Category Archives: Adult Stem Cells


Joseph M. Sanzari Childrens Hospital and John Theurer Cancer Center Launch Clinical Trial Evaluating Gene Therapy for Severe Sickle Cell Disease in…

MEDIA CONTACT

Available for logged-in reporters only

Newswise The Childrens Cancer Institute at the Joseph M. Sanzari Childrens Hospital at Hackensack Meridian Health Hackensack University Medical Center and the John Theurer Cancer Center have announced they are participating in a multicenter Phase I/II clinical trial of an investigational gene therapy from bluebird bio, Inc. This trial is specifically for adolescents and adults with severe sickle cell disease (SCD) who cannot be effectively treated using standard therapies such as antibiotics, vitamins, blood transfusions or any pain relieving medications. The study is evaluating the safety and effectiveness of LentiGlobin for sickle cell disease, a gene therapy produced using the patients own modified stem cells to treat their sickle cell disease.

By using the patients own cells to produce functional hemoglobin that can prevent sickling of their red blood cells, LentiGlobin for SCD offers patients the opportunity to treat their disease without the need to have a matched bone marrow donor. The John Theurer Cancer Center is one of a limited number of centers internationally, and the Joseph M. Sanzari Childrens Hospital is the only pediatric site in New Jersey, where the study, which is enrolling patients age 12-50, is taking place.

Sickle cell affects 100,000 Americans. It affects one in every 365 African American births and one in every 16,000 Hispanic American births, said Alfred P. Gillio, M.D., director, Childrens Cancer Institute and section chief, Pediatric Stem Cell Transplantation and Cellular Therapy Program, Joseph M. Sanzari Childrens Hospital at Hackensack University Medical Center. This trial is for patients who have severe sickle cell disease and seek advanced treatment options but do not have a well-matched stem cell donor. Only 15% of sickle cell patients have a matched sibling donor and only 25 percent of patients have a matched unrelated volunteer donor.

Sickle cell affects every organ in a patients body, said Stacey Rifkin-Zenenberg, D.O., FAAP, pediatric hematologist/oncologist, Childrens Cancer Institute, and section chief, Pain and Palliative Care, Joseph M. Sanzari Childrens Hospital at Hackensack University Medical Center. This disease really has a tremendous effect not only on the patient, but also the family.

Sickle cell disease is an inherited disease caused by a mutation in the beta-globin gene, resulting in abnormal hemoglobin and sickle-shaped red blood cells. Symptoms and complications of the disease include anemia, infections, stroke, poor quality of life and early death. To date, the only cure for sickle cell disease is receiving a stem cell transplant from a matched donor, but this is not a therapeutic option for many patients. Supportive care including hydroxyurea and blood transfusions can ameliorate symptoms of the disease. To date, without a marrow donor, there has been no alternate curative therapy. Life expectancy of a person with sickle cell disease is 20 to 40 years of age. In some cases, patients using disease modifying medications can live to 50 or 60.

This therapy may be a major advance for sickle cell patients and so far, the results look very promising, said Scott D. Rowley, M.D., FACP, hematologist, medical director, Stem Cell Transplantation and Cellular Therapy and medical director, BMT Cell Lab, John Theurer Cancer Center, Hackensack Meridian Health Hackensack University Medical Center, who is enrolling adult patients. This investigational treatment, which is a one-time therapy, may be an option for our patients who have no other treatment options.

The results from early clinical studies are encouraging, said Dr. Gillio. With this treatment, the patient is their own donor and we are modifying their own cells to add copies of a functional beta globin gene.

In the current study:

About Hackensack Meridian Health Hackensack University Medical Center

Hackensack Meridian Health Hackensack University Medical Center, a 781-bed nonprofit teaching and research hospital located in Bergen County, NJ, is the largest provider of inpatient and outpatient services in the state. Founded in 1888 as the countys first hospital, it is now part of the largest, most comprehensive and truly integrated health care network in New Jersey, offering a complete range of medical services, innovative research and life-enhancing care, which is comprised of 34,100 team members and more than 6,500 physicians. Hackensack University Medical Center is ranked #2 in New Jersey and #59 in the country in U.S. News & World Reports 2019-20 Best Hospital rankings and is ranked high-performing in the U.S. in colon cancer surgery,lung cancersurgery,COPD, heart failure, heart bypass surgery, aortic valve surgery,abdominal aortic aneurysm repair, knee replacement and hip replacement. Out of 4,500 hospitals evaluated, Hackensack is one of only 57 that received a top rating in all nine procedures and conditions. Hackensack University Medical Center is one of only five major academic medical centers in the nation to receive Healthgrades Americas 50 Best Hospitals Award for five or more years in a row. Beckers Hospital Review recognized Hackensack University Medical Center as one of the 100 Great Hospitals in America 2018. The medical center is one of the top 25 green hospitals in the country according to Practice Greenhealth, and received 26 Gold Seals of Approval by The Joint Commission more than any other hospital in the country. It was the first hospital in New Jersey and second in the nation to become a Magnet recognized hospital for nursing excellence; receiving its sixth consecutive designation in 2019. Hackensack University Medical Center has created an entire campus of award-winning care, including: John Theurer Cancer Center, a consortium member of the NCI-designated Georgetown Lombardi Comprehensive Cancer Center; the Heart & Vascular Hospital; and the Sarkis and Siran Gabrellian Womens and Childrens Pavilion, which houses the Joseph M. Sanzari Childrens Hospital and Donna A. Sanzari Womens Hospital, which was designed with The Deirdre Imus Environmental Health Center and listed on the Green Guides list of Top 10 Green Hospitals in the U.S. Hackensack University Medical Center is the Hometown Hospital of the New York Giants and the New York Red Bulls and is Official Medical Services Provider to THE NORTHERN TRUST PGA Golf Tournament. It remains committed to its community through fundraising and community events especially the Tackle Kids Cancer Campaign providing much needed research at the Childrens Cancer Institute housed at the Joseph M. Sanzari Childrens Hospital. To learn more, visit http://www.HackensackUMC.org.

Follow this link:
Joseph M. Sanzari Childrens Hospital and John Theurer Cancer Center Launch Clinical Trial Evaluating Gene Therapy for Severe Sickle Cell Disease in...

Engineering lymphatic vessels as a therapeutic to heal the heart – ND Newswire

Donny Hanjaya Putra and Adriana Archilla.

The cardiovascular system is a complex network of veins, arteries and capillaries. Within that network, lymphatic vessels are critical to the hearts ability to heal in the event of a heart attack. When theyre functional, lymphatic vessels drain excess fluid that can cause swelling, and carry immune cells that can regulate inflammation and fight infection each of which are a potential complication following a heart attack. And yet, lymphatic vessels have a history of being overlooked in cardiovascular research, becoming more prominent only in the last 10 years.

With funding from the American Heart Association, Donny Hanjaya-Putra, assistant professor in the Department of Aerospace and Mechanical Engineering and in the Bioengineering Graduate Program, as well as in the Department of Chemical and Biomolecular Engineering, will use biomaterials and stem cells to regenerate lymphatic vessels and study their potential for therapeutic applications.

After a heart attack there is an influx of inflammatory cells that can cause swelling, Hanjaya-Putra said. What you have is a wound healing process. We propose that if we can regenerate the lymphatic vessel, we may be able to tip the balance of those inflammatory cells, drain excess fluid and promote healing of the heart.

Earlier this year the American Heart Association reported heart disease as the No. 1 cause of death in the United States. The report also revealed an estimated 121.5 million adults close to half the population of the United States have some form of cardiovascular disease, such as high blood pressure.

For the study, Hanjaya-Putra will use adult and induced pluripotent stem cells, as well as biomaterials to create synthetic lymphatic vessels. If successful, he said, the bioengineered lymphatic vessels could be tested in similar applications to combat obesity and metabolic syndrome draining fluid buildup in the gut caused by fatty diets or reducing fluid and waste buildup in the brain, which has been linked to cognitive decline as seen in aging and Alzheimers disease.

Hanjaya-Putra received the American Heart Associations 2019 Career Development Award, which will fund the research. He is an affiliated member of Notre Dames Advanced Diagnostics and Therapeutics initiative, the Center for Nano Science and Technology, the Harper Cancer Research Institute and the Center for Stem Cells and Regenerative Medicine.

Contact: Jessica Sieff, assistant director of media relations, 574-631-3933, jsieff@nd.edu

See original here:
Engineering lymphatic vessels as a therapeutic to heal the heart - ND Newswire

SanBio Granted Regenerative Medicine Advanced Therapy Designation from the US FDA for SB623 for the Treatment of Chronic Neurological Motor Deficits…

Sept. 19, 2019 06:38 UTC

MOUNTAIN VIEW, Calif.--(BUSINESS WIRE)-- The SanBio Group (SanBio Co., Ltd. and SanBio, Inc.)(TOKYO:4592), a scientific leader in regenerative medicine for neurological disorders, today announced that the U.S. Food and Drug Administration (FDA) has granted Regenerative Medicine Advanced Therapy (RMAT) Designation for SB623 cell therapy for the treatment of chronic neurological motor deficits secondary to traumatic brain injury (TBI). The designation is based on clinical results of SB623 including the Phase 2 Study of Modified Stem Cells in Traumatic Brain Injury (STEMTRA) trial.

