Category Archives: Embryonic Stem Cells


April 2023: Intramural Papers of the Month – Environmental Factor Newsletter

IntramuralBy Janelle Weaver

A protein called double homeobox 4 (DUX4) is not only responsible for a rare muscular disease but also kills the precursors of the human nose, according to NIEHS researchers and their collaborators.

Mutations in the SMCHD1 gene can cause an extremely uncommon condition known as congenital arhinia the absence of the nose at birth. In separate sets of patients, SMCHD1 mutations sometimes lead to a late-onset neuromuscular disorder called facioscapulohumeral muscular dystrophy type 2 (FSHD2). Yet it has not been entirely clear how mutations in the same gene can result in these two highly distinct disorders.

Using human embryonic stem cells, the researchers showed that SMCHD1 mutations destroy cranial placode cells evolutionarily ancient cells that give rise to the sensory organs of the head. Specifically, SMCHD1 mutations unleash DUX4 toxicity, leading to placode cell death. Additional results revealed that induced pluripotent stem cells derived from arhinia and FSHD2 patients produce DUX4 when converting to placode cells.

Moreover, the study implicates herpesviruses, which can cause sexually transmitted diseases, as potential environmental modifiers that may exacerbate DUX4 toxicity in cranial placode cells of the developing fetus. According to the authors, more research is needed to determine why arhinia patients, but not FSHD2 patients, are characterized by abnormalities affecting the face or head.

Citation:Inoue K, Bostan H, Browne MR, Bevis OF, Bortner CD, Moore SA, Stence AA, Martin NP, Chen SH, Burkholder AB, Li JL, Shaw ND. 2023. DUX4 double whammy: the transcription factor that causes a rare muscular dystrophy also kills the precursors of the human nose. Sci Adv 9(7):eabq7744.

A cholesterol derivative called 25-hydroxycholesterol (25HC) plays dual roles in damaged lungs, according to NIEHS researchers and their collaborators.

25HC is involved in immune responses and is produced through a chemical reaction called oxidation by the enzyme cholesterol-25-hydroxylase (CH25H). Although levels of CH25H are highest in the lungs, its function in lung biology has been unclear.

Using mice with severely injured lungs, the researchers discovered that 25HC and CH25H exacerbated blood-vessel leakage and inflammation a complex biological response triggered by tissue damage. In patients with acute respiratory distress syndrome, 25HC and CH25H in lung cell and fluid samples were associated with markers of microvascular leak, inflammation, and clinical severity.

Taken together with past findings, the new results suggest that the impact of CH25H-derived 25HC depends on the extent of lung damage, with healing effects during mild inflammation but harmful effects during severe inflammation. These dual roles indicate that pharmacologic targeting of CH25H in human disease is likely to prove challenging. According to the authors, future studies are warranted to better define the functions of CH25H in the lung, and to explore whether manipulating this molecule may offer some therapeutic benefit.

Citation:Madenspacher JH, Morrell ED, McDonald JG, Thompson BM, Li Y, Birukov KG, Birukova AA, Stapleton RD, Alejo A, Karmaus PW, Meacham JM, Rai P, Mikacenic C, Wurfel MM, Fessler MB. 2023. 25-hydroxycholesterol exacerbates vascular leak during acute lung injury. JCI Insight e155448.

A protein called GLI-Similar 3 (GLIS3) coordinates with three other proteins to synthesize thyroid hormone, according to NIEHS researchers and their collaborators.

Congenital hypothyroidism is thyroid-hormone deficiency present at birth. Severe forms of the disease can lead to growth failure and permanent intellectual disability. In both humans and mice, congenital hypothyroidism is triggered by loss of GLIS3 function because this protein plays a critical role in the production of thyroid hormone. Yet it has not been clear how GLIS3 teams up with other proteins called transcription factors to regulate the expression of thyroid genes.

Using rodent thyroid glands and cells, the researchers showed that GLIS3 works in conjunction with three protein partners paired box 8 (PAX8), NK2 homeobox 1 (NKX2.1), and forkhead box E1 (FOXE1). All of these proteins control the transcription of genes involved in thyroid hormone synthesis by binding within the same regulatory hub in these genes.

But GLIS3 does not affect the binding of PAX8 or NKX2.1 to thyroid genes. In addition, GLIS3 does not appear to alter transcription by causing major changes in the structure of chromatin a DNA-protein complex that forms chromosomes. According to the authors, future studies could establish whether GLIS3 has any effect on chromatin structure, or how the protein might otherwise activate thyroid genes.

Citation:Kang HS, Grimm SA, Jothi R, Santisteban P, Jetten AM. 2023. GLIS3 regulates transcription of thyroid hormone biosynthetic genes in coordination with other thyroid transcription factors. Cell Biosci 13(1):32.

Exposure to nicotine protects the mouse brain from developing certain signs of infection and disease related to severe acute respiratory syndrome coronavirus 2 (SARSCoV2), according to NIEHS researchers and their collaborators. These results suggest the biological targets of nicotine could be harnessed to help individuals avoid long COVID.

SARS-CoV-2 is the virus that causes coronavirus disease 2019 (COVID-19), which has killed more than six million people worldwide. Individuals infected with SARS-CoV-2 are at risk of developing a neurological disorder known as long COVID. Symptoms of the disease include cognitive dysfunction, loss of smell, sleep disturbances, headaches, dizziness, fatigue, muscle pain, anxiety, and depression.

Even mild cases can change the structure of the brain, but knowledge of the mechanisms and risk factors that enable SARS-CoV-2 to affect the central nervous system is lacking. Disputed epidemiological data suggest that nicotine may reduce the severity of infection. Yet the possible therapeutic effects of nicotine have not been clear.

To address this knowledge gap, the researchers inoculated mice with SARS-CoV-2 and then provided some of them with a nicotine solution instead of drinking water. Nicotine intake did not alter death rates, but it decreased viral RNA and signs of disease in the brains of a subset of infected mice. According to the authors, the findings could be leveraged to prevent or mitigate neurological-related disorders caused by SARS-CoV-2.

Citation:Letsinger AC, Ward JM, Fannin RD, Mahapatra D, Bridge MF, Sills RC, Gerrish KE, Yakel JL. 2023. Nicotine exposure decreases likelihood of SARS-CoV-2 RNA expression and neuropathology in the hACE2 mouse brain but not moribundity. Sci Rep 13(1):2042.

The herbicide glyphosate does not appear to pose a hazard to human DNA, according to researchers from the NIEHS Division of Translational Toxicology.

Over the past 30years, glyphosate has become the most commonly used herbicide in the United States and throughout the world. Past research has suggested that glyphosate and glyphosate-based formulations (GBFs) may damage DNA (i.e., cause genotoxicity), raising concern about their potential health risks, including cancer. But few of these studies directly compared glyphosate to GBFs or effects among GBFs. Chemicals and other substances are routinely tested for genotoxicity because damage to DNA increases the risk of cells becoming cancer cells.

To address this knowledge gap, the researchers tested how human cells are affected by exposure to glyphosate, a microbial metabolite of glyphosate called (aminomethyl)phosphonic acid (AMPA), various GBFs, and additional herbicides. Neither glyphosate nor AMPA appeared to be toxic, even at high concentrations. By contrast, all GBFs and herbicides other than glyphosate injured the cells, and some of these chemicals damaged DNA. Additional analyses suggested that glyphosate is of low toxicological concern for humans.

The observation that glyphosate is not genotoxic in human cells aligns with the National Toxicology Programs previous findings, published in 1992, that glyphosate was not genotoxic to mice exposed up to 50,000 ppm glyphosate in their food for three months.

Taken together, these results demonstrate that glyphosate does not produce DNA damage in the form of gene mutations, chromosome breaks, or changes in chromosome number, and that cytotoxicity (i.e., cell death) associated with GBFs may be related to other components of these formulations. For example, ingredients such as surfactants and detergents may compromise cell membranes or otherwise lead to cell death.

Citation:Smith-Roe SL, Swartz CD, Rashid A, Christy NC, Sly JE, Chang X, Sipes NS, Shockley KR, Harris SF, McBride SJ, Larson GJ, Collins BJ, Mutlu E, Witt KL. 2023. Evaluation of the herbicide glyphosate, (aminomethyl)phosphonic acid, and glyphosate-based formulations for genotoxic activity using in vitro assays. Environ Mol Mutagen; doi: 10.1002/em.22534 [Online 7 March 2023].

(Janelle Weaver, Ph.D., is a contract writer for the NIEHS Office of Communications and Public Liaison.)

View post:
April 2023: Intramural Papers of the Month - Environmental Factor Newsletter

Brain molecule could reverse damage in multiple sclerosis, U of A … – The Gateway Online

Multiple sclerosis (MS) is a chronic neurodegenerative disease in which demyelination occurs. Demyelination is where the myelin or fatty lining of a neuron erodes, leading to damage in the central nervous system.

Over 90,000Canadians are affected by MS. It can cause bodily impairment ranging from blurred vision, to complete lack of muscle coordination and paralysis. Anastassia Voronova, an assistant professor at the University of Alberta and Canada research chair in Neural Stem Cell Biology, has done research on how to reverse demyelination.

In her research, published in Stem Cell, Voronova has discovered a way to target remyelination. This involves direct infusion of the brain molecule, fractalkine, which triggers the production of myelin.

She dietarily induced demyelination in the brains of mice to mimic the brain damage apparent in MS patients. She then injected fractalkine directly into their brains. The molecule consequently enhanced remyelination in the white and gray matter areas of the brain, despite experiencing damage from MS.

Fractalkine triggers progenitor cells descendants of stem cells which can create specialized cell types in the brain to make new oligodendrocytes, which are the only brain cells that produce myelin. It also lessens neuroinflammation common in MS.

Both of these events are necessary for the enhancement of remyelination by fractalkine, which Voronova said is predicted to halt the disease progression, and maybe even reverse some of the neurological symptoms that are associated with MS.

Voronova described the existing progenitor cells as lazy. They should know how to regenerate oligodendrocytes for remyelination, but are inefficient especially in MS patients.

