Category Archives: Adult Stem Cells


Stem Cell Manufacturing Market Outlook, Opportunity and Demand Analysis, Forecast 2020-2027|-Merck Group, Becton, Dickinson And Company. Holostem…

Data Bridge Market Research released the research report of Global Stem Cell Manufacturing Market Size, Share, Industry Trends, Demand Analysis Report by 2027, offers a detailed overview of the factors influencing the global business scope. Global Stem Cell Manufacturing Market research report shows the latest market insights with upcoming trends and breakdown of the products and services. The report provides key statistics on the market status, size, share, growth factors of the Global Stem Cell Manufacturing. This report begins with a basic introduction of 2020 market segmentation, future scenario, Stem Cell Manufacturing industry growth rate, and industrial opportunities to 2026. The report forecasts innovative applications of the market on the basis of these estimations. Company profile encompasses parameters such as company synopsis, commercial synopsis, work strategy and planning, SWOT analysis and present developments.

Stem cell manufacturing is forecasted to grow at CAGR of 6.42% to an anticipated value of USD 18.59 billion by 2027 with factors like rising awareness towards diseases like cancer, degenerative disorders and hematopoietic disorders is driving the growth of the market in the forecast period of 2020-2027.

Download Exclusive Sample (350 Pages PDF) Report: To Know the Impact of COVID-19 on this[emailprotected]https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-stem-cell-manufacturing-market&AB

Stem cell manufacturing has shown an exceptional penetration in North America due to increasing research in stem cell. Increasing research and development activities in biotechnology and pharmaceutical sector is creating opportunity for the stem cell manufacturing market.

The Global Stem Cell Manufacturing Market 2020 research provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Global Stem Cell Manufacturing Market Share analysis is provided for the international markets including development trends, competitive landscape analysis, and key regions development status. Development policies and plans are discussed as well as manufacturing processes and cost structures are also analyzed.

Global Stem Cell Manufacturing Market Segematation By Product (Stem Cell Line, Instruments, Culture Media, Consumables), Application (Research Applications, Clinical Applications, Cell and Tissue Banking), End Users (Hospitals and Surgical Centers, Pharmaceutical and Biotechnology Companies, Clinics, Community Healthcare, Others)

List of TOP KEY PLAYERS in Stem Cell Manufacturing Market Report are

Thermo Fisher Scientific Merck KGaA BD JCR Pharmaceuticals Co., Ltd Organogenesis Inc Osiris Vericel Corporation AbbVie Inc AM-Pharma B.V ANTEROGEN.CO.,LTD Astellas Pharma Inc Bristol-Myers Squibb Company FUJIFILM Cellular Dynamics, Inc RHEACELL GmbH & Co. KG Takeda Pharmaceutical Company Limited Teva Pharmaceutical Industries Ltd ViaCyte,Inc VistaGen Therapeutics Inc GlaxoSmithKline plc ..

Complete Report is Available (Including Full TOC, List of Tables & Figures, Graphs, and Chart)@https://www.databridgemarketresearch.com/toc/?dbmr=global-stem-cell-manufacturing-market&AB

The report can help to understand the market and strategize for business expansion accordingly. In the strategy analysis, it gives insights from marketing channel and market positioning to potential growth strategies, providing in-depth analysis for new entrants or exists competitors in the Stem Cell Manufacturing industry. This report also states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins. For each manufacturer covered, this report analyzes their Stem Cell Manufacturing manufacturing sites, capacity, production, ex-factory price, revenue and market share in global market.

The Global Stem Cell Manufacturing Market Trends, development and marketing channels are analysed. Finally, the feasibility of new investment projects is assessed and overall research conclusions offered.

Global Stem Cell Manufacturing Market Scope and Market Size

Stem cell manufacturing market is segmented on the basis of product, application and end users. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Based on product, the stem cell manufacturing market is segmented into stem cell lines, instruments, culture media and consumables. Stem cell lines are further segmented into induced pluripotent stem cells, embryonic stem cells, multipotent adult progenitor stem cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells. Instrument is further segmented into bioreactors and incubators, cell sorters and other instruments.

On the basis of application, the stem cell manufacturing market is segmented into research applications, clinical applications and cell and tissue banking. Research applications are further segmented into drug discovery and development and life science research. Clinical applications are further segmented into allogenic stem cell and autologous stem cell therapy.

On the basis of end users, the stem cell manufacturing market is segmented into hospitals and surgical centers, pharmaceutical and biotechnology companies, research institutes and academic institutes, community healthcare, cell banks and tissue banks and others.

Healthcare Infrastructure growth Installed base and New Technology Penetration

Stem cell manufacturing market also provides you with detailed market analysis for every country growth in healthcare expenditure for capital equipment, installed base of different kind of products for stem cell manufacturing market, impact of technology using life line curves and changes in healthcare regulatory scenarios and their impact on the stem cell manufacturing market. The data is available for historic period 2010 to 2018.

The Global Stem Cell Manufacturing Market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of stem cell manufacturing market for global, Europe, North America, Asia Pacific and South America.

Key Insights in the report:

Historical and current market size and projection up to 2025

Market trends impacting the growth of the global taste modulators market

Analyze and forecast the taste modulators market on the basis of, application and type.

Trends of key regional and country-level markets for processes, derivative, and application Company profiling of key players which includes business operations, product and services, geographic presence, recent developments and key financial analysis

For More Information or Query or Customization Before Buying, Visit @https://databridgemarketresearch.com/inquire-before-buying/?dbmr=global-stem-cell-manufacturing-market&AB

Opportunities in the market

To describe and forecast the market, in terms of value, for various segments, by region North America, Europe, Asia Pacific (APAC), and Rest of the World (RoW)

The key findings and recommendations highlight crucial progressive industry trends in the Stem Cell manufacturing Market, thereby allowing players to develop effective long term strategies

To strategically profile key players and comprehensively analyze their market position in terms of ranking and core competencies, and detail the competitive landscape for market leaders Extensive analysis of the key segments of the industry helps in understanding the trends in types of point of care test across Europe.

To get a comprehensive overview of the Stem Cell manufacturing market.

With tables and figures helping analyses worldwide Global Stem Cell Manufacturing Market Forecast this research provides key statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market. There are 15 Chapters to display the Stem Cell Manufacturing market.

Chapter 1, About Executive Summary to describe Definition, Specifications and Classification of Stem Cell Manufacturing market, By Product Type, by application, by end users and regions.

Chapter 2, objective of the study.

Chapter 3, to display Research methodology and techniques.

Chapter 4 and 5, to show the Stem Cell Manufacturing Market Analysis, segmentation analysis, characteristics;

Chapter 6 and 7, to show Five forces (bargaining Power of buyers/suppliers), Threats to new entrants and market condition;

Chapter 8 and 9, to show analysis by regional segmentation[North America, Europe, Asia-Pacific etc ], comparison, leading countries and opportunities; Regional Marketing Type Analysis, Supply Chain Analysis

Chapter 10, to identify major decision framework accumulated through Industry experts and strategic decision makers;

Chapter 11 and 12, Stem Cell Manufacturing Market Trend Analysis, Drivers, Challenges by consumer behavior, Marketing Channels

Chapter 13 and 14, about vendor landscape (classification and Market Ranking)

Chapter 15, deals with Stem Cell Manufacturing Market sales channel, distributors, Research Findings and Conclusion, appendix and data source.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia or Oceania [Australia and New Zealand]

Contact Us:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:[emailprotected]

Our Upcoming Event: CELL AND GENE THERAPY|Digital Conference

Cell and Gene therapy (CGT) is considered as one of the most progressive advancements in this new ecosystem with extensive evaluations of multiple diseases and upcoming technologies. With the ongoing enhancements in CGT the potential to transform medicine increases which has brought a significant change for the treatment and potential cure of many intractable illnesses.In recent years, these therapies have proved clinically to be life-saving and also promise to offer personalization treatment for several diseases such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS.

REGISTER NOW FOR FREE Gene Therapy[emailprotected]https://www.databridgemarketresearch.com/digital-conference/cell-and-gene-therapy?ab

Cell and Gene therapy continues to be a prominent and active area of research in genomics and cell biology which have permitted exciting progress in the development of novel and effective treatments for various diseases. With cell and gene therapies finally becoming a reality with ongoing hundreds of clinical trials and some of the major therapeutics breakthroughs already reaching the market, it is expected soon their will large number of approvals and launches in the market. So lets come together to discuss the future of cell and gene therapy along with their applications, challenges and regulatory scenario.

In the pioneer edition ofDBMR Cell and Gene Therapy Conferencecome join us in this enriching knowledge fest where experts will speak on new technologies and market dynamics perceptions. Together lets move ahead in the future of medical science and technology.

More:
Stem Cell Manufacturing Market Outlook, Opportunity and Demand Analysis, Forecast 2020-2027|-Merck Group, Becton, Dickinson And Company. Holostem...

Biopreservation Market 2020 Global Analysis, Size, Growth, Covid-19 Impact Analysis, Leading Players, Merger, Acquisition, Opportunity, With Regional…

Biopreservation Market Overview

Biopreservation is the preservation of biological materials through the use of natural flora and its antibacterial products and forms an integral part in both the food and healthcare industry. The global biopreservation market is on an upward growth trajectory and is estimated to strike a CAGR of 11.2% over the forecast period of 2018-2023, predicts Market Research Future (MRFR).

Adult mesenchymal stem cells have gained huge momentum as it is a promising source for cell therapies and tissue engineering applications due to which the demand for stem cell preservation has increased drastically. Biopreservation is a crucial aspect of cell and gene-based therapy biopreservation. Growth in number of cryogenic storage facilities is expected to induce high demand within the global biopreservation market.

Get a FREE Sample with Complete TOC By Considering the COVID-19 impact on Global Market @https://www.marketresearchfuture.com/sample_request/6407

Biopreservation has substantial significance in the food industry. Biopreservation is extensively used in the preservation of various food products such as dairy and meat products since they can cause great economic loses. Surging awareness regarding the risks associated with the transmission of foodborne pathogens has evoked greater interest in the application of biopreservation techniques in food safety and food preservation. Moreover, biopreservation is the only viable technique which can be applied to certain food products where other techniques can be used. Furthermore, microbiological safety standards and rise in the incidence of food spoilage, and growing consumption of precooked foods are other factors which generate massive demand for biopreservation from the food industry.

The global biopreservation market is also growing in tandem with recent advances in interrelated, emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use.

On the downside, biopreservation instruments and their maintenance is a cost-intensive which is a major impediment to the market growth. Moreover, stability issues surrounding specimen and dearth of trained professionals to perform and handle the biopreservation process are other possible bottlenecks to the growth of the global biopreservation market.

Biopreservation MarketSegmentation

The global biopreservation market has been segmented based on product, biospecimen, and application.

By product, the global biopreservation market has been segmented into media and equipment. The media segment has been further segmented into nutrient media, sera, and growth factors and supplements.

The equipment segment has been further segmented into temperature control systems, accessories, alarms & monitoring systems, incubators, centrifuges, and other equipment. The temperature control systems sub-segment has been further segmented into freezers, cryogenic storage systems, thawing equipment, and refrigerators.

By biospecimen, the global biopreservation market has been segmented into human tissue samples, organs, stem cells, and other biospecimens.

By application, the global biopreservation market has been segmented into regenerative medicine, biobanking, and drug discovery. The regenerative medicine segment has been further segmented into cell therapy, gene therapy, and others.

The biobanking segment has been further segmented into human eggs, veterinary IVF, and human sperm.

Biopreservation MarketRegional Analysis

By region, the global biopreservation market has been segmented into the Americas, Asia Pacific (APAC), Europe, and the Middle East & Africa (MEA).

The Americas account for the largest share of the globalbiopreservation market. Extensive utilization of advanced technologies, high expenditure on R&D activities, and the existence of key players in the region are favoring the growth of the global biopreservation market in the Americas region. Moreover, merger and acquisition have been adopted as key strategies by market players which further contributes to the growth of the market.

Europe is the second largest market within the global biopreservation market. Prevalent trend of stem cell preservation coupled with high birth rate in the region substantiates the growth of the market. The rise in a number of sperm and egg banks in the region is also contributing positively to the market growth.

APAC biopreservation market is estimated to expand at a relatively faster rate than other markets. Booming population, the surge in the awareness level of stem cell preservation and persistent development within the healthcare sector are factors triggering growth within the APAC market.

MEA market accounts for the least share of the global market owing to the underdeveloped healthcare sector in the region, lack of technical know-how and poor medical facilities.

Biopreservation MarketCompetitive Landscape

Thermo Fisher Scientific, Inc., Core Dynamics, Ltd., ATLANTA BIOLOGICALS, VWR International, LLC., BioLifeSolutions Inc., Princeton CryoTech, Lifeline Scientific, QIAGEN, Cesca Therapeutics Inc., Panasonic Biomedical, Inc., Chart Industries, Sigma-Aldrich Co., CUSTOM BIOGENIC SYSTEMS., BioCision., and Biomatrica, Inc. are the key players in the global biopreservation market.

Biopreservation Industry Updates

March 2019- BioLife Solutions, Inc., a leading manufacturer, marketer, and developer of proprietary cell and tissue hypothermic storage and cryopreservation freeze media, announced the acquisition of Astero Bio, a company focused on innovation, design, development, and commercialization of novel automated thawing devices. The transaction was closed for an amount of USD 8 Mn.

Obtain Premium Research Report Details, Considering the impact of COVID-19 @https://www.marketresearchfuture.com/reports/biopreservation-market-6407

About Market Research Future:

AtMarket Research Future (MRFR), we enable our customers to unravel the complexity of various industries through our Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), Raw Research Reports (3R), Continuous-Feed Research (CFR), and Market Research & Consulting Services.