Created under the 21st Century Cures Act, the RMAT designation is reserved for a regenerative medicine therapy intended to treat, modify, reverse, or cure a serious condition, and clinical evidence indicates that the therapy has the potential to address unmet medical needs for such disease or condition. Similar to the Breakthrough Therapy designation, the RMAT designation offers sponsors of cell and gene therapies eligibility for expedited development and regulatory review of their product candidate, including earlier and more frequent consultation with the FDA, and the potential for Priority Review and Accelerated Approval.

The RMAT designation for SB623 is an important regulatory milestone for SanBio as we investigate it as a treatment option for patients with chronic neurological motor deficits resulting from a traumatic brain injury, said Bijan Nejadnik, M.D., Chief Medical Officer and Head of Research. TBIs are one of the most common health conditions worldwide that often cause long-term complications or death. We look forward to working with the FDA on a potentially accelerated clinical development program to address this serious unmet medical need.

The RMAT designation augments the Sakigake Designation for innovative medical products from the Ministry of Health, Labour, and Welfare of Japan.

About SB623 SB623 is a proprietary, cell-based investigational product made from modified and cultured adult bone marrow-derived mesenchymal stem cells that undergo temporary genetic modification. Implantation of SB623 cells into injured nerve tissue in the brain is expected to trigger the brains natural regenerative ability to recover lost motor functions.

SanBio expects to initiate a Phase 3 trial for SB623 for the treatment of chronic neurological motor deficits secondary to TBI by the end of the fiscal year ending January 31, 2021. SB623 is also currently in a Phase 2b clinical trial for treatment of chronic motor deficit resulting from ischemic stroke.

About the Study of Modified Stem Cells in Traumatic Brain Injury (STEMTRA) Trial STEMTRA was a 12-month, Phase 2, randomized, double-blind, surgical sham-controlled, global trial evaluating the efficacy and safety of SB623 compared to sham surgery in patients with stable chronic neurological motor deficits secondary to TBI. In this study, SB623 cells were implanted directly around the site of brain injury.

To be eligible for this trial, patients (ages 18-75) must have been at least 12 months post-TBI and had a Glasgow Outcome Scale extended (GOS-E) score of 3-6 (e.g., moderate or severe disability). Patients must also have been able to undergo all planned neurological assessments and had no seizures in the prior three months. The primary endpoint was mean change from baseline in Fugl-Meyer Motor Scale (FMMS) score which measures changes in motor impairment at six months. The STEMTRA trial enrolled 61 patients from 13 surgical and 18 assessment sites in the U.S., Japan and Ukraine.

In this study, SB623 met its primary endpoint, with patients treated with SB623 achieving an average 8.3 point improvement from baseline in the FMMS, versus 2.3 in the control group, at 24 weeks (p=0.040). Of patients treated with SB623, 18 (39.1%) reached a 10 or more point improvement of FMMS compared to one control patient (6.7%; p=0.039). No new safety signals were identified. The most commonly reported adverse event were headaches.

About SanBio Group (SanBio Co., Ltd. and SanBio, Inc.) SanBio Group is a regenerative medicine company with cell-based products focused on neurological disorders in various stages of research, development and clinical trials. The Companys lead asset, SB623, is currently being investigated for the treatment of several conditions including chronic neurological motor deficit resulting from ischemic stroke and traumatic brain injury. SanBio has received a Japanese marketing license for regenerative medicine products from the Tokyo Metropolitan Government, and plans to begin marketing regenerative medicine products in Japan by the end of the fiscal year ending January 31, 2021. The Company is headquartered in Tokyo, Japan and Mountain View, California, and additional information about SanBio Group is available at https://sanbio.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20190918006094/en/

Link:
SanBio Granted Regenerative Medicine Advanced Therapy Designation from the US FDA for SB623 for the Treatment of Chronic Neurological Motor Deficits...

Stem Cell Therapies Market by Top Key Players, Size, Subdivision & Market Dynamics Forces – NewsVarsity

Stem cells are undifferentiated biological cells, and having remarkable potential to divide into any kind of other cells. When a stem cell divides, each new cell will be a new stem cell or it will be like another cell which is having specific function such as a muscle cell, a red blood cell, brain cell and some other cells.

There are two types of stem cells Embryonic cells Adult stem or Somatic cells

Stem cells harvested from umbilical cord blood just after birth. And this cells can be stored in specific conditions. Stem cells also can be harvest from bone marrow, adipose tissue.

Embryonic cells can differentiate into ectoderm, endoderm and mesoderm in developing stage. Stem cells used in the therapies and surgeries for regeneration of organisms or cells, tissues.

Stem cells are used for the treatment of Gastro intestine diseases, Metabolic diseases, Immune system diseases, Central Nervous System diseases, Cardiovascular diseases, Wounds and injuries, Eye diseases, Musculoskeletal disorders.

Harvesting of Adult cell is somewhat difficult compare to embryonic cells. Because Adult cells available in the own body and it is somewhat difficult to harvest.

Stem Cell Therapies Market: Drivers and Restraints

Technology advancements in healthcare now curing life threatening diseases and giving promising results. Stem Cell Therapies having so many advantages like regenerating the other cells and body organisms. This is the main driver for this market. These therapies are useful in many life threatening treatments. Increasing the prevalence rate of diseases are driven the Stem Cell Therapies market, it is also driven by increasing technology advancements in healthcare. Technological advancements in healthcare now saving the population from life threatening complications.

Get Sample Copy of this report at https://www.futuremarketinsights.com/reports/sample/rep-gb-1087?source=atm

Increasing funding from government, private organizations and increasing the Companies focus on Stem cell therapies are also driven this market

However, Collecting the Embryonic Stem cells are easy but Collecting Adult Stem cell or Somatic Stem cells are difficult and also we have to take more precautions for storing the collected stem cells.

Stem Cell Therapies Market: Segmentation

Stem Cell Therapies are segmented into following types

Based on treatment: Allogeneic stem cell therapy Autologous stem cell therapy

Based on application: Gastro intestine diseases Metabolic diseases Immune system diseases Central Nervous System diseases Cardiovascular diseases Wounds and injuries Eye diseases Musculoskeletal disorders

Based on End User: Hospitals Ambulatory Surgical centers

Stem Cell Therapies Market: Overview

With rapid technological advantage in healthcare and its promising results, the use of Stem Cell Therapies will increase and the market is expected to have a double digit growth in the forecast period (2015-2025).

Request to view TOC at https://www.futuremarketinsights.com/toc/rep-gb-1087?source=atm

Stem Cell Therapies Market: Region- wise Outlook

Depending on geographic regions, the global Stem Cell Therapies market is segmented into seven key regions: North America, South America, Eastern Europe, Western Europe, Asia Pacific excluding Japan, Japan and Middle East & Africa.

The use of Stem Cell Therapies is high in North America because it is highly developed region, having good technological advancements in healthcare setup and people are having good awareness about health care. In Asia pacific region china and India also having rapid growth in health care set up. Europe also having good growth in this market.

Stem Cell Therapies Market: Key Players

Some of the key players in this market are Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation.

The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.

The report covers exhaustive analysis on: Market Segments Market Dynamics Market Size Supply & Demand Current Trends/Issues/Challenges Competition & Companies involved Technology Value Chain

Regional analysis includes North America (U.S., Canada) Latin America (Mexico. Brazil) Western Europe (Germany, Italy, France, U.K, Spain, Nordic countries, Belgium, Netherlands, Luxembourg) Eastern Europe (Poland, Russia) Asia Pacific (China, India, ASEAN, Australia & New Zealand) Japan Middle East and Africa (GCC, S. Africa, N. Africa)

The report is a compilation of first-hand information, qualitative and quantitative assessment by industry analysts, inputs from industry experts and industry participants across the value chain. The report provides in-depth analysis of parent market trends, macro-economic indicators and governing factors along with market attractiveness as per segments. The report also maps the qualitative impact of various market factors on market segments and geographies.

Report Highlights: Detailed overview of parent market Changing market dynamics in the industry In-depth market segmentation Historical, current and projected market size in terms of volume and value Recent industry trends and developments Competitive landscape Strategies of key players and products offered Potential and niche segments, geographical regions exhibiting promising growth A neutral perspective on market performance Must-have information for market players to sustain and enhance their market footprint.

NOTE All statements of fact, opinion, or analysis expressed in reports are those of the respective analysts. They do not necessarily reflect formal positions or views of Future Market Insights.

