Category Archives: Adult Stem Cells


Covid-19 Impact On Orthopedic Regenerative Medicine Market 2020 Future Development, Manufacturers, Trends, Share, Size And Forecast to 2027 |…

The report on Global Orthopedic Regenerative Medicine Market is a dependable point of reference heralding high accuracy business decisions on the basis of thorough research and observation by seasoned research professionals at CMI Research. The report on global Orthopedic Regenerative Medicine market evidently highlights the causal factors such as demand analysis, trend examination, and technological milestones besides manufacturing activities that have been systematically touched upon to instigate systematic growth projection.

This CMI Research report on global Orthopedic Regenerative Medicine market systematically studies and follows noteworthy progresses across growth trends, novel opportunities as well as drivers and restraints that impact growth prognosis.

Free Sample Report + All Related Graphs & Charts @:https://www.coherentmarketinsights.com/insight/request-sample/3566

Which market players and aspiring new entrants may witness seamless entry?

Curasan, Inc., Carmell Therapeutics Corporation, Anika Therapeutics, Inc., Conatus Pharmaceuticals Inc., Histogen Inc., Royal Biologics, Ortho Regenerative Technologies, Inc., Swiss Biomed Orthopaedics AG, Osiris Therapeutics, Inc., and Octane Medical Inc.

Predicting Scope: Global Orthopedic Regenerative Medicine Market, 2020-2027

Elaborate research proposes global Orthopedic Regenerative Medicine market is likely to experience an impressive growth through the forecast span, 2020-2027, ticking a robust CAGR of xx% USD. The Orthopedic Regenerative Medicine market is anticipated to demonstrate a whopping growth with impressive CAGR valuation. The Orthopedic Regenerative Medicine market is also likely to maintain the growth spurt showing signs of steady recovery.

For appropriate analysis of all the market relevant information as well emerging trends and historical developments in the Orthopedic Regenerative Medicine market, CMI Research has referred to various primary and secondary research practices and contributing factors.

Regional Overview: Global Orthopedic Regenerative Medicine Market

The report specifically sheds light upon note-worthy business discretion, popular trends investment probabilities aligning with budding opportunities as well as breakthrough developments in policies and monetary inclination echoing investor preferences in Orthopedic Regenerative Medicine space.

Competitive Landscape: Global Orthopedic Regenerative Medicine Market

Further in the report, readers are presented with minute details pertaining to significant company profiles, product development, on pricing, production and vital information on raw material and equipment developments also form crucial report contents in this CMI Research report.

Have Any Query? Ask Our Expert @: https://www.coherentmarketinsights.com/insight/request-customization/3566

Segmentation Based on Orthopedic Regenerative Medicine Market Types:

By Procedure Cell TherapyTissue EngineeringBy Cell TypeInduced Pluripotent Stem Cells (iPSCs)Adult Stem CellsTissue Specific Progenitor Stem Cells (TSPSCs),Mesenchymal Stem Cells (MSCs)Umbilical Cord Stem Cells (UCSCs)Bone Marrow Stem Cells (BMSCs)By SourceBone MarrowUmbilical Cord BloodAdipose TissueAllograftsAmniotic FluidBy ApplicationsTendons RepairCartilage RepairBone RepairLigament RepairSpine RepairOthers

Global Orthopedic Regenerative Medicine Market Size & Share, By Regions and Countries/Sub-regions:

Asia Pacific: China, Japan, India, and Rest of Asia Pacific

Europe: Germany, the UK, France, and Rest of Europe

North America: the US, Mexico, and Canada

Latin America: Brazil and Rest of Latin America

Middle East & Africa: GCC Countries and Rest of Middle East & Africa

The regional analysis segment is a highly comprehensive part of the report on the global Orthopedic Regenerative Medicine market. This section offers information on the sales growth in these regions on a country-level Orthopedic Regenerative Medicine market.

The historical and forecast information provided in the report span between2020 and 2027. The report provides detailed volume analysis and region-wise market size analysis of the market.

Report Investment, a Priority: Explains CMI Research

This report also helps market participants to organize R&D activities aligning with exact market requirements

The report resonates critical findings on decisive factors such as downstream needs and requirement specifications as well as upstream product and service development

The report aids in reader comprehension of the market based on dual parameters of value and volume.

This CMI Research initiated research output on Orthopedic Regenerative Medicine market is a ready-to-refer handbook of noteworthy cues for easy adoption by market players and stakeholders

CMI Research skillfully underpins a vivid segment analysis of the global Orthopedic Regenerative Medicine market, rendering appropriate inputs about the revenue generation capabilities of each segment.

Buy this research report @: https://www.coherentmarketinsights.com/insight/buy-now/3566

Thanks for reading our report. If you have any further questions, please contact us. Our team will provide you with the report tailored to your needs.

About Us:

Coherent Market Insightsis a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.

Contacts Us: +1-206-701-6702 Email:[emailprotected] Web:https://www.coherentmarketinsights.com/

Go here to see the original:
Covid-19 Impact On Orthopedic Regenerative Medicine Market 2020 Future Development, Manufacturers, Trends, Share, Size And Forecast to 2027 |...

Cell Expansion Market a comprehensive study by key players- Thermo Fisher Scientific, Inc, Becton, Dickinson and Company, Terumo BCT, Merck KGaA and…

The global report titled Cell Expansion Market has been presented by ReportsnReports. It evaluates the key market trends, advantages, and factors that are pushing the overall growth of the market.

Get Instant Free Sample Copy in PDF Format @ https://www.reportsnreports.com/contacts/requestsample.aspx?name=313419

The Cell Expansion Market is projected to reach US$ 26.0 Billion by 2024 from US$ 12.7 Billion in 2019, at a CAGR of 15.4% during the forecast period. This report spread across 171 pages, profiling 15 companies and supported with tables and figures is now available in this research.

On the Basis of Products, the cell expansion market is segmented into consumables and instruments. Consumables are segmented into reagents, media, sera, and disposables. The instruments segment includes cell expansion supporting equipment, bioreactors, and automated cell expansion systems.

Based on Cell Type, the cell expansion market is segmented into human cells and animal cells. The human cells segment includes stem cells and differentiated cells. The stem cells segment is further classified into adult stem cells, ESCs, and iPSCs. These cells are used for therapeutic and research purposes.

North America, which includes the US and Canada, accounted for the largest share of the cell expansion in 2018.The large share of this market segment can be attributed to the government funding for cancer research, increasing awareness regarding advanced treatment theories, and the strong presence of industry players in the region.

Any Question? Ask Here @ https://www.reportsnreports.com/contacts/inquirybeforebuy.aspx?name=313419

Breakdown of primary participants profile:

The Study Objectives of this report are:

Coupon Code Available for 20% Discount @ https://www.reportsnreports.com/purchase.aspx?name=313419

#Key Players- Thermo Fisher Scientific, Inc. (US), Becton, Dickinson and Company (US), Terumo BCT (Japan), Merck KGaA (Germany), Danaher Corporation (US), MiltenyiBiotec (Germany), Lonza Group Ltd. (Switzerland), STEMCELL Technologies Inc. (Canada), GE Healthcare (US), and Corning, Inc. (US).

View original post here:
Cell Expansion Market a comprehensive study by key players- Thermo Fisher Scientific, Inc, Becton, Dickinson and Company, Terumo BCT, Merck KGaA and...

