 27 years, intermittent neutropenia, and bone marrow hypocellularity, while her son (probands cousin, 226-9) was diagnosed with metastatic HNSCC at 42 years of age. The probands father (226-3) was healthy with the exception of hemochromatosis. An IBMFS was suspected on the basis of the family history of cancer and neutropenia. Chromosome breakage for Fanconi anemia was normal, while lymphocyte telomeres were between the 1st and 10th percentiles in the proband and maternal cousin (226-8) (Fig. 1, B and C). The proband was tested for mutations in known DC-causing genes, and a TERT variant (p.W203S) was identified. Unexpectedly, however, the variant was found to be inherited from his father. TERT p.W203S is not present in gnomAD, but it is predicted to be tolerated by MetaSVM (15).

(A) Pedigree of family NCI-226. Arrow indicates proband. Cancer histories include oral squamous cell carcinoma for 226-8 at age 27 years and for 226-9 at age 42 years, and melanoma at 51 years and AML at 52 years for 226-7 (see table S1 for further details). 226-5 had lung cancer at age 69 years. 226-6 had non-Hodgkin lymphoma at age 91 years. In addition, four siblings of 226-6 had cancer: one with breast, two with lung, and one with ovary or uterus (not specified). Sequencing of 226-5, 226-6, 226-7, and 226-9 was not possible because of lack of available DNA. (B and C) Lymphocyte telomere lengths (TL) of study participants. Total lymphocyte telomere lengths are shown and were measured by flow cytometry with in situ hybridization. (B) Graphical depiction of telomere length in relation to age. Four individuals had telomeres measured twice. Legend is in (C). Percentiles (%ile) are based on 400 healthy individuals (50). (C) Age at measurement(s) and telomere length in kilobases. (D) Sequence of the MDM4 RING domain (residues 436 to 490) with secondary structure residues indicated (black boxes). The P-loop motif is highlighted in gray, and the mutated residue in red. (E) The mutant RING domain retains ATP-binding capacity. Wild-type (WT) and mutant (TM) glutathione S-transferase (GST)RING proteins, or GST alone, were incubated with 10 nM ATP and 5 Ci ATP-32P for 10 min at room temperature, filtered through nitrocellulose, and counted by liquid scintillation CPM, counts per minute. Results from two independent experiments. (F) The mutant MDM4 RING domain has an altered capacity to dimerize with the MDM2 RING. Two-hybrid assays were carried out as described (47). -LW, minus leucine and tryptophan; -LWHA, minus leucine, tryptophan, histidine and adenine; OD, optical density. Growth on the -LWHA medium indicates protein interaction, readily observed between MDM2 (M2-BD) and WT MDM4 (M4-AD WT) but faintly visible between MDM2 and MDM4T454M (M4-AD TM). (G) Impact of the mutation in transfected human cells. U2OS cells were transfected with an empty vector (EV) or an expression plasmid encoding a Myc-tagged MDM4 (WT or T454M) protein and then treated or not with cycloheximide (CHX) to inhibit protein synthesis, and protein extracts were immunoblotted with antibodies against Myc, p21, or actin. Bands were normalized to actin, and a value of 1 was assigned to cells transfected with the WT MDM4 expression plasmid (for Myc) or with the empty vector (for p21).

Since the TERT variant did not track with disease inheritance, whole-exome sequencing (WES) was performed to search for a causal gene. The whole-exome data were filtered by maternal autosomal inheritance and revealed three genes with heterozygous missense mutations potentially deleterious according to bioinformatics predictions: MDM4, KRT76, and REM1 (table S2). Given the limited knowledge of the function of KRT76 and REM1, and our prior knowledge of a DC-like phenotype in p5331/31 mice, we chose to focus on the mutation affecting MDM4 because it encodes a major negative regulator of p53. Although the T454M mutation does not affect the p53 interaction domain of MDM4, it might affect p53 regulation because it affects the MDM4 RING domain: Residue 454 is both part of a P-loop motif thought to confer adenosine triphosphate (ATP)binding capacity (16) and part of a strand important for MDM2-MDM4 heterodimerization (Fig. 1D) (17). The mutant RING domain had fully retained its capacity to bind ATP specifically (Fig. 1E and fig. S1A) but exhibited an altered capacity to interact with the MDM2 RING domain in a yeast two-hybrid assay (Fig. 1F). We next used transfection experiments to evaluate the consequences of this mutation on the full-length protein in human cells. We transfected U2OS cellsknown to have a functional but attenuated p53 pathway due to MDM2 overexpression (18)with either an empty vector or an expression plasmid encoding a Myc-tagged MDM4WT or MDM4T454M protein. Compared with cells transfected with the empty vector, cells transfected with a MDM4WT or a MDM4T454M expression plasmid exhibited decreased p21 levels, indicating MDM4-mediated p53 inhibition in both cases (Fig. 1G). However, the decrease in p21 levels was less pronounced in cells expressing MDM4T454M than in cells expressing MDM4WT (Fig. 1G) despite similar transfection efficiencies (fig. S1B). The lower expression levels of the MDM4T454M protein likely contributed to its decreased capacity to inhibit p53 (Fig. 1G). In this experimental setting, the treatment with cycloheximide did not reveal any significant difference in stability between the mutant and wild-type (WT) MDM4 proteins (Fig. 1G and quantification in fig. S1C), raising the possibility that the observed lower MDM4T454M protein levels might result from differences in mRNA translation efficiency. Together, these preliminary results argued for an impact of the mutation on MDM4 function, leading to p53 activation.