Request Customization for this report at https://www.futuremarketinsights.com/customization-available/rep-gb-1087?source=atm

Visit link:
Stem Cell Therapies Market by Top Key Players, Size, Subdivision & Market Dynamics Forces - NewsVarsity

Stem Cell Assay Market to Record an Exponential CAGR by 2025 – Wolf Mirror

Browse Full Report at https://www.persistencemarketresearch.com/market-research/stem-cell-assay-market

The undifferentiated biological cells that can differentiate into specialized cells are called as stem cells. In the human body during early life and growth phase, stem cells have the potential to develop into other different cell types. Stem cells can differ from other types of cells in the body. There are two types of stem cells namely the embryonic stem cells and adult stem cells. Adult stem cells comprise of hematopoietic, mammary, intestinal, neural, mesenchymal stem cells, etc. All stem cells have general properties such as capability to divide and renew themselves for long period. Stem cells are unspecialized and can form specialized cell types. The quantitative or qualitative evaluation of a stem cells for various characteristics can be done by a technique called as stem cell assay. The identification and properties of stem cells can be illustrated by using Stem Cell Assay. The new developments in the field of stem cell assay research related to the claim of stem cell plasticity have caused controversies related to technical issues. In the study of stem cell assay, most conflicting results arise when cells express stem cell characteristics in one assay but not in another. The most important factor is that the true potential of stem cells can only be assessed retrospectively. The retrospective approach refers to back drop analysis which provides quantitative or qualitative evaluation of stem cells. The development in embryonic & adult stem cells assay will be beneficial to the global stem cell assay market. Stem cell assays find applications in pharmaceutical & biotechnology companies, academic & research institutes, government healthcare institutions, contract research organizations (CROs) and others. The influential factors like chronic diseases, increased investment in research related activities, and technological advancements in pharmaceutical & biotech industry is anticipated to drive the growth of the global stem cell assay market during the forecast period. The cost of stem cell based therapies could be one of the major limiting factor for the growth of the global stem cell assay market.

Get Sample Copy of this report at https://www.persistencemarketresearch.com/samples/13462?source=atm

The global stem cell assay market has been segmented on the basis of kit type, application, end user and region. The global stem cell assay market can be differentiated on the basis of kit type into human embryonic stem cell kits and adult stem cell kits. The adult stem cell kit includes hematopoietic stem cell kits, mesenchymal stem cell kits, induced pluripotent stem cell kits (IPSCs), and neuronal stem cell kits. The adult stem cell kits are projected to witness the highest CAGR during the forecast period due to the ease of use, cost & effectiveness of this type of kit in stem cell analysis.

Based on application global stem cell assay market is based on drug discovery and development, therapeutics and clinical research. The therapeutics segment includes oncology, dermatology, cardiovascular treatment, orthopedic & musculoskeletal spine treatment, central nervous system, diabetes and others.

Depending on geographic segmentation, the global stem cell assay market is segmented into five key regions: Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America is expected to contribute significant share to the global stem cell assay market. The stem cell assay market in Europe, has gained impetus from the government & industrial initiatives for stem cell based research and the market in Europe is expected to grow at a remarkable pace during the forecast period. The major players in the global stem cell assay market include GE Healthcare, Promega Corporation, Thermo Fisher Scientific Inc., Merck KGaA, Cell Biolabs, Inc., Hemogenix Inc., Stemcell Technologies Inc., Bio-Rad Laboratories Inc., R&D Systems Inc., and Cellular Dynamics International Inc.

Get Full Report Access of this report at https://www.persistencemarketresearch.com/checkout/13462?source=atm

The rest is here:
Stem Cell Assay Market to Record an Exponential CAGR by 2025 - Wolf Mirror

Mesenchymal Stem Cells Market to Witness Heightened Revenue Growth in the Next Decade – NewsVarsity

Mesenchymal stem cells are the adult stem cells. Mesenchymal stem cells are of various types such as monocytes, adipocytes, osteocytes and chondrocytes. Mesenchymal stem cells main function is to replace or repair damage tissue. In addition, mesenchymal stem cells have high potential for tissue repair. Mesenchymal stem cells are isolated from other tissues such as fallopian tube, cord blood, fetal liver, peripheral blood and fetal lung. Mesenchymal stem cells are renewable source to substitute tissue and cells to treat disabilities and diseases.

Browse Full Report at https://www.persistencemarketresearch.com/market-research/mesenchymal-stem-cells-market

North America dominates the global market for mesenchymal stem cell due to large number of aging population and increasing incidence of cancers. Asia is expected to show high growth rates in the next five years in the global mesenchymal stem cell market. China and India are expected to be the fastest growing mesenchymal stem cell markets in Asia-Pacific region. Some of the key driving forces for mesenchymal stem cell market in emerging countries are large pool of patients and rising government funding and support.

In recent times there is increased use of mesenchymal stem cell due to increasing aging population. Rising incidence of chronic diseases, regulatory and government support and increasing investment in stem cell biology are some of the key factors driving the growth for the global mesenchymal stem cell market. In addition, increasing use of mesenchymal stem cell as a substitute to knee replacement surgeries and other operative procedures is also fuelling the growth of the global mesenchymal stem cell market. However, lack of therapeutic advancement related to vitro properties of stem cell is the major factor restraining the growth for the global mesenchymal stem cell market.

Get Sample Copy of this report at https://www.persistencemarketresearch.com/samples/3309?source=atm

Numerous ethical, political and religious controversies on mesenchymal stem cell could lead a challenge for the global mesenchymal stem cell market. Some of the trends for the global mesenchymal stem cell market are increasing collaborations and partnerships and rising innovation of mesenchymal stem cell products. Some of the major companies operating in the global mesenchymal stem cell market are EMD Millipore Corporation, Cell Applications, Inc., Cyagen Biosciences, Inc., Genlantis, Inc., Advanced Cell Technology Incorporated, Stemcell Technologies Inc., Celprogen, Inc., Stemedica Cell Technologies, Aastrom Biosciences and ScienCell Research Laboratories.

Key points covered in the report Report segments the market on the basis of types, application, products, technology, etc (as applicable)

The report covers geographic segmentation North America Europe Asia RoW The report provides the market size and forecast for the different segments and geographies for the period of 2010 to 2020 The report provides company profiles of some of the leading companies operating in the market The report also provides porters five forces analysis of the market.

Get Full Report Access of this report at https://www.persistencemarketresearch.com/checkout/3309?source=atm

Follow this link:
Mesenchymal Stem Cells Market to Witness Heightened Revenue Growth in the Next Decade - NewsVarsity

Knotty Problem of Cell Reprogramming Solved – Technology Networks

USC scientists have surmounted a big roadblock in regenerative medicine that has so far constrained the ability to use repurposed cells to treat diseases.

The researchers figured out how to reprogram cells to switch their identity much more reliably than present capabilities allow. The technique uses enzymes to untangle reprogramming DNA, somewhat similar to how a coiffeur conditions tangled hair. The technique works with near-perfect efficiency in mice and humans for all types of cells tested in the laboratories of USCs stem cell center.

The findings are significant because they clear an obstacle to help scientists find treatments for a wide range of diseases, especially neurologic impairments and conditions such as hearing loss.

This is a strategy for greatly improving our ability to perform cellular reprogramming, which could enable the regeneration of lost tissues and the study of diseases that cannot be biopsied from living patients today, said Justin Ichida, assistant professor in the department of stem cell biology and regenerative medicine at the Keck School of Medicine of USC.

The findings appear in Cell Stem Cell in a research paper titled, Mitigating antagonism between transcription and proliferation allows near-deterministic cellular reprogramming. Ichida is the lead author, joined by a team of researchers at the Keck School of Medicine.

How USC researchers untangled cellular reprogramming

Cellular reprogramming has enormous potential as a disease cure because it enables scientists to study cells and molecular processes at each step of disease progression in controlled conditions that have, until now, been impossible.

Reprogramming involves changing one cell into another type of cell, such as a blood cell into a muscle or nerve cell. Thats important for medical research because the technique can be used to recreate tissues lost to disease and to study diseases in tissues that cannot be biopsied from living patients.

The technique has been known for decades but hasnt met its potential. According to the USC team, thats because DNA does not respond well when manipulated to change itself. DNA molecules are twisty by nature, due to the double helix configuration. Reprogramming DNA requires uncoiling, yet when scientists begin to unravel the molecules, they knot up tighter. As a result, nucleotides become much more difficult to work with and cells wont replicate properly, Ichida explained. Current untangling techniques only work 1% of the time.

Think of it as a phone cord, which is coiled to begin with, then gets more coils and knots when something is trying to harm it, Ichida said.

To smooth the kinks, the researchers treated cells with a chemical and genetic cocktail that activated enzymes called topoisomerases. The process works by using the enzymes to open the DNA molecules, release the coiled tension and lay it smoothly. In turn, that leads to more efficient cellular reprogramming, which increases the number of cells capable of simultaneous transcription and proliferation, which is needed to promote tissue growth. Its the equivalent of a DNA detangler that relaxes the tension of reprogramming transcription and makes it easier to replicate new cell colonies or tissues in a lab.

Understanding diseases at a cellular level

The technique has multiple advantages over existing current practice. For example, it worked nearly 100% of the time. It was proven in human and animal cells. It can be employed today in laboratories to study disease development and drug treatments. It has immediate utility for studying schizophrenia, Parkinsons, ALS and other neurological diseases; in those instances, new cells can be created to replace lost cells or acquire cells that cant be extracted from people.

