Author Archives: admin


Celebrities Quietly Paying Huge Amounts for Anti-Aging Stem Cell Therapy That May Cause Gruesome Side Effects – Yahoo Canada Shine On

Age is just a number. Or, in the era of immortality-obsessed elites, it's just the number of bizarre, supposedly youth-preserving stem cell treatments you can afford.

One celebrity to recently come clean about their use of these experimental treatments is British actor and comedian John Cleese. In an interview with Saga Magazine, the 84-year-old revealed that for the past two decades, he's been spending around 17,000 the equivalent of about $21,000 a year on a private stem cell therapy to stave off aging.

Sure, the Monty Python co-creator is looking pretty good for his age. But experts warn that not only are the purported benefits of these therapies unproven, they may even be outright damaging to our bodies, possibly leading to gruesome outcomes like cancer.

The private clinics that provide these treatments, they warn, operate in "regulatory gray zones" in countries like the US and Switzerland where Cleese gets his treatment preying on the public's lack of understanding on the science behind the technology.

"These clinics may be operating outside of regulatory oversight and scientific collaboration, and do not publish the protocols or outcomes of what they are doing to patients that pay for their services," Anna Couturier at the European Consortium for Communicating Gene and Cell Therapy Information (EuroGCT) told The Telegraph.

Of course, there's a reason that stem cells have their reputation as a miracle of science. Not only are they remarkably good at renewing themselves, the so-called "pluripotent" ones are capable of developing into virtually any kind of cell in the human body. They're basically jacks of all trades, and it's these properties make them ideal for regenerating damaged or even lost tissue.

Perhaps one day advances in this field will let us regrow limbs like frogs. Even now, stem cells already have a well established use in treating leukemia patients by being transplanted into diseased bone marrow.

"You're looking to get rid of the disease and then replace the blood system with some fresh stem cells," Jon Frampton, a stem cell biologist at the University of Birmingham, told The Telegraph. "It's tried and tested and proven to work."

Things get shady beyond these limited proven uses, though. Some anti-aging treatments purport to make you look younger by replenishing the collagen in your face despite there being limited evidence to support them and the potential downsides don't sound worth the risk.

"If put into the wrong context without the right prompts and cues, stem cells do what they're capable of doing but in a very random way," Frampton told The Telegraph. "You can get a tumor called a teratoma, because the stem cells grow a lot and form a lump."

There's also considerable risks about the way these stem cells are administered.

"If the product is not sterile, it can lead to inflammation and, in worst case scenarios, septic shock," Darius Widera, a professor of stem cell biology and regenerative medicine at the University of Reading, told The Telegraph. "Many patients have been harmed by these gray zone clinics."

It's not that stem cells can't live up to the sky high potential we've predicted for them. But we should be skeptical about rushing to use them in these dubious, supposedly age-defying applications. Whatever your anxieties about getting old, it's best to let the science catch up first.

More on stem cells: Scientists Grow Teeny Tiny Testicles in Laboratory

Excerpt from:
Celebrities Quietly Paying Huge Amounts for Anti-Aging Stem Cell Therapy That May Cause Gruesome Side Effects - Yahoo Canada Shine On

Trial testing Parkinson’s cell therapy ANPD001 treats 1st patient – Parkinson’s News Today

A Phase 1/2 clinical trial dubbed ASPIRO thats testing Aspen Neurosciences ANPD001 a stem cell therapy candidate designed to replace the nerve cells that are lost in Parkinsons disease has dosed its first patient.

A first transplant was conducted at the Banner-University Medical Center Tucson by neurosurgeon Paul Larson, MD, the trials lead investigator, Aspen announced in a company press release

ASPIRO (NCT06344026), which was cleared by the U.S. Food and Drug Administration (FDA) last year, is testing the long-term safety and tolerability of the ANPD001 stem cell therapy when transplanted at two escalating doses in people with moderate to severe Parkinsons. The eligible study participants range in age from 50 to 70.

The initiation of this clinical trial is a major milestone in Aspens mission to develop and deliver personalized, regenerative neurologic therapies for people with unmet medical needs, starting with Parkinsons disease, said Damien McDevitt, PhD, president and CEO of Aspen Neuroscience.