The MDM4 RING domain is remarkably conserved throughout evolution, e.g., with 91% identity between the RING domains of human MDM4 and mouse Mdm4 (19). Thus, we decided to create a mouse model to precisely evaluate the physiological impact of the human mutation. We used homologous recombination in embryonic stem (ES) cells to target the p.T454M mutation at the Mdm4 locus (Fig. 2A). Targeted recombinants were identified by long-range polymerase chain reaction (PCR) (Fig. 2B), confirmed by DNA sequencing (Fig. 2C), and the structure of the recombinant allele was further analyzed by Southern blots with probes located 5 and 3 of the targeted mutation (Fig. 2D). Recombinant ES clones were then microinjected into blastocysts to generate chimeric mice, and chimeras were mated with PGK-Cre mice to excise the Neo gene. PCR was used to verify transmission through the germ line of the Mdm4T454M (noted below Mdm4TM) mutation and to genotype the mouse colony and mouse embryonic fibroblasts (MEFs) (Fig. 2E). We first isolated RNAs from Mdm4TM/TM MEFs and sequenced the entire Mdm4 coding sequence: The Mdm4TM sequence was identical to the WT Mdm4 sequence except for the introduced missense mutation (not shown). Furthermore, like its human counterpart, the Mdm4 gene encodes two major transcripts: Mdm4-FL, encoding the full-length oncoprotein that inhibits p53, and Mdm4-S, encoding a shorter, extremely unstable protein (20, 21). We observed, in unstressed cells as well as in cells treated with Nutlin [a molecule that activates p53 by preventing Mdm2-p53 interactions (22) without altering Mdm4-p53 interactions (23, 24)], that the Mdm4TM mutation affected neither Mdm4-FL nor Mdm4-S mRNA levels (Fig. 2F). In Western blots, however, Mdm4-FL was the only detectable isoform, and it was expressed at lower levels in the mutant MEFs (Fig. 2G).

(A) Targeting strategy. Homologous recombination in ES cells was used to target the T454M mutation at the Mdm4 locus. For the Mdm4 WT allele, exons 9 to 11 are shown [black boxes, coding sequences; white box, 3 untranslated region (3UTR)] and Bam HI (BH) restriction sites. Above, the targeting construct contains the following: (i) a 2.9-kb-long 5 homology region encompassing exon 10, intron 10, and exon 11 sequences upstream the mutation; (ii) the mutation (asterisk) within exon 11; (iii) a 2.6-kb-long fragment encompassing the 3 end of the gene and sequences immediately downstream; (iv) a neomycin selection gene (Neo) flanked by loxP sequences (gray arrowheads) and an additional BH site; (v) a 2.1-kb-long 3 homology region containing sequences downstream Mdm4; and (vi) the Diphtheria toxin a gene (DTA) for targeting enrichment. (B to D) screening of G418-resistant ES clones as described in (A), with asterisks (*) indicating positive recombinants: (B) PCR with primers a and b; (C) sequencing after PCR with primers c and d: the sequence for codons 452 to 456 demonstrates heterozygosity at codon 454; (D) Southern blot of Bam HIdigested DNA with the 5 (left) or 3 (right) probe. (E) Examples of fibroblast genotyping by PCR with primers e and f. (F) The Mdm4T454M mutation does not alter Mdm4 mRNA levels. Mdm4-FL (left) and Mdm4-S (right) mRNAs were extracted from WT and Mdm4TM/TM MEFs before or after treatment for 24 hours with 10 M Nutlin, quantified using real-time PCR, and normalized to control mRNAs, and then the value in Nutlin-treated WT MEFs was assigned a value of 1. Results from five independent experiments and >4 MEFs per genotype. ns, not significant in a Students t test. (G) Decreased Mdm4 protein levels in Mdm4TM/TM MEFs. Protein extracts, prepared from MEFs treated as in (F), were immunoblotted with antibodies against Mdm4 or actin. Bands were normalized to actin, and then the values in Nutlin-treated WT cells were assigned a value of 1. p53P/P Mdm4E6/E6 MEFs do not express a full-length Mdm4 protein (20): They were loaded to unambiguously identify the Mdm4(-FL) band in the other lanes.

Mdm4TM/TM MEFs contained higher mRNA levels for the p53 targets p21(Cdkn1a) and Mdm2, indicating increased p53 activity (Fig. 3A). Consistent with this, Mdm4TM/TM MEFs exhibited increased p21 and Mdm2 protein levels (Fig. 3B and fig. S2). Moreover, Mdm4TM/TM MEFs prematurely ceased to proliferate when submitted to a 3T3 protocol (Fig. 3C), which also suggests an increased p53 activity. The mean telomere length was decreased by 11% in Mdm4TM/TM MEFs, and a subset of very short telomeres was observed in these cells, hence demonstrating a direct link between the Mdm4TM mutation, p53 activation, and altered telomere biology (Fig. 3D). In p5331/31 MEFs, subtle but significant decreases in expression were previously observed for several genes involved in telomere biology, and in particular, small variations in Rtel1 gene expression were found to have marked effects on the survival of p5331/31 mice (5, 9). Similarly, Mdm4TM/TM MEFs exhibited subtle but significant decreases in expression for Rtel1 and several other genes contributing to telomere biology (Fig. 3E). We previously showed that p53 activation correlates with an increased binding of the E2F4 repressor at the Rtel1 promoter (9). Hence, the decreased Rtel1 mRNA levels in Mdm4TM/TM MEFs most likely resulted from increased p53 signaling. Consistent with this, a further increase in p53 activity, induced by Nutlin, led to further decreases in Rtel1 mRNA and protein levels, in both WT and Mdm4TM/TM cells (fig. S3A). Recently, in apparent contradiction with our finding that p53 activation can cause telomere shortening (5), p53 was proposed to prevent telomere DNA degradation by inducing subtelomeric transcripts, including telomere repeat-containing RNA (TERRA) (25, 26), which suggested a complex, possibly context-dependent impact of p53 on telomeres (27). This led us to compare TERRA transcripts in WT and Mdm4TM/TM cells. Consistent with an earlier report (26), p53 activation led to increased TERRA at the mouse Xq subtelomeric region in WT cells (fig. S3B). However, Mdm4TM/TM cells failed to induce TERRA in response to stress (fig. S3B). Together, our data suggest that the telomere shortening observed in Mdm4TM/TM cells results from a p53-dependent decrease in expression of several telomere-related genes and, notably, Rtel1, a gene mutated in several families with DC (6). In addition, although evidence that altered TERRA levels can cause DC is currently lacking, we cannot exclude that an altered regulation of TERRA expression might contribute to telomere defects in Mdm4TM/TM cells.