Moreover, the technique does not involve stem cells; the reprogrammed cells are not brand new but the same age as the parent cell, which is advantageous for studying age-related disease. The reprogrammed cells may be better at creating age-accurate in vitro models of human disease, which are useful to study diverse degenerative diseases and accelerated aging syndromes.

The key is to understand development of disease at a cellular level and how disease affects organs, Ichida said. This is something you can do with stem cells, but in this case, it skips a stem cell state. Thats important because stem cells reset epigenetics and make new, young cells, but this method allows you to get adult cells of same age to better study diseases in aged individuals, which is important as the elderly suffer more diseases.

This latest advance in regenerative medicine complements other recent technological gains, including gene editing, tissue engineering and stem cell development. It represents a convergence in regenerative medicine moving scientists closer to treating many diseases. It has practical utility to accelerate targeted medical treatments and precision medicine.

A modern approach for disease studies and regenerative medicine is to induce cells to switch their identity, Ichida said. This is called reprogramming, and it enables the attainment of inaccessible tissue types from diseased patients for examination, as well as the potential restoration of lost tissue. However, reprogramming is extremely inefficient, limiting its utility. In this study, weve identified the roadblock that prevents cells from switching their identity. It turns out to be tangles on the DNA within cells that form during the reprogramming process. By activating enzymes that untangle the DNA, we enable near 100% reprogramming efficiency.

Reference:Babos, K. N., Galloway, K. E., Kisler, K., Zitting, M., Li, Y., Shi, Y., Ichida, J. K. (2019). Mitigating Antagonism between Transcription and Proliferation Allows Near-Deterministic Cellular Reprogramming. Cell Stem Cell. https://doi.org/10.1016/j.stem.2019.08.005

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read the original:
Knotty Problem of Cell Reprogramming Solved - Technology Networks

Stem Cell Therapy Market Foraying into Emerging Economies 2017-2025 – Techdadz

Stem cells are found in all human beings, from the initial stages of human growth to the end of life. All stem cells are beneficial for medical research; however, each of the different kinds of stem cells has both limitations and promise. Embryonic stem cells that can be obtained from a very initial stage in human development have the prospect to develop all of the cell types in the human body. Adult stem cells are found in definite tissues in fully developed humans. Stem cells are basic cells of all multicellular animals having the ability to differentiate into a wide range of adult cells. Totipotency and self-renewal are characteristics of stem cells. However, totipotency is seen in very early embryonic stem cells. The adult stem cells owes multipotency and difference flexibility which can be exploited for next generation therapeutic options. Recently, scientists have also recognized stem cells in the placenta and umbilical cord blood that can give rise to several types of blood cells. Research for stem cells is being undertaken with the expectation of achieving major medical inventions. Scientists are attempting to develop therapies that replace or rebuild spoiled cells with the tissues generated from stem cells and offer hope to people suffering from diabetes, cancer, spinal-cord injuries, cardiovascular disease, and many other disorders.

The stem cell therapy market is segmented on the basis of type, therapeutic applications, cell source, and geography. On the basis of type, the stem cell therapy market is categorized into allogeneic stem cell therapy and autologous stem cell therapy. Allogeneic stem cell therapy includes transferring the stem cells from a healthy person (the donor) to the patients body through high-intensity radiation or chemotherapy. Allogeneic stem cell therapy is used to treat patients who do not respond fully to treatment, who have high risk of relapse, and relapse after prior successful treatment. Autologous stem cell therapy is a type of therapy that uses the person's own stem cells. These type of cells are collected earlier and returned in future. The use of stem cells is done to replace damaged cells by high doses of chemotherapy, and to treat the person's underlying disease. On the basis of therapeutic applications, the stem cell therapy market is segmented into cardiovascular diseases, wounds and injuries, musculoskeletal disorders, gastrointestinal diseases, surgeries, neurodegenerative disorders, and others. On the basis of cell source, stem cells therapy is segmented into bone marrow-derived mesenchyme stem cells, adipose tissue-derived mesenchyme stem cells, and cord blood or embryonic stem cells

Browse more detail information about this report visit at at https://www.transparencymarketresearch.com/stem-cell-therapy-market.html

By geography, the market for stem cell therapy is segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. North America leads the stem cell therapy market owing to rising awareness among people, early treatment adoption, and new product innovations. Europe is the second leading market for stem cell therapy due to development and expansion of more efficient and advanced technologies. The Asia Pacific stem cell therapy market is also anticipated to grow at an increasing rate owing to increasing healthcare spending, adoption of western lifestyles, and growth in research and development. Asia Pacific is the fastest growing region for stem cell therapy as several players have invested in the development of new stem cell technologies. These factors are expected to drive the growth of the stem cell therapy market globally during the forecast period.

The major player in the stem cell therapy market are Regenexx, Takara Bio Company, Genea Biocells, PromoCell GmbH, CellGenix GmbH, Cellular Engineering Technologies, BIOTIME, INC., Astellas Pharma US, Inc., AlloSource, RTI Surgical, Inc., NuVasive, Inc., JCR Pharmaceuticals Co., Ltd., Holostem Terapie Avanzate S.r.l., PHARMICELL Co., Ltd, ANTEROGEN.CO., LTD., The Future of Biotechnology, and Osiris Therapeutics, Inc. Rising demand for advanced stem cell therapies will increase the competition between players in the stem cell therapy market.

The report offers a comprehensive evaluation of the market. It does so via in-depth qualitative insights, historical data, and verifiable projections about market size. The projections featured in the report have been derived using proven research methodologies and assumptions. By doing so, the research report serves as a repository of analysis and information for every facet of the market, including but not limited to: Regional markets, technology, types, and applications.

Request Brochure of this report visit at https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=28262&source=atm

The study is a source of reliable data on:Market segments and sub-segmentsMarket trends and dynamicsSupply and demandMarket sizeCurrent trends/opportunities/challengesCompetitive landscapeTechnological breakthroughsValue chain and stakeholder analysis

The regional analysis covers:North America (U.S. and Canada)Latin America (Mexico, Brazil, Peru, Chile, and others)Western Europe (Germany, U.K., France, Spain, Italy, Nordic countries, Belgium, Netherlands, and Luxembourg)Eastern Europe (Poland and Russia)Asia Pacific (China, India, Japan, ASEAN, Australia, and New Zealand)Middle East and Africa (GCC, Southern Africa, and North Africa)

The report has been compiled through extensive primary research (through interviews, surveys, and observations of seasoned analysts) and secondary research (which entails reputable paid sources, trade journals, and industry body databases). The report also features a complete qualitative and quantitative assessment by analyzing data gathered from industry analysts and market participants across key points in the industrys value chain.

A separate analysis of prevailing trends in the parent market, macro- and micro-economic indicators, and regulations and mandates is included under the purview of the study. By doing so, the report projects the attractiveness of each major segment over the forecast period.

Highlights of the report:A complete backdrop analysis, which includes an assessment of the parent marketImportant changes in market dynamicsMarket segmentation up to the second or third levelHistorical, current, and projected size of the market from the standpoint of both value and volumeReporting and evaluation of recent industry developmentsMarket shares and strategies of key playersEmerging niche segments and regional marketsAn objective assessment of the trajectory of the marketRecommendations to companies for strengthening their foothold in the market

Note:Although care has been taken to maintain the highest levels of accuracy in TMRs reports, recent market/vendor-specific changes may take time to reflect in the analysis.

Request For Discount On This Report at https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=28262&source=atm

Read more:
Stem Cell Therapy Market Foraying into Emerging Economies 2017-2025 - Techdadz

Canine Stem Cell Therapy Market is expected to witness a CAGR of 4.2% during the forecast period 2017-2026 – Zebvo

Persistence Market Research (PMR) has published a new research report on canine stem cell therapy. The report has been titled, Canine Stem Cell Therapy Market: Global Industry Analysis 2016 and Forecast 20172026.Veterinary research has been used in regenerative and adult stem cell therapy andhas gained significant traction over the last decade. Canine stem cell therapy products are identified to have gained prominence over the past five years, and according to the aforementioned research report, the market for canine stem cell therapy will expand at a moderate pace over the next few years.

Though all animal stem cells are not approved by FDA, veterinary stem-cell manufacturers and university researchers have been adopting various strategies in order to meet regulatory approvals, and streamline and expedite the review-and-approval process. The vendors in the market are incessantly concentrating on research and development to come up with advanced therapy, in addition to acquiring patents.

Get Sample Copy Of This Report @ https://www.persistencemarketresearch.com/samples/15550

In September 2017, VetStem Biopharma, Inc. received European patent granted to the University of Pittsburgh and VetStem received full license of the patent then. This patent will eventually provide the coverage for the ongoing commercial and product development programs of VetStem and might be also available for licensing to other companies who are rather interested in this field. The other companies operating in the global market for canine stem cell therapy are VETherapy Corporation, Aratana Therapeutics, Inc., Regeneus Ltd, Magellan Stem Cells, Animal Cell Therapies, Inc., and Medrego, among others.