Myelin deficiencies are detected in a variety of neurological disorders, such as Huntingtons, Parkinsons, and Alzheimers disease. Myelin deficiencies can also be found in neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and traumatic brain injuries.

What we are also excited about is whether we can test the ability of fractalkine to promote brain regeneration in mouse models of other neurological disorders. Maybe this could be translated to a variety of different conditions, and not just something specific for MS, Voronova said.

Voronova and her research team are searching for ways to deliver fractalkine to the brain, such as a nasal spray.

Fractalkine is the molecule of interest in her recent study. But, Voronovas research program aims to discover new molecules that can trigger progenitor cells to cause brain regeneration.

Stem cells are set aside during embryonic brain development. But, they do not have a fixed function and are otherwise dormant throughout adulthood. The question of whether it is possible to resurrect embryonic cues in adult stem cells for use in neural regeneration drives Voronovas research.

This was actually a serendipitous discovery I started my journey in science by asking how do stem cells behave during brain development?

Voronova wanted to understand how neural stem cells communicate with neurons in close proximity within the developing brain.

I discovered that these neurons were secreting so many different molecules including fractalkine that then instructed the neural stem cells to make oligodendrocytes in the developing brain, she said.

Now my research program is built on translating this developmental discovery to engage the adult neural stem cells for brain regeneration.

The process of reactivating these embryonic cues remains unknown, but Voronova is making progress with her research.

I think it was 30 years ago it was realized that we have adult neural stem cells. We didnt know what they were doing there. And now, I think we definitely understand their promise. But, we dont necessarily understand how to harness the promise, Voronova said.

Its learning the signalling molecules and signalling pathways that were once important in the embryonic [stages] of brain development and then seeing whether I can reactivate those same signalling pathways in the adult brain, as well.

Every year,The Gatewaypublishes hundreds of articles like the one you just read that are free for everyone to access. ButThe Gatewayneeds your support to continue publishing its award-winning journalism. Please consider donating today, even a small amount can help the University of Albertas only newspaper continue serving the campus community. Thank you.

Continue reading here:
Brain molecule could reverse damage in multiple sclerosis, U of A ... - The Gateway Online

INTERNATIONAL STEM CELL CORP MANAGEMENT’S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) – Marketscreener.com

The following discussion of our financial condition and results of operationsshould be read in conjunction with our audited consolidated financial statementsand related notes and other financial information included elsewhere in thisAnnual Report on Form 10-K. The discussion contains forward-looking statements,such as our plans, expectations and intentions (including those related toclinical trials and business and expense trends), that are based upon currentexpectations and that involve risks and uncertainties. Our actual results maydiffer significantly from management's expectations. The factors that couldaffect these forward-looking statements are in Item 1A of Part I of this report.This discussion should not be construed to imply that the results discussedherein will necessarily continue into the future, or that any expectationsexpressed herein will necessarily be indicative of actual operating results inthe future. Such discussion represents only the best present assessment by ourmanagement.

Business Overview

We have generated aggregate product revenues from our two commercial businessesof $8.2 million and $7.2 million for the years ended December 31, 2022 and 2021,respectively. We currently have no revenue generated from our principaloperations in therapeutic and clinical product development.

Our products are based on multi-decade experience with human cell culture and aproprietary type of pluripotent stem cells, human parthenogenetic stem cells("hpSCs"). Our hpSCs are comparable to human embryonic stem cells ("hESCs") inthat they have the potential to be differentiated into many different cells inthe human body. However, the derivation of hpSCs does not require the use offertilized eggs or the destruction of viable human embryos and also offers thepotential for the creation of immune-matched cells and tissues that are lesslikely to be rejected following transplantation. Our collection of hpSCs, knownas UniStemCell, currently consists of 15 stem cell lines. We have facilitiesand manufacturing protocols that comply with the requirements of GoodManufacturing Practice (GMP) standards as promulgated by the U.S. Code ofFederal Regulations and enforced by the United States Food and DrugAdministration ("FDA").

COVID-19 Pandemic

The impact of the COVID-19 pandemic has been and will likely continue to beextensive in many aspects of society, which has resulted in and will likelycontinue to result in significant disruptions to the global economy, as well asbusinesses and capital markets around the world. Impacts to our business haveincluded a reduction in sales volume primarily from media sales in ourbiomedical market segment and professional channel sales in our anti-agingmarket segment, temporary or reduced occupancy of portions of our manufacturingfacilities, and disruptions or restrictions on our employee's ability to travelto such manufacturing facilities which caused minor delays in manufacturing. Wehave taken precautionary measures to better ensure the health and safety of ourworkers.

The scope and duration of these delays and disruptions, and the ultimate impactsof COVID-19 on our operations, are currently unknown. We are continuing toactively monitor the situation and may take further precautionary and preemptiveactions as may be required by federal, state or local authorities or that wedetermine are in the best interests of public health and safety. We cannotpredict the effects that such actions, or the impact of COVID-19 on globalbusiness operations and economic conditions, may continue to have on ourbusiness, strategy, collaborations, or financial and operating results.

Market Opportunity and Growth Strategy

Therapeutic Market - Clinical Applications of hpSCs for Disease Treatments

We believe that the most promising potential clinical applications of ourtechnology are Parkinson's disease ("PD"), traumatic brain injury ("TBI"), andstroke. Using our proprietary technologies and know-how, we are creating neuralstem cells from hpSCs as a potential treatment of PD, TBI, and stroke.

PD: Our most advanced project is the neural stem cell program for the treatmentof Parkinson's disease. In 2013, we published in Nature Scientific Reports thebasis for our patent on a new method of manufacturing neural stem cells, whichis used to produce the clinical-grade cells necessary for future clinicalstudies and commercialization. In 2014, we completed the majority of thepreclinical research, establishing the safety profile of NSC in various animalspecies, including non-human primates. In June 2016, we published the results ofa 12-month pre-clinical non-human primate study, which demonstrated the safety,efficacy and mechanism of action of the ISC- hpNSC. In 2017, we dosed fourpatients in our Phase I trial of ISC-hpNSC, human parthenogenetic stemcell-derived neural stem cells for the treatment of Parkinson's disease. Wereported 12-month results from the first cohort and 6-month interim results ofthe second cohort at the Society for Neuroscience annual meeting (Neuroscience2018) in November 2018. In April 2019, we announced

--------------------------------------------------------------------------------

the completion of subject enrollment, with the 12th subject receiving atransplantation of the highest dose of cells. There have been no safety signalsor serious adverse effects seen to date as related to the transplantedISC-hpNSC cells.

We announced a successful completion of the dose escalating phase 1 clinicaltrial in June 2021. In terms of preliminary efficacy, where scores are comparedagainst baseline before transplantation, we observed a potential dose-dependentresponse with an apparent peak effectiveness at our middle dose. The % OFF-Time,which is the time during the day when levodopa medication is not performingoptimally and PD symptoms return, decreased an average 47% from the baseline at12 months post transplantation in cohort 2. This trend continued through 24months where the % OFF-Time in the second cohort dropped by 55% from the initialreading. The same was true for % ON-Time without dyskinesia, which is the timeduring the day when levodopa medication is performing optimally withoutdyskinesia. The % ON-Time increased an average of 42% above the initialevaluation at 12 months post-transplantation in the second cohort.

Stroke: In August 2014, we announced the launch of a stroke program, evaluatingthe use of ISC-hpNSC transplantation for the treatment of ischemic stroke usinga rodent model of the disease. The Company has a considerable amount of safetydata on ISC-hpNSC from the Parkinson's disease program and, as there isevidence that transplantation of ISC-hpNSC may improve patient outcomes as anadjunctive therapeutic strategy in stroke, having a second program that can usethis safety dataset is therefore a logical extension. In 2015, the Companytogether with Tulane University demonstrated that NSC can significantly reduceneurological dysfunction after a stroke in animal models.

TBI: In October 2016, we announced the results of the pre-clinical rodent study,evaluating the use of ISC-hpNSC transplantation for the treatment of TBI. Thestudy was conducted at the University of South Florida Morsani College ofMedicine. We demonstrated that animals receiving injections of ISC-hpNSCdisplayed the highest levels of improvements in cognitive performance and motorcoordination compared to vehicle control treated animals. In February 2019, wepublished the results of the pre-clinical study in Theranostics, a prestigiouspeer-reviewed medical journal. The publication titled, "Human parthenogeneticneural stem cell grafts promote multiple regenerative processes in a traumaticbrain injury model," demonstrated that the clinical-grade neural stem cells usedin our Parkinson's disease clinical trial, ISC-hpNSC, significantly improvedTBI-associated motor, neurological, and cognitive deficits without any safetyissues.

Anti-Aging Cosmetic Market - Skin Care Products

Our wholly owned subsidiary Lifeline Skin Care, Inc. ("LSC") develops,manufactures, and sells anti-aging skin care products based on two coretechnologies: encapsulated extract derived from hpSC and specially selectedtargeted small molecules. LSC's products include:

ProPlus Advanced Defense Complex

ProPlus Advanced Recovery Complex

ProPlus Advanced Aqueous Treatment

ProPlus Collagen Booster (Advanced Molecular Serum)

LSC's products are regulated as cosmetics. LSC's products are sold domesticallythrough a branded website, Amazon, and ecommerce partners.

Biomedical Market - Primary Human Cell Research Products

Our wholly-owned subsidiary LCT develops, manufactures and commercializesapproximately 200 human cell culture products, including frozen human "primary"cells and the reagents (called "media") needed to grow, maintain anddifferentiate the cells. LCT's scientists have used a standardized, methodical,scientific approach to basal medium optimization to systematically produceoptimized products designed to culture specific human cell types and to elicitspecific cellular behaviors. These techniques can also be used to produceproducts that do not contain non-human animal proteins, a feature desirable tothe research and therapeutic markets. Each LCT cell product is quality testedfor the expression of specific markers (to assure the cells are the correcttype), proliferation rate, viability, morphology and absence of pathogens. Eachcell system also contains associated donor information and all informed consent

--------------------------------------------------------------------------------

requirements are strictly followed. LCT's research products are marketed andsold by its internal sales force, OEM partners and LCT brand distributors inEurope and Asia.