(A) Quantification of p21 and Mdm2 mRNAs extracted from WT, Mdm4+/TM, and Mdm4TM/TM MEFs, treated or not for 24 hours with 10 M Nutlin. mRNA levels were quantified using real-time PCR and normalized to control mRNAs, and then the value in Nutlin-treated WT MEFs was assigned a value of 1. Results from 10 independent experiments. (B) Protein extracts, prepared from p53/, WT, and Mdm4TM/TM MEFs treated as in (A), were immunoblotted with antibodies against Mdm2, Mdm4, p53, p21, or actin. Bands were normalized to actin, and then the values in Nutlin-treated WT MEFs were assigned a value of 1. (C) Proliferation of MEFs in a 3T3 protocol. Each point is the average value of three independent MEFs. (D) Decreased telomere length in Mdm4TM/TM MEFs, as measured by quantitative FISH with a telomeric probe. Results from two MEFs per genotype, and 68 to 75 metaphases per MEF [means + 95% confidence interval (CI) are shown in yellow]. a.u., arbitrary units. (E) Telomere-related genes down-regulated in Mdm4TM/TM MEFs. mRNAs were extracted from unstressed WT and Mdm4TM//TM MEFs, quantified using real-time PCR, and normalized to control mRNAs, and the value in WT MEFs was assigned a value of 1. Results from >3 independent experiments and two MEFs per genotype. In relevant panels: P = 0.08, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by Students t (A, C at passage 7, and E) or Mann-Whitney (D) statistical tests.

Mdm4TM/TM mice were born in Mendelian proportions from Mdm4+/TM intercrosses (Fig. 4A) but were smaller than their littermates and died within 0 to 30 min after birth, with signs of severe respiratory distress (Fig. 4, B and C). Consistent with this, Mdm4TM/TM pups at postnatal day 0 (P0) appeared hypoxic (Fig. 4C), and their lungs were very small and dysfunctional (Fig. 4D). Thus, Mdm4TM/TM pups most likely died from neonatal respiratory failure. Tissues from Mdm4TM/TM pups exhibited increased p21 mRNA levels, suggesting an increase in p53 activity in these animals (fig. S4). We next used flowFISH (fluorescence in situ hybridization) with a telomere-specific probe to evaluate the impact of the mutation on telomere length in vivo. Lung cells from Mdm4TM/TM pups (and control G3 Terc/ mice) exhibited a 25% decrease in mean telomere length compared with cells from WT or Mdm4+/TM littermates, indicating altered telomere biology in G1 homozygous mutants (Fig. 4E). Notably, p53 loss or haploinsufficiency rescued the perinatal lethality of Mdm4TM/TM pups, illustrating that the premature death of Mdm4TM/TM mice likely resulted from increased p53 activity (Fig. 4F). However, p53/ and Mdm4TM/TM p53/ mice exhibited similar survival curves, with a fraction of the mice (respectively 4 of 12 and 1 of 6) succumbing to thymic lymphoma in less than 180 days. In contrast, after 180 days, all the p53+/ mice remained alive, whereas most Mdm4TM/TM p53+/ mice had died. Mdm4TM/TM p53+/ mice were smaller than their littermates (Fig. 4G) and exhibited hyperpigmentation of the footpads (Fig. 4H), and 120-day-old Mdm4TM/TM p53+/ mice exhibited abnormal hemograms (Fig. 4I). Furthermore, the Mdm4TM/TM p53+/ mice that died 60 to 160 days after birth exhibited bone marrow hypocellularity (Fig. 4J), indicating bone marrow failure as the likely cause for their premature death.

(A) Mendelian distribution of the offspring from 8 Mdm4+/TM intercrosses. (B) Mdm4TM/TM mice die at birth. Cohort sizes are in parentheses. (C) Mdm4TM/TM neonates are smaller than their littermates and appear hypoxic. (D) Lungs from Mdm4TM/TM P0 pups are hypoplastic and sink in phosphate-buffered saline owing to a lack of air inflation. (E) Flow-FISH analysis of P0 lung cells with a telomere-specific peptide nucleic acid (PNA) probe. Top: Representative results from a WT, a Mdm4+/TM, a Mdm4TM/TM, and a G3 Terc/ mouse are shown. Right: Green fluorescence (fluo.) with black histograms for cells without the probe (measuring cellular autofluorescence) and green histograms for cells with the probe. The shift in fluorescence intensity is smaller in Mdm4TM/TM and Terc/ cells (c or d < a or b), indicating reduced telomere length. Left: Propidium iodide (PI) fluorescence histograms are superposed for cells with or without the probe. Below: Statistical analysis of green fluorescence shifts (see Materials and Methods). Means + 95% CI are shown; data are from two to three mice and >3800 cells per genotype. (F) Impact of decreased p53 activity on Mdm4TM/TM animals. Cohort sizes are in parentheses. (G) Examples of littermates with indicated genotypes. (H) Hind legs of mice with indicated genotypes. (I) Mdm4TM/TM p53+/ mice exhibit abnormal hemograms. Counts for white blood cells (WBC), red blood cells (RBC), and platelets (PLT) for age-matched (120 days old) animals are shown. (J) Hematoxylin and eosin staining of sternum sections from WT and Mdm4TM/TM p53+/ mice. In relevant panels: ns, not significant; *P < 0.05, ***P < 0.001, and ****P < 0.0001 by Mantel-Cox (B and F), Students t (C, D, G, and I), or Mann-Whitney (E) statistical tests. Photo credits: E.T. and R.D., Institut Curie (C, G, and H); R.D., Institut Curie (D).