Genmab Announces IFM, HOVON and Janssen Achieve Positive Topline Results in Second Part of Phase 3 CASSIOPEIA Study of Daratumumab in Multiple Myeloma…

Genmab Announces IFM, HOVON and Janssen Achieve Positive Topline Results in Second Part of Phase 3 CASSIOPEIA Study of Daratumumab in Multiple Myeloma at Pre-planned Interim Analysis

Company Announcement

Copenhagen, Denmark; October 21, 2020 Genmab A/S (Nasdaq: GMAB) announced today positive topline results from the second part of the Phase 3 CASSIOPEIA (MMY3006) study of daratumumab monotherapy as maintenance treatment versus observation (no treatment) for patients with newly diagnosed multiple myeloma eligible for autologous stem cell transplant (ASCT). The second part of the study, which is being conducted by the French Intergroupe Francophone du Myelome (IFM) in collaboration with the Dutch-Belgian Cooperative Trial Group for Hematology Oncology (HOVON) and Janssen Research & Development, LLC (Janssen), met the primary endpoint of improving progression free survival (PFS) at a pre-planned interim analysis (Hazard Ratio (HR) = 0.53 (95% CI 0.42 0.68), p < 0.0001) resulting in a 47% reduction in the risk of progression or death in patients treated with daratumumab. The safety profile observed in this study was consistent with the known safety profile of daratumumab and no new safety signals were observed.

Based on the results at the pre-planned interim analysis conducted by an Independent Data Monitoring Committee (IDMC), it was recommended to unblind the study results. Janssen Biotech, Inc., which licensed daratumumab from Genmab in 2012, plans to discuss the potential for a regulatory submission for this indication with health authorities, and plans to submit the data to an upcoming medical conference and for publication in a peer-reviewed journal.

Following the positive data from the first part of the CASSIOPEIA study, we are very pleased to see this benefit. We are appreciative of the efforts of the IFM, of HOVON and of Janssen for their work on this study, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab.

About the CASSIOPEIA (MMY3006) Study This Phase 3 study is a randomized, open-label, multicenter study, conducted by the IFM in collaboration with the HOVON and Janssen, which includes 1,085 newly diagnosed subjects with previously untreated symptomatic multiple myeloma who were eligible for high dose chemotherapy and ASCT. In the first part of the study, patients were randomized to receive induction and consolidation treatment with daratumumab combined with bortezomib, thalidomide and dexamethasone (VTd) or VTd alone. The primary endpoint was the number of patients that achieved a stringent complete response (sCR). In the second part of the study, patients that achieved a response underwent a second randomization to either receive maintenance treatment of daratumumab 16 mg/kg every 8 weeks for up to 2 years versus no further treatment (observation). The primary endpoint of this part of the study is progression free survival.

About Multiple Myeloma Multiple myeloma is an incurable blood cancer that starts in the bone marrow and is characterized by an excess proliferation of plasma cells.1 Multiple myeloma is the third most common blood cancer in the U.S., after leukemia and lymphoma.2 Approximately 26,000 new patients were expected to be diagnosed with multiple myeloma and approximately 13,650 people were expected to die from the disease in the U.S. in 2018.3 Globally, it was estimated that 160,000 people were diagnosed and 106,000 died from the disease in 2018.4 While some patients with multiple myeloma have no symptoms at all, most patients are diagnosed due to symptoms which can include bone problems, low blood counts, calcium elevation, kidney problems or infections.5

About DARZALEX(daratumumab) DARZALEX (daratumumab) has become a backbone therapy in the treatment of multiple myeloma. DARZALEX intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with carfilzomib and dexamethasone for the treatment of patients with relapsed/refractory multiple myeloma who have received one to three previous lines of therapy; in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.6 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma.

DARZALEX is indicated for the treatment of adult patients in Europe via intravenous infusion or subcutaneous administration: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy7. Daratumumab is the first subcutaneous CD38 antibody approved in Europe for the treatment of multiple myeloma. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S.

In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.

DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, is approved in the United States for the treatment of adult patients with multiple myeloma: in combination with bortezomib, melphalan and prednisone in newly diagnosed patients who are ineligible for ASCT; in combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for ASCT and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy; in combination with bortezomib and dexamethasone in patients who have received at least one prior therapy; and as monotherapy, in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent.8 DARZALEX FASPRO is the first subcutaneous CD38 antibody approved in the U.S. for the treatment of multiple myeloma.

Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).6,9,10,11,12

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase 3 studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis and T-cell acute lymphocytic leukemia (ALL). Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.

About Genmab Genmab is a publicly traded, international biotechnology company specializing in the creation and development of differentiated antibody therapeutics for the treatment of cancer. Founded in 1999, the company is the creator of the following approved antibodies: DARZALEX (daratumumab, under agreement with Janssen Biotech, Inc.) for the treatment of certain multiple myeloma indications in territories including the U.S., Europe and Japan, Kesimpta (subcutaneous ofatumumab, under agreement with Novartis AG), for the treatment of adults with relapsing forms of multiple sclerosis in the U.S. and TEPEZZA (teprotumumab, under agreement with Roche granting sublicense to Horizon Therapeutics plc) for the treatment of thyroid eye disease in the U.S. A subcutaneous formulation of daratumumab, known as DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) in the U.S., has been approved in the U.S. and Europe for the treatment of adult patients with certain multiple myeloma indications. The first approved Genmab created therapy, Arzerra (ofatumumab, under agreement with Novartis AG), approved for the treatment of certain chronic lymphocytic leukemia indications, is available in Japan and is also available in other territories via compassionate use or oncology access programs. Daratumumab is in clinical development by Janssen for the treatment of additional multiple myeloma indications, other blood cancers and amyloidosis. Genmab also has a broad clinical and pre-clinical product pipeline. Genmab's technology base consists of validated and proprietary next generation antibody technologies - the DuoBody platform for generation of bispecific antibodies, the HexaBody platform, which creates effector function enhanced antibodies, the HexElect platform, which combines two co-dependently acting HexaBody molecules to introduce selectivity while maximizing therapeutic potency and the DuoHexaBody platform, which enhances the potential potency of bispecific antibodies through hexamerization. The company intends to leverage these technologies to create opportunities for full or co-ownership of future products. Genmab has alliances with top tier pharmaceutical and biotechnology companies. Genmab is headquartered in Copenhagen, Denmark with sites in Utrecht, the Netherlands, Princeton, New Jersey, U.S. and Tokyo, Japan.

Contact: Marisol Peron, Corporate Vice President, Communications & Investor Relations T: +1 609 524 0065; E: mmp@genmab.com

For Investor Relations: Andrew Carlsen, Senior Director, Investor Relations T: +45 3377 9558; E: acn@genmab.com

This Company Announcement contains forward looking statements. The words believe, expect, anticipate, intend and plan and similar expressions identify forward looking statements. Actual results or performance may differ materially from any future results or performance expressed or implied by such statements. The important factors that could cause our actual results or performance to differ materially include, among others, risks associated with pre-clinical and clinical development of products, uncertainties related to the outcome and conduct of clinical trials including unforeseen safety issues, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products or technologies obsolete, and other factors. For a further discussion of these risks, please refer to the risk management sections in Genmabs most recent financial reports, which are available on http://www.genmab.com and the risk factors included in Genmabs most recent Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at http://www.sec.gov. Genmab does not undertake any obligation to update or revise forward looking statements in this Company Announcement nor to confirm such statements to reflect subsequent events or circumstances after the date made or in relation to actual results, unless required by law.

Genmab A/S and/or its subsidiaries own the following trademarks: Genmab; the Y-shaped Genmab logo; Genmab in combination with the Y-shaped Genmab logo; HuMax; DuoBody; DuoBody in combination with the DuoBody logo; HexaBody; HexaBody in combination with the HexaBody logo; DuoHexaBody; HexElect; and UniBody. Arzerra and Kesimpta are trademarks of Novartis AG or its affiliates. DARZALEX and DARZALEX FASPRO are trademarks of Janssen Pharmaceutica NV. TEPEZZA is a trademark of Horizon Therapeutics plc.