MRFR team have supreme objective to provide the optimum quality market research and intelligence services to our clients. Our market research studies by Components, Application, Logistics and market players for global, regional, and country level market segments, enable our clients to see more, know more, and do more, which help to answer all their most important questions.

In order to stay updated with technology and work process of the industry, MRFR often plans & conducts meet with the industry experts and industrial visits for its research analyst members.

Contact:

Akash Anand

Market Research Future

+1 646 845 9312

Email:[emailprotected]

NOTE: Our team of researchers are studying Covid-19 and its impact on various industry verticals and wherever required we will be considering covid-19 footprints for a better analysis of markets and industries. Cordially get in touch for more details.

See original here:
Biopreservation Market 2020 Global Analysis, Size, Growth, Covid-19 Impact Analysis, Leading Players, Merger, Acquisition, Opportunity, With Regional...

Cellular Reprogramming Tools Market Key Players, Industry Overview, Application and Analysis to 2020-2026 – Cole of Duty

The report is an analytical representation of the assessment of prime growth factors and key growth challenges facing participants in the Independent Cellular Reprogramming Tools Market. With a valuable overview of available areas of opportunity, this study presents detailed information about the most lucrative growth pockets that the companies in market are recommended to capitalize on. Potential market entrants can gain insights on the most profitable growth opportunities that already exist in Independent Cellular Reprogramming Tools market and those that are most likely to be appearing in market over the course of near term.

The global Independent Cellular Reprogramming Tools market report evaluates various factors associated with growth, including pricing structure, production capabilities, demand-supply scenarios and profit margins. The entire research intelligence is based on an exhaustive primary industry research and in-depth proactive secondary research that aim to extract valued data points about Independent Cellular Reprogramming Tools market. The resultant data enables report readers to position themselves as potential market entrants and devise growth strategies to meet short- and long-term business goals.

Request a Sample Report, Click Here @ https://www.crediblemarkets.com/sample-request/cellular-reprogramming-tools-market-426662

By Market Players: Celgene Cynata Advanced Cell Technology BIOTIME Osiris Therapeutics Human Longevity FUJIFILM Holdings STEMCELL Technologies Mesoblast Astellas Pharma EVOTEC Japan Tissue Engineering

By Type Adult Stem Cells Human Embryonic Stem Cells Induced Pluripotent Stem Cells Other

By Application Drug Development Regenerative Medicine Toxicity Test Academic Research Other

Market segment by Regions/Countries, this report covers

For More Information about this Report Visit @ https://www.crediblemarkets.com/market-analysis/cellular-reprogramming-tools-market-426662

Table of Contents

Chapter1IndustryOverview Chapter2GlobalCellular Reprogramming ToolsCompetitionbyTypes,Applications,andTopRegionsandCountries Chapter3ProductionMarketAnalysis Chapter4GlobalCellular Reprogramming ToolsSales,Consumption,Export,ImportbyRegions(2015-2020) Chapter5NorthAmericaCellular Reprogramming ToolsMarketAnalysis Chapter6EastAsiaCellular Reprogramming ToolsMarketAnalysis Chapter7EuropeCellular Reprogramming ToolsMarketAnalysis Chapter8SouthAsiaCellular Reprogramming ToolsMarketAnalysis Chapter9SoutheastAsiaCellular Reprogramming ToolsMarketAnalysis Chapter10MiddleEastCellular Reprogramming ToolsMarketAnalysis Chapter11AfricaCellular Reprogramming ToolsMarketAnalysis Chapter12OceaniaCellular Reprogramming ToolsMarketAnalysis Chapter13SouthAmericaCellular Reprogramming ToolsMarketAnalysis Chapter14CompanyProfilesandKeyFiguresinCellular Reprogramming ToolsBusiness Chapter15GlobalCellular Reprogramming ToolsMarketForecast(2021-2026) Chapter16Conclusions

Direct Purchase this Report @ https://www.crediblemarkets.com/reports/purchase/cellular-reprogramming-tools-market-426662?utf8=%E2%9C%93&license_type=single_user

About Credible Markets

Credible Markets has emerged as a dependable source for the market research needs of businesses within a quick time span. We have collaborated with leading publishers of market intelligence and the coverage of our reports reserve spans all the key industry verticals and thousands of micro markets. The massive repository allows our clients to pick from recently published reports from a range of publishers that also provide extensive regional and country-wise analysis. Moreover, pre-booked research reports are among our top offerings.

Contact Us

Credible Markets Analytics

99 Wall Street Independent Cellular Reprogramming Tools2124 New York, NY 10005

Phone: +1(929)-450-2887

Email: [emailprotected]

Website: https://www.crediblemarkets.com

Read more from the original source:
Cellular Reprogramming Tools Market Key Players, Industry Overview, Application and Analysis to 2020-2026 - Cole of Duty

Growth in Sales of Cell Banking Outsourcing Market to Push Revenue Growth in the Market – 3rd Watch News

A cell bank refers to a facility that store cells derived from various body fluids and organ tissue for future needs. The bank store the cells with detailed characterization of the cell line hence decrease the chances of cross contamination. Cell banking outsourcing industry involves collection, storage, characterization, and testing of cells, cell lines, and tissues. Cell banks provide cells, cell lines, and tissues for R&D, production of biopharmaceuticals with maximum effectiveness and minimal adverse events. The process for storage of cells includes first proliferation of cells that multiplied in large number of identical cells and then stored into cryovials for future use. Cells mainly used in the regenerative medicine production. Increasing demand of stem cell therapies and number of cell banks expected to boost the global market.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/8026

Global cell banking outsourcing market segmented based on bank type, cell type, phase, and geography. Based on bank type market is further segmented into master cell banking, working cell banking, and viral cell banking. Cell type segment further divided based on stem cell banking and non-stem cell banking. Stem cell banking includes dental, adult, cord, embryonic, and IPS stem cell banking. Based on phase, the global cell banking outsourcing market segmented into preparation, storage, testing, and characterization. Geographically, market divided into North America, Europe, Asia Pacific, Latin America, and Middle East Africa. By considering bank type master cell banking accounted largest share owing to longer duration of preservation that would attract the researcher. Stem cell banking accounted larger share than non-stem cell banking due to lower risk of contamination.

In stem cell banking cord stem cell banking accounted larger share by revenue in 2014 due to increasing number of cord blood banks, and services globally. Additionally, donor convenience, immediate availability, lower risk of viral contamination is major driving factors for cord stem cell banking. In bank phase, segment storage phase accounted largest share and expected to maintain its share due to development of sophisticated preservation technologies such as cryopreservation technique. Geographically, North America accounted largest share due to high number of ongoing research projects. However, Asia Pacific expected to show significant growth during forecast period owing to supportive government initiatives coupled with increasing awareness about cell therapies.

The global cell banking outsourcing market is witnessing lucrative growth during forecast period due to increased research in cell line development owing to rise in incidence of infectious chronic disorder, and cancer. Additionally, development of advanced preservation techniques, increasing adoption to the stem cell therapies, rise in cell bank facilities across globe, and moving focus of researcher towards stem cell therapies would drive the market. However, high cost of therapies, availability of right donors, and legal and changing ethical issues during collection across the globe are major restraint of the market. Risk associated with cell line banking is contamination of cell lines by manual errors or environmental conditions hence care should be taken during storing and handling of cells.

You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/8026

Major player in cell banking outsourcing market include BioOutsource (Sartorious), BioReliance, BSL Bioservice, Charles River Laboratories, Cleancells, CordLife, Covance, Cryobanks International India, Cryo-Cell International Inc., GlobalStem Inc., Goodwin Biotechnology Inc., LifeCell International Pvt. Ltd., and Lonza. Additionally, PXTherapeutics SA, Reliance Life Sciences, SGS Life Sciences, Texcell, Toxikon Corporation, Tran-Scell Biologics, Pvt. Ltd., and Wuxi Apptec are other companies in global cell banking outsourcing market.

Originally posted here:
Growth in Sales of Cell Banking Outsourcing Market to Push Revenue Growth in the Market - 3rd Watch News

COVID-19: Plasma therapy vs stem cell therapy, what’s the difference? – Gulf News

Image Credit: Gulf News

DUBAI: Plasma and stem cell (SC) therapies are two of the emerging star treatments being used in the fight against the SARS-CoV-2 virus.

Against COVID-19, they're considered stop-gap measures, while the world awaits a vaccine. Both, however, have proven effective against severe cases infections caused by the novel coronavirus, which has already killed over 502,000 and infected 10.1 million as of Monday (June 29, 2020).

Plasma and SC therapies have similarities, as well as obvious differences. We outline them below:

Both plasma and stem cell therapies rely on rejuvenating damaged body tissue. Theyboth form part of what's described as regenerative medicine, a fast-emerging branch of medical science involving techniques thathelp restore the functionof tissues or organs.

Being regenerative treatments (or therapies), they encourage your body to use its natural abilities to heal injuries or other types of tissue damage or inflammation.

The journal Platelets refer to platelet-rich plasma (PRP) and stem cell (SC) therapies as the "mainstream medical technologies" to repair and rejuvenate a damaged tissue or organ caused by injury or chronic diseases.

Plasma-rich platelets are components of blood that contain platelet concentrations above the normal level.

Platelets are the frontline workers in carrying out a healing response to injuries. They release growth factors for tissue repair.Plasma therapy uses the liquid portion of blood (plasma, yellowish) which includes a higher concentration of platelets the part of blood that contributes to clotting and healing.

Stem cells, on the other hand, are generic cells. They are the prime cells -- unspecialised, undifferentiated, immature cells. Based on specific stimuli, they can divide and differentiate into specific type of cells and tissues.

Stem cells are the basic, generic building blocks of life. In a sense, they unspecialised, undifferentiated, immature cells. They can divide and differentiate into specific type of cells and tissues, based on based on specific stimuli.

Its this ability to differentiate into other types of cell that make stem cells interesting to medical science.

In adults, they are usually obtained from bone marrow. In infants, stem cells are usually taken from the umbilical cord.

Scientists have found stem cells present in blood vessels, the brain, skeletal muscles, skin and the liver.

They can be difficult to find and work with. Stem cells are also categorised by their potential to differentiate into different cell types. These include, pluripotent and multipotent stem cells.

SCs are generic (or primitive) cells obtained either from embryos or from the adult tissues, that have the capacity of self-renewal and can differentiate into as many as 200 different cell types of the adult body.

SC also produces certain growth factors and cytokines that accelerate the healing process at the site of tissue damage. Cytokines are secreted by certain cells of the immune system and have an effect on other cells. SC is used to treat degenerative and inflammatory conditions by replacing the damaged cells in virtually any tissue or organ, where PRP applications serve no benefit.

In the UAE, a medical research team has developed a first-in-the-world technique using inhaled stem cells that harvestedfrom the patients themselves. Following the initial success of the technique in 73 patients, the procedure has been ramped up.

In May, the ADSCC team, led by Dr Yendry Ventura, unveiled the new treatment. The UAECell19 is an autologous (cells obtained from the same individual)stem cells therapy which helped cut hospital stay from 22 days to six, relative to patients who were given standard treatment.

According to the Abu Dhabi team, patients given the stem cell therapy were up to 3.1x more likely to recover in less than seven days compared to those given standard treatment.

Researchers also stated that 67% of the patients who received the stem cells treatment owed this recovery to the new treatment.

ADSCC has secured a patent for UAECell19. Protection of the intellectual property rights for the therapy opens doors for it tobe shared more widely so more patients can benefit.

Plasma is the liquid portion of whole blood. It is composed largely of water and proteins, and it provides a medium for red blood cells, white blood cells and platelets to circulate through the body.

Convalescent refers to a person recovering from an illness or medical treatment.

Convalescent plasma, also known as immunoglobulins, is plasma taken from the blood of a person who has recovered from a disease.

Research shows that recovered COVID-19 patients develop antibodies in the blood against the virus. Antibodies are proteins that might help fight the infection.

Platelets, a component of the blood, are repair agents. They are frontliners in the healing response to injuries. Platelets are also called thrombocytes, blood cells that trigger blood clotting and other necessary growth healing functions.

PLATELET FACTS

[] When the platelet count is less than 50,000, bleeding is likely to be more serious if you're cut or bruised.

[] Some people make too many platelets. They can have platelet counts from 500,000 to more than 1 million.

PRP is a component of blood that contains platelet concentrations above the normal level -- usually five times higher concentrations of platelets above the normal values. It includes platelet-related growth factors and plasma-derived fibrinogen (a blood plasma protein that's made in the liver), among others.

Yes. Convalescent plasma hasbeen used as a last resort to improve the survival rates of patients with SARS (2003), as well as the "Spanish Flu" (1918-1920), as well as other infectious diseases.The Lancetcitesseveral studies that showed a shorter hospital stay and lower mortality in patients treated with convalescent plasma than those who were not treated with it.

It's been gaining ground in the COVID-19 fight around the world. In the last few weeks, convalescent plasma therapy has helped treat at least 170 patients at the Infectious Disease Department at Rashid Hospital in Dubai.

THROMBOCYTOPENIA

[] This can be caused by many conditions by medicines, cancer, liver disease, pregnancy, infections (including COVID-19), and an abnormal immune system.

If you are one of the thousands of patients fully-recovered from COVID-19, you may be able to help patients currently fighting the infection by donating your plasma. That's because you fought the infection, your plasma now contains COVID-19 antibodies.

These antibodies provided one way for your immune system to fight the virus when you were sick, so your plasma may be able to be used to help others fight off the disease.

Yes, you are. Health authorities, including the US Food and Drug Administration, encourage people who have fully recovered from COVID-19 for at least two weeks to consider donating plasma.