According to the Persistence Market Research report, the globalcanine stem cell therapy marketis expected to witness a CAGR of 4.2% during the forecast period 2017-2026. In 2017, the market was valued at US$ 151.4 Mn and is expected to rise to a valuation of US$ 218.2 Mn by the end of 2026.

Burgeoning Prevalence of Chronic Diseases in Dogs to Benefit Market

Adipose Stem Cells (ASCs) are the most prevalent and in-demand adult stem cells owing to their safety profile, ease of harvest, and use and the ability to distinguish into multiple cell lineages. Most early clinical research is focused on adipose stem cells to treat various chronic diseases such as arthritis, tendonitis, lameness, and atopic dermatitis in dogs. A large area of focus in veterinary medicine is treatment of osteoarthritis in dogs, which becomes more prevalent with age. Globally, more than 20% dogs are suffering from arthritis, which is a common form of canine joint and musculoskeletal disease. Out of those 20%, merely 5% seem to receive the treatment. However, elbow dysplasia in canine registered a prevalence rate of 64%, converting it into an alarming disease condition to be treated on priority. Thereby, with the growing chronic disorders in canine, the demand for stem cell therapy is increasing at a significant pace.

Expensive nature and limited access to canine stem cell therapy has demonstrated to be a chief hindrance forestalling its widespread adoption. The average tier II and tier III veterinary hospitals lack the facilities and expertise to perform stem cell procedures, which necessitates the referral to a specialty vet hospital with expertise veterinarians. A trained veterinary physician charges high treatment cost associated with stem cell therapy for dogs.

Request to Browse Full Table of Content, figure and Tables @ https://www.persistencemarketresearch.com/market-research/canine-stem-cell-therapy-market/toc

Generally, dog owners have pet insurance that typically covers maximum cost associated with steam cell therapy to treat the initial injury but for the succeeding measures in case of retreatment, the costs are not covered under the pet insurance. The stem cell therapy is thus cost-prohibitive for a large number of pet owners, which highlights a major restraint to the market growth. Stem cell therapy is still in its developmental stage and a positive growth outcome for the market cannot be confirmed yet.

Read this article:
Canine Stem Cell Therapy Market is expected to witness a CAGR of 4.2% during the forecast period 2017-2026 - Zebvo

Alzheimer’s Disease Insight Report: Current Therapies, Drug Pipeline and Outlook – BioSpace

With one in 10 Americans over 65 currently living with symptomatic Alzheimers disease, you probably know someone affected by this disease. Worldwide, 50 million people live with symptomatic Alzheimers, making it the most common form of dementia. It commonly affects people over 65, but less than 4 percent of the estimated 5.7 million Americans affected have early-onset Alzheimers with symptoms beginning before age 65.

By 2050, nearly 14 million Americans are projected to suffer from this disease. Alzheimers is 6th leading cause of death in the US, making Alzheimers disease a top health concern. Unfortunately, there is no cure, but current medications and management strategies may improve symptoms, prolonging patient independence. In honor of November being Alzheimers Awareness month, we evaluated the current therapies, drugs in the pipeline and disease outlook.

Overview

Alzheimers disease is a degenerative brain disease that typically begins in late middle age or old age. Degeneration of brain cells, called neurons, cause the symptoms of progressive memory loss, impaired thinking, disorientation and mood and personality changes.

Risk factors: The greatest risk factors are old age, having a family history of Alzheimers and carrying a mutation in a certain gene called apolipoprotein E 4 (APOE4). Environmental and lifestyle factors, such as diet and exercise, also contribute to disease development.

The risk of Alzheimers doubles every five years after the age of 65, with nearly 1 in 3 people age 85 or older developing the disease. People with the APOE4 gene variant are thought to have an increased risk for developing late-onset Alzheimers, but thats not a steadfast rule: inheriting the gene variant does not mean the person will definitely get Alzheimers and some Alzheimers patients do not have the APOE4 gene variant.

Causes: Alzheimers develops as a result of a complex interaction between many risk factors, all resulting in neuron damage and death. The buildup of misfolded proteins, such as the tau protein and -amyloid, create the hallmark protein clumps called tangles and plaques seen in Alzheimers brains. While these protein clumps are thought to cause neuron death by blocking nerve cell communication and function, the exact relationship between the protein clump formation and neuron death is still unclear.

The four stages of Alzheimers: Based on the severity of dementia symptoms, Alzheimers can be characterized into four stages: preclinical, mild (early-stage), moderate (middle-stage) and severe (late-stage). The preclinical stage encompasses all the unseen changes in the brain, such as plaque accumulations, happening years before symptoms arise. Mild Alzheimers patients can still function independently, although they begin forgetting familiar words or locations of objects. As the dementia progresses to become moderate, the patient becomes more forgetful, has greater difficulty doing daily tasks and experiences personality and behavioral changes. At this stage, they may still remember significant life events. The moderate disease stage is the longest, often lasting for many years. Finally, severe Alzheimers patients can no longer respond to their environment, carry a conversation and control their movement or bowels. As the disease progresses, patients require an increasing level of care for daily activities.

Life expectancy: The earlier the diagnosis, the longer the life expectancy is: people diagnosed in their 60s to early 70s can live as long as 7 to 10 years, whereas those diagnosed in their 90s only average a 3-year life expectancy. Alzheimers patients live an average of four to eight years after their diagnosis, but can live as long as 20 years post-diagnosis. However, its difficult to link one disease to life expectancy, especially as you age, due to the many variables that influence life expectancy.

Cost: The cost burden of Alzheimers is as high as its prevalence: Alzheimers medications can range from $177 to $400 monthly, adding up to an annual prescription drugs estimated cost of $3,000. It will cost Americans an estimated $277 billion, including $186 billion in Medicare and Medicaid payments, to care for Alzheimers patients by the end of 2018. By 2050, this cost is projected to be more than $1.1 trillion, accounting for over four-fold increases in government spending through Medicare and Medicaid, as well as out-of-pocket expenses. Up to $7.9 trillion in medical and care costs could be saved by diagnosing earlier and more accurately.

Diagnosis Strategies

Although there is no specific test for Alzheimers disease, doctors use a variety of exams, imaging and lab testing to diagnose the disease.

Physical and neurological exams can test reflexes, coordination and memory. Brain imaging is used to rule out other physical abnormalities, such as tumors, stroke or other traumas, that can cause Alzheimers-like symptoms. Imaging can now be used to detect the specific changes that occur in the brains of living Alzheimers patients, not just in post-mortem analysis. Structural imaging techniques, such as magnetic resonance imaging (MRI) and computed tomography (CT), are used to rule out other physical injuries as well as assess Alzheimers-related brain shrinkage. Functional imaging, such as functional MRI (fMRI) and positron emission tomography (PET), can measure brain cell function by tracking the cells sugar and oxygen use.

Specific radioactive molecules, called radiotracers, can be used to detect -amyloid plaques via PET imaging. Three radiotracers have been approved by the U.S. Food and Drug Administration (FDA) since 2012: Amyvid (18F-florbetapir), Vizamyl (18F-flutametamol) and Neuraceq (18F-florbetaben).

Genetic testing can reveal if someone has a mutation, such as the APOE4 gene variant, that may increase their risk for developing Alzheimers. However, it is generally not recommended for Alzheimers diagnosis due to the lower accuracy, as many factors contribute to disease development. The exception is early-onset Alzheimers: Anyone with a family history of early Alzheimers can be screened for certain gene mutations, such as amyloid precursor protein (APP), presenilin-1 (PS-1) and presenilin-2 (PS-2).

Developing better diagnostic testing could facilitate earlier diagnoses, possibly leading to better outcomes. Future testing includes more sensitive mental ability exams and measuring key disease-associated proteins, called biomarkers, in the blood or spinal fluid.

Current Therapies

While there is no cure for Alzheimers disease, a handful of drugs have been approved by the FDA and shown to somewhat slow symptom progression. They can be broken down into two categories: cholinesterase inhibitors, which increase the amount of the neurotransmitter acetylcholine in the brain, resulting in more cell-to-cell communication; and NMDA receptor antagonists, which also alter how brain cells communicate.

Cholinesterase inhibitors include Eisais Aricept (donepezil) and Novartis Exelon (rivastigmine), both approved for all stages of Alzheimers, as well as Janssen Pharmaceuticals Razdyne (galantamine), which is approved for mild to moderate Alzheimers. Allerganhas two NMDA receptor antagonist-based drugs, Namenda (memantine) and the combination drug Namzaric (donepezil and memantine), which are both approved for moderate to severe Alzheimers. Antidepressants and anti-anxiety medications are sometimes prescribed as well to help control behavioral symptoms.

Unfortunately, these drugs can cause potentially severe side effects and arent overwhelmingly effective compared to placebo, although they have helped stave off mental decline for a while in some patients. However, the need for more effective drugs is clear.