To date, there is no disease-modifying therapy that can stop, replace or prevent the loss of dopamine neurons or slow the progression of Parkinsons, McDevitt said.

Additional trial goals will include assessments of the therapys early efficacy by measuring so-called on time, or periods when a patients symptoms are controlled by medications and the easing of motor symptoms. The trial is running at five clinical sites in the U.S.

Parkinsons is caused by the death of dopamine-producing neurons in the brains nigrostriatal dopaminergic pathway. That pathway includes the substantia nigra and the dorsal striatum, both involved in motor control. Dopamine is a major brain chemical messenger.

ANPD001 aims to replace the dopaminergic neurons that are lost in Parkinsons.

This experimental therapy for Parkinsons uses a type of stem cell called an induced pluripotent stem cell, or iPSC, which is able to generate nearly any type of cell in the body including dopamine-producing neurons. Its manufacturing is a three-step process.

The first step involves collecting skin cells from a patient, which are then modified in the lab and reprogrammed into iPSCs. The iPSCs are then provided with biochemical cues that guide them into transforming into dopamine neuronal precursor cells. These cells will eventually mature into dopamine-producing neurons once transplanted into patients.

The procedure is known as autologous because it uses a patients own cells.

This is the first use of the autologous approach in a formal clinical trial, saidLarson, also a professor of neurosurgery at the University of Arizona College of Medicine-Tucson.

Larson called it an honor to take part in ASPIRO, saying its an important study.

Parkinsons disease is the most common neurodegenerative movement disorder, primarily affecting the depletion of dopamine neurons in the midbrain, Larson said.

By the time of diagnosis, it is common for people with Parkinsons to have lost the majority of dopaminergic (DA) neurons in the nigrostriatal pathway, which leads to progressive loss of motor and neurological function, Larson said.

The enrolled participants expected to be nine in total were first remotely monitored via a digital health platform, by Rune Labs, as part of a Trial-Ready Cohort Screening study. The goal was to have a comprehensive view of the disease ahead of patient recruitment.

Also included in the trials additional goals, along with increased on time and reduced motor symptoms, is improvement in patients quality of life.

This first-in-human trial holds significant promise to investigate the ability of ANPD001 to improve the lives of people with moderate to advanced Parkinsons disease.

The trials primary phase is expected to be completed by next year, and patients will be assessed for five years post-transplant, with the use of imaging scans of the brain.

This first-in-human trial holds significant promise to investigate the ability of ANPD001 to improve the lives of people with moderate to advanced Parkinsons disease, said Edward Wirth III, MD, PhD, Aspens chief medical officer.

Our 2022 Trial Ready Cohort Screening Study has completed enrollment, and we plan to dose patients in the ASPIRO Phase 1/2a study this year, Wirth said.

Follow this link:
Trial testing Parkinson's cell therapy ANPD001 treats 1st patient - Parkinson's News Today

Using stem cell-derived heart muscle cells to advance heart regenerative therapy – Anti Aging News

198 0 Posted on Apr 29, 2024, 12 p.m.

Regenerative heart therapies involve transplanting cardiac muscle cells into damaged areas of the heart to recover lost function. However, the risk of arrhythmias following this procedure is reportedly high. In a recent study, researchers from Japan tested a novel approach that involves injecting 'cardiac spheroids,' cultured from human stem cells, directly into damaged ventricles. The highly positive outcomes observed in primate models highlight the potential of this strategy.

Cardiovascular diseases are still among the top causes of death worldwide, and especially prevalent in developed countries. Myocardial infarctions, commonly known as "heart attacks," are on the rise, resulting in a significant number of deaths each year.

Heart attacks typically kill millions of cardiac muscle cells, leaving the heart in a weakened state. Since mammals cannot regenerate cardiac muscle cells on their own, heart transplants are currently the only clinically viable option for patients suffering (or likely to suffer) heart failure. Given that full heart transplants are expensive and donors difficult to come by, it is no surprise that alternative therapies are highly sought after by the medical community.

One promising strategy that has been steadily gaining traction is using human induced pluripotent stem cells (HiPSCs) for regenerative heart therapy. Simply put, HiPSCs are cells derived from mature cells that can be effectively 'reprogrammed' into a completely different cell type, such as cardiac muscle cells (cardiomyocytes). By transplanting or injecting cardiomyocytes derived from HiPSCs into damaged areas of the heart, it is possible to recover some lost functionality. Unfortunately, studies have reported that this approach can increase the risk of arrythmias, posing a major hurdle to clinical trials.