Although Mdm4TM/TM MEFs and mice were useful to demonstrate that the Mdm4T454M mutation leads to p53 activation and short telomeres, a detailed analysis of Mdm4+/TM mice appeared more relevant to model the NCI-226 family, in which all affected relatives were heterozygous carriers of the MDM4T454M mutation. Unlike Mdm4TM/TM mice, most Mdm4+/TM animals remained alive 6 months after birth and had no apparent phenotype, similarly to WT mice (Fig. 5A). This was consistent with our analyses in fibroblasts because Mdm4+/TM MEFs behaved like WT cells in a 3T3 proliferation assay (Fig. 3C). However, p53 target genes appeared to be transactivated slightly more efficiently in Mdm4+/TM than in WT cells (Fig. 3A), and 30% of Mdm4+/TM mice exhibited a slight hyperpigmentation of the footpads, suggesting a subtle increase in p53 activity (Fig. 5B). We reasoned that a further, subtle increase in p53 activity might affect the survival of Mdm4+/TM mice. We tested this hypothesis by mating Mdm4+/TM animals with p53+/31 mice. p53+/31 mice were previously found to exhibit a slight increase in p53 activity and to remain alive for over a year (5). Notably, unlike Mdm4+/TM or p53+/31 heterozygous mice, Mdm4+/TM p53+/31 compound heterozygotes died in less than 3 months (Fig. 5A) and exhibited many features associated with strong p53 activation. Mdm4+/TM p53+/31 mice exhibited intense skin hyperpigmentation (Fig. 5C), were much smaller than their littermates (Fig. 5D), and exhibited heart hypertrophy (Fig. 5E) and thymic hypoplasia (Fig. 5F) and the males had testicular hypoplasia (Fig. 5G). Bone marrow failure was the likely cause for the premature death of Mdm4+/TM p53+/31 mice, as indicated by abnormal hemograms of 18-day-old (P18) compound heterozygotes (Fig. 5H) and bone marrow hypocellularity in the sternum sections of moribund Mdm4+/TM p53+/31 animals (Fig. 5I). We next used flow-FISH to analyze telomere length in the bone marrow cells of P18 WT, Mdm4+/TM, p53+/31, and Mdm4+/TM p53+/31 mice. We found no significant difference between telomere lengths in cells from five WT and three Mdm4+/TM mice with normal skin pigmentation, whereas cells from two Mdm4+/TM mice with increased skin pigmentation (or from p53+/31 mice) exhibited marginal (5 to 7%) decreases in mean telomere length. Notably, in G1 Mdm4+/TM p53+/31 cells, the average telomere length was decreased by 34% (Fig. 5J). Together, these results demonstrate that Mdm4+/TM mice are hypersensitive to subtle increases in p53 activity. Consistent with this, Mdm4+/TM p53+/31 MEFs also exhibited increased p53 signaling and accelerated proliferation arrest in a 3T3 protocol (fig. S5). In sum, the comparison between Mdm4TM/TM and Mdm4TM/TM p53+/ mice, or between Mdm4+/TM and Mdm4+/TM p53+/31 animals, indicated that subtle variations in p53 signaling had marked effects on the phenotypic consequences of the Mdm4T454M mutation (table S3).

(A) Impact of increased p53 activity on Mdm4+/TM animals. Cohort sizes are in parentheses. (B) Footpads from Mdm4+/TM mice appear normal (top) or exhibit a subtle increase in pigmentation (bottom). (C) Mdm4+/TM p53+/31 mice exhibit strong skin hyperpigmentation. (D) Mdm4+/TM p53+/31 mice are smaller than age-matched WT mice. (E to G) Mdm4+/TM p53+/31 mice exhibit heart hypertrophy (E) as well as thymic (F) and testicular (G) hypoplasia. (H) Mdm4+/TM p53+/31 mice exhibit abnormal hemograms. Counts for white blood cells, red blood cells, and platelets for five age-matched (P18) animals per genotype are shown. (I) Hematoxylin and eosin staining of sternum sections from mice of the indicated genotypes. (J) Flow-FISH analysis of P18 bone marrow cells with a telomere-specific PNA probe. Top: Representative results for a WT, a Mdm4+/TM with normal skin pigmentation (nsp), a Mdm4+/TM with increased footpad skin pigmentation (isp), a p53+/31, and a Mdm4+/TM p53+/31 mouse are shown; black histograms, cells without the probe; green histograms, cells with the probe. The smallest shift in fluorescence intensity (e) was observed with Mdm4+/TM p53+/31 cells. Bottom: Statistical analysis of green fluorescence shifts. Means + 95% CI are shown; data are from >1500 cells per genotype. In relevant panels: ns, not significant; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by Mantel-Cox (A), Students t (D and E to H), or Mann-Whitney (J) statistical tests. Photo credits: R.D. and P.L., Institut Curie (B); E.T. and R.D., Institut Curie (C and D).

The carriers of the MDM4T454M mutation exhibited considerable heterogeneity in their phenotypes (Fig. 1 and table S1). The data from our mouse model suggested that variations in p53 activity might account for the variable expressivity and penetrance of clinical features among the NCI-226 MDM4+/T454M relatives. Hence, we analyzed nine known common polymorphisms reported to affect p53 activity and tumorigenesis (four at the TP53 locus, two at the MDM2 locus, and three at the MDM4 locus) (3,4,2832). Among the four MDM4+/T454M relatives, the proband (NCI-226-1) is more difficult to interpret because the potential contribution of the TERT p.W203S variant to his phenotype cannot be ruled out (even though it appears unlikely according to in silico predictions). The MDM4 allele encoding the mutant protein (p.T454M) appears associated with the C allele of single-nucleotide polymorphism (SNP) rs4245739, the G allele of SNP rs11801299, and the G allele of SNP rs1380576 (Fig. 6A). These three MDM4 variant alleles are associated with increased p53 activity (4,32) and might, thus, synergize with the MDM4T454M mutation in this family.

(A) Genotyping of polymorphisms that may affect the p53 pathway. The SNPs rs1800371 and rs1042522 modify the p53 protein sequence (28,29), whereas rs17878362 and rs17880560 are singlets (A1) or doublets (A2) of G-rich sequences in noncoding regions of TP53 that affect p53 expression (30). SNPs rs117039649 and rs2279744, in the MDM2 promoter, affect MDM2 mRNA levels (3,31). Three SNPs are at the MDM4 locus: rs4245739 in the 3UTR region affects MDM4 protein levels (4), whereas rs11801299 and rs1380576 were associated with an increased risk of developing retinoblastoma (32), a cancer type with frequent MDM4 alterations (51). Polymorphisms that differ among family members are in bold, with the allele (or haplotype) associated with increased p53 activity in green (because it may synergize with the effects of the MDM4T454M mutation). Alleles (or haplotypes) for which there is evidence of decreased p53 activity, or for which the effect is uncertain, are highlighted in red or blue, respectively. Please note that the clinical effects of the TP53 rs1042522 SNP have recently been contested (33), so that all alleles for this SNP were labeled in blue. MAF, minor allele frequency reported for all gnomAD populations combined. https://gnomad.broadinstitute.org (52). (B) Comparative analysis of primary fibroblasts from family members 226-4 and 226-8. p21 and RTEL1 mRNAs, extracted from cells from relatives NCI 226-4 and NCI 226-8 or two unrelated patients with DC carrying a TINF2 or a TERT mutation, were quantified using real-time PCR, normalized to control mRNAs, and then expressed relative to the mean values in TINF2 and TERT mutant cells. ns, not significant, **P < 0.01 and ***P < 0.001 in a Students t test.