Results of Operations

Comparison of the Years Ended December 31, 2022 and 2021

General and administrative 3,357 4,084 (727 ) -18 %Selling and marketing 1,245 1,383 (138 ) -10 %Research and development 492 695 (203 ) -29 %Other income (expense), net (148 ) 1,022 (1,170 ) -114 %Net loss

Product sales revenue for the year ended December 31, 2022 was $8,180 thousand,compared to $7,176 thousand for the year ended December 31, 2021. The increasewas primarily attributable to a $1,195 thousand increase in sales in ourbiomedical market segment, largely offset by a $191 thousand decrease in salesin our anti-aging market during 2022 compared to 2021.

Our biomedical product sales continue to recover from the impacts of COVID-19 aspurchasing activity from our original equipment manufacturer customers accountfor approximately 86% of the increase in this market segment.

Our professional line of anti-aging products was discontinued starting in 2022resulting in only one product line and less demand. The products that werelargely marketed to medical professionals and spas that offered walk-up retail,experienced a significant decline in customer demand due to COVID-19 and therelated restrictions during the year ended December 31, 2021. The impact ofshutting down to one line has been partially mitigated by our expanded offeringof professional skin care products through our ecommerce channel. Anti-agingproduct sales through our ecommerce channel decreased slightly year-over-year.

Cost of Sales

Cost of sales for the year ended December 31, 2022 was $3,269 thousand, comparedto $2,935 thousand for the year ended December 31, 2021. There was an increasein cost of sales as a result of the increase in product sales in our biomedicalmarket segment of $589 thousand; however, this was offset by significantfavorable manufacturing variances due to the increased sales volumes resultingin a net increase of $172 thousand year over year. There also was an increase incost of goods sold in our anti-aging market of approximately $162 thousand, netprimarily attributable to large amounts of expired product reserves booked as aresult of the change in sales channel and lines of business from 2021 to 2022.In response to previous material scarcities primarily in plastics, we haveincreased our supply of raw materials on hand and have, where possible, sourcedmaterials from alternative vendors.

Cost of sales consists primarily of salaries and benefits associated withemployee efforts expended directly on the production of the Company's products,as well as related direct materials, general laboratory supplies and anallocation of overhead. We aim to continue refining our manufacturing processesand supply chain management to improve the cost of sales as a percentage ofrevenue for both LCT and LSC.

General and Administrative Expenses

General and administrative expenses for the year ended December 31, 2022 was$3,357 thousand, compared to $4,084 thousand for the year ended December 31,2021. The decrease was primarily attributable to a decrease in personnel-relatedcosts including stock-based compensation, human resources, workers compensationand relocation expenses of $385 thousand, a $250 thousand decrease in patentimpairment charges, $124 thousand decrease in building expenses, $49 thousanddecrease in computer and amortization expenses,

--------------------------------------------------------------------------------

and $60 thousand in legal and directors and officers insurance fees decreases,partially offset by $134 thousand increase primarily in consulting and servicingfees.

Our general and administrative expenses consist primarily of employee-relatedexpenses including salaries, bonuses, benefits and share-based compensation.Other significant costs include facility costs not otherwise included in orallocated to other departments, legal fees not relating to patents and corporatematters, and fees for accounting and consulting services.

Selling and Marketing Expenses

Selling and marketing expenses for the year ended December 31, 2022 was $1,245thousand, compared to $1,383 thousand for the year ended December 31, 2021. Thedecrease was primarily attributable to a $69 thousand decrease inpersonnel-related costs, sales commissions, stock-based compensation andconsultant costs, primarily as a result of headcount reductions and changes inour anti-aging segment year over year. There was a decrease of approximately $16thousand from dues and subscriptions, licensing and other merchant fees, andapproximately $35 thousand decrease in building and other expenses. The decreasewas partially offset by an increase of $61 thousand in marketing materials andwebsite and search engine maximization advertising expense.

Our sales and marketing expenses consist primarily of employee-related expensesincluding salaries, bonuses, benefits, and share-based compensation for ourBiomedical and Anti-aging cosmetic businesses. Other significant costs includefacility costs not otherwise included in or allocated to other departments aswell as marketing material costs, permits and licenses for ecommerce, and otheradvertising type expenses.

Research and Development Expenses

Research and development expenses for the year ended December 31, 2022 was $492thousand, compared to $695 thousand for the year ended December 31, 2021. Thedecrease was primarily attributable to $168 thousand decrease in buildingrelated expenses, $73 thousand decrease in consulting services, $54 thousanddecrease in material, supplies and licensing related expenses partially offsetby $50 thousand in personnel-related costs and stock-based compensation as aresult of increased salaries in Research and Development after salary raisefreezes during the pandemic and $42 thousand decrease in our Australian researchand development tax credit related to qualifiable expenditures from our researchand development activities of our Australian subsidiary, Cyto Therapeutics.

Our research and development efforts are primarily focused on the development oftreatments for Parkinson's disease, traumatic brain injury, liver diseases,stroke, and the creation of new GMP grade human parthenogenetic stem cell lines.These projects are long-term investments that involve developing both new stemcell lines and new differentiation techniques that can provide higher puritypopulations of functional cells. Research and development expenses are expensedas incurred and are accounted for on a project-by-project basis. However, muchof our research has potential applicability to each of our projects.

Other Income (Expense), Net

Other income, net, for the year ended December 31, 2022 was a loss of $148thousand, compared to other income, net, of $1,022 thousand for the year endedDecember 31, 2021. The decrease was primarily attributable to the gainrecognized on the forgiveness of debt related to our First and Second Draw Loanunder the PPP, collectively totaling $1,137 thousand in 2021. The remainder ofthe difference relates to accrued interest on outstanding debt.

Liquidity and Capital Resources

The Company enters into contracts in the normal course of business with variousthird-party consultants and contract research organizations ("CRO") forpreclinical research, clinical trials and manufacturing activities. Thesecontracts generally provide for termination upon notice. Actual expensesassociated with these arrangements may be higher or lower due to variousreasons, including but not limited to, progress of our development products,enrollment in clinical trials, and product and personnel delays due to COVID.Other short-term and long terms commitments that would affect liquidity includelease obligations as well as related party debt repayments.

As of December 31, 2022, we had an accumulated deficit of approximately $110.3million and have, on an annual basis, incurred net losses and negative operatingcash flows since inception. Substantially all of our operating losses haveresulted from the funding of our research and development programs and generaland administrative expenses associated with our operations. We incurred netlosses of $331 thousand and $899 thousand for years ended December 31, 2022 and2021, respectively. As of December 31, 2022, we had cash of $742 thousand,compared to $171 thousand as of December 31, 2021.

--------------------------------------------------------------------------------

Licensed Patents

The Company had a minimum annual license fee of $75 thousand payable in twoinstallments per year to Astellas Pharma pursuant to the amended UMass IPlicense agreement. The patents, along with the license agreement, expired at theend of July 2022. These patents were fully impaired in prior years and thereforethe expiration did not result in any additional impairment for the year endedDecember 31, 2022. The Company does not anticipate any short-term liquidityeffects from this obligation as we will no longer be liable for the annuallicensing fee.

Cash Flows

Comparison of the Years Ended December 31, 2022 and 2021

The following table provides information regarding our cash flows for the yearsended December 31, 2022 and 2021 (in thousands):

Net cash provided by (used in) operating activities $ 332 $ (1,297 )Net cash used in investing activities

Operating Cash Flows

For the year ended December 31, 2022, net cash provided by operating activitieswas $332 thousand, resulting primarily from our net loss of $331 thousand, andnet changes in operating assets and liabilities of $226 thousand, consistingprimarily of an increase in accrued liabilities of $104 thousand, inventory,net, of $114 thousand, and decrease in accounts payable of $186 thousand andoperating lease liabilities of $179 thousand. The decrease in cash is offset bynet recurring non-cash adjustments of $890 thousand, including depreciation andamortization, stock-based compensation, operating lease expense, and interestexpense. For the year ended December 31, 2021, net cash used in operatingactivities was $1,297 thousand, resulting primarily from our net loss of $899thousand and gain on forgiveness of debt of $1,137 thousand, offset by non-cashadjustments of stock-based compensation expense of $644 thousand, operatinglease expense of $289 thousand, and depreciation and amortization of $262thousand, coupled with net changes in operating assets and liabilities of $823thousand.

Investing Cash Flows

Net cash used in investing activities for the year ended December 31, 2022 was$11 thousand, compared to $45 thousand for the year ended December 31, 2021. Thedecrease was attributable to a decrease in payments for patent licenses of $12thousand and net decrease in the purchases of property and equipment of $22thousand year-over-year.

Financing Cash Flows

Net cash provided by financing activities for year ended December 31, 2022 was$250 thousand, compared to $824 thousand for the year ended December 31, 2021.For the year ended December 31, 2022, net cash provided by financing activitiesconsisted of $250 thousand in proceeds from a note payable from a related party.For the year ended December 31, 2021, net cash provided by financing activitiesconsisted of $474 thousand in proceeds from our second draw loan under thePaycheck Protection Program, coupled with proceeds from a note payable from arelated party of $350 thousand.

Liquidity and Going Concern

Management continues to evaluate various financing sources and options to raiseworking capital to help fund our current research and development programs andoperations. We will need to obtain significant additional capital from sourcesincluding exercise of outstanding warrants, equity and/or debt financings,license arrangements, grants and/or collaborative research arrangements tosustain our operations and develop products. Unless we obtain additionalfinancing, we do not have sufficient cash on hand to sustain our operations atleast through one year after the issuance date. The timing and degree of anyfuture capital requirements will depend on many factors, including:

the accuracy of the assumptions underlying the estimates for capital needs in2023 and beyond;

--------------------------------------------------------------------------------

the extent that revenues from sales of LSC and LCT products cover the relatedcosts and provide capital;

scientific progress in our research and development programs;

the magnitude and scope of our research and development programs and our abilityto establish, enforce and maintain strategic arrangements for research,development, clinical testing, manufacturing and marketing;

our progress with pre-clinical development and clinical trials;

the extent to which third party interest in Company's research and commercialproducts can be realized through effective partnerships;

the time and costs involved in obtaining regulatory approvals;

the costs involved in preparing, filing, prosecuting, maintaining, defending andenforcing patent claims;

the number and type of product candidates that we pursue; and

the development of major public health concerns, including the novel coronavirusoutbreak or other pandemics arising globally, and the current and future impactof it and COVID-19 on our business operations and funding requirements.