1 American Cancer Society. "Multiple Myeloma Overview." Available at http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-what-is-multiple-myeloma.Accessed June 2016. 2 National Cancer Institute. "A Snapshot of Myeloma." Available at http://www.cancer.gov/research/progress/snapshots/myeloma. Accessed June 2016. 3 Globocan 2018. United States of America Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/840-united-states-of-america-fact-sheets.pdf. 4 Globocan 2018. World Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed December 2018. 5 American Cancer Society. "How is Multiple Myeloma Diagnosed?" http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-diagnosis. Accessed June 2016 6 DARZALEX Prescribing information, August 2020 https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761036s029lbl.pdf Last accessed August 2020 7 DARZALEX Summary of Product Characteristics, available at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex Last accessed June 2020 8 DARZALEX FASPRO Prescribing information, May 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761145s000lbl.pdf Last accessed May 2020 9 De Weers, M et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology. 2011; 186: 1840-1848. 10 Overdijk, MB, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015; 7: 311-21. 11 Krejcik, MD et al. Daratumumab Depletes CD38+ Immune-regulatory Cells, Promotes T-cell Expansion, and Skews T-cell Repertoire in Multiple Myeloma. Blood. 2016; 128: 384-94. 12 Jansen, JH et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking.Blood. 2012; 120(21): abstract 2974.

Continue reading here:
Genmab Announces IFM, HOVON and Janssen Achieve Positive Topline Results in Second Part of Phase 3 CASSIOPEIA Study of Daratumumab in Multiple Myeloma...

What Is the Role of Allogeneic-SCT in Adult Acute Lymphoblastic Leukemia in the Era of Targeted Therapies? – Targeted Oncology

In acute lymphoblastic leukemia (ALL), the standard curative approaches are intensive chemotherapy (IC) and allogeneic stem cell transplantation (allo-SCT). In children, the cure rate of IC alone is an encouraging 80% to 90%. Allo-SCT is mostly applied in adult, high-risk patients and when transplanted in first complete remission (CR1), the cure rate is about 50%.

However, promising cure rates should not be the sole focus as there are toxicities to consider. Intensive chemotherapy is associated with death in CR (complete remission) in up to 3% in children and 10% or higher in adults. Allo-SCT is even more toxic, with a treatment-related mortality of 10% to 20%. In addition, after intensive chemotherapy and particularly after SCT, there are a variety of long-term sequelae that decrease the quality of life. A substantial need exists for new treatments to avoid or reduce this toxicity.

There are several indications for the use of allo-SCT in adults (FIGURE 1). With the implementation of targeted therapies, these are continuously changing. Thus, the dogma that only allo-SCT is curative in patients with relapsed/ refractory disease should be revised to include CAR (chimeric antigen receptor) T cells, which are associated with a cure rate of about 50%.

Substantial progress in the treatment of adult ALL has been made in the last decade by the introduction of new targeted therapies, either with tyrosine kinase inhibitors (TKIs) or by immunotherapeutic approaches only allo-SCT is curative in patients with relapsed/refractory disease should be revised to include CAR (chimeric antigen receptor) T cells, which are associated with a cure rate of about 50% (FIGURE 2).

Patients with Philadelphia (Ph)-positive ALL constitute approximately 25% of adult B-lineage ALL, with an incidence increasing to about 50% among older patients.

In the pre-imatinib (Gleevec) era, CR rates were 60% to 70%, the survival rates associated with chemotherapy about 10%, and after patients underwent allo-SCT, about 30%. With the first-generation TKI imatinib, CR rates increased to 80% to 90%, the rate of BCR-ABL negativity from 5% to 50%, and the 5- to 10-year OS (overall survival) improved to 50% to 70%.1

Patients achieve faster and deeper molecular responses with second-generation TKIs such as dasatinib (Sprycel) and nilotinib (Tasigna), which translates into a survival benefit. The third-generation TKI ponatinib (Iclusig) targets resistant mutations, particularly T315I.2

Treating adult Ph-positive ALL with an allogeneic SCT in CR1 is still a good treatment option for patients with a 5-year OS of 60% to 70%. In older patients, when low-intensity chemotherapy was combined with dasatinib or nilotinib, the CR rate was greater than 90%, but many patients relapsed.3,4 In the next step, combining low-intensity chemotherapy with a TKI and adding an immunotherapy with inotuzumab ozogamicin (Besponsa), demonstrated a CR rate that surpassed 90% and the OS substantially improved.5 Here, the relapse rate was low and only several patients needed an SCT.

The newest approach in frontline Ph-positive ALL is a chemotherapy-free regimen that includes dexamethasone, the TKI dasatinib, and the bispecific antibody blinatumomab (Blincyto). A CR rate of 98% and the OS and disease-free survival (DFS) of 95% and 88%, respectively, for 2 years were observed.6 Interestingly, blinatumomab has been shown to eliminate Ph leukemic cells with resistant mutations.

Treatments with monoclonal antibodies or activated T cells are currently changing the treatment paradigm of ALL. The prerequisite is that B-lineage blast cells express a variety of specific antigens, such as CD19, CD20, and CD22 (TABLE ON PAGE 100), which are targetable with a wide variety of monoclonal antibodies.7 A new treatment principle is the activation of the patients T cells to destroy their CD19-positive leukemic blasts.

Anti-CD20/Rituximab

Rituximab (Rituxan) is a chimeric monoclonal antibody that binds to CD20-positive cells, resulting in cell death. Rituximab is now included in most B-lineage ALL regimens and is administered at the usual dose of 375 mg/m2 at day -1 before chemotherapy, typically for 8 cycles. This leads to a significant increase in the CR rate and MRD negativity rate of about 90% and improved survival of about 70% in standard-risk patients. Previously, rituximab was administered only to patients with more than 20% CD20 expression but is now administered to all patients because corticosteroids upregulate CD20 expression.8

It is difficult to extract the effect of allo-SCT in the context of rituximab-containing regimens with wide variation from 20% to 69%, according to study protocols. It is even more debatable whether the addition of rituximab improves outcomes after SCT.9-11 In one study, investigators examined the newer anti-CD20 antibody ofatumumab (Arzerra) in elderly patients with promising results.12

The anti-CD20 monoclonal body rituximab has substantially increased the cure rate of patients with de novo Burkitt leukemia/lymphoma. With repeated short cycles of intensive chemotherapy, combined with 8 doses of rituximab, the OS has increased to greater than 80%.13

Inotuzumab is an antibody-drug conjugate against CD22 and is linked to a cytotoxic agent from the class of calicheamicins called ozogamicin, which after internalization induces DNA strand breaks. CD22 is expressed in nearly all patients with adult ALL. Clinicians have explored inotuzumab in patients with relapsed/refractory ALL and it is now included in frontline regimens.

In an international, randomized multicenter trial (INO-VATE; NCT01564784), inotuzumab was compared with standard of care (SOC). Investigators reported that the CR rate was significantly higher in the inotuzumab group, 81% compared with 29% in SOC.14 Similarly, the inotuzumab group achieved a higher MRD- negativity rate of 78% versus 28% in the SoC group. This resulted in a transplant rate of 41% with the inotuzumab group compared with 11% in the SOC. Interestingly, this indicates that the achievement of a much higher MRD negativity by inotuzumab resulted in a higher rate for allo-SCT in CR1.

Inotuzumab has now moved to frontline therapy based on the results from a study involving older patients (60-97 years old) when combined with a reduced chemotherapy regimen of hyper-CVAD (cyclophosphamide, vincristine, doxorubicin [Adriamycin], and dexamethasone). Investigators reported a CR rate of 81% in this patient population, an MRD negativity of 100%, a DFS of 87%, and an OS of 70%.15 Taking the age of this patient group into consideration, the allo-SCT rate was only 6%, but the OS may also indicate that a substantial proportion of patients no longer need SCT.

Inotuzumab is a highly effective drug for achieving a fast tumor reduction in frontline therapy. If this combination of immunotherapies is considered, inotuzumab may be the first to reduce the tumor load and could be followed by blinatumomab to reduce remaining MRD.

Targeting CD19 is of great interest, as this antigen is highly expressed in all B-lineage cells, most likely including early lymphoid precursor cells. In contrast to the other antibodies, CD19-directed therapies act via T-cell activation to kill leukemic cells.