The probands affected cousin (226-8) exhibited a very early onset of disease, with lymphocyte telomere length within or below the first percentile of age-matched control participants and tongue squamous cell carcinoma at age 27 (Fig. 1 and table S1). The WT MDM4 allele of 226-8 carried the rs4245739 C, the rs11801299 G, and the rs1380576 G variants associated with increased p53 activity. This suggests a potential disease-modifying effect of these MDM4 SNPs. In contrast, the probands mother (226-4) was much less severely affected, with telomere length between the 10th and 50th percentiles (Fig. 1). Although we cannot rule out that disease anticipation might contribute to her milder phenotype, note that her WT MDM4 allele carried variants that might correlate with decreased p53 activity and could antagonize the MDM4T454M mutation (rs4245739 A, rs11801299 A, and rs1380576 C; Fig. 6A). Family members 226-4 and 226-8 shared the same genotypes for all the other tested variants, except for TP53 rs1042522, a SNP first reported to affect apoptotic or cell cycle arrest responses (28), but with a clinical effect that now appears controversial (33). The probands sister (226-2), with a B cell deficiency and telomere lengths around the 10th percentile, also appeared less affected than 226-8. All the tested variants at the MDM2 and MDM4 loci were identical between 226-2 and 226-8. However, unlike 226-8, 226-2 exhibited a TP53 allele with an A1A1 haplotype for variants rs17878362 and rs17880560 that might decrease p53 activity (30) and antagonize the effects of the MDM4T454M mutation (Fig. 6A).

We had primary fibroblasts available for two of these family members, 226-4 and 226-8, allowing us to directly assess the functional effect of the MDM4T454M variant in these cells. These fibroblasts were grown in parallel with primary fibroblasts from patients with DC carrying either a TINF2K280E mutation or a TERTP704S mutation, and mRNA levels for p21 and RTEL1 were quantified. In agreement with the notion that a MDM4T454M heterozygous mutation activates p53 signaling in NCI-226 family members, fibroblasts from both 226-4 and 226-8 exhibited increased p21 mRNA levels compared with TINF2 or TERT mutant cells (Fig. 6B). However, cells from 226-4 only exhibited a 2-fold increase in p21 levels, whereas a 12-fold increase was observed for cells from 226-8, consistent with the notion that SNPs affecting the p53 pathway might counteract (for 226-4) or strengthen (for 226-8) the effect of the MDM4T454M mutation. Furthermore, we previously showed that RTEL1 mRNA levels are down-regulated upon p53 activation in human cells (5). RTEL1 mRNA levels appeared normal in cells from 226-4 but were markedly decreased in cells from 226-8, raising the possibility that a threshold in p53 activation might be required to affect RTEL1 expression (Fig. 6B).

Although MDM4 is primarily known for its clinical relevance in cancer biology, our study shows that a germline missense MDM4 mutation may cause features suggestive of DC. In humans, the MDM4 (p.T454M) mutation was identified in this family with neutropenia, bone marrow hypocellularity, early-onset tongue SCC, AML, and telomeres between the 1st and 10th percentiles in the younger generation. In mice, the same Mdm4 mutation notably correlated with increased p53 activity, short telomeres, and bone marrow failure. In both human transfected cells and MEFs, the mutant protein was expressed at lower levels than its WT counterpart, likely contributing to increased p53 activity. Together, these results demonstrate the importance of the MDM4/p53 regulatory axis on telomere biology and DC-like features in both species. Notably, p5331/31 mice were previously found to phenocopy DC (5), but whether this finding was relevant to human disease had remained controversial. When a mutation in PARN was found to cause DC (34), it first appeared consistent with the p5331 mouse model because PARN, the polyadenylate-specific ribonuclease, had been proposed to regulate p53 mRNA stability (35). However, whether PARN regulates the stability of mRNAs is now contested (36). Rather, PARN would regulate the levels of over 200 microRNAs, of which only a few might repress p53 mRNA translation (37). Furthermore, PARN regulates TERC, the telomerase RNA component (38), and TERC overexpression increased telomere length in PARN-deficient cells (39). Thus, whether a germline mutation that specifically activates p53 can cause DC-like features remained to be demonstrated in humans, and our report provides compelling evidence for this, because unlike PARN, MDM4 is a very specific regulator of p53.

A germline antiterminating MDM2 mutation was recently identified in a patient with a Werner-like syndrome of premature aging. Although multiple mechanisms might contribute to the clinical features in that report, a premature cellular senescence resulting from p53 hyperactivation was proposed to play a major role in his segmental progeroid phenotype (40). In that regard, our finding that increased p53 activity correlates with short telomeres appears relevant because telomere attrition is a primary hallmark of aging, well known to trigger cellular senescence (41). Furthermore, germline TP53 frameshift mutations were recently reported in two patients diagnosed with pure red blood cell aplasia and hypogammaglobulinemia, resembling but not entirely consistent with Diamond Blackfan anemia (DBA) (42). In addition to the pure red cell aplasia diagnostic of DBA, those patients were found to exhibit relatively short telomeres (although not as short as telomeres from patients with DC), which may also seem consistent with our results. Our finding of an MDM4 missense mutation in a DC-like family, together with recent reports linking an antiterminating MDM2 mutation to a Werner-like phenotype and TP53 frameshift mutations to DBA-like features, indicates that the clinical impact of germline mutations affecting the p53/MDM2/MDM4 regulatory network is just emerging. An inherited hyperactivation of the p53 pathwayvia a germline TP53, MDM2, or MDM4 mutationmay thus cause either DBA, Werner-like, or DC-like features, but additional work will be required to determine whether mutations in any of these three genes can cause any of these three syndromes. Likewise, several mouse models have implicated p53 deregulation in features of other developmental syndromes including the CHARGE, Treacher-Collins, Waardenburg, or DiGeorge syndrome (43), and it will be important to know whether germline mutations in TP53, MDM2, or MDM4 may cause these additional syndromes in humans.