You can help save the lives of other patients.

However, you must first undergo some tests to check if you're eligible to meet donor criteria. Doctors will determine that. COVID-19 convalescent plasma must only be collected from recovered individuals if you are eligible.

A lab test must document a prior diagnosis of COVID-19. In general, FDA protocol requires individuals to have complete resolution of symptoms for at least 14 days prior to donation.

No. The FDA guideline states: A negative lab test for active COVID-19 disease is not necessary to qualify for donation.

You shouldconsider donating blood. One blood donation can save up to three lives.

View post:
COVID-19: Plasma therapy vs stem cell therapy, what's the difference? - Gulf News

Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma – Science Advances

INTRODUCTION

Glioma is the most common type of brain cancer that predominantly originates from neuroglial stem cells (1). Accumulating evidence has revealed that a key hallmark during the malignant progression of glioma is metabolic reprogramming toward aerobic glycolysis, known as the Warburg effect (2). Consequently, malignant glioma cells (GMs) increase glucose consumption and lactate production through rapid glycolysis to meet the high demand of energy substrates, biosynthetic precursors, and signaling molecules, by which their growth and migration are promoted (3). Malignant GMs enhance the levels of monocarboxylate transporter 1 (MCT1) and cluster of differentiation 147 (CD147) as well as their localization at the plasma membrane to remove intracellular lactate out of cells for the maintenance of continuous glycolysis. This leads to the accumulation of lactate in the tumor microenvironment (TME) (4). This extracellular lactate can also be taken up by surrounding fasting GMs and stromal cells in the hypoxic TME to produce adenosine triphosphate (ATP), eventually establishing the metabolic coupling among heterogeneous neighboring cells (5). Recent reports have demonstrated that lactate in the TME can serve not only as an energy substrate and biosynthetic precursor but also as a signaling molecule in promoting tumor progression (6). However, the exact role of lactate as a signaling molecule in glioma progression remains largely elusive.

MCT1, a major MCT in the central nervous system (7), has been known to play a crucial role in the proton-linked transport of lactate and ketone bodies across the cell membrane by cooperative action with its binding protein, CD147 (8). In particular, MCT1 and CD147 in various tumors, including glioma, are significantly up-regulated during malignant progression of the tumor. Therefore, their levels and distribution in glioma tissues have been considered as crucial indicators to determine glioma malignancy, particularly that associated with metabolic adaptation (9). Blocking the function of MCT1 and CD147, genetically or chemically, has been shown to suppress the growth, metastasis, and invasion of GMs as well as angiogenesis in in vitro and in vivo experimental models (10). Such findings have led to the ongoing development of their inhibitors as anticancer agents via controlling tumor metabolism.

Increased glycolysis is an important survival mechanism of GMs in the metabolically stressful TME. GMs in the hypoxic TME enhance the expression of hypoxia-inducible factor 1 (HIF-1)dependent glycolytic genes, including MCT1 and CD147, which produces high levels of ATP and lactate (9). A recent study has demonstrated that hypoxic cancer cells, including malignant GMs, also promote the release of a substantial number of exosomes, a major type of extracellular vesicles (EVs), which facilitates tumor progression (11). However, it remains largely unknown how up-regulated MCT1 and CD147 in malignant GMs are associated with the increased release of exosomes and the production of pro-oncogenic exosomes for glioma progression.

Most cells, including cancer cells, release exosomes, by which functional molecules can be delivered to neighboring or distal cells (12). Malignant GMs release a significantly high number of exosomes, partly by which their invasion, metastasis, and growth can be promoted (11, 13). GMs-derived exosomes contain tumor-associated proteins and microRNA (13). For example, they contain tumor-specific mRNA and microRNAs, including mRNA of c-Myc, mutant isocitrate dehydrogenase 1, mutant epidermal growth factor receptor variant III (EGFRvIII), and microRNA-21 (14, 15).

GMs-derived exosomes with a size ranging from 30 to 200 nm (16) can spread into systemic bio-fluids, such as cerebrospinal fluid (CSF) (17) and blood (18) by crossing the blood-CSF barrier (BCSFB) and the blood-brain barrier (BBB). Therefore, GMs-derived exosomes have been proposed as great platforms for the discovery of effective biomarkers to track glioma progression (19). Conventionally, the diagnosis and prognosis of glioma have been mainly dependent on magnetic resonance imaging (MRI) and computed tomography (CT) scans, as well as intracranial biopsies (20, 21). However, the detection of precise molecular signatures of glioma progression and metabolic adaptation has been difficult to ascertain. Therefore, the development of additional diagnostic tools with precise biomarkers has been in high demand to better monitor the metabolic reprogramming and malignant progression of glioma. While recent studies have suggested that highly sensitive detection of exosomes and exosomal components can improve the accuracy of diagnosis and prognosis of tumors such as glioma (11, 22, 23), the detailed characterization of GMs-derived exosomes requires additional investigation to provide a more thorough understanding of how to track glioma progression and metabolic adaptation. For example, differential biophysical properties, such as zeta potential, adhesiveness, stiffness, and roughness, as well as the release amount of daughter exosomes have been proposed as informative indicators to better understand and determine the malignant transition of parent GMs (24). In particular, the surface proteins of GM-derived exosomes can be reliable diagnostic biomarkers that can be measured by cost-effective, label-free, real-time, and highly sensitive detection tools such as localized surface plasmon resonance (LSPR) and atomic force microscopy (AFM) biosensors (25). LSPR biosensing is a powerful biocompatible technique with a high sensitivity, allowing it to detect single molecular interactions, such as antigen-antibody interactions. It also has high spatial resolution owing to the change of the dielectric property of surroundings in the functionalized sensing chip (26). AFM, on the other hand, is a versatile scanning probe microscope that can measure single molecular interactions with nanoscale spatial resolution achieved through the detection of the adhesive force between functionalized probe tips and the sample on the discs (27). The capability of imaging for soft samples in air and liquid without causing much damage makes AFM a powerful tool for the analysis of biological samples, including exosomes (28). Therefore, the quantitative detection of exosomal surface proteins by LSPR and AFM biosensors could provide the needed insights into the development of diagnostic and prognostic tools with precise biomarkers for glioma as a liquid biopsy.

In the present study, MCT1 and CD147, two major proteins associated with the glycolytic reprogramming and malignant progression of glioma, were first identified in the surface of GM-derived exosomes, and exosomal MCT1 and CD147 were quantitatively detected by label-free sensitive LSPR and AFM biosensors.

To determine whether hypoxia could promote cancer progression, U251 and U87 GMs were exposed to low oxygen tension (1% O2) in the hypoxic chamber, or they were treated with CoCl2 (100 M) for 24 hours in the regular chamber. As reported previously (2, 3), the effect of hypoxia on the phenotypic change of GMs was significant in proliferation and migration assays. Transwell cell migration and Scratch assays revealed that hypoxia significantly promoted the migration of U251 (fig. S1, A to C and M to Q) and U87 (fig. S2, A to C) GMs. In addition, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2-deoxyuridine (BrdU) cell proliferation assays demonstrated that hypoxia enhanced their proliferation as well (figs. S1, J and L, and S2J).

GMs malignant progression is associated with metabolic reprogramming by the increased expression of glycolytic genes, such as MCT1 and CD147 (9, 10). To determine whether enhanced MCT1 and CD147 in GMs could induce their phenotypic change, the effect of gain of MCT1 or CD147 function on their migration and proliferation was tested by the expression of Lenti-MCT1cDNAinternal ribosome entry sequence (IRES)enhanced green fluorescent protein (eGFP) or Lenti-CD147cDNA-IRES-eGFP in GMs (see Materials and Methods). Enhanced expression of MCT1 or CD147 in GMs (Fig. 1, D1 to S1, and fig. S3, S1 to T1, V1, and W1) promoted their migration and proliferation (figs. S1, D, E, G, I, and K, and S2, D, E, G, I, and K), mimicking the effect of hypoxia on GMs and indicating the crucial role of MCT1 and CD147 in the malignant progression of GMs. In addition, the effect of loss of MCT1 or CD147 function on GMs migration and proliferation was investigated by the expression of Lenti-H1-MCT1shRNA-CMV-eGFP for MCT1 or antisense locked nucleic acid (LNA) GapmeR for CD147 in GMs. Notably, MCT1 or CD147 knockdown (KD) in GMs (fig. S3, S1 to T1, V1, and W1) reduced their migration and proliferation (figs. S1, D, F, H, I, and K, and S2, D, F, H, I, and K), further demonstrating the crucial role of MCT1 and CD147 in tumor progression.

(A to E) Change in the mRNA expression of HIF-1, HK-2, LDH, MCT1, and CD147 in GMs in response to hypoxia (1% O2) (n = 3), as determined by quantitative real-time polymerase chain reaction (qRT-PCR). (F to I) Protein-level change of HIF-1, MCT1, and CD147 in GMs in response to hypoxia (1% O2) (n = 3), as determined by Western blot (WB). (J to Z and A1) Immunofluorescent staining for HIF-1, MCT1, and CD147 in GMs under normoxia and hypoxia. (B1) A representative graph of ECAR outputs from the XF24 analyzer for normoxic and hypoxic GMs and their response to glucose, oligomycin, and 2-deoxyglucose (2-DG) in the measurement of the status of glycolytic metabolism. (C1) Comparison of glycolysis, glycolytic capacity, and glycolytic reserve between normoxic and hypoxic GMs (n = 3). Immunofluorescent staining for MCT1 in GMs treated with (D1 to G1) empty backbone lentivirus (control 1) and (H1 to K1) MCT1 OE lentivirus for 24 hours. Immunofluorescent staining for CD147 in GMs treated with (L1 to O1) empty backbone lentivirus (control 1) and (P1 to S1) CD147 OE lentivirus for 24 hours. All data were shown as the means SD. Significance level: **P < 0.01, *P < 0.05, hypoxia versus normoxia.

To determine the effect of hypoxia on tumor progression, GMs were exposed to hypoxic chamber (1% O2), or CoCl2 (100 M), by which the expression of HIF-1 and its nuclear localization were significantly enhanced (Fig. 1, A, F, G, and J to O). Furthermore, glycolytic genes, including hexokinase-2 (HK-2), lactate dehydrogenase (LDH), MCT1, and CD147, were markedly up-regulated in hypoxic GMs (Fig. 1, B to F, H to I, P to Z, and A1, and fig. S3, A to R and A1 to R1). Enhanced glycolysis in hypoxic GMs was also observed in the measurement of the output of extracellular acidification rate (ECAR) from the Seahorse XF24 Extracellular Flux Analyzer (Fig. 1, B1 and C1).

Glycolytic reprogramming of GMs is crucial for their survival. A recent report demonstrated that hypoxic GMs released a large quantity of exosomes, supporting their survival through the autologous or heterologous interactions with GMs or surrounding cells in the TME (11). To investigate the correlation between the malignant transition of hypoxic GMs and their production and release of exosomes, a secretion assay for exosomes was conducted using nanoparticle tracking analysis (NTA). As compared with normoxic U251 GMs, hypoxic U251 GMs released a significantly higher number of exosomes (248.9% increase) (Fig. 2, A to C). Enhanced exosome release was also observed in hypoxic U87, U118, A172, C6, GL261 GMs, SF7761 glioma stem cells (GSCs), and adult GSCs (67.52, 163.61, 138.16, 80, 200, 270, and 226.07% increase compared to that of normoxic GMs, respectively) (figs. S4, A to C, Y, Z, and A1 to D1, and S5, A to C and M to O).

(A and B) Size distribution and quantity of exosomes released from normoxic and hypoxic GMs for 24 hours (NTA analysis). (C) Enhanced release of exosomes from hypoxic GMs (versus normoxic GMs). (D) Analysis of exosome release from GMs treated with control 1, MCT1 OE, MCT1 KD, CD147 OE (all lentivirus), and control 2 and CD147 KD (antisense oligonucleotides) constructs. (E to P) Representative images of Fura Red calcium dye- loaded- hypoxic (versus normoxic), MCT1 OE- or MCT1 KD- (versus control 1) induced, CD147 OE- or CD147 KD- (versus control 1 & 2) induced, and BAPTA-AM (20 M)-treated GMs. (Q) Enhanced exosome release from MCT1 OE and CD147 OEinduced (versus control 1) GMs, followed by a marked decline in exosome release by treatment with BAPTA-AM (20 M, 100 l). (R) Enhanced intracellular Ca2+ levels in GMs by treatment with sodium-l-lactate (20 mM, 100 l), followed by distinctive decline in intracellular Ca2+ level by treatment with BAPTA-AM (20 M, 100 l). (S) NTA exosome release assay from GMs exposed to four different conditions for 10 min described in Materials and Methods. Briefly, a, Exofetal bovine serum (FBS) medium; b, sodium-l-lactate (20 mM), c, BAPTA-AM; d, BAPTA-AM with the pretreatment of sodium-l-lactate (20 mM). All chemicals were dissolved in the Exo-FBS medium containing 1% dimethyl sulfoxide. All data were shown as the means SD. Significance level: **P < 0.01, *P < 0.05, hypoxia versus normoxia, BAPTA-AM versus control, MCT1 KD lentivirus versus empty backbone lentivirus (control 1), and CD147 antisense oligonucleotides versus antisense control oligonucleotides (control 2).