Blinatumomab

A new, promising approach is the bispecific antibody blinatumomab, which combines single chain antibodies to CD19 and CD3. Blinatumomab has been extensively explored in the MRD setting, which means that patients remained MRD positive after induction or with a molecular relapse.

In a pilot study evaluating 21 patients, the conversion rate to MRD negativity was 80%; 40% of these MRD-negative patients received an SCT.16 Interestingly, a fraction of patients also survived without undergoing an allo-SCT.

In an international, confirmatory, single-arm study (BLAST; NCT01207388) evaluating 116 patients in hematological remission, the rate of conversion to MRD negativity was high, with 78% achieving a complete MRD response with blinatumomab. In this setting, 40% of patients received an allo-SCT.17 Further, there was a fraction of patients who did not receive an allo-SCT.

Chimeric Antigen Receptor (CAR) T cells

The adoptive transfer of CAR-modified T cells directed against CD19 is another new promising approach for the treatment of CD19-positive disease in pediatric or adult ALL.18 In the first of 3 larger studies in adults with relapsed/refractory ALL, the CR rate ranged from 67% to 91%, with MRD negativity in 60% to 81% of patients who experienced a CR. OS was reported as 50% or greater at 2 years or more, which is remarkable for those heavily pretreated patients. It is noteworthy that CAR T cells are also effective in CNS leukemia and other extramedullary manifestations. Furthermore, CAR T-cell therapies are moving to frontline therapies.

CAR T-cell therapy in relapsed/refractory ALL was first considered as a bridge to allo- SCT and was applied in 10% to 50% of patients. Currently, however, the role of allo-SCT after CAR T-cell therapy remains unclear. Whereas in some institutions the therapy is always considered as a bridge to SCT, others have explored this treatment in different populations, such as in patients with high tumor burden, insufficient expansion of CAR T cells, or loss of MRD negativity.19

CD19-negative relapses after CAR T-cell therapy or blinatumomab because of CD19 escape are a relevant obstacle. To overcome this, bispecific antibodies targeting CD19/CD22 and other antigens are under development.

ALL immunotherapies are associated with toxicities, such as hepatotoxicity observed after the administration of inotuzumab, or cytokine release syndrome (CRS) and neurotoxicity after the administration of blinatumomab or CAR T cells. But despite these hurdles, death in CR is nearly zero, and this is the promise for further immunotherapies.

References:

1. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29(5):532-543. doi:10.1200/JCO.2010.30.1382

2. Sasaki K, Jabbour EJ, Ravandi F, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2016;122(23):3650-3656. doi:10.1002/ cncr.30231

3. Rousselot P, Coud MM, Gokbuget N, et al; European Working Group on Adult ALL (EWALL) group. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774-782. doi:10.1182/blood-2016-02-700153

4. Ottman OG, Pfeifer H, Cayuela JM, et al. Nilotinib (Tasigna) and low intensity chemotherapy for first-line treatment of elderly patients with BCR-ABL1-positive acute lymphoblastic leukemia: final results of a prospective multicenter trial (EWALL-PH02). Blood. 2018;132(suppl 1):31. doi:10.1182/blood-2018-99-114552

5. Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 2018;4(2):230- 234. doi:10.1001/jamaoncol.2017.2380

6. Chiaretti S, Bassan R, Vitale A, et al. Dasatinib-blinatumomab combination for the front-line treatment of adult Ph+ ALL patients. Updated results of the Gimema LAL2116 D-Alba trial. Blood. 2019;134(suppl 1):740. doi:10.1182/blood-2019-128759

7. Hoelzer D. Novel antibody-based therapies for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2011;2011(1):243- 249. doi:10.1182/asheducation-2011.1.243

8. Dworzak MN, Gaipa G, Schumich A, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom. 2010;78(3):147-153. doi:10.1002/cyto.b.20516

9. Thomas DA, OBrien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880-3889. doi:10.1200/ JCO.2009.26.9456

10. Hoelzer D, Huettmann A, Kaul F, et al. Immunochemotherapy with rituximab improves molecular CR rate and outcome in CD20+ B-lineage standard and high risk patients; results of 263 CD20+ patients studied prospectively in GMALL study 07/2003. Blood. 2010;116(21):170. doi:10.1182/blood.V116.21.170.170

11. Maury S, Chevret S, Thomas X, et al; for GRAALL. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044- 1053. doi:10.1056/NEJMoa1605085

12. Richard-Carpentier G, Kantarjian HM, Konopleva MY, et al. Phase II study of the hyper-CVAD regimen in combination with ofatumumab (HCVAD-O) as frontline therapy for adult patients (pts) with CD20-positive B-cell acute lymphoblastic leukemia (B-ALL). Blood. 2019;134(suppl 1):2577. doi:10.1182/blood-2019-129884

13. Hoelzer D, Walewski J, Dhner H, et al; German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia. Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood. 2014;124(26):3870- 3879. doi:10.1182/blood-2014-03-563627

14. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740-753. doi:10.1056/NEJMoa1509277

15. Jabbour E, OBrien S, Sasaki K, et al. Frontline inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-hyper- CVD) for older patients with acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):83. doi:10.1182/blood.V126.23.83.83

16. Topp MS, Kufer P, Gkbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493-2498. doi:10.1200/JCO.2010.32.7270

17. Gkbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522-1531. doi:10.1182/ blood-2017-08-798322

18. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127(26):3312-3320. doi:10.1182/ blood-2016-02-629063

19. Gou L, Gao J, Yang H, Gao C. The landscape of CAR T-cell therapy in the United States and China: a comparative analysis. Int J Cancer. 2019;144(8):2043-2050. doi:10.1002/ijc.31924

Visit link:
What Is the Role of Allogeneic-SCT in Adult Acute Lymphoblastic Leukemia in the Era of Targeted Therapies? - Targeted Oncology

Cell Therapy Market Size, Share, Market Research and Industry Forecast Report, 2020-2027 (Includes Business Impact of COVID-19) – Eurowire

Trusted Business Insights answers what are the scenarios for growth and recovery and whether there will be any lasting structural impact from the unfolding crisis for the Cell Therapy market.

Trusted Business Insights presents an updated and Latest Study on Cell Therapy Market. The report contains market predictions related to market size, revenue, production, CAGR, Consumption, gross margin, price, and other substantial factors. While emphasizing the key driving and restraining forces for this market, the report also offers a complete study of the future trends and developments of the market.The report further elaborates on the micro and macroeconomic aspects including the socio-political landscape that is anticipated to shape the demand of the Cell Therapy market during the forecast period. It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary, and SWOT analysis.

Get Sample Copy of this Report @ Cell Therapy Market Size, Share, Market Research and Industry Forecast Report, 2020-2027 (Includes Business Impact of COVID-19)

Industry Insights, Market Size, CAGR, High-Level Analysis: Cell Therapy Market

The global cell therapy market size was valued at USD 5.8 billion in 2019 and is projected to witness a CAGR of 5.4% during the forecast period. The development of precision medicine and advancements in Advanced Therapies Medicinal Products (ATMPS) in context to their efficiency and manufacturing are expected to be the major drivers for the market. In addition, automation in adult stem cell and cord blood processing and storage are the key technological advancements that have supported the growth of the market for cell therapy.

The investment in technological advancements for decentralizing manufacturing of this therapy is anticipated to significantly benefit the market. Miltenyi Biotec is one of the companies that has contributed to the decentralization in manufacturing through its CliniMACS Prodigy device. The device is an all-in-one automated manufacturing system that exhibits the capability of manufacturing various cell types.

An increase in financing and investments in the space to support the launch of new companies is expected to boost the organic revenue growth in the market for cell therapy. For instance, in July 2019, Bayer invested USD 215 million for the launch of Century Therapeutics, a U.S.-based biotechnology startup that aimed at developing therapies for solid tumors and blood cancer. Funding was further increased to USD 250 billion by a USD 35 million contribution from Versant Ventures and Fujifilm Cellular Dynamics.