Our failure to raise capital or enter into applicable arrangements when neededwould have a negative impact on our financial condition. Additional debtfinancing may be expensive and require us to pledge all or a substantial portionof its assets. Further, if additional funds are obtained through arrangementswith collaborative partners, these arrangements may require us to relinquishrights to some of its technologies, product candidates or products that we wouldotherwise seek to develop and commercialize on its own. If sufficient capital isnot available, we may be required to delay, reduce the scope of or eliminate oneor more of its product initiatives.

We currently have no revenue generated from our principal operations intherapeutic and clinical product development through research and developmentefforts. There can be no assurance that we will be successful in maintaining ournormal operating cash flow and obtaining additional funds and that the timing ofour capital raising or future financing will result in cash flow sufficient tosustain our operations at least through one year after the issuance date.

Based on the factors above, there is substantial doubt about our ability tocontinue as a going concern. The consolidated financial statements were preparedassuming that we will continue to operate as a going concern. The consolidatedfinancial statements do not include any adjustments to reflect the possiblefuture effects on the recoverability and classification of assets or the amountsand classification of liabilities that may result from the outcome of thisuncertainty. Management's plans in regard to these matters are focused onmanaging our cash flow, the proper timing of our capital expenditures, andraising additional capital or financing in the future.

Critical Accounting Estimates

Our discussion and analysis of our financial condition and results of operationsis based upon our consolidated financial statements, which have been prepared inaccordance with accounting principles generally accepted in the United States.The preparation of these financial statements requires us to make estimates andassumptions that affect the reported amounts of assets, liabilities, revenues,expenses and related disclosures. On an on-going basis, we evaluate ourestimates and assumptions and we base our estimates on historical experience andon various other assumptions that are believed to be reasonable under thecircumstances, the results of which form the basis for making judgments aboutthe carrying values of assets and liabilities that are not readily apparent fromother sources. Actual results may differ from these estimates under differentassumptions and conditions.

Our significant accounting policies are more fully described in Note 1 to ourconsolidated financial statements included elsewhere in this Annual Report onForm 10-K. Our most critical accounting estimates include current andnon-current inventory, intangible assets, and stock-based compensation. Wereview our estimates and assumptions periodically and reflect the effects ofrevisions in the period in which they are deemed to be necessary. We believethat the following accounting policies are critical to the judgments andestimates used in preparation of our consolidated financial statements.

Allowance for Excess and Obsolete Inventory

Our inventory, particularly within our biomedical market, consists of certainproducts that have a long or, when frozen, indefinite shelf life. In addition,future demand for our products is uncertain. Accordingly, at each reportingperiod, we estimate a reserve for allowance for excess and obsolete inventory.This estimate is computed using historical sales data and inventory turnoverrates, which are subjective in nature and fluctuate between periods. Theestablishment of a reserve for excess and obsolete inventory establishes a newcost basis in the inventory with a corresponding adjustment to cost of sales. Ifwe are able to sell such inventory, any related reserves

--------------------------------------------------------------------------------

Originally posted here:
INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com

Artificial Wombs Will Change Abortion Rights Forever – WIRED

One day, human wombs may no longer be necessary for bearing children. In 2016, a research team in Cambridge, England, grew human embryos in ectogenesisthe process of human or animal gestation in an artificial environmentfor up to 13 days after fertilization. A further breakthrough came the next year, when researchers at the Childrens Hospital of Philadelphia announced that they had developed a basic artificial uterus named the Biobag. The Biobag sustained lamb fetuses, equivalent in size and development to a human fetus at roughly 22 weeks gestation, to full term successfully. Then, in August of 2022, researchers at the Weizmann Institute of Science in Israel created the worlds first synthetic embryos from mice stem cells. In the same month, scientists at the University of Cambridge used stem cells to create a synthetic embryo with a brain and a beating heart.

Ectogenesis has the potential to transform reproductive labor and reduce risks associated with reproduction. It could enable people with wombs to reproduce as easily as cisgender men do: without risks to their physical health, their economic safety, or their bodily autonomy. By removing natural gestation from the process of having children, ectogenesis could offer an equal starting point for people of all sexes and genders, particularly for queer people who wish to have children without having to rely on the morally ambiguous option of surrogacy.

If safe and effective ectogenesis were made accessibleas opposed to being privatized, which risks further entrenching social and economic inequalitiesthe technology could result in a more prosperous and more equal society. Yet development of ectogenesis could also wreak havoc on the hard-fought right of women and people with wombs to access safe and legal abortion, and could significantly weaken abortion policies worldwide.

View more

Current philosophical literature and legislation on abortion revolve around three debates: the moral status of the fetus, womens bodily autonomy, and the fetuss viability. Ectogenesis means that fetuses at all stages will be viable, so the technologys development will impact all three of these debates.

Antiabortion advocates tend to argue that the fetus is human at conception and that killing an innocent person by abortion is immoral. Pro-choice defendants of abortion rights, meanwhile, emphasize bodily autonomy and draw on arguments such as those made by philosopher Judith Thomson in her highly influential 1971 essayA Defense of Abortion.Thomson argues that even if a fetus is a person at the moment of conception, a womans bodily autonomyher right to decide what can happen in and to her bodymeans that it is morally acceptableto remove the fetus from her body. The ensuing death of the fetus is an inevitable consequence of ending the pregnancy, rather than the womans intention. This means that abortion is more an act of self-defense on the womans part than an intentional killing.

Meanwhile, in an effort to strike a balance between womens bodily autonomy and the fetuss moral status, abortion legislation in many countries uses fetal viabilitya fetuss ability to survive outside the womb, including when assisted by medical devicesas a measure to determine the moral acceptability of abortion. Under law in many places where abortion is permitted, the fetuss right to life transcends a womans bodily autonomy at the point when the fetus becomes viable. Abortion law in the United Kingdom, for example, allows abortion only before 24 weeks of fetal development, the earliest development stage from which a fetus can survive with the help of medical devices.

Successful ectogenesis would render the fetus viable at a very early stage, possibly even from conception.If ectogenesiseven partial ectogenesisbecomes available, it would then be possible for an unwanted fetus to be transferred into an artificial womb to continue developing without harming a womans bodily autonomy, depending on how the fetus is removed. In this way, women would be able to end their pregnancy without resorting to traditional abortion. Given this option, if a woman chooses traditional abortion regardless, the abortion will appear more like an intentional killing.

As a result, if abortion jurisprudence continues using fetal viability as its central criterion for whether abortion should be allowed, abortion in the ectogenesis era risks becoming less morally and socially acceptable than it is today.

There is a real risk that future legislation, especially in conservative communities, states, and countries, will fully prohibit abortion once ectogenesis becomes available. Though ectogenesis would make it possible to avoid pregnancy without ending the fetuss life, such an outcome is not necessarily a positive from a feminist point of view. The reality is that some women who choose abortion do so not only to end the pregnancypreserving bodily autonomybut also to avoid becoming a biological mother. Ectogenesis would still make hera biological mother against her will, and using it as an alternative to traditional abortion could therefore violate her reproductive autonomy.

Another possible scenario is one in which a woman wants to abort, but her partner wishes her not to. In the absence of the bodily autonomy argument, the fetuss viability and supposed right to develop, combined with the partners wishes, could result in a situation that pressures women to transfer the fetus to an artificial womb.

As ectogenesis develops further, activists and legislators will need to address the question: At what point is it justifiable for a woman to choose traditional abortion when there is another option that guarantees both the ending of the pregnancy and the fetuss ongoing chance at life? At what point should the desires of women not to become biological mothers outweigh a fetuss purported right to existence?

In exploring this question, it is useful to consider why some women might resist becoming biological mothers, even if they wouldnt need to shoulder the burden of raising a child that could be adopted after being transferred and fully developed in an artificial uterus. Some hesitation would likely be caused by social attitudes and pressures related to biological parenthood. Even if a legal system has absolved a biological mother of legal obligations toward her biological child, she might still feel a sense of obligation toward the child or guilt toward herself, for not enshrining the self-sacrificing qualities often idealized and associated with motherhood. Living with these emotions could cause the biological mother psychological harm, and she might also be at risk of encountering related social stigma.

Granted, there still remains the question of whether the desire to avoid possible social stigma or psychological distress is enough to outweigh a fetuss purported right to life. We believe that this question is highly debatable, depending on both the extent of the social stigma and the developmental stage of the fetus. Still, if social pressures and stigma are enough that a woman who uses ectogenesis would suffer, the desire of such a woman not to become a mother deserves to be respected, especially in the early stages of a fetuss development.

Legislation surrounding ectogenesis will also have to take bodily autonomy into account by ensuring that women have the right to decide which surgeries they allow to be performed on their bodies. Although it is unclear what form the procedure of transferring a fetus to an artificial uterus will take, it will almost certainly be invasive, likely similar to a cesarean section, at least for later-stage pregnancies. Women should have the right to reject ectogenetic surgery on the grounds of bodily autonomy; otherwise,as Canadian philosopher Christine Overall has pointed out, a forced transfer procedure would be akin to deliberately stealing human organs, which is deeply unethical.

Ectogenesis complicates abortion ethics, and forcing women to undergo ectogenetic surgery impinges on both their reproductive autonomy and their bodily freedom. Allowing early abortion in a world where ectogenesis exists could be a good compromise that reduces complications and ensures womens rights. However, for womens reproductive rights to be assured, abortion must remain an available option, even after ectogenesis becomes reality.