In a recent study, a Japanese research team from Shinshu University and Keio University School of Medicine, tested a new strategy for regenerative heart therapy that involves injecting 'cardiac spheroids' derived from HiPSCs into monkeys with myocardial infarction. This study, published on April 26, 2024, in the journal Circulation, was led by Professor Yuji Shiba from the Department of Regenerative Science and Medicine, Shinshu University.

The team included Hideki Kobayashi, the first author, and Koichiro Kuwahara from the Department of Cardiovascular Medicine, Shinshu University School of Medicine, as well as Shugo Tohyama, and Keiichi Fukuda from the Department of Cardiology, Keio University School of Medicine, among others.

In their novel approach, the researchers cultivated HiPSCs in a medium that led to their differentiation into cardiomyocytes. After carefully extracting and purifying cardiac spheroids (three-dimensional clusters of cardiac cells) from the cultures, they injected approximately 6 107 cells into the damaged hearts of crab-eating macaques (Macaca fascicularis). They monitored the condition of the animals for twelve weeks, taking regular measurements of cardiac function. Following this, they analyzed the monkeys' hearts at the tissue level to assess whether cardiac spheroids could regenerate the damaged heart muscles.

First, the team verified the correct reprogramming of HiPSCs into cardiomyocytes. They observed, via cellular-level electrical measurements, that the cultured cells exhibited potential patterns typical of ventricular cells. The cells also responded as expected to various known drugs. Most importantly, they found that the cells abundantly expressed adhesive proteins such as connexin 43 and N-cadherin, which would promote their vascular integration into an existing heart.

Afterwards, the cells were transported from the production facility at Keio University to Shinshu University, located 230 km away. The cardiac spheroids, which were preserved at 4 C in standard containers, withstood the four-hour journey without problem. This means that no extreme cryogenic measures would be needed when transporting the cells to clinics, which would make the proposed approach less expensive and easier to adopt.

Finally, the monkeys received injections of either cardiac spheroids or a placebo directly into the damaged heart ventricle. During the observation period, the researchers noted that arrythmias were very uncommon, with only two individuals experiencing transient tachycardia (fast pulse) in the first two weeks among the treatment group. Through echocardiography and computed tomography exams, the team confirmed that the hearts of monkeys that received treatment had better left ventricular ejection after four weeks compared to the control group, indicating a superior blood pumping capability.

Histological analysis ultimately revealed that the cardiac grafts were mature and properly connected to pre-existing existing tissue, cementing the results of previous observations. "HiPSC-derived cardiac spheroids could potentially serve as an optimal form of cardiomyocyte products for heart regeneration, given their straightforward generation process and effectiveness," remarks Assistant Professor Kobayashi. "We believe that the results of this research will help solve the major issue of ventricular arrhythmia that occurs after cell transplantation and will greatly accelerate the realization of cardiac regenerative therapy," he further adds.

Although tested in monkeys, it is worth noting that the cardiac spheroid production protocol used in this study was designed for clinical application in humans. "The favorable results obtained thus far are sufficient to provide a green light for our clinical trial, called the LAPiS trial. We are already employing the same cardiac spheroids on patients with ischemic cardiomyopathy," comments Asst. Prof. Kobayashi.

Let us all hope for a resounding success in the LAPiS trial, paving the way for expanded and effective treatment avenues for people suffering from heart problems.

Link:
Using stem cell-derived heart muscle cells to advance heart regenerative therapy - Anti Aging News

3D Cell Culture Market is expected to reach revenue of USD 5.0 Bn by 2032, at 12.0% CAGR: Insights by Dimension … – GlobeNewswire

New Jersey, New York, Los Angeles, Austin, San Diego, Philadelphia, Phoenix, April 23, 2024 (GLOBE NEWSWIRE) -- Overview

The 3D Cell Culture Market size was valued at USD 1.8 billion in 2023 and is further anticipated to reach USD 5.0 billion by 2032 at a CAGR of 12.0% from 2024 to 2032.