The biomanufacturing companies are working in collaboration with customers and other stakeholders to enhance the clinical development and commercial manufacturing of these therapies. Biomanufacturers and OEMs such as GE healthcare are providing end-to-end flexible technology solutions to accelerate the rapid launch of therapies in the market for cell therapy.

The expanding stem cells arena has also triggered the entry of new players in the market for cell therapy. Celularity, Century Therapeutics, Rubius Therapeutics, ViaCyte, Fate Therapeutics, ReNeuron, Magenta Therapeutics, Frequency Therapeutics, Promethera Biosciences, and Cellular Dynamics are some startups that have begun their business in this arena lately.

Use-type Insights

The clinical-use segment is expected to grow lucratively during the forecast period owing to the expanding pipeline for therapies. The number of cancer cellular therapies in the pipeline rose from 753 in 2018 to 1,011 in 2019, as per Cancer Research Institute (CRI). The major application of stem cell treatment is hematopoietic stem cell transplantation for the treatment of the immune system and blood disorders for cancer patients.

In Europe, blood stem cells are used for the treatment of more than 26,000 patients each year. These factors have driven the revenue for malignancies and autoimmune disorders segment. Currently, most of the stem cells used are derived from bone marrow, blood, and umbilical cord resulting in the larger revenue share in this segment.

On the other hand, cell lines, such as Induced Pluripotent Stem Cells (iPSC) and human Embryonic Stem Cells (hESC) are recognized to possess high growth potential. As a result, a several research entities and companies are making significant investments in R&D pertaining to iPSC- and hESC-derived products.

Therapy Type Insights of Cell Therapy Market

An inclination of physicians towards therapeutic use of autologous and allogeneic cord blood coupled with rising awareness about the use of cord cells and tissues across various therapeutic areas is driving revenue generation. Currently, the allogeneic therapies segment accounted for the largest share in 2019 in the cell therapy market. The presence of a substantial number of approved products for clinical use has led to the large revenue share of this segment.

Furthermore, the practice of autologous tissue transplantation is restricted by the limited availability of healthy tissue in the patient. Moreover, this type of tissue transplantation is not recommended for young patients wherein tissues are in the growth and development phase. Allogeneic tissue transplantation has effectively addressed the above-mentioned challenges associated with the use of autologous transplantation.

However, autologous therapies are growing at the fastest growth rate owing to various advantages over allogeneic therapies, which are expected to boost adoption in this segment. Various advantages include easy availability, no need for HLA-matched donor identification, lower risk of life-threatening complications, a rare occurrence of graft failure, and low mortality rate.

Regional Insights of Cell Therapy Market

The presence of leading universities such as the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, and Yale Stem Cell Center that support research activities in U.S. is one of the key factor driving the market for cell therapy in North America. Moreover, strong regulatory and financing support from the federal bodies for expansion of this arena in U.S. as well as Canada is driving the market. In Asia Pacific, the market is anticipated to emerge as a lucrative source of revenue owing to the availability of therapies at lower prices coupled with growing awareness among the healthcare entities and patients pertaining the potential of these therapies in chronic disease management. Japan is leading the Asian market for cell therapy, which can be attributed to its fast growth as a hub for research on regenerative medicine.

Moreover, the Japan government has recognized regenerative medicine and cell therapy as a key contributor to the countrys economic growth. This has positively influenced the attention of global players towards the Asian market, thereby driving marketing operations in the region.

Market Share Insights of Cell Therapy Market

Some key companies operating in this market for cell therapy are Fibrocell Science, Inc.; JCR Pharmaceuticals Co. Ltd.; Kolon TissueGene, Inc.; PHARMICELL Co., Ltd.; Osiris Therapeutics, Inc.; MEDIPOST; Cells for Cells; NuVasive, Inc.; Stemedica Cell Technologies, Inc.; Vericel Corporation; and ANTEROGEN.CO.,LTD. These companies are collaborating with the blood centers and plasma collection centers in order to obtain cells for use in therapeutics development.

Several companies have marked their presence in the market by acquiring small and emerging therapy developers. For instance, in August 2019, Bayer acquired BlueRock Therapeutics to establish its position in the market for cell therapy. BlueRock Therapeutics is a U.S. company that relies on a proprietary induced pluripotent stem cell (iPSC) platform for cell therapy development.

Several companies are making an entry in the space through the Contract Development and Manufacturing Organization (CDMO) business model. For example, in April 2019, Hitachi Chemical Co. Ltd. acquired apceth Biopharma GmbH to expand its global footprint in the CDMO market for cell and gene therapy manufacturing.

In September 2020, Takeda Pharmaceutical Company Limited announced the expansion of its cell therapy manufacturing capabilities with the opening of a new 24,000 square-foot R&D cell therapy manufacturing facility at its R&D headquarters in Boston, Massachusetts. The facility provides end-to-end research and development capabilities and will accelerate Takedas efforts to develop next-generation cell therapies, initially focused on oncology with the potential to expand into other therapeutic areas.

The R&D cell therapy manufacturing facility will produce cell therapies for clinical evaluation from discovery through pivotal Phase 2b trials. The current Good Manufacturing Practices (cGMP) facility is designed to meet all U.S., E.U., and Japanese regulatory requirements for cell therapy manufacturing to support Takeda clinical trials around the world.

The proximity and structure of Takedas cell therapy teams allow them to quickly apply what they learn across a diverse portfolio of next-generation cell therapies including CAR NKs, armored CAR-Ts, and gamma delta T cells. Insights gained in manufacturing and clinical development can be quickly shared across global research, manufacturing, and quality teams, a critical ability in their effort to deliver potentially transformative treatments to patients as fast as possible.

Takeda and MD Anderson are developing a potential best-in-class allogeneic cell therapy product (TAK-007), a Phase 1/2 CD19-targeted chimeric antigen receptor-directed natural killer (CAR-NK) cell therapy with the potential for off-the-shelf use being studied in patients with relapsed or refractory non-Hodgkins lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Two additional Phase 1 studies of Takeda cell therapy programs were also recently initiated: 19(T2)28z1xx CAR T cells (TAK-940), a next-generation CAR-T signaling domain developed in partnership with Memorial Sloan Kettering Cancer Center (MSK) to treat relapsed/refractory B-cell cancers, and a cytokine and chemokine armored CAR-T (TAK-102) developed in partnership with Noile-Immune Biotech to treat GPC3-expressing previously treated solid tumors.

Takedas Cell Therapy Translational Engine (CTTE) connects clinical translational science, product design, development, and manufacturing through each phase of research, development, and commercialization. It provides bioengineering, chemistry, manufacturing and control (CMC), data management, analytical and clinical and translational capabilities in a single footprint to overcome many of the manufacturing challenges experienced in cell therapy development.

Segmentations, Sub Segmentations, CAGR, & High-Level Analysis overview of Cell Therapy Market Research Report This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2019 to 2030. For the purpose of this study, this market research report has segmented the global cell therapy market on the basis of use-type, therapy-type, and region:

Use-Type Outlook (Revenue, USD Million, 2019 2030)

Clinical-use

By Therapeutic Area

By Cell Type

Non-stem Cell Therapies

Therapy Type Outlook (Revenue, USD Million, 2019 2030)

Looking for more? Check out our repository for all available reports on Cell Therapy in related sectors.

Quick Read Table of Contents of this Report @ Cell Therapy Market Size, Share, Market Research and Industry Forecast Report, 2020-2027 (Includes Business Impact of COVID-19)

Trusted Business Insights Shelly Arnold Media & Marketing Executive Email Me For Any Clarifications Connect on LinkedIn Click to follow Trusted Business Insights LinkedIn for Market Data and Updates. US: +1 646 568 9797 UK: +44 330 808 0580

More:
Cell Therapy Market Size, Share, Market Research and Industry Forecast Report, 2020-2027 (Includes Business Impact of COVID-19) - Eurowire

Global Stem Cell Therapy Market (Covid-19 updated report), Trends, Top Manufacturers, Exponential Growth and Forecast 2020 to 2027 By Reportspedia -…

Reportspedia has added the latest research report on Global Stem Cell Therapy Market, this report helps to analyze top manufacturers, regions and likewise covers Industry sales channels, distributors, traders, dealers, Research Findings, and Conclusion.