Future legislation will need to guarantee that ectogenesis is a choice rather than a new form of coercion. The right to abortion will need to be recentered in law around the value of reproductive autonomy and the right not to become a biological parent against ones will, as opposed to fetus viability. As this legal debate gains the attention of politicians, legislators, community leaders, and the wider public, how much people and societies respect womens right to choose will become more apparent than ever.

Read more:
Artificial Wombs Will Change Abortion Rights Forever - WIRED

Current Trends of iPSC Manufacturing and Clinical Applications – An … – geneonline

Expanding on previous feature articles and conference highlights, GeneOnline is honored to have Dr. Xianmin Zeng, the Founder and CEO of RxCell, a Bay Area-based biotechnology company, and Visiting Professor at the National University of Singapore Yong Loo Lin School of Medicine and, for an interview as part of the latest article on the Cell and Gene Therapy Special Series. During the interview, she covered important issues such as the latest trends in the induced pluripotent stem cells (iPSC) industry, the development of iPSC technology, and the clinical benefits of iPSC therapy.

Dr. Zeng began by describing her journey into the field of stem cell research. After receiving her Ph.D. from the Technical University of Denmark in 2000, she moved to the U.S. and joined the National Institutes of Health (NIH) as a postdoctoral researcher, working in the field of neuroscience and using the then-emerging embryonic stem cell technology to create dopaminergic neurons that could be used to develop potential cell replacement therapy in Parkinson's disease. In 2005, she moved to California to join the Buck Institute for Age Research, where she set up a stem cell research program. Following the advent of iPSC technology in 2006, her team started using iPSC as a cell source for developing new therapies, as well as for disease modeling and drug screening.

View post:
Current Trends of iPSC Manufacturing and Clinical Applications - An ... - geneonline

Would you eat lab-grown pork to save the environment? – PHL17 Philadelphia

Ray Copley, Manager of Media and Cell Line Development at Clever Carnivore, looks at cells growing in a nutrient-rich medium. Courtesy of Clever Carnivore.

CHICAGO (NewsNation) The process of growing meat made in a lab from a single animal cell looks a lot like making cotton candy.

Tiny white flecks spin in a red liquid feeding their growth, clumping together over time until theres enough muscle tissue to create a steak, chicken nuggets or, in the case of Clever Carnivore, a Chicago-style sausage.

Its full circle: (Chicagos history) being the meat packing capital, the Stockyards, and bringing that back in a sustainable, eco-friendly, cruelty-free way, said Ray Copley, a biomedical engineer who manages the startups cell line development.

Clever Carnivore is one of a handful of startups working to grow meat that is identical on a cellular level to farm-raised meat without the need to raise livestock.

Proponents say that compared to traditional meat, this cultivated meat could cut down greenhouse gas emissions by 87%, and reduce supply chain volatility that has wreaked havoc on food prices in recent years. It uses less land, water and energy to produce.

It may also be an appealing solution for people who want to eat more sustainably but arent willing to give up meat.

If cultivated meat doesnt taste the same, cook the same and come in at the same price point we know (it) can never convert the majority of consumers, said Virginia Ramos, who founded the company with her husband Paul Burridge.

While the advent of test-tube meat might seem like a scene out of The Hitchhikers Guide to the Galaxy, such a future is already here. Diners in Singapore have been able to taste cultivated chicken in high-end restaurants since 2020.

In the U.S., the Food and Drug Administration just approved a second brand of lab-grown chicken for the market. However, its manufacture is likely too expensive for it to show up in the average grocery store just yet.

Tyson one of the largest meat producers in the world has contributed funding to Clever Carnivore, which is currently working to start the process for FDA approval. The organizations goal is to offer consumers a $1 sausage comparable in price and substance on the market in early 2025.

Such breakthroughs are the pinnacle of a decadelong movement to find an alternative to the traditional way a pork chop makes its way to your corner store. The global market for meat substitutes has grown by 48% annually since 2013, according to data analyzed by Statista.

Still, a lot of people continue to prefer meat $1.3 trillion worth this year the analysis found. By comparison, alternative meat solutions are predicted to make $13 billion globally.

Clever Carnivores method is similar to that used in stem cell research, an area in which Burridge has more than a decade of expertise.

Scientists take a small skin biopsy from an adult pig, then turn it back into an embryonic-like stem cell through a process called pluripotency. This cell is then placed in a nutrient-rich liquid and stored at a pigs internal body temperature while the cells replicate.

When there are enough cells, theyre then put in a bioreactor a machine that gently spins, causing the replicating muscle cells to clump together. Once the cells reach a specific mass, they can be combined with animal or plant fat, spices or flavorings to create essentially a biological replica of what you see at a grocery store.

But not all cultivated meat is created equal, Ramos said. Some companies use genetic modification, add growth hormones or include animal-derived ingredients which may not be palatable to consumers. Others use methods that contain both skin and muscle cells in the final product, impacting the flavor.

Clever Carnivore stresses that Burridges expertise allows them to avoid all that, more or less just kind of recreating the basic conditions necessary to sustain the cell growth, basically creating the conditions inside a pig, outside of a pig, Ramos said.

And those arent the only challenges facing companies trying to perfect this new fare.

Some experts point to companies using more energy and disposable plastic than expected, throwing doubts on the industrys ability to substantially reduce climate change effects. Others say theres still a lot we dont know about the long-term effects of growing muscle tissue so quickly.

But despite the unknowns, many say cultivated meat will revolutionize how Americans think about the question, Where does my food come from?

Everything is identified, everything that the cells have consumed or been exposed to, all the way from the original animal, Copley said.

Continued here:
Would you eat lab-grown pork to save the environment? - PHL17 Philadelphia

Base editing of SMN2 gene restores production of SMN protein, curing spinal muscular atrophy in mice – Medical Xpress

This article has been reviewed according to ScienceX's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

by Bob Yirka , Medical Xpress

(A) Immunofluorescence images of spinal cord sections from wild-type 7SMA mice at 25 weeks that received AAV9-ABE + AAV9-GFP in a 10:1 ratio by neonatal ICV injection, stained for GFP to indicate AAV transduction, NeuN as a marker of post-mitotic neurons, and DAPI to stain all nuclei. (B) In vivo base editing conversion of C6T in the spinal cord of 7SMA mice treated with AAV9-ABE + AAV9-GFP in bulk dissociated tissue, and GFP+ enriched nuclei. (C) CIRCLE-Seq nominations of candidate off-target sites in NIH3T3 cell genomic DNA treated in vitro with purified Spy-mac nuclease and P8 sgRNA. Mismatches at each off-target locus are shown relative to the sgRNA above. (D) On-target and off-target base editing of strategy D10 in 7SMA mESCs. Bars show editing of the highest edited nucleotide (P# shown in parenthesis) at each locus. (E) Fluorescence imaging of CND and MND differentiated 7SMAmESCs that harbor the Mnx1:GFP reporter of motor neurons and stably integrated with the D10 ABE strategy. (F) RT-qPCR for ABE8e expression in 7SMAmESCs (n=3) and differentiated MND (n=3) and CND (n=3) populations, previously transfected with the D10 strategy. (G) Gene expression analysis of 7SMAmESCs (n=3), and CND (n=3) and MND (n=3) differentiated cells showing expression levels of various motor neuron specific, neuron specific, spinal cord patterning, glia, and embryonic stem cell markers. Credit: Science (2023). DOI: 10.1126/science.adg6518

A team of medical researchers affiliated with a host of institutions in the U.S. has used base editing to restore the natural production of the SMN protein in mice, effectively curing spinal muscular atrophy (SMA) in the rodents. In their paper published in the journal Science, the group describes their base editing approach and its performance in restoring natural SMN production in mice afflicted with SMA.

SMA is one of the leading causes of infant mortality in humans. Babies born with the condition have a mutation in the SMN1 gene, resulting in production of insufficient amounts of the protein SMN, leading to neural deterioration and death. Many babies born with the condition who are diagnosed early enough are given drugs to increase production of SMN artificially, which slows progression of the disease, but cannot stop it completely. Thus, other therapies are needed.

In this new effort, the researchers used base editing, a kind of gene editing that is done chemically, to treat the disease in mice. Base editing is typically used to make single-nucleotide changes in a genome, as was done in this case. A recording of David R. Liu's lecture on base editing and prime editing. Credit: David R. Liu

In this particular instance, the change was made to the SMN2 gene, which normally partially encodes for production of SMNthe changes the team made fully activated the gene, allowing for more production of SMN. The SMN2 gene is related to the SMN1 gene, but there is an important difference: SMN2 has a C6>T mutation that makes it unable to regulate SMN protein production. Altering the mutation in a way that made it identical to the unmutated SMN1 gene removed this restriction, allowing the gene to encode for unlimited amounts of SMN.

Close monitoring of the altered mice showed the base editing restored production of SMN to normal levels, preventing neural degeneration. They also found that in cases where degeneration had already occurred, base editing led to regeneration and improved motor function. They also found that editing the mice's genes increased lifespan from an average of just 17 days (for a control group) to more than 100 days.

More information: Mandana Arbab et al, Base editing rescue of spinal muscular atrophy in cells and in mice, Science (2023). DOI: 10.1126/science.adg6518

Journal information: Science

2023 Science X Network

Original post:
Base editing of SMN2 gene restores production of SMN protein, curing spinal muscular atrophy in mice - Medical Xpress

Spatial multiomics map of trophoblast development in early pregnancy – Nature.com

Human samples

Placental and decidual samples used for the in vivo and in vitro profiling were obtained from elective terminations from: The MRC and Wellcome-funded Human Developmental Biology Resource (HDBR, https://www.hdbr.org), with appropriate maternal written consent and approval from the Fulham Research Ethics Committee (REC reference 18/LO/0822) and Newcastle and North Tyneside 1 Research Ethics Committee (REC reference 18/NE/0290). The HDBR is regulated by the UK Human Tissue Authority (HTA; https://www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of Practice.Addenbookes Hospital (Cambridge) under ethical approval from the Cambridge Local Research Ethics Committee (04/Q0108/23), which is incorporated into the overarching ethics permission given to the Centre for Trophoblast Research biobank for the Biology of the Human Uterus in Pregnancy and Disease Tissue Bank at the University of Cambridge under ethical approval from the East of England-Cambridge Central Research Ethics Committee (17/EE/0151) and from the London-Hampstead Research Ethics Committee (20/LO/0115).