To determine whether MCT1 and CD147 in GMs could be involved in regulating exosome release, the effect of gain or loss of MCT1 or CD147 functions in the release of exosomes from U251 GMs was investigated under normoxia and hypoxia. Under normoxic condition, MCT1 or CD147 overexpression (OE) in U251 GMs significantly increased exosome release (92.57 and 381.16%, respectively, compared to that of control). In contrast, MCT1 or CD147 KD in U251 GMs reduced exosome release (73.84 and 82.49%, respectively), indicating the essential role of MCT1 and CD147 in controlling exosome release from normoxic U251 GMs (Fig. 2D). MCT1 or CD147 KD in hypoxic U251 GMs significantly reduced hypoxia-induced exosome release; however, MCT1 or CD147 OE in hypoxic U251 GMs did not alter hypoxia-induced exosome release much (fig. S4V), suggesting that hypoxia in this condition enhanced the amount of MCT1 and CD147 for the maximum release of exosomes. In addition, to investigate the effect of mutual interaction between MCT1 and CD147 on exosome secretion, rescue experiments with MCT1 OE or CD147 OE in hypoxic U251 GMs were performed to reverse reduced exosome release by MCT1 KD or CD147 KD, respectively. NTA analysis revealed that both MCT1 OE and CD147 OE in hypoxic GMs reversed MCT1 or CD147 KD-dependent reduced exosome release, suggesting that the interaction between MCT1 and CD147 in GMs was important in the regulation of exosome release (fig. S4, W and X). Furthermore, the combinatorial additive rescue effect of MCT1 and CD147 OE in exosome release was also observed after MCT1 KD, but not CD147 KD in the condition (fig. S4, W and X), indicating the possible presence of an MCT1-independent CD147 pathway for exosome secretion.

GSCs in the TME were known to be crucial in glioma malignancy and recurrence. Therefore, it was wondered whether their response to hypoxia and exosome release was similar to that of other GMs lines, such as U251 and U87 GMs. NTA analysis indicated that hypoxic SF7761 GSCs and adult GSCs released 3 times and 3.26 times more exosomes, respectively (fig. S5, A to C and M to O). Furthermore, hypoxic SF7761 GSC and adult GSCderived exosomes contained significantly higher amounts of MCT1 and CD147 compared to normoxic cells (fig. S5, D to K and P to W). Moreover, MCT1 or CD147 KD in SF7761 GSCs and adult GSCs reduced exosome release, indicating their important role in controlling exosome release (fig. S5, L and X).

To further investigate whether the change of intracellular Ca2+ levels could be associated with hypoxia-induced enhancement of exosome release, Fluo Red acetoxymethyl (AM) Ca2+ imaging and Fluo-4 AM Ca2+ assay were conducted with normoxic and hypoxic U251 GMs, as previously performed (29). Hypoxia increased both exosome release and intracellular Ca2+ levels in U251 GMs (Fig. 2, A to C, E, F, and H) and, furthermore, chelating intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA)AM blocked the enhanced release of exosomes from U251 GMs (Fig. 2, G and H), suggesting the regulatory role of intracellular Ca2+ in exosome release. In addition, to determine whether MCT1 and CD147 in GMs could influence levels of intracellular Ca2+, Fluo Red AM Ca2+ imaging was conducted with the MCT1- or CD147-enriched or -deficient U251 GMs by expressing Lenti-CMVP-MCT1cDNA-IRES-eGFP, Lenti-CMVP-CD147cDNA-IRES-eGFP, Lenti-H1-MCT1shRNA-CMV-eGFP, or CD147 antisense LNA GapmeR, respectively. The result revealed that MCT1 or CD147 OE in GMs enhanced intracellular Ca2+ levels and exosome release (Fig. 2, I, J, L to N, and P), whereas MCT1 or CD147 KD in GMs reduced both, demonstrating a strong positive correlation for each other (Fig. 2, I, K, L, M, O, and P). These findings indicated that MCT1 and CD147 in GMs could regulate exosome release in a calcium-dependent manner. The increase in exosome release by MCT1 or CD147 OE in GMs was reversed by treatment with BAPTA-AM (Fig. 2Q), further suggesting that the enhanced release of exosomes from GMs by MCT1 and CD147 is calcium dependent.

To recapitulate hypoxia-induced acidic TME (30), sodium-l-lactate (20 mM) was applied to the culture medium of GMs. High levels of extracellular lactate enhanced intracellular Ca2+ levels in GMs as determined by Fluo-4 AM Ca2+ assay (Fig. 2R). Increased intracellular Ca2+ levels further stimulated exosome release, which was blocked by BAPTA-AM (Fig. 2S), demonstrating that accumulated lactate in the TME could promote exosome release in a calcium-dependent manner.

Exosomes from normoxic and hypoxic U251 GMs were further characterized by NTA and transmission electron microscopy (TEM) analysis. Both exosomes from normoxic and hypoxic GMs were mainly round-shaped nanovesicles ranging from 30 to 200 nm in size, as determined by NTA and TEM analysis (Figs. 2, A and B, and 3, A and B). Most GMs-derived exosomes were also positive for CD63, a major exosome marker, which was first revealed by immunogold EM, and exosomal CD63 levels were then further quantified by Western blot (WB) (Fig. 3, C, D, I, and J), ensuring the reliability of their isolation and characterization. MCT1 and CD147 in malignant GMs are enriched in the plasma membrane, thus incorporating them into the membrane of daughter exosomes. Therefore, to determine whether MCT1 and CD147 were present in the membrane of GMs-derived exosomes, immunogold EM was conducted. Both MCT1 and CD147 were present in the membrane of exosomes from all investigated GMs lines, including U251, U87, U118, and A172 GMs lines (Fig. 3, E to H, and fig. S4, D to U). In addition, quantitative analysis was conducted with normoxic and hypoxic GMs-derived exosomes to determine whether levels of exosomal MCT1 and CD147 could reflect their quantity in parent GMs. MCT1 and CD147 levels in parent GMs and their daughter exosomes were detected and measured by immunogold EM, WB, ICC, and enzyme-linked immunosorbent assay (ELISA) (Figs. 1, F, H, I, P to Z, and A1, and 3, E to L, and fig. S3, A to R, A1 to R1, and U1). MCT1 and CD147 levels in parent U251 GMs were positively correlated with those levels in daughter exosomes, revealing that exosomal MCT1 and CD147 could be reliable surrogate biomarkers to monitor their levels in parent GMs, which were related with malignant progression. Most notably, in the validation experiments, MCT1 and CD147 OE in parent U251 GMs showed increased levels in their daughter exosomes; in contrast, MCT1 and CD147 KD in parent U251 GMs displayed reduced levels in their daughter exosomes (fig. S3, S1, T1, and V1 to Y1).

(A and B) TEM images of exosomes derived from normoxic and hypoxic GMs. (C to H) Representative immunogold EM images for CD63, MCT1, and CD147 in exosomes from normoxic and hypoxic GMs. (I) Determining the quantity of CD63, MCT1, and CD147 in exosomes from normoxic and hypoxic GMs by WB. (J to L) Bar graphs showing the relative quantity of CD63, MCT1, and CD147 in exosomes from normoxic and hypoxic GMs (n = 4) as detected by ELISA. All data were shown as the mean SD. Significance level: **P < 0.01; ns, not significant, hypoxia versus normoxia.

As noted above, MCT1 and CD147 levels in GMs-derived exosomes were proportional to those of parent GMs. Therefore, enhanced levels of MCT1 and CD147 in hypoxic GMs might change the biophysical properties of daughter exosomes, suggesting that they could influence their uptake into recipient cells, such as endothelial cells (ECs). Therefore, daughter exosomes biophysical properties were investigated by measuring the zeta potential of hypoxic GMs-derived exosomes, as compared to normoxic GMs-derived exosomes, with Zetasizer Nano ZS. The zeta potential value of hypoxic GMs-derived exosomes was significantly lower than that of normoxic GMs-derived exosomes (fig. S6A), indicating the increased instability associated with the coagulation, membrane fusion, and uptake of exosomes into recipient cells. Next, to investigate whether MCT1 and CD147 levels in parent GMs could be directly associated with the zeta potential change in daughter exosomes, MCT1 and CD147 KD or OE in parent GMs were conducted as noted above, wherein results showed reduced or increased levels of MCT1 or CD147 in their corresponding daughter exosomes. Increased MCT1 or CD147 levels in exosomes made their zeta potential lower, recapitulating hypoxia-driven reduction of exosomal zeta potential. In contrast, decreased MCT1 or CD147 levels in exosomes made their zeta potential higher (fig. S6B), thereby presumably reducing their fusion into recipient cells. AFM analysis further revealed significant changes in biophysical properties, including roughness, Youngs modulus (elasticity and stiffness), and adhesion force, of hypoxic GMs-derived exosomes as compared with those of normoxic ones. The roughness, stiffness, and adhesion force in hypoxic GMs-derived exosomes were approximately 1.3 times bigger, 7 times smaller, and 3 times bigger, respectively (fig. S6, C, E, and G), demonstrating that their values could be informative to track GMs hypoxic and malignant status. Theoretically, enhanced adhesion force and increased zeta potential in hypoxic GMs-derived exosomes might facilitate their uptake into recipient cells. The uptake of hypoxic GMs-derived exosomes by ECs was much higher after incubation for 24 hours (fig. S7, A to U). This resulted in the promotion of their tube formation, which was determined by the quantification of number of branches, branching intervals, junctions, meshes, and segments (fig. S7, V to Z, A1, and B1), suggesting that the hypoxic GMs-derived exosomes have a crucial impact on angiogenesis. Increased or decreased MCT1 and CD147 levels in parent GMs by genetic modifications also produced altered roughness, stiffness, and adhesion force properties of daughter exosomes (fig. S6, D, F, and H), recapitulating hypoxia-induced biophysical alterations in exosomes, further supporting the potential role of MCT1 and CD147 in controlling the uptake of GMs-derived exosomes into recipient cells as well as controlling their release in the TME.

Recent reports demonstrated that exosomes could cross the BBB and BCSFB, supporting that their components, including membrane proteins and microRNAs, could be used as promising surrogate markers and systemic biomarkers for the diagnosis and prognosis of brain disorders, including glioma (1719). Therefore, MCT1 and CD147 in GMs-derived exosomes could be potential biomarkers to monitor the metabolic and malignant status of parent GMs. As shown in the analysis of immunogold EM, MCT1 and CD147 were present mainly in the membrane of exosomes (Fig. 3, E to H, and fig. S4, F to I, L to O, and R to U). In addition, the analysis of SF7761 GSCs-derived exosomes and adult GSC-derived exosomes by immunogold EM and ELISA revealed the presence of exosomal MCT1 and CD147 as well (fig. S5, D to K and P to W). Thus, sensitive label-free LSPR and AFM biosensors were used to noninvasively detect exosomal MCT1 and CD147 with the functionalized self-assembly gold nanoislands (SAM-AuNIs) chip and silicon nitride cantilever tip with the antibody (AB) toward MCT1 or CD147. For the quantitative assessment of detection sensitivity and specificity for exosomal MCT1 and CD147 by two biosensors, reduced or increased levels of GMs-derived exosomes were first produced by genetic modifications such as OE or KD of MCT1 or CD147 in parent GMs (Fig. 1, D1 to S1, and fig. S3, S1, T1, V1, and W1). In summary, increased levels of MCT1 or CD147 in parent GMs enhanced MCT1 or CD147 levels in their daughter exosomes as well. In the same way, decreased levels of MCT1 or CD147 in parent GMs directly reduced MCT1 or CD147 levels in their daughter exosomes (fig. S3, X1 and Y1).

The noninvasive LSPR biosensor with the functionalized SAM-AuNIs sensing chip with anti-MCT1 AB (Fig. 5A) or anti-CD147 AB (Fig. 5B) was sensitive enough to quantitatively detect exosomal MCT1 or CD147 (Fig. 4, A, B, E, and F). The specificity of LSPR biosensing was demonstrated by the correlated LSPR phase response to the levels of exosomal MCT1 and CD147. For example, the higher their levels were, the bigger their LSPR response (Fig. 5, C and D). In particular, the LSPR biosensor precisely detected enhanced MCT1 or CD147 levels in exosomes from hypoxic GMs (Fig. 5, E and F). Furthermore, exosomal MCT1 and CD147 were accurately detected by a high-resolution AFM biosensor. To quantitatively measure them, the spring constant of silicon nitride cantilever of the AFM biosensor was calibrated to be 0.3744 N/m. It was first shown that the ScanAsyst-fluid mode of AFM imaging for exosomes captured on the functionalized SAM-AuNIs sample discs with anti-CD63 AB could produce great resolution for two-dimensional and three-dimensional AFM topographic images, facilitating better analysis of their biophysical properties (Fig. 5, I and J). Height profile analysis in the three-dimensional AFM topographic image also showed captured exosomes in the sample discs (Fig. 5, K and L). After the immobilization of exosomes on discs, the AFM biosensor was used to quantitatively detect exosomal MCT1 and CD147 by the functionalized cantilever tip with anti-MCT1 AB or anti-CD147 AB (fig. S8, A to D). This was the first consecutive capture and sensing method to detect exosomal surface proteins by AFM. Conclusively, a high degree of sensitivity and specificity of previously unreported AFM biosensing was established and validated by using MCT1- or CD147-deficient or -enriched exosomes (Fig. 4, C, D, G, and H). Last, the AFM biosensor precisely detected enhanced MCT1 or CD147 levels in exosomes from hypoxic GMs (Fig. 5, M to P).