Heterozygous Mdm4+/TM mice appeared normal but were hypersensitive to variations in p53 activity, and, perhaps most notably, Mdm4+/TM p53+/31 compound heterozygous mice rapidly died from bone marrow failure. Thus, the p5331 mutation acted as a strong genetic modifier of the Mdm4TM mutation. It is tempting to speculate that similarly, among the NCI-226 family members heterozygous for the MDM4T454M allele, differences in the severity of phenotypic traits (e.g., lymphocyte telomere length and bone marrow cellularity) may result, in part, from modifiers affecting the p53 pathway and synergize or antagonize with the effects of the MDM4T454M mutation. To search for potentially relevant modifiers, we looked at nine polymorphisms at the TP53, MDM2, and MDM4 loci that were previously reported to affect p53 activity. Notably, we found that the family member most severely affected (226-8, the probands cousin) carried a TP53 haplotype, as well as SNPs on the WT MDM4 allele, that might synergize with the effects of the MDM4T454M mutation. Conversely, a TP53 haplotype for the probands sister (226-2), or SNPs at the WT MDM4 locus for the probands mother (226-4), might antagonize the impact of MDM4T454M allele. Consistent with this, primary fibroblasts from 226-4 and 226-8 exhibited increased p53 activity, but p53 activation was much stronger in cells from 226-8. Our data, thus, appear consistent with the existence of genetic modifiers at the TP53 and MDM4 loci that may affect DC-like phenotypic traits among family members carrying the MDM4 (p.T454M) mutation. However, this remains speculative given the small number of individuals that could be analyzed. Furthermore, nonexonic variants affecting other genes might also contribute to DC-like traits (44). Last, the TP53 and MDM4 polymorphisms considered here were previously evaluated for their potential impact on tumorigenic processes, rather than DC-like traits such as telomere length or bone marrow hypocellularity. Our data suggest that polymorphisms at the TP53 and MDM4 (and possibly MDM2) loci should be evaluated for their potential impact on bone marrow function and telomere biology.

The individuals in this study are participants in an Institutional Review Boardapproved longitudinal cohort study at the NCI entitled Etiologic Investigation of Cancer Susceptibility in Inherited Bone Marrow Failure Syndromes (www.marrowfailure.cancer.gov, ClinicalTrials.gov NCT00027274) (7). Patients and their family members enrolled in 2008 and completed detailed family history and medical history questionnaires. Detailed medical record review and thorough clinical evaluations of the proband, his sister, parents, and maternal cousin were conducted at the National Institutes of Health (NIH) Clinical Center. Telomere length was measured by flow cytometry with in situ hybridization (flow-FISH) (45) in leukocytes of all patients and family members reported. DNA was extracted from whole blood using standard methods. DNA was not available from 226-7 or 226-9 (Fig. 1). Given the time frame of participant enrollment, Sanger sequencing of DKC1, TINF2, TERT, TERC, and WRAP53 was performed first, followed by exome sequencing.

WES of blood-derived DNA for family NCI-226 was performed at the NCIs Cancer Genomics Research Laboratory as previously described (46). Exome enrichment was performed with NimbleGens SeqCap EZ Human Exome Library v3.0 + UTR (Roche NimbleGen Inc., Madison, WI, USA), targeting 96 Mb of exonic sequence and the flanking untranslated regions (UTRs) on an Illumina HiSeq. Annotation of each exome variant locus was performed using a custom software pipeline. WES variants of interest were identified if they met the following criteria: heterozygous in the proband, his mother, and maternal cousin; nonsynonymous; had a minor allele frequency <0.1% in the Exome Aggregation Consortium databases; and occurred <5 times in our in house database of 4091 individuals. Variants of interest were validated to rule out false-positive findings using an Ion 316 chip on the Ion PGM Sequencer (Life Technologies, Carlsbad, CA, USA).

Primers flanking the MDM4 RING domain were used to amplify RING sequences, and PCR products were cloned (or cloned and mutagenized) in the pGST-parallel2 plasmid. Glutathione S-transferase (GST) fusion proteins were expressed in BL21 (DE3) cells. After induction for 16 hours at 20C with 0.2 mM IPTG (isopropyl--d-thiogalactopyranoside), soluble proteins were extracted by sonication in lysis buffer [50 mM tris (pH 7.0), 300 mM LiSO4, 1 mM dithiothreitol (DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 0.2% NP-40, complete Protease inhibitors (Roche) 1]. The soluble protein fraction was incubated with Glutathione Sepharose beads (Pharmacia) at 4C for 2 hours, and the bound proteins were washed with 50 mM tris (pH 7.0), 300 mM LiSO4, and 1 mM DTT and then eluted with an elution buffer [50 mM tris-HCl (pH 7.5), 300 mM NaCl, 1 mM DTT, and 15 mM glutathione]. WT and mutant GST-RING proteins (0, 1, 2, 4, or 8 g) or GST alone (0 or 8 g) was incubated with 10 nM ATP and 5 Ci ATP-32P for 10 min at room temperature, filtered through nitrocellulose, and counted by liquid scintillation. Alternatively, 7 g of either WT or mutant GST-RING proteins was incubated with 5 Ci ATP-32P for 10 min at room temperature and increasing amounts (0, 0.02, 2, 20, and 200 M) of ATP or guanosine triphosphate (GTP), filtered through nitrocellulose, and counted by liquid scintillation.