Placentaldecidual blocks (P13, P14 and P34) were collected prior to 1 September 2006 and consent for research use was not obtained. These samples are considered Existing Holdings under the Human Tissue Act and as such were able to be used in this project. All the other tissue samples used for this study were obtained with written informed consent from all participants in accordance with the guidelines in The Declaration of Helsinki 2000.

All samples profiled were histologically normal.

TSC lines BTS5 and BTS11 derived from human blastocysts by H. Okae and colleagues5 were used in this study. Informed consent was obtained from all donors prior to the establishment of the cell line and the study was approved by the Ethics Committee of Tohoku University School of Medicine (Research license 2016-1-371), associated hospitals, the Japan Society of Obstetrics and Gynecology and the Ministry of Education, Culture, Sports, Science and Technology (Japan). This work was internally approved by HuMFre-20-0005 at the Wellcome Sanger Institute and the lines were covered by a Conditions of Use agreement with the Tohoku University School of Medicine (internal reference CG175).

Fresh tissue samples of human implantation sites were embedded in cold OCT medium and flash-frozen using a dry ice-isopentane slurry as described46.

Quality of archival frozen tissue samples was assessed by extraction of RNA from cryosections using the QIAGEN RNeasy Mini Kit, according to the manufacturers instructions including on-column DNase I digestion. RNA quality was assayed using the Agilent RNA 6000 Nano Kit. All samples processed for Visium and single-nuclei had RIN values greater than 8.7.

Single-nuclei suspensions were isolated from frozen tissue sections when performing multiomic snRNA-seq, scATAC-seq and snRNA-seq, following the manufacturers instructions. For each OCT-embedded sample, 400m of tissue was prepared as 50m cryosections, which were paused in a tube on dry ice until subsequent processing. Nuclei were released via Dounce homogenization as described47.

We used the previous protocol optimized for the decidualplacental interface13. In short, decidual tissues were enzymatically digested in 15ml 0.4mgml1 collagenase V (Sigma, C9263) solution in RPMI 1640 medium (Thermo Fisher Scientific, 21875-034)/10% FCS (Biosfera, FB-1001) at 37C for 45min. The supernatant was diluted with medium and passed through a 100-m cell sieve (Corning, 431752) and then a 40-m cell sieve (Corning, 431750). The flow-through was centrifuged and resuspended in 5ml of red blood cell lysis buffer (Invitrogen, 00-4300) for 10min. Placental villi were scraped from the chorionic membrane using a scalpel and the stripped membrane was discarded. The resultant villous tissue was enzymatically digested in 70ml 0.2% trypsin 250 (Pan Biotech P10-025100P)/0.02% EDTA (Sigma E9884) in PBS with stirring at 37C for 9min. The disaggregated cell suspension was diluted with medium and passed through a 100-m cell sieve (Corning, 431752). The undigested gelatinous tissue remnant was retrieved from the gauze and further digested with 1015ml collagenase V at 1.0mgml1 (Sigma C9263) in Hams F12 medium/10% FBS with gentle shaking at 37C for 10min. The disaggregated cell suspension was diluted with medium and passed through a 100m cell sieve (Corning, 431752). Cells obtained from both enzyme digests were pooled together and passed through a 100m cell sieve (Corning, 431752) and washed in Hams F12. The flow-through was centrifuged and resuspended in 5ml of red blood cell lysis buffer (Invitrogen, 00-4300) for 10min.

Trophoblast stem cell (TSC) lines BTS5 and BTS11 derived by Okae and colleagues were grown as described previously5. In brief, TSC self-renewing medium (TSCM) components were substituted with local suppliers with the exception for 30% w/v BSA from WAKO Japan and CHIR99021 concentration was increased to 6M which maintained the undifferentiated morphology as well as preserving its EVT invasive morphology. TSCs were grown on 5gml1 Collagen IV (Corning) coated wells and early passaged cells between passages 24 and 26 were used for differentiation and analysis. For 2D differentiation into EVT identity, cells were seeded at a density of 1.3105 per cm2 (corresponding to 125,000 cells plated on a well of a 6-well plate) in EVTM1 detailed below supplemented with ice-cold 2% Matrigel GFR (Corning) before seeding on 1gml1 Collagen IV (Corning) coated wells (D0). Three days later (D3), medium was changed to EVTM2 supplemented with ice-cold 0.5% Matrigel GFR. Three days later (D6), the medium was changed to EVT medium 3 supplemented with ice-cold 0.5% Matrigel GFR. Cells were treated with TrypLE for downstream analysis 48h later (D8). For CXCL16 induction experiments, a final concentration of 100ngml1 CXCL16 (RnD 976-CX-025 with carrier, dissolved in 0.1%BSA(WAKO)/PBS) were supplemented to EVTM2 or EVTM3 and analysed 48h later. The induction was controlled by supplementing an equal volume of 0.1% BSA/PBS.

In total, six trophoblast organoids were grown and differentiated into EVT as previously described3,48. To differentiate trophoblast organoids into EVT, organoids were cultured with TOM for ~34 days and transferred into EVTM1 (+NRG1) for ~47 days. Once trophoblasts initiate their commitment into EVT (spike emergence), EVTM2 (NRG1) is added for 4 days. Donors were differentiated and collected in batches of three that were multiplexed on the same 10x Genomics reaction. Samples for donors 1, 2 and 3 were collected at 3h, 24h and 48h after the addition of EVTM2, while samples for donors 4, 5 and 6 were collected at 48h before, and then 0h, 48h and 96h after, addition of EVTM2. Organoids grown in TOM were also collected as a control at 96h.

Media compositions have been described previously3,5,48 and are shown here. TSCM: DMEM/F12 with Glutamax (Gibco) supplemented with 0.2% v/v FBS (Gibco), 0.3% wt/vol BSA (WAKO), 1% ITS-X (Gibco), 2.5gml1 l-ascorbic acid-2-phosphate (Sigma), 50ngml1 EGF (Peprotech AF-100-15), 6M CHIR99021 (Tocris 4423), 0.5M A83-01 (Tocris 2939), 1M SB43154 (Tocris 1614), 0.8mM VPA (Sigma, dissolved in H2O) and 5M Y-27632 (Millipore 688000). TOM: Advanced DMEM/F12, N2 supplement (at manufacturers recommended concentration), B27 supplement minus vitamin A (at manufacturers recommended concentration), Primocin 100gml1, N-Acetyl-l-cysteine 1.25mM, l-glutamine 2mM, recombinant human EGF 50ngml1, CHIR99021 1.5M, recombinant human R-spondin-1 80ngml1, recombinant human FGF-2 100ngml1, recombinant human HGF 50ngml1, A83-01 500nM, prostaglandin E2 2.5M, Y-27632 5M. EVTM1: Advanced DMEM/F12 (or DMEM/F12 for TSC-EVTM 2D), l-glutamine 2mM, 2-mercaptoethanol 0.1mM, penicillin/streptomycin solution 0.5% (vol/vol), BSA 0.3% (wt/vol, WAKO), ITS-X supplement 1% (vol/vol), NRG1 (Cell Signaling 5218SC) 100ngml1, A83-01 7.5M, knockout serum replacement 4% (vol/vol). EVTM2, Advanced DMEM/F12 (or DMEM/F12 for TSC-EVTM 2D), l-glutamine 2mM, 2-mercaptoethanol 0.1mM, penicillin/streptomycin solution 0.5% (vol/vol), BSA 0.3% (wt/vol, WAKO), ITS-X supplement 1% (vol/vol), A83-01 7.5M, Knockout serum replacement 4% (vol/vol) (this is the same as EVTM1 without NRG1). This medium can be stored at 4C for up to 1 week. EVTM3, DMEM/F12 (for TSC-EVTM 2D), l-glutamine 2mM, 2-mercaptoethanol 0.1mM, penicillin/streptomycin solution 0.5% (vol/vol), BSA 0.3% (wt/vol, WAKO), ITS-X supplement 1% (vol/vol), A83-01 7.5M (this is the same as EVTM1 without NRG1 or knockout serum replacement). This can be stored at 4C for up to 1 week.

Fresh frozen sections were removed from 80C storage and air dried before being fixed in 10% neutral buffered formalin for 5min. After rinsing with deionised water, slides were stained in Mayers haematoxylin solution for 90s. Slides were completely rinsed in 45 washes of deionised water, which also served to blue the haematoxylin. Aqueous eosin (1%) was manually applied onto sections with a pipette and rinsed with deionised water after 13s. Slides were dehydrated through an ethanol series (70%, 70%, 100%, 100%) and cleared twice in 100% xylene. Slides were coverslipped and allowed to air dry before being imaged on a Hamamatsu Nanozoomer 2.0HT digital slide scanner.

Large tissue section staining and fluorescent imaging were conducted largely as described previously49. Sections were cut from fresh frozen samples embedded in OCT at a thickness of 1016m using a cryostat, placed onto SuperFrost Plus slides (VWR) and stored at 80C until stained. Tissue sections were processed using a Leica BOND RX to automate staining with the RNAscope Multiplex Fluorescent Reagent Kit v2 Assay (Advanced Cell Diagnostics, Bio-Techne), according to the manufacturers instructions. Probes are listed in Supplementary Table 8. Prior to staining, fresh frozen sections were post-fixed in 4% paraformaldehyde in PBS for 68h, then dehydrated through a series of 50%, 70%, 100%, and 100% ethanol, for 5min each. Following manual pre-treatment, automated processing included heat-induced epitope retrieval at 95C for 15min in buffer ER2 and digestion with Protease III for 15min prior to probe hybridisation. Tyramide signal amplification with Opal 520, Opal 570, and Opal 650 (Akoya Biosciences) and TSA-biotin (TSA Plus Biotin Kit, Perkin Elmer) and streptavidin-conjugated Atto 425 (Sigma Aldrich) was used to develop RNAscope probe channels.