(A and B) Representative phase responses of the LSPR biosensor with the functionalized SAM-AuNIs sensing chip with anti-MCT1 AB or anti-CD147 AB and (C and D) separation force responses of the AFM biosensor with the functionalized silicon nitride tip with anti-MCT1 AB or anti-CD147 AB toward equal amount of daughter exosomes (50 g/ml) from parent U251 GMs with no treatment (control), MCT1 OE, MCT1 KD, CD147 OE, and CD147 KD. (E to H) Bar graph showing the relative strength of LSPR responses (n = 3) or AFM forces (n = 12) toward exosomal MCT1 [from (A) and (C)] and CD147 [from (B) and (D)]. (I and J) Correlation curve between MCT1 or CD147 levels in parent GMs and the strength of LSPR responses toward exosomal MCT1 or CD147, respectively [for MCT1, coefficient of determination (R2) = 0.9247, and for CD147, R2 = 0.9654], or the strength of AFM forces toward exosomal MCT1 or CD147, respectively (for MCT1, R2 = 0.9996, and for CD147, R2 = 0.9952). The correlation analysis was performed based on the data obtained from (A) to (D). All data were shown as the means SD. Significance level: **P < 0.01, *P < 0.05, MCT1 OE and MCT1 KD group versus control. CD147 OE and CD147 KD group versus control.

(A and B) Baseline phase response of the LSPR biosensor with the functionalized SAM-AuNIs sensing chip with anti-MCT1 AB or anti-CD147 AB after sequential treatment with 11-mercaptoundecanoic acid (MUA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). (C and D) Phase response of the LSPR biosensor toward three different concentrations (serial dilution of 1300 g/ml exosome solution: 1000, 100, and 10) of U251 GM-derived exosomes. Standard curve fitting for phase responses toward anti-MCT1 AB (R2 = 0.9871) or anti-CD147 AB (R2 = 0.9969). (E and F) Representative phase response of the LSPR biosensor toward equal amount of normoxic and hypoxic GM-derived exosomes (50 g/ml). (G and H) Bar graph showing the relative strength of LSPR responses toward exosomal MCT1 (E) and CD147 (F) from normoxic or hypoxic GMs (n = 3). (I to K) Two-dimensional, three-dimensional, and high resolution of three-dimensional AFM topographic images for U251 GM-derived exosomes immobilized on the SAM-AuNIs sensing chip. (L) Height profile of single U251 GM-derived exosome by AFM scanning. (M and N) Representative separation force responses of the AFM biosensor with the functionalized cantilever sensing tip with anti-MCT1 AB, or anti-CD147 AB toward equal amount (50 g/ml) of normoxic and hypoxic GM-derived exosomes captured on the SAM-AuNIs sample discs. (O and P) Bar graph showing the relative strength of AFM separation force responses toward exosomal MCT1 (M) and CD147 (N) from normoxic or hypoxic GMs (n = 12). All data were shown as the means SD. Significance level: **P < 0.01, *P < 0.05, hypoxia versus normoxia.

Overall, a strong positive correlation between the levels of cellular MCT1 and CD147 and the response strength of LSPR [for MCT1, coefficient of determination (R2) = 0.9247, and for CD147, R2 = 0.9654] and AFM (for MCT1, R2 = 0.9996, and for CD147, R2 = 0.9952) for exosomal MCT1 and CD147 was observed (Fig. 4, I and J), strongly supporting the potential application of noninvasive LSPR- and AFM-based detection for exosomal MCT1 and CD147 to monitor GMs glycolytic metabolism associated with their malignant progression.

MRI scans have been used as a major diagnostic method for glioma as well as an in vivo glioma study. In addition, MRI has also been applied to discover glioma pathologies in patients (20, 21, 31). However, new techniques have been demanded to help detect molecular and metabolic signatures of glioma even at its early stage to aid in a more precise diagnosis. Therefore, the noninvasive liquid biopsy for detecting metabolic biomarkers of glioma has been investigated. In this study, exosomal MCT1 and CD147 in blood serum were investigated in the course of glioma formation by using label-free LSPR and AFM biosensors. To do so, an in vivo mouse model of glioma was first established by the intracranial implantation of U251 or U87 GMs in immunodeficient mice as described in Materials and Methods. In the course of glioma formation, an MRI scan for each mouse was conducted, and blood from each mouse was then consecutively obtained for the isolation of serum-derived exosomes. Glioma formation was identified by an MRI scan at approximately 10 days after the implantation of U251 and U87 GMs into the brain (with a size range of 0.7 to 1.1 mm3) (Fig. 6, A to C). Characterization of isolated serum-derived exosomes from each mouse was conducted by NTA, TEM, ELISA, and immunogold EM (fig. S9, A to P). NTA demonstrated that the number of serum-derived exosomes from a mouse model of glioma was significantly higher (fig. S9, A to D), indicating the systemic impact of glioma formation in the body. TEM results showed the heterogeneous morphology and size of serum-derived exosomes (fig. S9, E to G). ELISA and immunogold EM revealed a higher amount of MCT1 and CD147 in serum-derived exosomes from a mouse model of glioma as compared to those of wild-type mice (fig. S9, H to P). Last, LSPR and AFM responses toward exosomal MCT1 and CD147 in serum-derived exosomes from a mouse model of glioma were significantly greater compared to those from control mice (Fig. 6, D to K). These data strongly suggested that, together with MRI images, label-free sensitive detection of exosomal MCT1 and CD147 in serum-derived exosomes could be supportive for the better diagnosis and prognosis of glioma.

(A to C) Representative MRI images for the brain of sham-operated mice and U251 and U87 mouse models of glioma. (D and E) Representative phase responses of the LSPR biosensor with the functionalized SAM-AuNIs sensing chip with anti-MCT1 AB or anti-CD147 AB and (F and G) representative separation force curves of the AFM biosensor with the functionalized silicon nitride cantilever tip with anti-MCT1 AB or anti-CD147 AB toward serum-derived exosomes from sham-operated mice and U251 and U87 mouse models of glioma. (H to K) Bar graph summarizing the relative strength of LSPR responses (n = 3) or AFM forces (n = 3) toward exosomal MCT1 [e.g., (D) and (E)] and CD147 [e.g., (F) and (G)]. Detailed processes of LSPR and AFM biosensing were described in Materials and Methods. All data were expressed as the means SD. Significance level: **P < 0.01, *P < 0.05, U251 or U87 mouse model of glioma versus sham-operated severe combined immunodeficient mouse. WT, wild type.

It has been well known that cancer cells in the hypoxic TME can survive through their metabolic reprogramming, in which glycolysis-related genes, such as MCT1 and CD147, are up-regulated (32, 33). The present study demonstrated that hypoxia increased levels of MCT1 and CD147 in U251 (Fig. 1, A to Z and A1), U87 (fig. S3, A to F and A1 to F1), U118 (fig. S3, G to L and G1 to L1), and A172 (fig. S3, M to R and M1 to R1) GMs, which partly promoted their migration and proliferation as well, and further loss- and gain-of-function studies confirmed the essential role of MCT1 and CD147 in GMs survival and migration (figs. S1 and S2), supporting that they could be druggable targets for glioma therapy.

Malignant hypoxic GMs also release a tremendous number of exosomes, containing unique pro-oncogenic components such as mRNA of c-Myc and microRNA 221 and 128, which supports their survival by facilitating communication with neighboring cells (11, 13, 34). Therefore, increased exosome release has been proposed as a biomarker for determining tumor malignancy (11, 13). However, it has been difficult to ascertain whether metabolic reprogramming, such as up-regulation of MCT1 and CD147, in malignant GMs is directly associated with increased exosome release. To test this, loss- and gain-of-function studies were conducted with genetic modifications for MCT1 and CD147. The OE of MCT1 or CD147 in GMs recapitulated hypoxia-induced enhanced exosome release, whereas their KD in GMs reduced exosome release (Fig. 2D and fig. S3, S1, T1, V1, and W1). In particular, we discovered that up-regulation of MCT1 and CD147 enhanced exosome release from GMs, which was dependent on intracellular calcium levels. GMs with hypoxia exposure or lactate treatment enhanced exosome release by increased intracellular calcium, which was blocked by treatment with BAPTA-AM as well as MCT1 or CD147 KD (Fig. 2, A to C and E to P), implying that the effects of MCT1 and CD147 expression was dependent on intracellular calcium levels. High levels of extracellular lactate, common in the hypoxic TME (5), also increased intracellular Ca2+-dependent release of exosomes from GMs (Fig. 2, Q to S). One potential mechanism might be that extracellular lactate could be a signal for GMs to increase intracellular Ca2+ through interaction with a lactate receptor (35), facilitating exosome release. Another possibility might be that extracellular lactate can induce MCT1 expression (33), promoting exosome release.

The increased uptake of exosomes by surrounding cells or GMs in the TME is important for cancer survival; however, an in depth look at the underlying mechanisms has not been thoroughly investigated in GMs. Nonetheless, accumulated evidence has revealed that exosome release is promoted in malignant cancer and the uptake of tumor-derived exosomes into surrounding cells is significantly enhanced. In this study, we demonstrated that GM-derived exosomes had unique biophysical properties for the promotion of their uptake into surrounding cells. Exosomes from GMs with hypoxia exposure or OE for MCT1 or CD147 showed a much smaller zeta potential and stiffness, but displayed more roughness and a higher adhesion force (fig. S6, A to H). Presumably this is one of the means that drive their higher uptake into ECs, further enhancing tube formation (fig. S7). Our results additionally demonstrated that biophysical properties of exosomes could also be informative biomarkers to reflect the malignant status of GMs associated with MCT1 and CD147 expression, either directly or indirectly.

Precise detection of the malignant progression of glioma, which is predominantly associated with its metabolic reprogramming, is critical in the development of anti-glioma agents and glioma therapy, as well as in its diagnosis and prognosis. Malignant GMs release large amounts of exosomes within 30 to 200 nm in size, which can spread into the peripheral fluids, suggesting that they can be not only systemic functional mediators but also great platforms for the identification of biomarkers and fingerprints as a liquid biopsy for glioma. Therefore, it is important to find a link between exosome components and glioma malignancy. In the present study, two major proteins involved in the metabolic adaptation of GMs, MCT1 and a binding protein, CD147, were found mainly in the membrane of GM-derived exosomes and their exosomal levels recapitulated their levels in parent GMs (Fig. 3 and fig. S4, D to U). Thus, exosomal MCT1 and CD147 were studied to determine their feasibility as surrogate biomarkers for monitoring glioma progression and metabolism using label-free sensitive LSPR and AFM biosensors (2628). Compared with general techniques used in the analysis of exosomes, such as flow cytometry, WB, immunogold EM, ELISA, as well as omics, label-free LSPR and AFM biosensing is simple, sensitive, and cost-effective. In our previous work, label-free LSPR and AFM biosensors were successfully used to characterize tumor-derived exosomes and MVs (16) and detect glioma-specific EGFRvIII in exosomes (36). In the present work, the functionalized SAM-AuNIs sensing chip with anti-MCT1 AB or anti-CD147 AB was used in LSPR biosensing, and it provided a great specificity and sensitivity of LSPR response toward exosomal MCT1 and CD147, whereas the functionalized AFM sensing tip with anti-MCT1 AB or anti-CD147 AB generated a magnificent response of AFM separation force with high-resolution image toward MCT1 and CD147 in the exosomes captured on the SAM-AuNIs sample discs coated with anti-CD63 AB (Fig. 5). The novel AFM biosensing with SAM-AuNIs sample disc-based consecutive capture and sensing of exosomes provided a potential great opportunity to characterize a specific population of disease-specific exosomes in a future study. In the test of specificity, LSPR and AFM biosensors quantitatively detected reduced or increased MCT1 and CD147 in daughter exosomes with genetic modifications, supporting their accurate detection for exosomal proteins as well as the strong quantitative correlation between their cellular and exosomal amount (Fig. 4), leading to the conclusion that LSPR and AFM biosensors had great capability to detect exosomal MCT1 and CD147, faithful biomarkers for monitoring GMs malignant progression and metabolic adaptation. In addition, LSPR and AFM biosensors precisely detected their increased amount in hypoxic GM-derived exosomes (quantity per same protein amount), even without consideration of a marked increase of exosomes by stimulation, proving its great capability in sensitive biosensing (Fig. 5).

As described above, one of challenges in glioma therapy is how to carry out affordable early detection of its molecular and metabolic changes as a liquid biopsy because MRI- and CT scanbased diagnosis primarily only determines later stages of glioma. Therefore, analysis of exosomes from blood and CSF of animal models and patients of glioma have become more and more important in the basic and clinical research of glioma. In the present study, we demonstrated that the quantity of serum-derived exosomes from a mouse model of glioma was much higher when the glioma became enlarged, as detected by MRI scanning (Fig. 6, A to C, and fig.S9, A to D). In terms of the morphology and size of serum-derived exosomes, their parent cells might be diverse, suggesting that glioma formation in the brain could have a systemic effect on the periphery and the quantity of exosomes in the peripheral circulation as well. Nonetheless, the origin of serum-derived exosomes was not clear; many of them had MCT1 and CD147 in their membranes (fig. S9, I to P). Using label-free sensitive LSPR and AFM biosensors, we precisely detected significantly higher levels of MCT1 and CD147 in serum-derived exosomes from the mouse model of glioma (Fig. 6, D to K). Notably, their LSPR and AFM response in the detection was positively correlated with glioma formation and progression, implying that MCT1 and CD147 from serum-derived exosomes could provide additive information to track glioma progression together with currently available MRI scans (Fig. 6 and fig. S9). However, it might be more informative to analyze pure GM-derived exosomes directly. Therefore, in the future, the development of isolation techniques and the enrichment of GM-derived exosomes from CSF of a mouse model of glioma and/or patients, along with precise detection of MCT1 and CD147 with those exosomes by LSPR and AFM biosensors, will serve as a requisite advancement in tracking glioma metabolism and progression.