The yeast two-hybrid assays were performed as described (47). Briefly, MDM4 and MDM2 RING open reading frames were cloned in plasmids derived from the two-hybrid vectors pGADT7 (Gal4-activating domain) and pGBKT7 (Gal4-binding domain) creating N-terminal fusions and transformed in yeast haploid strains Y187 and AH109 (Clontech). Interactions were scored, after mating and diploid selection on dropout medium without leucine and tryptophan, as growth on dropout medium without leucine, tryptophan, histidine, and adenine.

U2OS cells (106) were transfected by using Lipofectamine 2000 (Invitrogen) with pCDNA3.1 (6 g), or 5 106 cells were transfected with 30 g of pCDNA3.1-MycTag-MDM4WT or pCDNA3.1-MycTag-MDM4TM. Twenty-four hours after transfection, cells were treated with cycloheximide (50 g/ml; Sigma-Aldrich, C4859), then scratched in phosphate-buffered saline (PBS) after 2, 4, or 8 hours, pelleted, and snap frozen in liquid nitrogen before protein or RNA extraction with standard protocols.

The targeting vector was generated by recombineering from the RP23-365M5 BAC (bacterial artificial chromosome) clone (CHORI BACPAC Resources) containing mouse Mdm4 and downstream sequences of C57Bl6/J origin. A loxP-flanked neomycin cassette (Neo) and a diphtheria toxin gene (DTA) were inserted downstream of the Mdm4 gene, respectively, for positive and negative selections, and a single-nucleotide mutation encoding the missense mutation T454M (TM) was targeted in the exon 11 of Mdm4. The targeting construct was fully sequenced before use.

CK-35 ES cells were electroporated with the targeting construct linearized with Not I. Recombinant clones were identified by long-range PCR, confirmed by Southern blot, PCR, and DNA sequencing (primer sequences in table S4). Two independent recombinant clones were injected into blastocysts to generate chimeras, and germline transmission was verified by genotyping their offspring. Reverse transcription PCR (RT-PCR) of RNAs from Mdm4TM/TM MEFs showed that the mutant complementary DNA (cDNA) differed from an Mdm4 WT sequence only by the engineered missense mutation. The genotyping of p53+/, p53+/31, and G3 Terc/ mice was performed as previously described (5, 12). All experiments were performed according to Institutional Animal Care and Use Committee regulations.

MEFs isolated from 13.5-day embryos were cultured in a 5% CO2 and 3% O2 incubator, in Dulbeccos modified Eagles medium GlutaMAX (Gibco), with 15% fetal bovine serum (Biowest), 100 M 2-mercaptoethanol (Millipore), 0.01 mM Non-Essential Amino Acids, and penicillin/streptavidin (Gibco) for five or fewer passages, except for 3T3 experiments, performed in a 5% CO2 incubator for seven passages. Cells were treated for 24 hours with 10 M Nutlin 3a (Sigma-Aldrich) (22) or 15 M cisplatin (Sigma-Aldrich). Primary human fibroblasts at low passage (p.2 for TINF2K280E, p.3 for NCI-226-4 and NCI-226-8, and p.4 for TERTP704S) were thawed and cultured in fibroblast basal medium (Lonza) with 20% fetal calf serum, l-glutamin, 10 mM Hepes, penicillin/streptavidin, and gentamicin before quantitative PCR (qPCR) analysis.

Total RNA, extracted using NucleoSpin RNA II (Macherey-Nagel), was reverse transcribed using SuperScript IV (Invitrogen), with, for TERRA quantification, a (CCCTAA)4 oligo as described (48). Real-time qPCRs were performed with primer sequences as described (5, 9, 48) on a QuantStudio using Power SYBR Green (Applied Biosystems).

Protein detection by immunoblotting was performed using antibodies against Mdm2 (4B2), Mdm4 (M0445; Sigma-Aldrich), p53 (AF1355, R&D Systems), actin (A2066; Sigma-Aldrich), p21 (F5; Santa Cruz Biotechnology), Myc-Tag (SAB2702192; Sigma-Aldrich), and Rtel1 (from J.-A.L.-V.). Chemiluminescence revelation was achieved with SuperSignal West Dura (Perbio). Bands of interest were quantified by using ImageJ and normalized with actin.

Cells were treated with colcemide (0.5 g/ml) for 1.5 hours, submitted to hypotonic shock, fixed in an (3:1) ethanol/acetic acid solution, and dropped onto glass slides. Quantitative FISH was then carried out as described (5) with a TelC-Cy3 peptide nucleic acid (PNA) probe (Panagene). Images were acquired using a Zeiss Axioplan 2, and telomeric signals were quantified with iVision (Chromaphor).

Flow-FISH with mouse cells was performed as described (45). For each animal, either the lungs were collected or the bone marrow from two tibias and two femurs was collected and red blood cells were lysed; then, 2 106 cells were fixed in 500 l of PNA hybridization buffer [70% deionized formamide, 20 mM tris (pH 7.4), and 0.1% Blocking reagent; Roche] and stored at 20C. Either nothing (control) or 5 l of probe stock solution was added to cells [probe stock solution: 10 M TelC-FAM PNA probe (Panagene), 70% formamide, and 20 mM tris (pH 7.4)], and samples were denatured for 10 min at 80C before hybridization for 2 hours at room temperature. After three washes, cells were resuspended in PBS 1, 0.1% bovine serum albumin, ribonuclease A (1000 U/ml), and propidium iodide (12.5 g/ml) and analyzed with an LSR II fluorescence-activated cell sorter. WT and G3 Terc/ mice were included in all flow-FISH experiments, respectively, as controls of normal and short telomeres. For fluorescence shift analyses, the green histograms (corresponding to cells with the telomeric probe) were sliced into 18 windows of equal width and numbered 0 to 17 according to their distance from the median value in cells without the probe, and the number of cells in each window was quantified with ImageJ. The data from two to five mice per genotype were typically used to calculate mean telomere lengths, expressed relative to the mean in WT cells.

Organs were fixed in formol 4% for 24 hours and then ethanol 70% and embedded in paraffin wax. Serial sections were stained with hematoxylin and eosin using standard procedures (49). For hemograms, 100 l of blood from each animal was recovered retro-orbitally in a 10-l citrate-concentrated solution (S5770; Sigma-Aldrich) and analyzed using an MS9 machine (Melet Schloesing Laboratoires).