Stained sections were imaged with a Perkin Elmer Opera Phenix Plus High-Content Screening System, in confocal mode with 2m z-step size, using a 40 (NA 1.1, 0.149m/pixel) water-immersion objective. Channels: DAPI (excitation 375nm, emission 435480nm), Atto 425 (excitation 425nm, emission 463501nm), Opal 520 (excitation 488nm, emission 500550nm), Opal 570 (excitation 561nm, emission 570630nm), Opal 650 (excitation 640nm, emission 650760nm).

Confocal image stacks were stitched as two-dimensional maximum intensity projections using proprietary Acapella scripts provided by Perkin Elmer.

For the scRNA-seq experiments, cells were loaded according to the manufacturers protocol for the Chromium Single Cell 3 Kit v3.0, v3.1 and 5 v1.0 (10X Genomics). Library preparation was carried out according to the manufacturers protocol to attain between 2,000 and 10,000 cells per reaction. Libraries were sequenced, aiming at a minimum coverage of 20,000 raw reads per cell, on the Illumina HiSeq 4000 or Novaseq 6000 systems using the following sequencing format: (A) read 1: 26 cycles; i7 index: 8 cycles, i5 index: 0 cycles; read 2: 98 cycles; (B) read 1: 28 cycles; i7 index: 8 cycles, i5 index: 0 cycles; read 2: 91 cycles; (C) read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10 cycles; read 2: 90 cycles (v3.1 dual).

For the multimodal snRNA-seq and scATAC-seq experiments, cells were loaded according to the manufacturers protocol for the Chromium Single Cell Multiome ATAC + Gene Expression v1.0 to attain between 2,000 and 10,000 cells per well. Library preparation was carried out according to the manufacturers protocol. Libraries for scATAC-seq were sequenced on Illumina NovaSeq 6000, aiming at a minimum coverage of 10,000 fragments per cell, with the following sequencing format; read 1: 50 cycles; i7 index: 8 cycles, i5 index: 16 cycles; read 2: 50 cycles.

Ten-micrometre cryosections were cut and placed on Visium slides, then processed according to the manufacturers instructions. In brief, sections were fixed with cold methanol, H&E stained and imaged on a Hamamatsu NanoZoomer S60 before permeabilization, reverse transcription and cDNA synthesis using a template-switching protocol. Second-strand cDNA was liberated from the slide and single-indexed libraries were prepared using a 10x Genomics PCR-based protocol. Libraries were sequenced (1 per lane on a HiSeq 4000), aiming for 300M raw reads per sample, with the following sequencing format; read 1: 28 cycles, i7 index: 8 cycles, i5 index: 0 cycles and read 2: 91 cycles.

For each sequenced single-cell and single-nucleus RNA-seq library, we performed read alignment to the 10X Genomics GRCh38 3.0.0 human reference genome, mRNA version for scRNA-seq samples and pre-mRNA version for snRNA-seq samples, latter created following instructions from 10X Genomics: https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna. Quantification and initial quality control were performed using the Cell Ranger Software (version 3.0.2; 10X Genomics) using default parameters. Cell Ranger filtered count matrices were used for downstream analysis.

For each sequenced snRNA-seq and ATACseq (multiome) library, we performed read alignment to custom made genome consisting of 10X Genomics GRCh38 3.0.0 pre-mRNA human reference genome and 10X Genomics Cell Ranger-Arc 1.0.1 ATAC genome, created following instructions from 10X Genomics: https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/advanced/references. Quantification and initial quality control were performed using the Cell Ranger-Arc Software (version 1.0.1; 10X Genomics) using default parameters. Cell Ranger-Arc filtered count matrices were used for downstream analysis.

We used Scrublet for cell doublet calling on a per-library basis. We used a two-step diffusion doublet identification followed by Bonferroni FDR correction and a significance threshold of 0.01, as described in50. Predicted doublets were not excluded from the initial analysis, but used afterwards to flag clusters with high doublet scores.

Souporcell51 was used to deconvolute (1) maternal and fetal origin of cells and nuclei in our scRNA-seq and snRNA-seq samples (including multiome snRNA-seq); (2) assignment of cells to individuals in pooled samples (namely, samples Pla_HDBR8768477, Pla_HDBR8715512 and Pla_HDBR8715514); and (3) organoids from multiple individuals. In some samples deconvolution into maternal or fetal origin by genotype was not possible which is probably owing to the highly skewed ratio of genotypes (either extremely high (>0.95) or extremely low (<0.05) ratio of maternal to fetal droplets). In those cases, maternalfetal origin of the cells was identified using known markers from ref. 13.

Souporcell (version 2.4.0) was installed as per instructions in https://github.com/wheaton5/souporcell and used in the following way:

path_to/singularity exec ./souporcell.sif souporcell_pipeline.py -i ./cellranger_path/possorted_genome_bam.bam -b ./cellranger_path/filtered_feature_bc_matrix/barcodes.tsv -f ./genome_path/genome.fa -t 8 -o souporcell_result -k 2 --skip_remap True --common_variants ./filtered_2p_1kgenomes_GRCh38.vcf

Where k=2 corresponds to the number of individuals to be deconvoluted (in our case either mother and fetus or pooled individuals H7 and H9 in samples Pla_HDBR8768477, Pla_HDBR8715512 and Pla_HDBR8715514. The accuracy of deconvolution was evaluated in downstream analysis once cluster identity was clear from either gene expression or predictions of logistic regression. In samples where deconvolution worked successfully, inter-individual doublets were further excluded from downstream analysis.

To assess which genes in the scRNA-seq and snRNA-seq data were high in ambient RNA (soup) signal (further referred to as noisy genes), the following approach was undertaken separately for all the scRNA-seq and snRNA-seq samples: (1) Read in all the raw and filtered count matrices for each sample produced by Cell Ranger Software. (2) Discard droplets with < 5 unique moleular identifiers (UMIs) (likely to be fake droplets from sequencing errors). (3) Only keep data from samples which we further consider as noisy (where Fraction reads in cells reported by Cell Ranger is less than 70% (guided by 10X Genomics recommendations: https://assets.ctfassets.net/an68im79xiti/163qWiQBTVi2YLbskJphQX/e90bb82151b1cdab6d7e9b6c845e6130/CG000329_TechnicalNote_InterpretingCellRangerWebSummaryFiles_RevA.pdf). (4) Take the droplets that are in raw but are not in filtered matrices considering them as empty droplets. (5) Concatenate all raw objects with empty droplets into 1 joint raw object and do the same for filtered. (6) For all genes calculate soup probability as defined with the following equation: (P={E}_{g}^{{rm{empty}},{rm{droplets}}}/({E}_{g}^{{rm{empty}},{rm{droplets}}}+{E}_{g}^{{rm{cells}}/{rm{nuclei}}})), where ({E}_{g}^{{rm{empty}};{rm{droplets}}}) is the total sum of expression (number of UMI counts) of gene g in empty droplets, and ({E}_{g}^{{rm{cells}}/{rm{nuclei}}}) is the total sum of expression counts of gene g in droplets that are considered as cells/nuclei by Cell Ranger. (7) For all genes calculate number of cells/nuclei where the gene is detected at >0 expression level (UMI counts). (8) Label genes as noisy if their soup probability exceeds 50% quantile of soup probability distribution - done separately for cells and for nuclei.

This approach was used to estimate noisy genes in (1) donor P13 samples and (2) all donors samples. Donor P13 noisy genes were excluded during mapping onto space (Visium, see Location of cell types in Visium data), whereas all donors noisy genes (labelled using nuclei-only derived threshold in step 8 to not over-filter genes based on the higher quality portion of the data which in our case in scRNA-seq) were excluded during all donors analysis of the whole atlas of all the cell states at the maternalfetal interface.

We integrated the filtered count matrices from Cell Ranger and analysed them with scanpy (version 1.7.1), with the pipeline following their recommended standard practises. In brief, we excluded genes expressed by less than three cells, excluded cells expressing fewer than 200 genes, and cells with more than 20% mitochondrial content. After converting the expression space to log(CPM/100 + 1), the object was transposed to gene space to identify cell cycling genes in a data-driven manner, as described in50,52. After performing principal component analysis (PCA), neighbour identification and Louvain clustering, the members of the gene cluster including known cycling genes (CDK1, MKI67, CCNB2 and PCNA) were flagged as the data-derived cell cycling genes, and discarded in each downstream analysis where applicable.

Next, to have an estimate of the optimal number of latent variables to be used later in the single-cell variational inference (scVI) workflow for dimensionality reduction and batch correction, we identified highly variable genes, scaled the data and calculated PCA to observe the variance ratio plot and decide on an elbow point which defined values of n_latent parameter which were then used to correct for batch effect by 10X library batch (sample) with scVI. Number of layers in scVI models was tuned manually to allow for better integration. The resulting latent representation of the data was used for calculating neighbourhood graph, UMAP and further Louvain clustering. For trophoblast organoid scRNA-seq and snRNA-seq, data were integrated with Harmony by donor using theta = 0 parameter.

Analysis was done separately for (a) donor P13 trophoblast compartment and (b) all donors data (all cell states). In both analyses (a) and (b) trophoblast data was analysed separately with consecutive rounds of re-analysis upon exclusion of clusters of noisy nature (exhibiting gene expression characteristic of more than 1 distinct population). In addition, in all donors analysis fibroblast (maternal and fetal separately) and maternal NK, T, myeloid, epithelial, endothelial and perivascular compartments were reanalysed separately using the approach described in the previous paragraph to achieve fine grain annotation.

Differential gene expression analysis was performed with limma (limma version 3.46.0, edgeR version 3.32.1) with cell_or_nucleus covariate (scRNA-seq or snRNA-seq (including multiome snRNA-seq) origin of each droplet) backwards along the trajectory that was derived using stOrder approach, namely for the following 6 comparisons: VCT-CCC vs VCT (VCT and VCT-p cell states together); EVT-1 vs VCT-CCC; EVT-2 vs EVT-1; iEVT vs EVT-2; GC vs iEVT; eEVT vs EVT-2. Only significant DEGs were considered for downstream analysis, namely those with FDR (bonferroni) < 0.05).