Global Stem Cell Therapy Market report objectives to deliver a 360-degree view of the market in terms of cutting-edge technology, restraints, and forthcoming trends with force analysis of these trends on the market during the estimated period. Further, the Stem Cell Therapy Market report also shields key players profiling with detailed SWOT analysis, key developments of products/services from the past five years.

Get a Sample PDF copy of the report @:

https://www.reportspedia.com/report/business-services/2015-2027-global-stem-cell-therapy-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/57925#request_sample

Top Key Players:

Celgene Corporation Osiris Therapeutics, Inc. Pharmicell Co., Ltd MEDIPOST Co., Ltd. Promethera Biosciences Fibrocell Science, Inc. Holostem Terapie Avanzate S.r.l. Cytori Therapeutics Nuvasive, Inc. RTI Surgical, Inc. Anterogen Co., Ltd. RTI Surgical, Inc

The Stem Cell Therapy Market for the regions covers North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Regional analysis has been completely based on the present and imminent trends in the global Stem Cell Therapy Market along with the discrete application segment across the entire projecting region.

Market segmentation

By Type, the Stem Cell Therapy market has been segmented into:

Adult Stem Cells Human Embryonic Induced Pluripotent Stem Cells Very Small Embryonic Like Stem Cells

By Application, Stem Cell Therapy has been segmented into:

Regenerative Medicine Drug Discovery and Development

Hurry Up to Get an Attractive Discount @:

https://www.reportspedia.com/discount_inquiry/discount/57925

The market specialists and researchers have done an all-encompassing breakdown of the global Stem Cell Therapy Market with the advantage of research methodologies such as PESTLE and Porters Five Forces analysis. They offer correct and steady market data and helpful recommendations with an aim to maintain the players increase a coming into the overall present and future market scenario. The report provides key statistics on the market status, size, share, growth factors of the Global Stem Cell Therapy industry.

The study objectives of this Stem Cell Therapy Market report are:

Enquiry Before [emailprotected]:

https://www.reportspedia.com/report/business-services/2015-2027-global-stem-cell-therapy-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/57925#inquiry_before_buying

Important Questions Answered

Major Points From TOC:

Chapter One: Overview of Stem Cell Therapy

Chapter Two: Global Stem Cell Therapy Competition Exploration by Top Players

Chapter Three: Top Players Profiles

Chapter Four: Stem Cell Therapy Market Size by Type and Application

Chapter Five: United States Stem Cell Therapy Development Status and Outlook

Chapter Six: EU Stem Cell Therapy Market Development Status and Outlook

Chapter Seven: Japan Stem Cell Therapy Market Status and Outlook

Chapter Eight: China Stem Cell Therapy Market Development Status and Outlook

Chapter Nine: India Stem Cell Therapy Market Outlook

Chapter Ten: Southeast Asia Stem Cell Therapy Industry Market outlook

Chapter Eleven: Stem Cell Therapy Market by Type and Application

Chapter Twelve: Stem Cell Therapy Industry Dynamics

Chapter Thirteen: Market Effect Factors Analysis

Chapter Fourteen: Conclusion

Get Full Table of Content of Stem Cell Therapy Market Report Access @:

https://www.reportspedia.com/report/business-services/2015-2027-global-stem-cell-therapy-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/57925#table_of_contents

Read the original here:
Global Stem Cell Therapy Market (Covid-19 updated report), Trends, Top Manufacturers, Exponential Growth and Forecast 2020 to 2027 By Reportspedia -...

Was Trump’s Regeneron ‘Cure’ Developed Using Stem Cells and Fetal Tissues? – Snopes.com

As governments fight the COVID-19 pandemic, Snopes is fighting an infodemic of rumors and misinformation, and you can help. Read our coronavirus fact checks. Submit any questionable rumors and advice you encounter. Become a Founding Member to help us hire more fact-checkers. And, please, follow the CDC or WHO for guidance on protecting your community from the disease.

As the world raced to find a treatment that would alleviate the global pressure of the coronavirus pandemic, U.S. President Donald Trump contracted the virus in early October 2020 and developed COVID-19, the respiratory disease caused by SARS-CoV-2. In the days following his diagnosis and public release from Walter Reed Hospital, where he received world-class treatment, Trump touted the powers of a miracle drug called Regeneron, which he promised to make available to the American people.

A video shared in tweet by the president on Oct. 7 claimed that Regeneron was a cure.

I spent four days there [at Walter Reed] and I went in, I wasnt feeling so hot. And within a very short period of time, they gave me Regeneron. Its called Regeneron. And other things too but I think this was the key. But they gave me Regeneron, and it was like, unbelievable. I felt good immediately. I felt as good three days ago as I do now.

So, I just want to say, we have Regeneron. We have a very similar drug from Eli Lilly, and theyre coming out and were trying to get them on an emergency basis. Weve authorized it. Ive authorized it. And if youre in the hospital and youre feeling really bad, I think were going to work it so that you get them and youre going to get them free.

Shortly after the president praised what he deemed a cure for his COVID-19 infection, some social media users pushed the claim that the drug Trump was given was developed using fetal tissue a practice in direct conflict with the administrations pro-life platform.

To clarify, Trump was treated with REGN-COV2, a novel anti-viral antibody cocktail created by Regeneron Pharmaceuticals, a New York-based company that has openly stated it uses stem cell and fetal tissues as part of its research and development on new pharmaceutical treatments. This knowledge, and open support from a pro-life president, incited social media pushback from users who argued that the companys use of stem cells and fetal tissues for scientific research goes against pro-life platforms and policies.

REGN-COV2 is a combination of two human-made proteins, or monoclonal antibodies, known as REGN10933 and REGN10987. These two monoclonal antibodies were specifically designed to block the ability of SARs-CoV-2 to infect human cells. The biotechnology company further went on to describe the development of REGN-COV2 as follows:

To develop REGN-COV2, Regeneron scientists evaluated thousands of fully-human antibodies produced by the companys VelocImmune mice, which have been genetically modified to have a human immune system, as well as antibodies identified from humans who have recovered from COVID-19. The two potent, virus-neutralizing antibodies that form REGN-COV2 bind non-competitively to the critical receptor binding domain of the viruss spike protein, which diminishes the ability of mutant viruses to escape treatment and protects against spike variants that have arisen in the human population.

While it is true that Regeneron has used stem cells for some of its research, no human stem cells or human embryonic stem cells were used in the development of REGN-COV2, according to Alexandria Bowie, a spokesperson for the company. An April 2020 statement issued by Regeneron confirmed that research using stem cells helps its scientists model complex diseases, test new drug candidates, and lead to scientific insights that may help spur the creation of new medicines but the company contends that embryonic cells were not used in the production of REGN-CO2.

In short: we did not use human stem cells or human embryonic stem cells in the development of REGN-COV2, Bowie told Snopes in an email.

But its not quite that cut and dried.

In the research and development of pharmaceutical therapeutics, many companies turn to what is known as a cell line. These are cultures of human or animal cells that are derived from a living organism and cultured and propagated repeatedly, and, in some cases, used indefinitely. The development of REGN-COV2 utilized HEK293T a cell line that is derived from human fetal embryonic kidney tissues to create a pseudovirus that mimics a spike Protein found in SARS-CoV-2 in order to test the drugs ability to neutralize and ultimately treat the novel coronavirus.

HEK293s are considered immortalized cells (not stem cells) and are a common and widespread tool in research labs. This cell line was originally derived by adenovirus transformation of human embryonic kidney cells in 1977, explained Bowie, adding that HEK293 were further transformed at Stanford in the 1980s with SV40 large T antigen, a solution that is used by researchers to initiate and maintain DNA replication necessary for creating cell lines.