Drug Pipeline

A variety of targeted therapies are currently being explored through clinical trials, including drugs against the tau protein, which forms distinctive tangles in Alzheimers brains; the -amyloid protein, which forms plaques in the Alzheimers brain; -secretase (BACE), an enzyme that cuts amyloid precursor protein (APP) into -amyloid; and the 5-HT2A serotonin receptor, which is involved in cognition and memory by mediating neurotransmitters, such as acetylcholine and glutamate.

The Alzheimers drug development market includes many large players, including Eli Lillywith six drugs (two in Phase 1, two in Phase 2 and two in Phase 3);Biogen with five drugs (two in Phase 1, one in Phase 2 and two in Phase 3); Roche, in collaboration with Genentech, AC Immune, and MorphoSys, with three drugs (two in Phase 2 and one in Phase 3); Eisai, in collaboration with Biogen, with one drug in Phase 3; and Eisai alone with one drug in Phase 2 (as of September 13, 2019).

As of September 13, 2019, there are over 670 active/recruiting/not yet recruiting clinical trials for Alzheimers listed on clinicaltrials.gov. According to a paper published in July 2019, there were 132 drugs in development for Alzheimers: 28 drugs in 42 Phase 3 trials, 74 drugs in 83 Phase 2 trials, and 30 drugs in 31 Phase 1 trials. The figure and legend below, taken from the July 2019 paper, shows all the drugs in clinical trials for Alzheimers as of February 2019.

UsAgainstAlzheimers released their 2019 Alzheimers Drug Pipeline report also in July 2019, where they focused on 98 late-stage Alzheimers drugs in development that could potentially reach the market in the next 5-10 years: 26 drugs in Phase 3 trials, and 72 drugs in Phase 2 trials. Their report shows that, despite some large Phase 3 failures this year, the Alzheimers pipeline is still robust.

The following analysis of some Alzheimers drugs in the pipeline will briefly discuss how each drug works and where it is in clinical trials. This information was up to date as of September 13, 2019. Any text in italics represents failed or terminated trials.

Phase 1

Biogen is exploring multiple antibody drugs against the -amyloid and tau proteins, including a Phase 1 trial studying the anti-tau antibody BIIB076 in 48 healthy and Alzheimers patients; a Phase 2 trial (TANGO) examining the anti-tau antibody BIIB092 (gosuranemab) in 528 early-stage Alzheimers patients; a Phase 2 trial in collaboration with Eisai studying the anti--amyloid antibody BAN2401 in 800 early-stage Alzheimers patients; and a Phase 3 trial (Clarity AD) studying BAN2401 in 1566 early Alzheimers patients.

Unfortunately, in March 2019, Biogen and its partner Eisai decided to end all studies involving another one of its anti--amyloid antibodies called aducanumab (previously called BIIB037), including their two Phase 3 trials (ENGAGE and EMERGE) each studying 1605 early-stage Alzheimers patients, a Phase 2 trial (EVOLVE) in 500 Alzheimers patients with mild cognitive impairment (MCI) or mild dementia due to Alzheimers, and a Phase 1 trial (PRIME) in 197 very mild (prodromal) or mild Alzheimers patients. The studies were stopped because they did not meet their clinical endpoints of slowing cognitive and functional impairment, not due to any safety concerns of the drug.

Eli Lilly is pursuing two chemical entities, a Tau Morphomer and an O-GlcNAcase Inhibitor, in Phase 1 clinical trials for Alzheimers.

Proclara Biosciencescombined a part of the human immunoglobulin protein with their unique protein technology, called General Amyloid Interaction Motif (GAIM), to create their fusion protein drug NPT088, which targets both -amyloid and tau proteins. Their Phase 1a safety trial showed that intravenous NPT088 is safe and well-tolerated in 40 healthy patients. Data from their Phase 1b dosing trial in Alzheimers patients is expected in 2019.

Cognition Therapeutics drug candidate CT1812 is a small molecule pill that disrupts -amyloid binding to a receptor called sigma-2 on brain cells, which is thought to prevent the proteins toxicity. CT1812 has been or is being studied in six clinical trials, including one recruiting Phase 1 trial with 18 mild to moderate Alzheimers patients, one recruiting Phase 1/2 trial with 21 mild to moderate Alzheimers patients, and one recruiting Phase 2 trial with 120 mild to moderate Alzheimers patients. CT1812 was well-tolerated and penetrated the brain very well in 80 healthy patients and 19 mild to moderate Alzheimers patients with mild to moderate side effects. Although the treated Alzheimers patients had lower levels of Alzheimers-related proteins (such as neurogranin and synaptotagmin-1, markers of synaptic damage) in their cerebrospinal fluid, they didnt show significantly different cognitive functioning compared with the placebo group after 28 days of treatment.

Samus Therapeuticsis developing a positron-emitting molecule, called 124I-PU-AD, that inhibits a certain protein complex called epichaperone complex, which reduced tau proteins in the brain, restored long-term memory and increased survival in preclinical animal models. 124I-PU-AD is also being used as a PET imaging agent to study the epichaperone complex in the brains of Alzheimers patients. They have completed an early Phase 1 trial in 5 Alzheimers and certain cancer patients to evaluate the molecules metabolism. Another Phase 1 study is currently recruiting 24 healthy volunteers to evaluate the safety and tolerance of the drug.

Janssen Research & Development is examining the ability of a radioactive PET imaging agent, called [18F]MNI-1020, to bind to the tau protein in Alzheimers patients. An early Phase 1 trial studied the safety and brain uptake efficacy of a single injection of the imaging agent in 15 Alzheimers and healthy age-matched patients. That study also compared the location of tau (using [18F]MNI-1020) and -amyloid (using Amyvid (florbetapir)) in patients with suspected Alzheimers.

Longeveron collects stem cells from healthy adult donors to create their own Longeveron mesenchymal stem cells (LMSCs), which have been shown to reduce inflammation and promote cell regeneration. Their Phase 1 clinical trial is currently recruiting 30 Alzheimers patients to evaluate the safety and efficacy of LMSCs.

Athira Pharmas small molecule drug NDX-1017 designed to restore lost or build new connections in the brain. Their Phase 1 trial is currently recruiting to evaluate the drugs safety in two parts, with Part A involving up to 56 healthy young and elderly participants and Part B involving 44 healthy, mild cognitive impairment or mild to moderate Alzheimers patients.

Cortexyme, Inc.is developing COR388, a first-in-class bacterial protease inhibitor that targets the bacteria Porphyromonas gingivalis, which is present in Alzheimers patients brains and cerebrospinal fluid and thought to contribute to the disease. Two completed Phase 1 trials have shown that COR388 is safe and well-tolerated in 58 healthy and nine Alzheimers patients. A Phase 2/3 trial is currently enrolling 573 mild to moderate Alzheimers patients to assess the drugs efficacy, safety, and tolerability.

Allergan was pursuing a small molecule drug called AGN-242071 that selectively targeted certain receptors in the brain, called muscarinic receptors, which may treat symptomatic cognitive deficits and behavioral symptoms in Alzheimers.

Unfortunately, Allergan decided to withdraw their Phase 1 trial evaluating the safety and tolerability of the drug prior to patient recruitment in November 2018.

Corium Internationalhas developed a novel delivery method for an approved drug, a once-weekly skin patch (the Corplex Donepezil Transdermal System) that delivers a sustained dose of donepezil. The patchs safety and drug profile were examined in multiple Phase 1 trials, which showed great skin tolerability and comparable dosages between the weekly patch and the currently prescribed daily donepezil pills. Corium is also developing a once-weekly skin patch to deliver memantine

Cognoptix has taken a different approach, developing an eye test called Sapphire II to catch and diagnose Alzheimers much earlier by detecting -amyloid deposits in their eyes. A fluorescent drug that binds to the -amyloid protein (Aftobetin-HCl) is administered to the eye as an ointment and binding is detected with the Sapphire II laser device. Their Phase 1 study determined the optimal dosing of the fluorescent drug in 15 participants and is currently recruiting 10 normal and 20 mild cognitive impairment (MCI) or mild Alzheimers patients for dose testing. If the dosing is optimal, then 30 more MCI and 30 more mild Alzheimers patients will be recruited, totaling 105 participants.

Phase 1/2

Ionis Pharmaceuticalsis collaborating with Biogen to study their antisense oligonucleotide drug IONIS-MAPTRx (also called BIIB080), which may reduce tau protein production and its accumulation in brain cells, in a Phase 1/2 trial in 44 mild Alzheimers patients.

QR Pharma, Inc.s small molecule drug Posiphen inhibits APP, tau and -synuclein (involved with Parkinsons disease) protein synthesis. They are currently recruiting 24 Alzheimers patients for their Phase 1/2 dosage study (DISCOVER).

Following their successful Phase 1 trial (SEAD) in 15 Alzheimers patients, Ausio Pharmaceuticalsbrought their estrogen receptor activating drug S-equol (also called AUS-131) to a Phase 1/2 trial (SEAD2), which is currently recruiting 40 Alzheimers patients to test the drugs tolerability and whether or not it affects cognitive abilities. Activating the estrogen receptors on mitochondria is thought to promote mitochondrial functioning, which could restore the reduced mitochondrial activity seen in Alzheimers patients. Less mitochondrial activity is thought to contribute to -amyloid protein build-up in the brain.