In conclusion, we demonstrated that hypoxia promoted GMs malignant progression and that calcium-dependent exosome release was associated with enhanced MCT1 and CD147. Moreover, we revealed that hypoxic GM-derived exosomes had unique biophysical properties that promoted their uptake into ECs. In particular, we first found that GM-derived exosomes contained both MCT1 and CD147, the quantity of which was proportional to those of parent GMs, and exosomal MCT1 and CD147 could be precisely detected by noninvasive sensitive LSPR and AFM biosensors, demonstrating that they are likely to be promising surrogate biomarkers for tracking glioma metabolic malignancy. The present study supported the hypothesis that MCT1 and CD147 in GMs can also control the release, composition, and uptake of exosomes, providing great insights into the additional mechanism of MCT1 and CD147 inhibitors as anticancer agents in preventing glioma progression through exosome shuttling among neighboring cells (fig. S10).

All animal experiments followed the Institutional Animal Care and Use Committee (IACUA) guidelines and were approved by the Animal Research Ethics Sub-Committee at City University of Hong Kong and Department of Health, Government of the Hong Kong Special Administrative Region. Implantation experiments with U257 and U87 GMs were performed using 6-week-old female severe combined immunodeficient (SCID) mice (Laboratory Animal Services Centre, The Chinese University of Hong Kong). Mice had free access to water and food ad libitum under a 12-hour light/12-hour dark cycle.

U251, U87, U118, A172, GL261, and C6 GMs and bEnd.3 ECs (Guangzhou Cellcook Biotech Co. Ltd., China) were cultured in Dulbeccos modified Eagles medium with high glucose (DMEM-H) (Invitrogen, catalog no. 10569-010) supplemented with 10% fetal bovine serum (FBS) (Gibco, catalog no. 10270-106) and 1% penicillin-streptomycin (Pen-Strep) (Gibco, catalog no. 15140-122). Human embryonic kidney (HEK) 293T cells were cultured in DMEM supplemented with 10% FBS and 1% Pen-Strep. Human pediatric diffuse intrinsic pontine SF7761 GSCs were cultured in the specific medium, StemPro NSC SFM (catalog no. A10509-01, Invitrogen). Human adult GSCs (catalog no. 36104-41, Celprogen) were cultured in human GSC serum-free colony-forming unit media (catalog no. M36104-40CF). Cell cultures were maintained in a humidified incubator containing 5% CO2 at 37C.

For the induction of hypoxia with low oxygen, GMs were incubated in the chamber (Smartor 118 hypoxia chamber) flushed with a gas mixture, containing 1% O2, 5% CO2, and 94% N2 at 2 pounds per square inch, at 37C for 24 hours. For the induction of hypoxia with a chemical, GMs were treated with 100 M cobalt chloride (CoCl2) (Sigma-Aldrich, catalog no. 232696) at 37C for 24 hours. In control experiments, GMs were exposed to normoxia (21% oxygen) at 37C for 24 hours. When validating hypoxia, nuclear trafficking and localization of HIF-1 were used.

Migration of GMs was examined by both Transwell cell migration and Scratch assays (37). In brief, GMs (1 105 cells/100 l of medium per well) were seeded in the upper chamber of Transwell Permeable Support chambers (Costar, catalog no. 3422) with a pore size of 8.0-m mesh separating the upper and lower chambers, and 500 l of complete GM culture medium was added to the lower chamber. GMs were allowed to migrate for 24 hours at 37C to the lower chamber. Next, GMs in the lower chamber were fixed for 10 min by 4% paraformaldehyde (PFA) and then were stained with 0.1% Crystal Violet solution for 20 min. Last, pictures were taken by using an inverted microscope at 10 magnification. The number of GMs that migrated between chambers was counted using ImageJ software. Scratch assays were conducted following the standard protocol (37).

The proliferation of GMs was assessed by Vybrant MTT Cell Proliferation Assay Kit (Thermo Fisher Scientific, catalog no. V13154) and a BrdU Cell Proliferation Assay Kit (colorimetric) (ab126556) per the manufacturers guidelines.

Total RNA was extracted from GMs using TRIzol reagent (Life Technologies, catalog no. 15596018), according to the manufacturers instructions, and its concentration was determined with a NanoDrop 2000 (Thermo Fisher Scientific). Reverse transcription (RT) was performed with total RNA using a SuperScript IV First-Strand cDNA Synthesis kit (Life Technologies). The mRNA expression of HIF-1, MCT1, CD147, LDH, HK, and -actin was examined by quantitative real-time polymerase chain reaction (qRT-PCR) using KAPA SYBR FAST qPCR kit Master Mix (2) Universal (catalog no. KK4650). The thermal cycling conditions involved denaturation at 95C for 3 min and proceeded with 40 cycles of denaturation at 95C for 15 s, annealing at 60C for 1 min, and extension at 72C for 30 s. All reactions of qRT-PCR were performed in triplicate and Ct values of target genes were normalized to that of -actin.

Identification and quantification of HIF-1, CD-63, MCT1, and CD147 in both GMs and GM-derived exosomes were conducted by WB (36). Briefly, GM (20 g) and exosome (50 to 100 g) lysates were separated by 12 and 8% SDS-gel electrophoresis, respectively, and then transferred to polyvinylidene difluoride membrane. After its incubation with 5% skim milk in tris-buffered saline (TBS) (blocking buffer) for 1 hour, the membrane was further incubated with specific primary ABs (anti-MCT1 AB 1:200, anti-CD147 AB 1:1000 dilution for GMs; anti-MCT1 AB 1:100, anti-CD147 AB 1:200 dilution for exosomes) in blocking buffer (5% skim milk for GMs, 1% skim milk for exosomes) overnight at 4C, followed by washing three times with TBST and further incubation with goat anti-rabbit immunoglobulin G (IgG) H&L [horseradish peroxidase (HRP)] secondary AB (12000 dilution for GMs, 1:1000 dilution for exosomes) for 2 hours at room temperature. Immunoreactive bands were detected using enhanced chemiluminescence substrate (Bio-Rad) and imaged using the Azure Biosystems Gel Documentation system (C600).

Following the manufacturers guidelines, 50 l of GM lysates (200 g/ml) and exosomes (400 g/ml) were added to the wells of an ELISA micro-titer plate, incubated for 2 hours at 37C, and further incubated for 1 hour at room temperature with primary ABs, anti-MCT1 AB and anti-CD147 AB (both 1:100 dilution) for GMs and exosomes, and anti-CD63 AB (1:100 dilution) only for exosomes. After washing three times, primary ABtreated samples were further incubated with anti-rabbit HRP-conjugated secondary AB (1:5000 dilution) for 1 hour at room temperature. After washing three times, tetramethyl-benzidine substrates were applied to secondary ABtreated samples and further incubated in a dark place for 30 min at room temperature. After washing three times, the absorbance at 450 nm, via a microplate reader, was recorded within 2 min after the addition of Stop Solution to the wells. Control was the absorbance value obtained from the well without any sample. The kits used are ExoELISA kit (System Biosciences, catalog no. EXOEL-CD63A-1), Human MCT1 ELISA Kit (LifeSpan Biosciences, catalog no. LS-F9108), and Human CD147 ELISA Kit (Abcam, catalog no. ab219631).

GMs were grown on poly-d-lysine (Merck, catalog no. A-003-E)coated coverslips until 60 to 70% confluence before conducting the experiments with specific conditions, including exposure to normoxic and hypoxic condition; transduction of lenti-eGFP (control), MCT1 KD, MCT1 OE, and CD147 OE lentiviral particles; and transfection of antisense control and CD147 antisense LNA GapmeR. Next, the GMs were fixed with 4% PFA in phosphate-buffered saline (PBS) for 30 min on ice. After washing with 0.1% Triton X-100 in PBS (PBST) three times, the fixed GMs were further incubated in 5% bovine serum albumin (BSA) in PBST for 1 hour (for MCT1 staining, the fixed GMs were incubated in 1% BSA-PBST). After washing with PBS three times, the blocked GMs were incubated with primary ABs in 0.1% BSA-PBS (dilution: anti HIF-1 AB at 1:200, anti-MCT1 AB at 1:50, and anti-CD147 AB at 1:100) overnight at 4C in a dark humidified chamber, and followed by the incubation with goat anti-rabbit Alexa Fluor 488 secondary AB in 0.1% BSA-PBS (dilution at 1:500) for 2 hours at room temperature after washing with PBS. Last, immunostained GMs were counterstained and mounted by the medium with 4,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, catalog no. H-1200). Images were taken on a Zeiss Laser Scanning Microscopy LSM 880 NLO with Airyscan. The ABs used in the experiment were rabbit polyclonal antiHIF-1 AB (Abcam, catalog no. ab82832), rabbit polyclonal anti-MCT1 AB (Alomone Labs, catalog no. AMT-011), rabbit polyclonal anti-CD147 AB (Abcam, catalog no. ab64616), rabbit polyclonal anti-CD63 AB (Abcam, catalog no. ab68418), rabbit polyclonal anti-actin AB (Abcam, catalog no. ab16039), goat anti-rabbit IgG H&L (HRP) secondary AB (Abcam, catalog no. ab6721), and goat anti-rabbit IgG (H + L) Alexa Fluor 488 secondary AB (Thermo Fisher Scientific, catalog no. A11034).

Glycolysis was measured by using the Agilent seahorse XF glycolysis stress test kit (Seahorse Biosciences; catalog no. 103020-100) according to the manufacturers guidelines. The value of basal glycolysis, glycolytic capacity, and glycolytic reserve from normoxic and hypoxic GMs was obtained by the analysis of ECAR after the sequential addition of glucose, oligomycin, and 2-deoxyglucose to the Agilent seahorse XF24 flux analyzer. Each experiment was conducted in triplicate.

Calcium imaging for U251 GMs was performed by using Fura Red AM fluorescent indicator dye (catalog no. F3020, Invitrogen) with its detection by Nikon Eclipse Ti-S Calcium imaging system (38). In brief, cultured GMs in a 24-well plate was loaded with 10 M Fura Red AM in Hanks balanced salt solution (HBSS) (Gibco, catalog no. 14175095) for 1 hour and kept free from light, followed by washing three times with HBSS buffer. The Fura Red AMlabeled GMs were maintained in HBSS buffer during calcium imaging. The intracellular Ca2+ levels in GMs were quantified using ImageJ software.

For calcium assay, U251 GMs were grown to 90% confluence in a 96-well plate. After washing them with HBSS buffer, GMs were loaded with the Ca2+ indicator, 50 l of 4 M Fluo-4 AM (Invitrogen, catalog no. F14201), in HBSS buffer. Next, GMs were incubated at room temperature for 1 hour and kept under dark conditions. After washing them with HBSS buffer, the continuous measurement of fluorescence kinetics was performed (excitation, 485 nm; emission, 525 nm) in a microplate reader. The results were plotted for an average reading over each kinetics cycle done in six replicates. BAPTA-AM (20 M; Thermo Scientific, catalog no. B6769) was used to chelate intracellular Ca2+. Sodium-l-lactate (20 mM; Sigma-Aldrich, catalog no. 7022) was used to evaluate the effect of extracellular lactate on the intracellular Ca2+ levels in GMs.

Lentiviral particles for MCT1 OE, MCT1 KD, and CD147 OE were produced in HEK 293T cells via the co-transfection of Lenti-8.9 and Lenti-VSVG with Lenti-CMV promoter (CMVP)MCT1 cDNA-IRES-eGFP, Lenti-H1promoter (H1P)MCT1 shRNA-CMVP-eGFP, and Lenti-CMVP-CD147 cDNA-IRES-eGFP, respectively. Lentiviral particles that only expressed CMVP-eGFP were used as a negative control. A standard protocol for the transduction of lentiviral particles into GMs was used as follows:

1) Lenti-CMVP-MCT1 cDNA-IRES-eGFP and Lenti-CMVP-CD147 cDNA-IRES-eGFP: IRES oligonucleotides were first inserted into the lenti-FUGW-CMVP-eGFP backbone construct. Then, mMCT1 cDNA (1482 bp) and mCD147 cDNA (816 bp) were amplified by PCR and inserted into the lenti-FUGW-CMVP-IRES-eGFP backbone construct (7). All sequences and their expression were validated.

2) Lenti-H1P-MCT1 shRNA-CMVP-eGFP: Based on previous work (7), the following MCT1 shRNA sense oligonucleotides and antisense oligonucleotides were subcloned into the lenti-FUGW-backbone construct. All sequences, their expression, and their KD efficiency were validated.

5-GATCCCCGTATCATGCTTTACGATTATTCAAGAGATAATCGTAAAGCATGATACTTTTTTC-3

5-TCGAGAAAAAAGTATCATGCTTTACGATTATCTCTTGAATAATCGTAAAGCATGATACGGG-3

3) CD147 LNA GapmeR antisense oligonucleotides: Antisense oligonucleotides LNA GapmeR and antisense control oligonucleotides (Bio-stations Ltd.; positive control, catalog no. 300632-101; negative control, catalog no. 300610; and for CD147, catalog no. 300600) were transfected directly into GMs (Gymnosis method) as per the manufacturers guidelines. GMs were maintained in Opti-MEM medium (Gibco, catalog no. 31985070) with oligonucleotides for 24 hours before further analysis. Efficiency of CD147 KD in GMs with antisense oligonucleotides LNA GapmeR was validated by WB analysis.

Exosomes were isolated either by a modified differential ultracentrifugation method with filtration (16) or by a low-speed centrifugation method with a total exosome isolation reagent (Invitrogen, catalog no. 4478359) as per the manufacturers protocol. Briefly, in the ultracentrifugation method, extracellular medium from cultured GMs within exosome-isolation medium for 24 hours was first centrifuged at 300g for 10 min. The resultant supernatant was further centrifuged at 16,500g for 20 min, followed by the consecutive filtration of supernatant through a 0.22-m filter (Jet Biofil, catalog no. FPE-204-030). The filtered solution was ultracentrifuged at 120,000g for 70 min. The resultant supernatant was aspirated and discarded to obtain exosome pellets.