DNA extracted from Epstein-Barr virustransformed lymphocytes of NCI-226 family members was amplified with primers flanking nucleotide polymorphisms of interest (primer sequences in table S5), and then PCR products were analyzed by Sanger DNA sequencing.

Analyses with Students t, Mann-Whitney, or Mantel-Cox statistical tests were performed by using GraphPad Prism, and values of P < 0.05 were considered significant.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acknowledgments: We are grateful to the family for valuable contributions to this study. We thank I. Grandjean, C. Caspersen, A. Fosse, and M. Garcia from the Animal Facility, C. Alberti and C. Roulle from the Transgenesis Platform, M. Richardson and A. Nicolas from the Pathology Service, and Z. Maciorowski from the Cell-Sorting Facility of the Institut Curie. We thank A. Chor for help with qPCRs, A. Pyanitskaya, C. Adam, V. Borde, M. Schertzer, and M. Perderiset for plasmids and technical advices, and A. Fajac for comments on the manuscript. F.T. would like to acknowledge the talent, kindness, and loyal support of I. Simeonova and S.J., two exceptional PhD students whose pioneering work led to this study. Funding: The Genetics of Tumor Suppression laboratory received funding from the Ligue Nationale contre le Cancer (Labellisation 2014-2018 and Comit Ile-de-France), the Fondation ARC and the Gefluc. PhD students were supported by fellowships from the Ministre de lEnseignement Suprieur et de la Recherche (to S.J., E.T., and R.D.), the Ligue Nationale contre le Cancer (to S.J.), and the Fondation pour la Recherche Mdicale (to E.T.). The work of S.A.S., N.G., and B.P.A. was supported by the intramural research program of the Division of Cancer Epidemiology and Genetics, NCI, and the NIH Clinical Center. Author contributions: V.L. created the Mdm4T454M mouse model, genotyped mouse cohorts, and performed transfections, yeast two-hybrid assays, protein purifications, and molecular cloning. E.T., R.D., and V.L. managed mouse colonies. E.T., R.D., and P.L. performed mouse anatomopathology. I.D., E.T., R.D., F.T., and J.-A.L.-V. determined mouse telomere lengths. V.L. and S.J. genotyped human polymorphisms and analyzed human fibroblasts. E.T. and R.D. genotyped MEFs and performed 3T3 assays. V.L., R.D., and E.T. performed Western blots. E.T., R.D., V.L., S.J., and P.L. performed qPCRs. B.B. and V.L. performed ATP-binding assays. B.P.A. supervised the NCI IBMFS study. N.G. and S.A.S. evaluated study participants. S.A.S. analyzed the exome sequencing data. F.T. and S.A.S. supervised the project and wrote the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. The human samples can be provided by S.A.S. pending scientific review and a completed material transfer agreement. Requests for human cells should be submitted to S.A.S.

Follow this link:
Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance - Science Advances

4 ways to promote neurogenesis in your brain – Big Think

Neurogenesis is still possible well into adulthood in two very important parts of the human brain.

Image by EtiAmmos on Shutterstock

Although most people are aware that aging or bad habits such as heavy alcohol use can contribute to the deterioration of our brains, not many of us give thought to how we can generate new brain cells.

Neurogenesis, the birth of neurons from stem cells, happens mostly before we are born - as we are formed in the womb, we are generating most of what we need after birth.

After birth, however, neurogenesis is still possible in two parts of the brain:

Of course, when this information first came to light back in the 1960s, the next natural question was: How do we promote neurogenesis in those areas where it's still possible?

Researchers today believe there are activities you can do (some of them may be things you already do on a daily basis) that can promote neurogenesis in your brain.

Why is it important to promote the growth of new neurons in adulthood?

We produce an estimated 700 million neurons per day in the hippocampus - this means by the time we reach the age of 50, we will have exchanged the neurons we were born within that area of the brain with new (adult-generated) neurons.

If we don't promote this exchange with the growth of new neurons, we may block certain abilities these new neurons help us with (such as keeping our memory sharp, for example).

Learning a new instrument helps promote neurogenesis.

Photo by DenisProduction.com on Shutterstock

Intermittent fasting

A 2015 Stanford study examined the link between intermittent fasting and neurogenesis. Calorie restriction and fasting can not only increase synaptic plasticity and promote neuron growth but it can also decrease your risk of developing neurodegenerative diseases and boost cognitive function.

Two of the most common ways you can intermittently fast are:

Traveling to new places

While traveling is something many of us enjoy scenic routes and new fun experiences these things also promote neurogenesis while we're on vacation. Paul Nussbaum, a clinical neuropsychologist at the University of Pittsburgh, explains that the mental benefits of traveling are very clear.

"When you expose your brain to an environment that's novel and complex or new and difficult, the brain literally reacts. Those new and challenging situations cause the brain to sprout dendrites (dangling extensions) which grow the brain's capacity."

Learning a new instrument

The mental health benefits of music have long been studied, but did you know that learning a new instrument can promote new neuron growth?

According to this 2010 study, learning to play a new musical instrument is an intense, multisensory motor experience that requires that acquisition and maintenance of skills over your entire lifetime - which of course, promotes the new formation of new neural networks.

When is the best time to begin learning a new instrument? Childhood, of course.

"Learning to play a new musical instrument in childhood can result in long-lasting changes in brain organization," according to the study mentioned above.

While learning an instrument in adulthood will also promote neurogenesis, children who began training with a musical instrument before the age of 7 have shown that they have a significantly larger corpus callosum (the area of the brain the allows communication between the two hemispheres of the brain) than many adults.

Reading novels

A study from Emory University showed there was an increase in ongoing connectivity in the brains of participants after reading the same (fiction) novel.

In this study, enhanced brain activity was observed in the region that control physical sensations and movement. Reading a novel, according to lead researcher Gregory Berns, can transport you into the body of the protagonist.

This ability to shift into another mental state is a vital skill that promotes healthy neurogenesis in those areas of the brain.

From Your Site Articles

Related Articles Around the Web

View post:
4 ways to promote neurogenesis in your brain - Big Think