Nature Cell Co. is studying a fat cell-derived mesenchymal stem cell (MSC) therapy called AstroStem in an active Phase 1/2 study involving 21 mild to moderate Alzheimers patients.

Phase 2

Eli Lilly has two ongoing Phase 2 trials studying antibody drugs: one active trial (TRAILBLAZER-ALZ) evaluating the tolerability and efficacy of a humanized anti--amyloid antibody, called donanemab (LY3002813 or N3pG-A MAb), in 266 early symptomatic Alzheimers patients; and another currently recruiting trial evaluating the safety and efficacy of a humanized anti-tau antibody, called zagotenemab (LY3303560), in 285 early symptomatic Alzheimers patients.

Roche, in partnership with AC Immune, is studying crenezumab (RG7412), an anti--amyloid antibody drug that binds to -amyloid similar to Eli Lillys solanezumab. Crenezumab is being investigated in an active Phase 2 trial involving 252 non-symptomatic adults with a family history of Alzheimers who have a particular genetic mutation (autosomal-dominant PSEN1 E280A). Baseline data for 242 of the enrolled patients were presented at the Alzheimers Association International Conference in August 2019. Another not yet recruiting Phase 2 trial is in the works to study the effect of crenezumab on the longitudinal tau burden via PET imaging of 150 patients enrolled in the active Phase 2 trial (NCT01998841).

Crenezumab was being investigated in three Phase 3 trials: CREAD 1 evaluating the drugs safety and efficacy in 813 mild Alzheimers patients; CREAD 2 studying the drugs safety and efficacy in 750 mild Alzheimers patients; and an open-label extension trial (CREAD OLE) examining long-term drug treatment in 149 Alzheimers patients. Unfortunately, in January 2019, Roche discontinued all CREAD trials due to the interim analysis showing crenezumab was unlikely to meet the primary endpoint of improving cognition.

Genentech (a subsidiary of Roche) is partnering with AC Immune to develop the anti-tau antibody drug RO7105705 (also called RG6100 and MTAU9937A), which recognizes tau tangles and is meant to block their spread between cells. An active Phase 2 trial involving 457 prodromal to mild Alzheimers patients is studying the drugs safety and effect on cognitive function.

AbbVies humanized antibody drug ABBV-8E12, which targets the tau protein, is being evaluated for its safety and efficacy in an active Phase 2 trial involving 400 early-stage Alzheimers patients. An extension study to study the drugs long-term safety and tolerability is currently enrolling patients from the Phase 2 study (NCT02880956) by invitation.

Avid Radiopharmaceuticals, a wholly-owned subsidiary of Eli Lilly, is developing the PET imaging agent 18F-AV-1451 (also called Flortaucipir F 18 or F 18 T807), a molecule that binds to the tau protein, allowing researchers to study tau in living patients. There are multiple Phase 2 or Phase 2/3 trials studying the imaging agents safety and efficacy, with five Phase 2 trials currently recruiting or not yet recruiting: one to evaluate the agents safety and tau binding via PET imaging in 250 healthy, Alzheimers, traumatic brain injury and depression patients; one (ADRC proj 1) to compare tau tangles in the brain with cerebrospinal fluid CSF biomarkers and cognitive status in 80 Alzheimers patients; one (DIAN Project, AV ADAD) to study the presence of tau tangles in the brain and cognitive status in 130 adults; one to study the uptake and binding in 80 older HIV-positive adults with and without HIV-associated neurocognitive disorders and HIV-negative age-matched controls; and one (Protocol Z) to study tau and amyloid lesions in the brains of 80 APOE4+ adults with normal cognition or early-stage symptomatic Alzheimers.

Neurotrope Bioscience is developing bryostatin-1, a small molecule that activates protein kinase C (PKC), a protein that is important for learning and memory. This drug stimulates synapse repair and growth, activates -amyloid degrading enzymes and prevents tau tangle formation and neuron death. A Phase 2 trial evaluating the safety and efficacy of bryostatin-1 in 147 moderate to severe Alzheimers patients showed positive results: the lower (20 g) dose improved cognition and the ability to care for oneself. This prompted a second Phase 2 trial to study the drugs safety and efficacy at the lower dose in 108 moderately severe to severe Alzheimers patients.

Unfortunately, Neurotrope announced that the second Phase 2 trial did not show statistically significant improvement in memory, indicating it did not meet its primary endpoint of a change in the Severe Impairment Battery (SIB) test total score from baseline to week 13.

EIP Pharma is pursuing a small molecule called neflamapimod (VX-745) that inhibits an enzyme, called p38 MAPK, found in the neurons that is involved in inflammation and possibly -amyloid toxicity. Neflamapimod previously showed clinical activity in rheumatoid arthritis patients before being licensed to EIP Pharma. They are currently conducting a Phase 2b efficacy study (REVERSE-SD) in 161 participants with mild Alzheimers. A Phase 3 study is scheduled to start in the third quarter of 2020. Another Phase 2 trial is recruiting 40 Alzheimers patients to study neflamapimod on brain inflammation.

Actinogen Medicalis studying a drug called xanamem, which inhibits a cortisol-producing enzyme in the brain, ultimately blocking local production of cortisol, known as the stress hormone. While blood cortisol levels tend to rise with age, its particularly raised in patient with certain diseases, such as Alzheimers. Long-term high cortisol levels can be toxic to brain neurons, so preventing cortisol production in the brain may help slow cognitive decline and -amyloid plaque formation. After assessing xanamems safety and dosing in two Phase 1 trials, a Phase 2 trial (XanADu) assessed the drugs safety and efficacy in 186 early-stage Alzheimers patients.

Boehringer Ingelheims drug BI 425809 is a glycine transport inhibitor designed to regulate signaling in the brain that contributes to cognitive impairment. An active Phase 2 trial is studying the safety and effect on cognition of multiple dosages of the drug in 611 Alzheimers patients.

Neurocentriais developing a dietary supplement called MMFS, which contains a molecule called L-threonic acid magnesium salt (L-TAMS) that increases synapse density in portions of the brain needed for memory and executive functioning, such as the prefrontal cortex and hippocampus. Two previous studies showed improved cognition in mild to moderate Alzheimers patients, prompting the active Phase 2 trial that is recruiting 12 mild Alzheimers patients to examine the drugs safety and effect on cognition.

Alkahestis studying intravenously administered plasma-derived product called GRF6019, which is isolated from human plasma (a component of the blood) that has been shown to enhance neurogenesis and improve learning and memory in animals. Matching donor and patients blood types is not needed because the donor-specific antibodies (called immunoglobulins) are removed. A Phase 2 trial in 40 mild to moderate Alzheimers patients studied the safety and feasibility of GRF6019. Another Phase 2 trial is currently recruiting 20 severe Alzheimers patients to study the safety, tolerability, and cognitive benefits of the drug.

Suven Life Sciences drug SUVN-502 specifically inhibits a certain serotonin receptor (called 5-HT6), which is thought to improve cognition and memory. SUVN-502 in combination with donepezil and memantine was shown to increase the concentration of neurotransmitters, like acetylcholine. An active Phase 2 trial is testing the effect of this triple combination therapy on cognition in 563 moderate Alzheimers patients. An expanded access program is also available for eligible patients to receive the drug without being evaluated for safety and efficacy.

Neurim Pharmaceuticalsis taking a different approach by developing a drug, called piromelatine, that binds to and activates melatonin and serotonin receptors in the brain, promoting sleep and therefore neuroprotective effects. This drug was safe and promoted deeper and more REM sleep in a Phase 2 clinical trial in adults with insomnia. Given the link between sleep and Alzheimers, Neurim decided to study piromelatines effects on cognition in 500 mild Alzheimers patients in an active dose-ranging Phase 2 trial.

Eisai, in collaboration withPurdue Pharma, is studying their orexin receptor antagonist drug lemborexant in a Phase 2 trial involving 62 mild to moderate Alzheimers patients. The orexin receptor is involved in the regulation of sleep. Lemborexant binds to the orexin receptor, preventing orexin from binding, which should decrease wakefulness and promote falling and staying asleep naturally. Sleep, especially at appropriate hours, is troublesome for Alzheimers patients whose circadian rhythms tend to be dysregulated.

Phase 2/3

Novartis has partnered with Amgen and the Banner Alzheimer's Instituteto pursue Novartis drug umibacestat (CNP520), which inhibits BACE1, an enzyme involved in -amyloid production. After a successful Phase 2 trial safety study in 124 healthy elderly patients, there were two Phase 2/3 trials: one (Generation S1) to test the efficacy of CNP520 against an investigational immunotherapy drug (CAD106, a vaccine against a fragment of the -amyloid protein) in 481 non-symptomatic older patients with two copies of the APOE4 gene; and one (Generation S2) to test the drugs effect on cognition and underlying Alzheimers pathology in 1145 non-symptomatic older patients with at least one APOE4 allele and elevated brain -amyloid levels.