In the low-speed centrifugation method with a total exosome isolation reagent, extracellular medium from cultured GMs within exosome-isolation medium for 24 hours was first centrifuged at 2000g for 30 min. Then, the resultant supernatant was mixed with 0.5 volumes of a total exosome isolation reagent. The mixture was incubated at 4C overnight, followed by its centrifugation at 10,000g for 1 hour at 4C. The resultant supernatant was aspirated and discarded and the remaining exosome pellet was diluted with 1 PBS for NTA or with 1 radioimmunoprecipitation assay buffer for WB, or fixed with PFA for TEM and immunogold EM.

The number and size distribution of GM-derived exosomes were characterized by NTA by using a Malvern NanoSight NS300 instrument (16). In brief, a monochromatic laser beam at 405 nm was applied to 500 ml of exosome solutions loaded into the sample chamber. Three video captures for exosome movements within a 30-s duration were recorded and further analyzed by NTA software (version 2.2, NanoSight) through the optimization for the identification and tracking of exosomes on a frame-by-frame basis. The released number of exosomes from GMs with various conditions was calculated by NTA analysis.

The size and morphology of GM-derived exosomes were detected by TEM analysis (16). Briefly, exosomes were fixed with 2.5% PFA for 30 min, washed twice with PBS, dissolved in PBS/0.5% BSA, deposited onto formvar carbon-coated EM grids (catalog no. BZ1102XX, Beijing Zhongjingkeyi Technology Co., Ltd), and exposed for 10 min in a dry environment. Then, exosomes on the grids were washed five times (3 min each) with PBS/0.5% BSA. Afterward, fixed exosomes on the grid were washed twice with PBS/50 mM glycine (3 min each) and lastly with PBS/0.5% BSA (10 min), stained with 2% uranyl acetate for 5 min, and then viewed by an electron microscope (FEI/Philips Tecnai 12 BioTWIN at City University of Hong Kong EM core facility). For the immunogold labeling with ABs, fixed exosomes on the grid were incubated with 5% BSA for 30 min at room temperature, washed five times with PBS/0.5% BSA (3 min), transferred to a drop of the AB (1:50 dilution for anti-CD63 AB, anti-MCT1 AB, and anti-CD147 AB) in PBS/0.5% BSA, and incubated for 2 hours at room temperature. Afterward, exosomes in the grids were washed five times with PBS/0.5% BSA (3 min), incubated with goat anti-rabbit IgG H&L Gold (10 nm) preadsorbed (Abcam, catalog no. ab27234) in PBS/0.5% BSA for 1 hour at room temperature, and then washed five times (3 min) with PBS/0.5% BSA. Last, exosomes on the grids were stained with 2% uranyl acetate and then viewed under an electron microscope.

bEnd.3 ECs (approximately 30,000 cells per well) were cultured on the chamber slide (Lab-Tek, Thermo Scientific, USA) for 24 hours with normal growth medium at 37C in a 5% CO2 incubator. On the next day, the cells were washed twice with PBS and replenished again with normal growth medium supplemented with normoxic or hypoxic GM-derived exosomes (250 g), which were labeled with Exo-Green Exosome Protein Fluorescent Label (System Biosciences, catalog no. EXOG200A-1) (100 l), and further maintained for 24 hours. Afterward, bEnd.3 ECs were washed three times with PBS and fixed with 4% PFA on ice for 30 min. Fixed bEnd.3 ECs on the slide were stained with rhodamine-conjugated phalloidin AB (1:200 dilutions) (catalog no. R415, Invitrogen) at room temperature for 1 hour to detect their actin cytoskeleton protein, followed by washing with PBS. Then, stained bEnd.3 ECs on the slide were mounted with Vectashield medium containing DAPI and observed under a laser scanning confocal microscope.

Twenty-fourwell culture plates were coated with 125 l of GeltrexTM (Gibco, no. A1413201) per well to induce the formation of a monolayer of bEND.3 ECs in the medium containing 0.2% FBS. When bEND.3 ECs reached 80 to 90% confluence after seeding (7 104 cells per well), the medium was replaced with one containing normoxic or hypoxic GM-derived exosomes (approximately 250 g/250 l medium plus 0.2% FBS). After leaving the culture for an additional 24 hours, tube formation of bEND.3 ECs was examined under a bright-field microscope and its representative pictures were taken at 10 magnification.

The functionalization of gold nanoparticles for LSPR biosensing has been well established in our laboratory and others (39). In brief, dry SAM-AuNIs sensing chips were sequentially rinsed with absolute ethanol (Sigma-Aldrich), incubated in 11-mercaptoundecanoic acid (MUA) solution (10 mM) for 30 min, and followed by rinsing off excess MUA molecules with absolute ethanol. Then, 2-(N-morpholino)ethane sulfonic acid (MES) was prepared by mixing equal volumes of 0.4 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 0.15 M N-hydroxysuccinimide, and then the freshly prepared MES solution was added to the SAM-AuNIs sensing chip for 20 min to activate the MUA carboxyl functional group. Afterward, 300 l of polyclonal primary ABs in PBS (2 g/ml; anti-MCT1 AB; dilution 1:100, and anti-CD147 AB; dilution 1:200) was applied to the SAM-AuNIs sensing chip for 40 min for the immobilization of ABs. Excessive ABs were rinsed away by PBS buffer, and nonspecific sites were further blocked by treatment with 1 M ethanolamine. The common-path interferometric sensing system and differential phase detection method were used to monitor the baseline phase responses during the functionalization process by adding each chemical and ABs to the chip, sequentially, and thereafter we performed the label-free detection of exosomal proteins with the LSPR biosensor with the functionalized chip as described in our previous work (36). For the detection of exosomal MCT1 and CD147 via LSPR biosensing, PBS was used as a basic running buffer. After rinsing SAM-AuNIs sensing chips with PBS, exosome solutions (50 g/ml PBS) were introduced over the AB-functionalized surface of the sensing chip by using a peristaltic pump at a constant rate of 30 l/min. The SAM-AuNIs sensing chip was subsequently flushed again by PBS to check the binding affinity and removal of the nonspecific binding of exosomes to ABs. LSPR experiments with exosomes in each experiment were performed three times independently.

Biosensing single molecular interaction between surface antigens of immobilized exosomes in SAM-AuNIs discs and anti-MCT1 or anti-CD147 AB functionalized in the sensing tip was conducted by using BioScope Catalyst AFM (Bruker). The spring constant of AFM silicon nitride cantilever was calibrated to be 0.3756 N/m in the detection of exosomal proteins. To capture exosomes, the surface of SAM-AuNIs sample discs of AFM was functionalized with anti-CD63 AB as described above (16). Two hundred microliters of exosome solution [PBS (50 g/ml)] was first added to the sample discs, incubated for 10 min, and replaced with 1 ml of fresh PBS by mild decantation. Immunocaptured exosomes on the surface of the discs were further confirmed and analyzed by AFM scanning.

To determine exosomal MCT1 and CD147 levels by the measurement of intermolecular force between antigens and ABs, the silver nitride AFM tip (ScanAsyst-Fluid, TELTEC semiconductor pacific limited) was functionalized with either anti-MCT1 AB or anti-CD147 AB. In brief, primary ABs (anti-MCT1 AB; dilution 1:100, and anti-CD147 AB; dilution 1:200) were covalently attached to the Si3N4 tip of AFM via thiol ester linkage (Bruker). The probe tip was washed with PBS, incubated in blocking solution (1% BSA-PBS) for 1 hour, followed by a series of washing with PBS.

All measurements of exosomal proteins with AFM were recorded in PBS. Separation forces between MCT1 or CD147 in exosomes on SAM-AuNIs discs and anti-MCT1 or anti-CD147 AB on the sensing tips were measured by AFM ramp mode. Exosomal MCT1 and CD147 levels were determined and analyzed by the maximum peak of the AFM force-distance curve. Biophysical properties, including roughness, Youngs modulus, and adhesion force, were recorded for exosomes captured on the SAM-AuNIs discs by single ramping mode by using a bare AFM sensing tip with a spring constant of 0.3801 N/m (40). A bare SAM-AuNIs sample disc was used as a control in the experiment. Each AFM force curve was obtained from at least three independent experiments.

Zeta potential of exosomes was measured and analyzed by Malvern Zetasizer Nano ZS using equally diluted samples prepared with equal amount of exosomes (50 g/ml) within PBS for each group (16).

Six-week-old female SCID mice were anesthetized by 1 to 2% isoflurane mixed in oxygen and fixed in a stereotactic frame. The injection coordinates for GM implantation into the brain were 0.2 mm anterior and 2.2 mm lateral from the bregma and 2.3 to 2.8 mm deep from the outer border of the cranium, respectively. In brief, a hole was drilled into the mouse skull in the cortex of the right frontal lobe. Then, 10 l of 3 104 U251 or U87 GMs was injected through the hole by a Hamilton syringe with a 26-gauge needle at a flow rate of 0.5 l/min using a microinjector.

All MRI images were acquired with a horizontal bore 3-T preclinical Bruker MRI system (Bruker, Ettlingen, Germany) with a 23-mm-diameter surface coil. Mice were anesthetized with 1 to 2% isoflurane carried in oxygen. After anesthesia induction, mice were placed on the animal bed with a warm pad to keep body temperature at 37C. During an MRI scan, continuous monitoring of mouse respiration was conducted (SA Instrumentation). T2-weighted MRI for the brain was performed on days 5 and 10 after GM implantation to check glioma size, and the blood was then collected for the isolation of exosomes. The parameters of T2-weighted images were as follows: repetition time/echo time = 2146/16 ms, field of view = 16 16 mm, data acquisition matrix = 256 256, number of averages = 8, and rare acquisition with relaxation enhancement (RARE) factor = 10. The size of a tumor was calculated using ImageJ software.

All graphs were made, and statistical analyses were conducted using GraphPad Prism, or Microsoft Excel 2010. Statistical significance was analyzed by either an unpaired, two-tailed Students t test or one-way analysis of variance (ANOVA) with multiple comparisons by Dunnetts test, or two-way ANOVA followed by post hoc analysis. A respective control for each experimental group was precisely chosen and used for all statistical comparisons. Statistical analyses indicated *P < 0.05 and **P < 0.01 as significance level. All quantitative data from multiple independent experiments were calculated and presented as the means SD as described in the legend of each figure.

Acknowledgments: We thank C. C. Fong (BMS, City University of Hong Kong) for technical support, K. M. Chan (BMS, City University of Hong Kong) for providing SF7761 GSCs, J. S. Yoo (HTI, The Hong Kong Polytechnic University) for providing the GL261 GMs, and R. G. Jesky (BMS, City University of Hong Kong) for editing the manuscript. Funding: This work was supported by City University of Hong Kong (grant nos. 9610340 and 7200472), Early Career Scheme (ECS)UGC (grant no. 21102517), and General Research Fund (GRF)UGC (grant no. 11103918) awarded to Y.L. at City University of Hong Kong. Author contributions: Y.L. designed the whole experiments. A.T. conducted most of the experiments. G.Q. and C.X. performed the LSPR-related experiments. G.Q., C.X., S.P.N., and C.M.L.W. analyzed the LSPR-related data. X.H. established the mouse model of glioma and performed MRI analysis. X.H. and K.W.Y.C. analyzed the MRI-related data. A.T. and Y.L. drafted the manuscript. All the authors revised and approved the content of the manuscript. Competing interests: A.T., G.Q., C.X., T.Y., S.P.N., C.M.L.W., and Y.L. are inventors on a patent to be filed with the USPTO related to this work for the LSPR- and AFM-based detection of exosomal MCT1 and CD147 for monitoring glioma progression. This work has also been submitted as part of the Ph.D. thesis of A.T. at City University of Hong Kong. All other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Link:
Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma - Science Advances

Novel coronavirus infection might trigger type-1 diabetes – The Hindu

Diabetes poses one of the key risk factors for developing severe COVID-19, and chances of dying are elevated in people with diabetes. Now, there is growing evidence that novel coronavirus might actually be triggering diabetes in some people who have so far remained free of it. These patients typically develop type-1 diabetes. The virus seems to be causing diabetes spontaneously in people.

These patients typically develop type-1 diabetes, which is caused when the bodys immune system plays rogue and begins to attack and destroy the beta cells, which produce the hormone insulin in the pancreas. With the destruction of beta cells, the amount of insulin produced is reduced, and hence, the ability of the body to control blood sugar is compromised leading to type-1 diabetes.

The 2002 SARS coronavirus, too, caused acute-onset diabetes in patients. Like the 2002 SARS coronavirus, the SARS-CoV-2 virus, too, binds to ACE2 receptors that are found on many organs involved in controlling blood sugar, including the liver and pancreatic beta cells, and subsequently infects the cells in the organs.

In a letter published in The New England Journal of Medicine, the researchers write: There is a bidirectional relationship between COVID-19 and diabetes. On the one hand, diabetes is associated with an increased risk of severe COVID-19. On the other hand, new-onset diabetes and severe metabolic complications of preexisting diabetes have been observed in patients with COVID-19.

However, more evidence is needed to conclusively prove that COVID-19 indeed causes type-1 diabetes. It is also not clear if the acute-onset diabetes in COVID-19 patients will be permanent or transient. The is no clarity whether people who are borderline type-2 develop the disease.