The 3D Cell Culture Market involves developing and manufacturing services related to cultivating cells in a three-dimensional environment, which is crucial for pharmaceutical and biotech industries. These cultures mimic natural cellular environments, aiding research on cell behavior, cancer studies, tissue engineering, and drug testing. The market supplies products, equipment, and tissue engineering services.

Important Insights

Elevate Your Strategy with Our Exclusive Report: Request Your Sample Now at: https://dimensionmarketresearch.com/report/3d-cell-culture-market/request-sample/

Latest Trends

3D Cell Culture Market: Competitive Landscape

Some of the prominent market players:

Transform your business approach with strategic insights from our report. Get in touch to request our brochure today:

https://dimensionmarketresearch.com/report/3d-cell-culture-market/download-reports-excerpt/

3D Cell Culture Market Scope

Market Analysis

Scaffold-based technology is projected to dominate the 3D cell culture market with 49.3% of market share in 2023. It naturally is able to replicate extracellular matrices of different cells assisting in tissue engineering and regenerative medicine. Advances in this area are conduits created by 3D-printed edible scaffolds. There are other techniques, like scaffold-free, bioreactors, microfluidics, and bio-printing, that are suitable in that context, depending on the research objectives.

Biotechnology and pharmaceutical companies dominate the 3D cell culture market, holding 48.0% in 2023 with expected growth. 3D cell culture is the preferred direction for the drug development process, because it allows for more accurate identification of candidates, further safety and efficiency analysis, and low-cost drug screening, thus encouraging market development.

Growth Drivers

Restraints

Growth Opportunities

Drive Your Business Growth Strategy: Purchase the Report for Key Insights at: https://dimensionmarketresearch.com/checkout/3d-cell-culture-market/

3D Cell CultureMarket Segmentation

By Technology

By Application

By End-User

Elevate Your Strategy with Our Exclusive Report: Request Your Sample Now at: https://dimensionmarketresearch.com/report/3d-cell-culture-market/request-sample/

Regional Analysis

North America accounts for the biggest share in the 3D cell culture market with a 3D cell culture market share of 46.9% in 2023. North America is expected to be the largest player in the 3D cell culture market due to its advanced manufacturing sector which is predominantly developed and well funded by the effective pharmaceutical and biotechnology industries. Firstly, the advanced and demanding regulations prevailing in this region, especially considering the FDA's promptness in responding to innovative and modern testing techniques, promote a very different environment that is uniquely suitable for medical research, innovation, and technological advancements.

By Region

North America

Europe

Asia-Pacific

Latin America

Middle East & Africa

Discover additional reports tailored to your industry needs

Recent Developments in the 3D Cell Culture Market

About Dimension Market Research (DMR):

Dimension Market Research (DMR) is a market research and consulting firm based in India & US, with its headquarters located in the USA (New York). The company believes in providing the best and most valuable data to its customers using the best resources analysts work, to create unmatchable insights into the industries, and markets while offering in-depth results of over 30 industries, and all major regions across the world. We also believe that our clients dont always want what they see, so we provide customized reports as well, as per their specific requirements to create the best possible outcomes for them and enhance their business through our data and insights in every possible way.

More here:
3D Cell Culture Market is expected to reach revenue of USD 5.0 Bn by 2032, at 12.0% CAGR: Insights by Dimension ... - GlobeNewswire

QIAGEN reports results for Q1 2024 ahead of outlook, on track to achieve full-year 2024 guidance

Q1 2024: Net sales of $459 million (-5% actual rates, -5% constant exchange rates, CER); diluted EPS of $0.36 and adjusted diluted EPS of $0.46 // Net sales at CER of $462 million ahead of outlook for at least $455 million CER and adj. diluted EPS of $0.47 CER ahead of $0.44 CER outlook // Excluding COVID-19 product groups, net sales decline 1% CER // Diagnostics sales +5% CER on double-digit CER growth in QuantiFERON and QIAstat?Dx // 25.7% adjusted operating income margin on efficiency gains vs. 25.6% in Q1 2023 // Strong operating cash flow rises 85% to $133 million vs. Q1 2023 // 2024 outlook reaffirmed for at least $2.0 billion CER net sales and adj. diluted EPS of at least $2.10 CER Q1 2024: Net sales of $459 million (-5% actual rates, -5% constant exchange rates, CER); diluted EPS of $0.36 and adjusted diluted EPS of $0.46 // Net sales at CER of $462 million ahead of outlook for at least $455 million CER and adj. diluted EPS of $0.47 CER ahead of $0.44 CER outlook // Excluding COVID-19 product groups, net sales decline 1% CER // Diagnostics sales +5% CER on double-digit CER growth in QuantiFERON and QIAstat?Dx // 25.7% adjusted operating income margin on efficiency gains vs. 25.6% in Q1 2023 // Strong operating cash flow rises 85% to $133 million vs. Q1 2023 // 2024 outlook reaffirmed for at least $2.0 billion CER net sales and adj. diluted EPS of at least $2.10 CER