Fetal tissues were not directly used n the development of REGN-COV2, but cell lines from decades-old embryonic kidney tissues were. Fetal tissues are used to develop cell lines. Embryonic stem cells, on the other hand, are different than adult stem cells in that they are undifferentiated and regenerative cells, which means that they have not been assigned a key task in the human body. As such, researchers have uncovered ways to direct their use in creating human tissues that allow for a variety of uses, including testing new pharmaceuticals.

Opposition to the use of fetal tissue and embryonic stem cell research has been at the heart of the pro-life platform due to the way in which these cells are obtained and its association with using living fetuses either inside (in utero) or outside of the uterus (ex utero). Pro-life groups like March for Life have even gone so far as to pressure the Trump administration to halt funding for research that requires aborted fetal organs and tissues. In summer 2019, the president required any federally funded research using fetal tissue to undergo an ethics review, and has since stocked his cabinet with other similarly-minded officials.

REGN-COV2 is currently in late-stage clinical trials for various populations, including non-hospitalized and hospitalized patients as well as for the potential prevention in individuals who may have had close household exposure to COVID-19. According to a news release published on Sept. 29, the company announced that the antibody cocktail was shown to reduce the viral load and alleviate symptoms in non-hospitalized patients with COVID-19. REGN-COV2 also showed positive trends in reducing medical visits. However, it is important to note that the research included a relatively small sample size of just 275 patients.

The greatest treatment benefit was in patients who had not mounted their own effective immune response, suggesting that REGN-COV2 could provide a therapeutic substitute for the naturally-occurring immune response. These patients were less likely to clear the virus on their own and were at greater risk for prolonged symptoms, said Regeneron President and Chief Scientific Officer Dr. George D. Yancopoulos in a statement.

As of Oct. 12, Regeneron had submitted an emergency use authorization (EUA) to the U.S. Food and Drug Administration in early October, and noted REGN-COV2s early, promising clinical data paired with the continued, pressing unmet need of COVID-19 meets the FDA standard for emergency use authorization.

Regeneron told Snopes that it cant speculate on potential timing for an EUA. We will update when such is available.

See the rest here:
Was Trump's Regeneron 'Cure' Developed Using Stem Cells and Fetal Tissues? - Snopes.com

The complicated story of Trump’s COVID treatment, stem cells and abortion politics – Baptist News Global

The irony cannot be missed: A Rose Garden event to announce the nomination of a Supreme Court justice widely expected to tilt the court toward limiting access to abortion became a super-spreader event for coronavirus, which infected many of the dignitaries gathered there. And the miracle cure touted by the president himself was made possible in some way by the scientific use of aborted fetal tissue.

Since the announcement that President Donald Trump was treated with an experimental cocktail of drugs that he said has made him feel better than he has in 20 years, attention has increasingly focused on how one of those treatments a cocktail of antibodies manufactured by Regeneron was developed and tested. And the same may be true for the other drug used on Trump and other coronavirus patients, Remdesivir.

Two ironic facts have risen to the surface and have been confirmed by multiple sources, however: (1) The new molecular treatment was developed and/or tested in some way involving cells originally derived from an aborted fetus; and (2) the very kind of research that made this therapy possible was shut down by the Trump administration within the past year.

The very kind of research that made this therapy possible was shut down by the Trump administration within the past year.

Critics cite these facts as evidence of hypocrisy by abortion opponents who for years have lambasted stem cell research as barbaric and immoral but now are willing to laud a miracle drug made possible by that very research.

On the other hand, some pro-life advocates dispute the actual use of aborted cells in the research or claim the original cells were obtained so long ago that there is no moral jeopardy in the modern drug.

One Dallas-based medical ethicist noted privately: I understand that many vaccines in the past included a cell line derived from the lung tissue of aborted fetuses, but I have also read that the cell line is either so attenuated or even absent that even the Catholic Church has withdrawn its objections.

And therein lies the nuance of this situation.

Amid these competing claims and an effort by Regeneron to carefully thread the needle of disclosure the MIT Technology Review published an article Oct. 7 by Antonio Regalado that minced no words:

This week, President Donald Trump extolled the cutting-edge coronavirus treatments he received as miracles coming down from God. If thats true, then God employs cell lines derived from human fetal tissue.

The MIT article continues to explain that the antibody treatment Trump received was developed with the use of a cell line originally derived from abortion tissue, according to Regeneron Pharmaceuticals, the company that developed the experimental drug.

And heres where things get quite technical.

According to the MIT journal and other published sources, the molecules in the treatment Trump received are manufactured in cells from a hamsters ovary not in human cells. However, cells originally derived from a fetus were used in another way. According to Regeneron, laboratory tests used to assess the potency of its antibodies employed a standardized supply of cells , whose origin was kidney tissue from an abortion in the Netherlands in the 1970s.

These cells have been immortalized, which means they have been reproduced, divided and shared many times through the years, so that the line of cells used today is, in a way, a descendant of the original cells obtained from the aborted kidney tissue.

Because the cells were acquired so long ago, and have lived so long in the laboratory, they are no longer thought of as involving abortion politics.

Thus the MIT journal concludes: The two antibodies Regeneron eventually put forward as an experimental treatment, which may have saved Trumps life, would have been selected using exactly such tests. Because the cells were acquired so long ago, and have lived so long in the laboratory, they are no longer thought of as involving abortion politics.

In June 2019, the Trump administration blocked federal funding for new scientific research using fetal tissue derived from abortions.

Promoting the dignity of human life from conception to natural death is one of the very top priorities of President Trumps administration, the Department of Health and Human Services said in a statement.

And then this important line: Intramural research that requires new acquisition of fetal tissue from elective abortions will not be conducted.

The Trump administration policy hailed widely as a victory for the anti-abortion cause restricted new acquisition of fetal tissue.

The New York Times quoted an administration official who said the presidents acceptance of this coronavirus treatment should not be seen as a contradiction. The administrations policy on fetal tissue research specifically excluded cell lines made before June 2019, said the official, who did not wish to be identified because he was not authorized to speak about the matter. Scientific products made using cell lines that existed before then would not implicate the administrations policy on the use of human fetal tissue from elective abortions, the official said.

The fact that most anti-abortion advocates have remained silent about this apparent contradiction also was addressed by the MIT journal: Most likely, their hypocrisy was unwitting. Many types of medical and vaccine research employ supplies of cells originally acquired from abortion tissue. It would have taken an expert to realize that was the case with Trumps treatment.

In June 2019, the journal Nature reported on the Trump administrations ban on fetal-tissue research that receives federal funding, especially through the National Institutes of Health.

Scientists employ fetal tissue to explore topics as diverse as infectious disease, human development and disorders of the eye.

The administration said it will set up an ethics-review board to evaluate each NIH grant application that would support research with fetal tissue, which is collected from elective abortions. But the government has already decided against renewing its contract with a laboratory at the University of California, San Francisco, that uses fetal tissue to study HIV, Nature reported. The announcement comes after a sustained push by abortion opponents to limit scientific research with fetal tissue despite warnings from researchers that using the tissue is the only way to study some health problems. Scientists employ fetal tissue to explore topics as diverse as infectious disease, human development and disorders of the eye.

The journal quoted UCSF chancellor Sam Hawgood saying this government decision was politically motivated, shortsighted and not based on sound science. Todays action ends a 30-year partnership with the NIH to use specially designed models that could be developed only through the use of fetal tissue to find a cure for HIV.

The New York Times reported that the ethics board set up to review proposed uses of fetal stem cells in research met for the first time in July and in August, the board rejected 13 of the 14 proposals it reviewed; the approved proposal relied on tissue that had already been acquired.

The ethical debate over this kind of research is not going away and, in fact, could escalate as work continues on COVID-19 vaccines.