Unfortunately, both Phase 2/3 trials were discontinued in July 2019 due to worsening cognitive function seen during interim data analysis. As umibacestat was meant to delay the onset of symptoms, participants in the study will discontinue the investigational treatment and discuss further treatment options with their doctors.

TauRx Therapeutics drug TRx0237 (also called LMTX) is their second-generation tau protein aggregation inhibitor, which aims to both dissolve existing tau tangles and prevent new tangles from forming. Two previous Phase 3 clinical trials studied the safety and efficacy of high doses (150-250 mg/day) and a low dose control (8 mg/day) of the drug in 800 mild and 891 mild to moderate Alzheimers patients. Surprisingly, they found that the low dose was as beneficial as the higher doses, prompting a current Phase 2/3 trial (LUCIDITY) recruiting 375 early Alzheimers patients studying TRx0237 at low doses (8 and 16 mg/day). An expanded access program is also available to provide the drug to patients who have previously participated in a TauRx clinical trial but do not qualify for an ongoing trial.

Axsome Therapeutics is pursuing a treatment for agitation associated with Alzheimers and have been granted fast track status for their drug AXS-05, which combines dextromethorphan and bupropion. Dextromethorphan (called DM and commonly known as an over-the-counter cough suppressant) inhibits serotonin and norepinephrine transporters and the NMDA receptor at high doses. Bupropion increases the bioavailability of dextromethorphan and inhibits norepinephrine and dopamine reuptake. A Phase 2/3 trial (ADVANCE) is currently recruiting 435 Alzheimers patients to study the safety of AXS-05 and its effect on agitation.

Phase 3

Eli Lilly has a Phase 3 anti--amyloid antibody drug called solanezumab (LY2062430), which binds to soluble -amyloid monomers. The primary endpoints of trials involving this drug is to slow memory and cognitive decline. The drug is associated with 11 listed trials, including an active Phase 3 trial (A4) involving 1150 not yet symptomatic adults with evidence of amyloid plaque build-up in their brains, and a currently recruiting Phase 2/3 large collaboration trial (DIAN-TU) comparing solanezumab and gantenerumab in 490 non-symptomatic adults known to have an Alzheimers disease-causing mutation. This collaboration includes Eli Lilly, Roche, Avid Radiopharmaceuticals, Janssen, Alzheimers Association, National Institute on Aging (NIA), Accelerating Medicines Partnership (AMP), and Washington University School of Medicine.

Two Phase 3 trials (EXPEDITION and EXPEDITION 2) were completed previously and involved 1040 Alzheimers patients each. Although there was no difference in cognition between the treated and placebo groups, patients with mild Alzheimers did show slower cognitive decline compared to placebo, prompting further studies.

Unfortunately, the next three Phase 3 trials (EXPEDITION 3, EXPEDITION EXT and EXPEDITION PRO) were terminated due to lack of meeting primary endpoints, including slowing cognitive decline, and insufficient evidence that solanezumab would likely demonstrate a meaningful benefit to patients with prodromal Alzheimers.

Roche is currently investigating gantenerumab, an anti--amyloid antibody drug that binds and neutralizes -amyloid plaques. Gantenerumab, brought back after failing in previous clinical trials, is involved in four Phase 3 trials: two active trials studying the drugs effect on cognitive function in 799 prodromal and 389 mild Alzheimers patients; and two currently recruiting trials studying the drugs effect on cognition in 760 early Alzheimers patients each.

Eisai, in collaboration with Biogen, is studying their small molecule BACE1 inhibitor elenbecestat (also called E2609) in two Phase 3 trials (MISSION AD1 and MISSION AD2) currently recruiting 950 early-stage Alzheimers patients each. Inhibiting BACE1 is thought to interfere with -amyloid production.

Unfortunately, the companies announced that they were discontinuing their MISSION AD1 and AD2 Phase 3 trials on September 13, 2019. The decision was made based on results from a safety review that showed an unfavorable risk-benefit ratio of elenbecestat.

Avid Radiopharmaceuticals and Eli Lilly reported positive results earlier this year from their Phase 3 trial on the tau-binding PET imaging agent flortaucipir F 18 (18F-AV-1451 or Tau imaging agent) in Alzheimers patients. The trial met its two primary endpoints, successfully predicting both the disease-related role of tau in the brain and an Alzheimers diagnosis. PET imaging was performed on 156 end-of-life patients with cognition ranging from normal to dementia, with 67 of these patients being evaluated post-mortem. Flortaucipir could significantly detect Alzheimers-related changes in the brain, including both tau and -amyloid plaque densities. Being able to accurately image and diagnose Alzheimers patients is a critical component in understanding the disease and being able to manage it. There are currently 33 studies listed on clinicaltrials.gov for flortaucipir and Alzheimers.

AZTherapies, Inc. is studying the combination drug ALZT-OP1, which consists of the inhaled drug cromolyn and oral drug ibuprofen, both of which are anti-inflammatory. Inflammation in the brain is thought to trigger neuronal death, which causes progressive brain damage. Cromolyn was also shown to prevent -amyloid aggregation in one study. A Phase 3 trial (COGNITE) is currently studying the effect of this combination drug on cognitive decline in 620 early-stage Alzheimers patients.

ACADIA Pharmaceuticals drug pimavanserin (previously called ACP 103) is a selective serotonin inverse agonist (SSIA), meaning it both binds to serotonin receptor subtype 5-HT2A and blocks serotonin signaling. Following a few Phase 2 trials specifically in Alzheimers patients, there are currently three recruiting Phase 3 trials for a broader range of dementia patients: an efficacy study examining pimavanserins ability to prevent relapse of dementia-related psychosis symptoms in 356 dementia patients, a safety study in 300 patients with neurodegenerative disease, and an open-label extension study examining the drugs long-term safety in 300 patients with neurodegenerative disease who previously participated in another pimavanserin clinical trial by ACADIA.

Intra-Cellular Therapiesis developing lumateperone (ITI-007), a molecule that simultaneously affects serotonin, dopamine and glutamate signaling, which play important roles in multiple mental illnesses. Following a Phase 1b/2 study, they recruited 177 dementia patients, including Alzheimers patients, for a Phase 3 trial studying the safety and efficacy of the drug for reducing agitation.

However, the Phase 3 trial was terminated early due to interim data analysis indicating lumateperones lack of efficacy.

AVANIR Pharmaceuticals drug AVP-786 combines two approved drugs: deuterated dextromethorphan (d6-DM), which has better bioavailability and less side effects than regular DM, and an ultra-low dose of quinidine, which slows the metabolism of d6-DM by inhibiting an enzyme (CYP 2D6) that breaks down d6-DM. AVP-786 is a second-generation version of Nuedexta (formerly AVP-923), which is currently approved to treat pseudobulbar affect (PBA). Currently, there are four recruiting or active Phase 3 trials studying the safety and efficacy of AVP-786 in treating agitation in Alzheimers patients: one recruiting 412 Alzheimers patients with moderate to severe agitation worldwide, one active study involving 522 Alzheimers patients in the US, one completed study involving 410 Alzheimers patients in the US and a long-term extension study recruiting 700 patients who have completed previous clinical trials of AVP-786 by Avanir.

Otsuka Pharmaceutical Co.and Lundbeck are collaborating to develop brexpiprazole (brand name Rexulti) for treating agitation and behavioral symptoms in Alzheimers patients. Rexulti, which binds to and activates a particular dopamine receptor (D2), is currently FDA approved to treat schizophrenia and as an add-on treatment for major depression disorder. Two Phase 3 trials examining brexpiprazole at either fixed or flexible doses in a total of 703 Alzheimers patients showed reduced agitation compared to the placebo. They are currently recruiting for three Phase 3 trials: one evaluating the safety, efficacy, and tolerability in 225 Alzheimers patients with dementia-associated agitation in the US; one studying long-term treatment in 157 Alzheimers patients with dementia-associated agitation in Japan; and a 12-week extension study for 250 Alzheimers patients with dementia-associated agitation who were previously enrolled in other Otsuka trials studying brexpiprazole. They are also recruiting for a Phase 2/3 study in 407 Alzheimers patients with dementia-associated agitation in Japan.

Merck Sharp & Dohme Corp., a subsidiary of Merck, is studying their FDA approved drug suvorexant (previously called MK-4305, brand name Belsomra) to treat insomnia in Alzheimers patients. Currently approved for insomnia patients, the small molecule drug works by inhibiting the orexin receptor in the signaling system involved in wakefulness. Their Phase 3 trial studying suvorexants safety and efficacy at improving sleep in 285 Alzheimers patients and patients with insomnia concluded in October 2018, but results have not been posted yet.

Preclinical Candidates

A few companies are investigating drugs in the preclinical laboratory setting, hoping to gather promising data to bring their drugs to clinical trials.

Read the rest here:
Alzheimer's Disease Insight Report: Current Therapies, Drug Pipeline and Outlook - BioSpace