The COVID-19 patients who develop diabetes have extremely high levels of blood sugar and ketones. When there is insufficient insulin produced, breaking down the sugar present in the blood is compromised leading to high levels of sugar. At the same time, the body begins to turn to alternative sources of fuel, which in this case are ketones. A study found 42 of 658 patients presented with ketosis on admission. Patients with ketosis were younger (median age 47). Ketosis increased the length of hospital stay and mortality, the researchers found.

Using human pluripotent stem cells, researchers grew miniature liver and pancreas and found that both the organs were permissive to SARS-CoV-2 infection. In particular, they found the pancreatic beta cells were infected by coronavirus. ACE2 is expressed in human adult alpha and beta cells. While the beta cells produce insulin which reduces the sugar level in the blood, the alpha cells produce glucagon, which increases the blood sugar. A fine balance between the two helps maintain the blood sugar level.

The researchers transplanted the miniature pancreatic endocrine cells produced using human stem cells into mice. Two months later, they examined the xenografted pancreas and found ACE2 receptors on beta and alpha cells. When the mice were infected with coronavirus, they found the beta cells were infected by the virus. Thus the virus is capable of damaging the cells that control blood sugar thus triggering acute-onset of type-1 diabetes.

According to Nature News, a global database to collect information on people with COVID-19 and high blood-sugar levels who previously do not have a history of elevated blood sugar levels has been initiated. The researchers hope to use the cases to understand whether SARS-CoV-2 can induce type 1 diabetes or a new form of the disease, Nature News says. Researchers want to use the database to understand if the acute-onset diabetes is permanent and people who are borderline type-2 develop the disease.

You have reached your limit for free articles this month.

Find mobile-friendly version of articles from the day's newspaper in one easy-to-read list.

Enjoy reading as many articles as you wish without any limitations.

A select list of articles that match your interests and tastes.

Move smoothly between articles as our pages load instantly.

A one-stop-shop for seeing the latest updates, and managing your preferences.

We brief you on the latest and most important developments, three times a day.

Not convinced? Know why you should pay for news.

*Our Digital Subscription plans do not currently include the e-paper ,crossword, iPhone, iPad mobile applications and print. Our plans enhance your reading experience.

Read this article:
Novel coronavirus infection might trigger type-1 diabetes - The Hindu

Stem Cells Market Analysis Growth Opportunities and Demand Drives by 2016 to 2028 – 3rd Watch News

The report provides insights on opportunities, restraints, drivers, trends, and forecasts up to 2028. As per the over view of the globalStem cells marketthe market was at US$ xx mn in 2019 and is expected grow at a CAGR of xx% over the forecast period 2016 2028. The detailed study of the business of the Stem cells market covers the estimation size of the market in terms of volume and value.

In an attempt to identify the opportunities for growth in the Stem cells market, the industry analysis was geographically divided into significant regions that are progressing faster than the overall market.

Each market player included in the study of Stem cells market is evaluated according to its production footprint, market share, existing and new launches, current R&D projects, and business strategies. Also, the Stem cells market study evaluates the strengths, weaknesses, opportunities and threats (SWOT) analysis. The report evaluates and explores the progress outlook for the global Stem cells market environment, including sales, production & usage and historical data & forecasting.

For more information, download sample of the premium report:https://www.quincemarketinsights.com/request-sample-60762?utm_source=campaign=Pooja/3WN

ThisPress Release will help you to understand the size, growth opportunities with Trends that control the market.

What insights will readers obtain from the report on the Stem cells market?

This report is customized by segment, by sub-segment, by region/country, along with a product specific competitive analysis to meet your specific requirements.

Important objectives of this report are:To estimate the market size for Stem cells market on a regional and global basis, to identify major segments in Stem cells market and evaluate their market shares and demand, to provide a competitive scenario for the Stem cells market with major developments observed by key companies in the historic years, and to evaluate key factors governing the dynamics of the Stem cells market with their potential gravity during the forecast period.

The Key Players mentioned in our report are: BioTime Inc., Cytori Therapeutics, Inc., STEMCELL Technologies Inc., Astellas Pharma Inc., U.S. Stem Cell, Inc., Osiris Therapeutics, Inc., Takara Bio Inc., Caladrius Biosciences, Inc., Cellular Engineering Technologies Inc., BrainStorm Cell Therapeutics Inc.

Get ToC for the overview of the premium report:https://www.quincemarketinsights.com/request-toc-60762?utm_source=campaign=Pooja/3WN

Market Segmentation:

By Product:

Adult Stem Cell

Human Embryonic Stem Cell

Induced Pluripotent Stem Cell

By Sources:

Autologous

Allogeneic

By Application:

Regenerative Medicine

Drug Discovery & Development

By End-Users:

Therapeutic Companies

Cell & Tissues Banks

Tools & Reagent Companies

Service Companies

By Region:

North America

North America, by Country

US

Canada

Mexico

North America, by Product

North America, by Sources

North America, by Application

North America, by End-Users

Western Europe

Western Europe, by Country

Germany

UK

France

Italy

Spain

The Netherlands

Rest of Western Europe

Western Europe, by Product

Western Europe, by Sources

Western Europe, by Application

Western Europe, by End-Users

Asia Pacific

Asia Pacific, by Country

China

India

Japan

South Korea

Australia

Indonesia

Rest of Asia Pacific

Asia Pacific, by Product

Asia Pacific, by Sources

Asia Pacific, by Application

Asia Pacific, by End-Users

Eastern Europe

Eastern Europe, by Country

Russia

Turkey

Rest of Eastern Europe

Eastern Europe, by Product

Eastern Europe, by Sources

Eastern Europe, by Application

Eastern Europe, by End-Users

Middle East

Middle East, by Country

UAE

Saudi Arabia

Qatar

Iran

Rest of Middle East

Middle East, by Product

Middle East, by Sources

iddle East, by Application

Middle East, by End-Users

Rest of the World

Rest of the World, by Country

South America

Africa

Rest of the World, by Product

Rest of the World, by Sources

Rest of the World, by Application

Rest of the World, by End-Users

ABOUT US:

QMI has the most comprehensive collection of market research products and services available on the web. We deliver reports from virtually all major publications and refresh our list regularly to provide you with immediate online access to the worlds most extensive and up-to-date archive of professional insights into global markets, companies, goods, and patterns.

Contact Us Quince Market Insights Ajay D. (Knowledge Partner) Office No- A109, Pune, Maharashtra 411028 Phone: +91 706 672 5858/+1 208 405 2835/+91 706 672 4848 Email:[emailprotected] Web:www.quincemarketinsights.com

Follow this link:
Stem Cells Market Analysis Growth Opportunities and Demand Drives by 2016 to 2028 - 3rd Watch News

BrainStorm Cell Therapeutics to Join the Russell 2000 Index and Russell 3000 Index – Yahoo Finance

NEW YORK, June 23, 2020 /PRNewswire/ --BrainStorm Cell Therapeutics Inc. (NasdaqCM: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced that its shares will join the Russell 2000 Index and the broad-market Russell 3000 Index at the conclusion of the 2020 Russell indexes annual reconstitution, effective after the US stock market opens on June 29, 2020.

Annual Russell indexes reconstitution captures the 4,000 largest US stocks as of May 8, ranking them by total market capitalization. Membership in the US all-cap Russell 3000 Index, which remains in place for one year, means automatic inclusion in the large-cap Russell 1000 Index or small-cap Russell 2000 Index as well as the appropriate growth and value style indexes. FTSE Russell determines membership for its Russell indexes primarily by objective, market-capitalization rankings and style attributes.

Russell indexes are widely used by investment managers and institutional investors for index funds and as benchmarks for active investment strategies. Approximately $9 trillion in assets are benchmarked against Russell's US indexes. Russell indexes are part of FTSE Russell, a leading global index provider.

For more information on the Russell 3000 Index and the Russell indexes reconstitution, go to the "Russell Reconstitution" section on the FTSE Russell website.

About FTSE Russell

FTSE Russell is a leading global index provider creating and managing a wide range of indexes, data and analytic solutions to meet client needs across asset classes, style and strategies. Covering 98% of the investable market, FTSE Russell indexes offer a true picture of global markets, combined with the specialist knowledge gained from developing local benchmarks around the world.

FTSE Russell index expertise and products are used extensively by institutional and retail investors globally. Approximately $16 trillion is currently benchmarked to FTSE Russell indexes. For over 30 years, leading asset owners, asset managers, ETF providers and investment banks have chosen FTSE Russell indexes to benchmark their investment performance and create investment funds, ETFs, structured products and index-based derivatives. FTSE Russell indexes also provide clients with tools for asset allocation, investment strategy analysis and risk management.

A core set of universal principles guides FTSE Russell index design and management: a transparent rules-based methodology is informed by independent committees of leading market participants. FTSE Russell is focused on index innovation and customer partnership applying the highest industry standards and embracing the IOSCO Principles. FTSE Russell is wholly owned by London Stock Exchange Group. For more information, visit http://www.ftserussell.com/.

About BrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment in March 2019.

Story continues

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Investor Relations: Michael Rice LifeSci Advisors, LLC Phone: +1 646 889 1200 mrice@lifesciadvisors.com

Public Relations: Paul Tyhala SmithSolve 973.442.1555 paul.tyahla@smithsolve.com

View original content:http://www.prnewswire.com/news-releases/brainstorm-cell-therapeutics-to-join-the-russell-2000-index-and-russell-3000-index-301081791.html

SOURCE Brainstorm Cell Therapeutics Inc

Excerpt from:
BrainStorm Cell Therapeutics to Join the Russell 2000 Index and Russell 3000 Index - Yahoo Finance

COVID-19 impact: Stem Cells Market to Witness Steady Expansion During 2019-2026 – Personal Injury Bureau UK

The report on the Stem Cells market provides a birds eye view of the current proceeding within the Stem Cells market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Stem Cells market and offers a clear assessment of the projected market fluctuations during the forecast period. The different factors that are likely to impact the overall dynamics of the Stem Cells market over the forecast period (2019-2029) including the current trends, growth opportunities, restraining factors, and more are discussed in detail in the market study.

The Stem Cells market study is a well-researched report encompassing a detailed analysis of this industry with respect to certain parameters such as the product capacity as well as the overall market remuneration. The report enumerates details about production and consumption patterns in the business as well, in addition to the current scenario of the Stem Cells market and the trends that will prevail in this industry.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.researchmoz.com/enquiry.php?type=S&repid=2649650&source=atm

What pointers are covered in the Stem Cells market research study?

The Stem Cells market report Elucidated with regards to the regional landscape of the industry:

The geographical reach of the Stem Cells market has been meticulously segmented into United States, China, Europe, Japan, Southeast Asia & India, according to the report.

The research enumerates the consumption market share of every region in minute detail, in conjunction with the production market share and revenue.

Also, the report is inclusive of the growth rate that each region is projected to register over the estimated period.

The Stem Cells market report Elucidated with regards to the competitive landscape of the industry:

The competitive expanse of this business has been flawlessly categorized into companies such as

Regional and Country-level Analysis The report offers an exhaustive geographical analysis of the global Stem Cells market, covering important regions, viz, North America, Europe, China, Japan, Southeast Asia, India and Central & South America. It also covers key countries (regions), viz, U.S., Canada, Germany, France, U.K., Italy, Russia, China, Japan, South Korea, India, Australia, Taiwan, Indonesia, Thailand, Malaysia, Philippines, Vietnam, Mexico, Brazil, Turkey, Saudi Arabia, UAE, etc. The report includes country-wise and region-wise market size for the period 2015-2026. It also includes market size and forecast by each application segment in terms of revenue for the period 2015-2026. Competition Analysis In the competitive analysis section of the report, leading as well as prominent players of the global Stem Cells market are broadly studied on the basis of key factors. The report offers comprehensive analysis and accurate statistics on revenue by the player for the period 2015-2020. It also offers detailed analysis supported by reliable statistics on price and revenue (global level) by player for the period 2015-2020. On the whole, the report proves to be an effective tool that players can use to gain a competitive edge over their competitors and ensure lasting success in the global Stem Cells market. All of the findings, data, and information provided in the report are validated and revalidated with the help of trustworthy sources. The analysts who have authored the report took a unique and industry-best research and analysis approach for an in-depth study of the global Stem Cells market. The following players are covered in this report: CCBC Vcanbio Boyalife Beikebiotech Stem Cells Breakdown Data by Type Umbilical Cord Blood Stem Cell Embryonic Stem Cell Adult Stem Cell Other Stem Cells Breakdown Data by Application Diseases Therapy Healthcare

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.researchmoz.com/enquiry.php?type=E&repid=2649650&source=atm

Exclusive details pertaining to the contribution that every firm has made to the industry have been outlined in the study. Not to mention, a brief gist of the company description has been provided as well.

Substantial information subject to the production patterns of each firm and the area that is catered to, has been elucidated.

The valuation that each company holds, in tandem with the description as well as substantial specifications of the manufactured products have been enumerated in the study as well.

The Stem Cells market research study conscientiously mentions a separate section that enumerates details with regards to major parameters like the price fads of key raw material and industrial chain analysis, not to mention, details about the suppliers of the raw material. That said, it is pivotal to mention that the Stem Cells market report also expounds an analysis of the industry distribution chain, further advancing on aspects such as important distributors and the customer pool.

The Stem Cells market report enumerates information about the industry in terms of market share, market size, revenue forecasts, and regional outlook. The report further illustrates competitive insights of key players in the business vertical followed by an overview of their diverse portfolios and growth strategies.

You can Buy This Report from Here @ https://www.researchmoz.com/checkout?rep_id=2649650&licType=S&source=atm

Some of the Major Highlights of TOC covers:

See the original post:
COVID-19 impact: Stem Cells Market to Witness Steady Expansion During 2019-2026 - Personal Injury Bureau UK