The New York Times quoted David Prentice, vice president of the Charlotte Lozier Institute, who wrote in September: One concern regarding the ethical assessment of viral vaccine candidates is the potential use of abortion-derived cell lines in the development, production or testing.

Prentices own analysis found 13 vaccine candidates that rely in some way on fetal cell lines.

In response, the Times quoted James Sherley, a research scholar at the Charlotte Lozier Institute and director of the adult stem cell company Asymmetrex, who said this kind of research is not morally responsible. There are alternatives there are lots of ways that dont require the death of anyone.

Additional reporting on this issue has been published in Science magazine and Input magazine.

Related articles:

Is this election all about abortion? It depends on who you ask

See more here:
The complicated story of Trump's COVID treatment, stem cells and abortion politics - Baptist News Global

BrainStorm to Present at the 2020 Cell & Gene Meeting on the Mesa – PRNewswire

NEW YORK, Oct. 12, 2020 /PRNewswire/ -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced Stacy Lindborg, Ph.D., Executive Vice President and Head of Global Clinical Research, will deliver a presentation at the 2020 Cell & Gene Meeting on the Mesa, being held virtually October 12-16, 2020.

Dr. Lindborg's presentation will be in the form of an on-demand webinar that will be available beginning today. Those who wish to listen to the presentation are required to register here. At the conclusion of the 2020 Cell & Gene Meeting on the Mesa, a copy of the presentation will also be available in the "Investors and Media" section of the BrainStorm website under Events and Presentations.

About the 2020 Cell & Gene Meeting on the Mesa

The conference will feature 80+ on-demand company presentations by leading public and private companies, highlighting their technical and clinical achievements over the past 12 months in the areas of cell therapy, gene therapy, gene editing, and tissue engineering. Registrants will have access to 15+ expert-led panels and workshops including a mix of both live and on-demand sessions. The conference will be delivered in a virtual format over the course of five days October 12-16. There is also a premier partnering system, partneringONE, allowing registrants to plan 11 meetings with other attendees. For a list of presenting companies, refer to https://www.meetingonthemesa.com/company-presentations/.

AboutBrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(FDA) and theEuropean Medicines Agency(EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at sixU.S.sites supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a filing forU.S.FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently receivedU.S.FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS). The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment inMarch 2019. For more information, visit the company's website atwww.brainstorm-cell.com.

Contacts Investor Relations: Corey Davis, Ph.D. LifeSci Advisors, LLC Phone: +1 646-465-1138 [emailprotected]

Media:Paul Tyahla SmithSolve Phone: + 1.973.713.3768 [emailprotected]

Logo - https://mma.prnewswire.com/media/1166536/BrainStorm_Logo.jpg

SOURCE Brainstorm Cell Therapeutics Inc

Home

See more here:
BrainStorm to Present at the 2020 Cell & Gene Meeting on the Mesa - PRNewswire

Human heart organoids provide unmatched insight into cardiac disease and dysfunction – BioWorld Online

Two teams of researchers have developed miniature models of the human heart that beat and function like the full-size organ. The team from Michigan State University (MSU) and Washington University in St. Louis developed a human heart organoid (hHO) that recapitulates embryonic heart development, providing an unmatched view into congenital heart defects. The organoid created by the researchers at the Medical University of South Carolina (MUSC) and Clemson University mimics the tissue dysfunction that occurs following a heart attack.

Organoids are self-assembling, 3D multicellular constructs that exhibit organ properties and structure to various degrees. Several processes have been developed to create them in recent years.

The MSU teams heart includes all the primary types of heart cells, as well as functional chambers and vascular tissues. These minihearts constitute incredibly powerful models in which to study all kinds of cardiac disorders with a degree of precision unseen before, said Aitor Aguirre, the studys senior author and assistant professor of biomedical engineering at MSUs Institute for Quantitative Health Science and Engineering.

Results of the groups work created quite a stir when it appeared on the preprint server bioRxiv and highlights were presented at the 2020 International Society for Stem Cell Research Annual Meeting. Weve received a lot of calls from researchers who want to use our process, Aguirre told BioWorld. The NIH and the American Heart Association provided funding for the study.

To create the approximately 1-mm diameter hHOs, the team combined several approaches developed over the last decade. They start with induced pluripotent cells ordinary cells from adults that are induced by the introduction of several genes to become pluripotent stem cells or master cells. The team then provides chemical signals that stimulate the cells to differentiate and mimic the process used in fetal development to create a heart.

In 15 to 20 days, the developmentally directed approach takes an undifferentiated ball of cells and gets to the point that the heart beats, has chambers, has cells organized in the way those cells are organized in the heart. At a molecular and cellular level, we are creating a heart, Aguirre noted.

The process is much simpler and easier to recreate than tissue engineering, as hundreds can be created simultaneously with minimal operator involvement and without the need for expensive machinery. Aguirre said the equipment required would be present already in any standard cell laboratory.

Currently, the team is using the miniaturized model heart to study developmental heart disorders. Thats crucial because, while congenital heart affects 1% of all newborns, there have been no good ways to study fetal heart development. You cant tell a pregnant woman, we want to take a biopsy, so its hard to study first-hand, Aguirre explained. With this process, the team can replicate much of fetal heart development without using fetal cells, bypassing all ethical concerns.

Since the publication of their initial results, Aguirre and his team have made further advances to more closely model the human heart. By further improving the development conditions, the researchers are now giving the organoids structural and locational cues needed to organize themselves better. Those new conditions have led to the formation of two chambers with heart looping, creating a shape that resembles a sausage more than a ball. In addition, they are growing hearts that are more sophisticated and demonstrate functioning of a somewhat older heart.

The researchers also are working on the development of vasculature that will enable the minihearts to grow larger and to create a multiorgan system in vitro that would be especially useful in studying pediatric cardiopulmonary development. Beyond gaining a better understanding of the basics of early heart development, the team hopes the model will provide greater insight into the impact of various chemicals and conditions, including environmental contaminants, maternal diabetes and medications.

The South Carolina process

Researchers at the MUSC and Clemson University took a somewhat different approach to creation of their human cardiac organoid. Like the MSU team, they began with induced pluripotent stem cells that divide and self-assemble. The spherical organoids are fabricated in vitro using four defined cell types that range in maturity from early stage to adult in ratios found in the heart. The process gives the microtissue a range of functionality but does not reproduce the developmental process of a heart.

The greater maturity of some of the tissue has an advantage for the teams research, however. The South Carolina contingent has focused on creating heart organoids that parallel the physiological conditions present during and immediately following a heart attack. Their work recently appeared in Nature Biomedical Engineering.

The model demonstrates the key features of pathological metabolic shifts, fibrosis and calcium handling. Furthermore, our transcriptomic analysis showed that there are comparable disease characteristics that are similar to that of the diseased adult heart, lead author Dylan Richards, a graduate of the MUSC Clemson bioengineering program and now a computational biologist at The Janssen Pharmaceutical Companies of Johnson & Johnson, told BioWorld.

To model the heart after a heart attack, we used low oxygen culture to create an oxygen-diffusion gradient in cardiac organoids combined with noradrenaline stimulation, Richards said. This method resulted in a structural and functional gradient, similar to that of a heart after a heart attack (dying tissue in the middle surrounded by dysfunctional regions surrounded by functional regions).

Using the model, the team found that the experimental drug JQ1 reduces the fibrotic and arrhythmic properties seen in diseased post-heart attack organoids. They also demonstrated that doxorubicin, commonly used in breast cancer treatment, had greater cardiotoxic impact in diseased hearts, in keeping with previous findings of greater risk associated with the chemotherapy in women with pre-existing cardiovascular disease.

The team is looking at drug-exacerbated cardiotoxicity and COVID-19-induced cardiac diseases. It will also be enhancing the model to include immune cells, to better understand the role the immune system plays in restructuring heart tissue after damage from oxygen-deprivation.

Continue reading here:
Human heart organoids provide unmatched insight into cardiac disease and dysfunction - BioWorld Online