Follow this link:
QIAGEN reports results for Q1 2024 ahead of outlook, on track to achieve full-year 2024 guidance

Inotiv, Inc. to Report Fiscal 2024 Second Quarter Financial Results and Host Conference Call on Friday, May 10, 2024

WEST LAFAYETTE, Ind., April 29, 2024 (GLOBE NEWSWIRE) -- Inotiv, Inc. (NASDAQ: NOTV) (the “Company”, or “Inotiv”), a leading contract research organization specializing in nonclinical and analytical drug discovery and development services and research models and related products and services, today announced that it will issue its financial results for the fiscal 2024 second quarter ended March 31, 2024, on Friday, May 10, 2024, before the opening of the stock market. The Company will host a conference call that same day at 8:30 a.m. Eastern Time to discuss the results.

Original post:
Inotiv, Inc. to Report Fiscal 2024 Second Quarter Financial Results and Host Conference Call on Friday, May 10, 2024

ACELYRIN, INC. to Report First Quarter 2024 Financial Results and Corporate Update on May 13, 2024

LOS ANGELES, April 29, 2024 (GLOBE NEWSWIRE) -- ACELYRIN, INC. (Nasdaq: SLRN), a late-stage clinical biopharma company focused on accelerating the development and delivery of transformative medicines in immunology, today announced it will host a conference call on Monday, May 13, 2024 at 4:30 p.m. ET to discuss its first quarter 2024 financial results and provide a corporate update.

See the original post here:
ACELYRIN, INC. to Report First Quarter 2024 Financial Results and Corporate Update on May 13, 2024

Better Choice Company Announces Notification of Noncompliance with Additional NYSE American Continued Listing Standards

NEW YORK, April 29, 2024 (GLOBE NEWSWIRE) -- Better Choice Company Inc. (NYSE American: BTTR) (the “Company” or “Better Choice”), a pet health and wellness company, announced today that it received a notice (the “Notice”) from the NYSE American LLC (the “NYSE American”) dated April 24, 2024, notifying the Company that it is no longer in compliance with NYSE American continued listing standards. Specifically, the letter states that the Company is not in compliance with the continued listing standards set forth in Sections 1003(a)(ii) and 1003(a)(iii) of the NYSE American Company Guide (the "Company Guide"). Section 1003(a)(ii) requires a listed company to have stockholders' equity of $4 million or more if the listed company has reported losses from continuing operations and/or net losses in three of its four most recent fiscal years. Section 1003(a)(iii) requires a listed company to have stockholders' equity of $6 million or more if the listed company has reported losses from continuing operations and/or net losses in its five most recent fiscal years. The Company reported a stockholders’ equity of $3.0 million as of December 31, 2023, and losses from continuing operations and/or net losses in three out of its four most recent fiscal years ended December 31, 2023.

Excerpt from:
Better Choice Company Announces Notification of Noncompliance with Additional NYSE American Continued Listing Standards

Eton Pharmaceuticals to Report First Quarter 2024 Financial Results on Thursday, May 9, 2024

DEER PARK, Ill., April 29, 2024 (GLOBE NEWSWIRE) -- Eton Pharmaceuticals, Inc. (“Eton” or the "Company”) (Nasdaq: ETON), an innovative pharmaceutical company focused on developing and commercializing treatments for rare diseases, today announced that it will report first quarter 2024 financial results on Thursday, May 9, 2024. Management will host a conference call and live audio webcast to discuss the results at 4:30 p.m. ET (3:30 p.m. CT).

Read more from the original source:
Eton Pharmaceuticals to Report First Quarter 2024 Financial Results on Thursday, May 9, 2024