We processed scATAC-seq libraries coming from multiome samples (read filtering, alignment, barcode counting, and cell calling) with 10X Genomics Cell Ranger-Arc (version 1.0.1) using the pre-built 10X GRCh38 genome (version corresponding to Cellranger-arc 1.0.1) as reference. We called the peaks using an in-house implementation of the approach described in Cusanovich et al. 53 (available at https://github.com/cellgeni/cellatac, revision 21-099). In short, the genome was broken into 5-kb windows and then each cell barcode was scored for insertions in each window, generating a binary matrix of windows by cells. Matrices from all samples were concatenated into a unified matrix, which was filtered to retain only the top 200,000 most commonly used windows per sample. Using Signac (https://satijalab.org/signac/ version 0.2.5), the binary matrix was normalized with term frequency-inverse document frequency (TF-IDF) followed by a dimensionality reduction step using Singular Value Decomposition (SVD). The first latent semantic indexing (LSI) component was ignored as it usually correlates with sequencing depth (technical variation) rather than a biological variation53. The 230 top remaining components were used to perform graph-based Louvain clustering. Next, peaks were called separately on each cluster using macs254. Finally, peaks from all clusters were merged into a master peak set (that is, peaks overlapping in at least one base pair were aggregated) and used to generate a binary peak-by-cell matrix, indicating any reads occurring in each peak for each cell.

This analysis was done separately for (1) all multiome data at first and (2) trophoblast-only subset of the multiome data. In the latter analysis we used annotation labels from the RNA counterpart of the multiome samples to perform peak calling.

For each 10X Genomics Visium sample, we used Space Ranger Software Suite (version 1.1.0) to align to the GRCh38 human reference pre-mRNA genome (official Cell Ranger reference, version 3.0.0) and quantify gene counts. Spots were automatically aligned to the paired H&E images by Space Ranger software. All spots under tissue detected by Space Ranger were included in downstream analysis.

To locate the cell states in the Visium transcriptomics slides, we used the cell2location tool v0.06-alpha55. As reference, we used snRNA-seq data of donor P13. We used general cell state annotations from the joint all donors analysis (corresponding to donor P13 data), with the exception of the trophoblast lineage. Trophoblast annotations were taken from donor P13-only analysis of the trophoblast compartment. Using information about which genes are noisy (high in ambient RNA signal) in donor P13 snRNA-seq data (details in Filtering genes high in ambient RNA signal), we excluded those from the reference and Visium objects prior to cell2location model training which significantly improved the results of mapping (namely, eliminated off-target mapping of cell statesthat is, made results of mapping more specific to the correct anatomical regions). Following the tutorial at https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html#Cell2location:-spatial-mapping, we trained cell2location model with default parameters using 10X library as a batch covariate in the step of estimation of reference cell-type signatures. Results were visualized with scanpy (version 1.7.1). Plots represent estimated abundance of cell types (cell densities) in Visium spots.

We used SpatialDE256 tissue segmentation algorithm to assign Visium spots to three anatomical regions: (1) placenta; (2) decidua and villi tips; and (3) myometrium. We used mRNA abundances from the deconvolution results obtained with cell2location17 in SpatialDE2 tissue segmentation. Assignment of obtained Visium spot clusters to regions was done upon visual inspection. Locations of certain fibroblast cell states indicative of the specific anatomical region (uterine smooth muscle cells, uSMC and dS cell states) were also used to guide this assignment. In addition, low-quality spots were discarded on the basis of not being under tissue and having low count and gene coverage (visual inspection).

For more details, please refer to the following notebook: https://github.com/ventolab/MFI/blob/main/2_inv_troph_trajectory_and_TFs/2-1_stOrder_inv_troph/S1_regions_analysis_for_SpCov_model_and_later_for_CellPhone.ipynb

To obtain a set of high-quality peaks for downstream analysis, we filtered out peaks that (1) were included in the ENCODE blacklist, (2) have a width outside the 2101,500bp range, and (3) were accessible in less than 5% of cells from a cellatac cluster. Low-quality cells were also removed by setting to 4 the minimum threshold for log1p-transformed total counts per cell.

We adopted the cisTopic approach57,58 for the core of our downstream analysis. cisTopic employs latent Dirichlet allocation (LDA) to estimate the probability of a region belonging to a regulatory topic (regiontopic distribution) and the contribution of a topic within each cell (topiccell distribution). The topiccell matrix was used for constructing the neighbourhood graph, computing UMAP projections and clustering with the Louvain algorithm. After this was done for all cell states, clusters corresponding to trophoblast cell states (based on the unbiased clustering done here and annotation labels coming from the RNA counterpart of this multiome data) were further subsetted and reanalysed following the same pipeline.

Next, we generated a denoised accessibility matrix (predictive distribution) by multiplying the topiccell and regiontopic distribution and used it to calculate gene activity scores. To be able to integrate them with scRNA-seq and snRNA-seq data, gene activity scores were rounded and multiplied by a factor of 107, as described58.

Final labels of invading trophoblast in snATAC-seq data were directly transferred from RNA counterpart of the multiome data.

StOrder is a computational framework for joint inference of cellular differentiation trajectories from gene expression data and information about location of cell states in physical space (further referred to as spatial data).

It consists of three principal steps:

Calculate pairwise cell state connectivity from gene expression data (here we use snRNA-seq data).

Calculate pairwise cell state proximity in physical space from spatial data (here we use Visium spatial transcriptomics data) using a new spatial covariance model.

Combine connectivity matrices from steps 1 and 2 in a weighted expression to reconstruct the putative tree structure of the differentiation trajectory.

First, StOrder relies on a gene expression-based connectivity matrix (generated in our case by PAGA59) that establishes potential connections between cell state clusters defined by single-cell or single-nucleus transcriptomics datasets. The values in this matrix can be interpreted as pairwise similarity scores for cell states in gene expression space. In our case we used snRNA-seq data from P13 as it contains all trophoblast subsets.

Second, StOrder generates a spatial covariance matrix that reflects pairwise proximity of cell states that co-exist in space and smoothly transition from one state to another while physically migrating in space. To do so, StOrder takes as an input the deconvolution results (derived in our case with cell2location17) of Visium spatial transcriptomics data. Here, we used all spatial transcriptomics data profiled (donors P13, P14 and Hrv43). Then, it fits a Gaussian process model that derives pairwise spatial covariance scores for all the cell state pairs with the following model:

$${rm{vec}}({{bf{Y}}}_{i},{{bf{Y}}}_{j}) sim {mathscr{N}},left(0,,left(begin{array}{cc}{sigma }_{1}^{(1)} & {sigma }_{2}^{(1)}\ {sigma }_{2}^{(1)} & {sigma }_{3}^{(1)}end{array}right)otimes K({bf{X}},l)+left(begin{array}{cc}{sigma }_{1}^{(2)} & 0\ 0 & {sigma }_{2}^{(2)}end{array}right)otimes {bf{I}}right)$$

where is the Kronecker product and the combined vector of cell densities (Yi,k, Yj,k) of cell states i and j is modelled by a multivariate Gaussian distribution whose covariance decomposes into a spatial and a noise term. The spatial term

$$left(begin{array}{cc}{sigma }_{1}^{(1)} & {sigma }_{2}^{(1)}\ {sigma }_{2}^{(1)} & {sigma }_{3}^{(1)}end{array}right)otimes Kleft({bf{X}},lright)$$

is defined by a between-cell-state covariance matrix

$$left(begin{array}{cc}{sigma }_{1}^{(1)} & {sigma }_{2}^{(1)}\ {sigma }_{2}^{(1)} & {sigma }_{3}^{(1)}end{array}right)$$

and a spatial covariance matrix defined using the squared exponential kernel:

$$K{({bf{X}},l)}_{mn}=exp left(-frac{{parallel {x}_{m}-{x}_{n}parallel }^{2}}{2{l}^{2}}right)$$

xm and xn are spatial coordinates of spots m and n and l is the length scale of the smooth Gaussian process function in space that is being fit to cell densities.

The noise term

$$left(begin{array}{cc}{sigma }_{1}^{(2)} & 0\ 0 & {sigma }_{2}^{(2)}end{array}right)otimes {bf{I}}$$

represents sources of variation other than spatial covariance of cell state densities.

The between-cell-state covariance matrix is constrained to be symmetric positive definite by defining

$$left(begin{array}{cc}{sigma }_{1}^{(1)} & {sigma }_{2}^{(1)}\ {sigma }_{2}^{(1)} & {sigma }_{3}^{(1)}end{array}right)=,left(begin{array}{cc}{a}_{1} & 0\ {a}_{2} & {a}_{3}end{array}right){left(begin{array}{cc}{a}_{1} & 0\ {a}_{2} & {a}_{3}end{array}right)}^{{rm{T}}}$$

The free parameters a1, a2, a3, 1(2), 2(2) and l are estimated using maximum likelihood and automatic differentiation in Tensorflow60,61 using the BFGS algorithm. To improve convergence, we initialize l to the distance between centres of neighboring Visium spots.

This model allows us to infer which cell states are proximal in physical space and are likely to be migrating in the process of gradual differentiation in space.

For the spatial covariance model within StOrder workflow we only used a subset of our Visium data that corresponded to (1) decidua_and_villi_tips and (2) myometriumbecause only these regions contained invading trophoblast cell states. For more details please see Subsetting Visium data into anatomical regions with SpatialDE2 in Downstream analysis of 10x Genomics Visium data above. This helps to focus on the regions of the tissue that are relevant for the process of interest and is recommended to do in general if there are parts of the Visium data that do not contain cell states relevant to the process of interest.

Third, StOrder reconstructs connections between cell states by taking into account both the connectivity matrix (step 1) from single-cell transcriptomics data and the spatial covariance matrix (step 2) from the spatial data in the following way:

$${beta }({alpha }P+(1-{alpha })S)+(1-{beta })Podot S$$

where P is the PAGA connectivity matrix, S is the spatial correlation matrix, weights the contributions of P and S in the additive term, weights the contributions of the additive and multiplicative terms, and is the element-wise product. It then reconstructs the putative trajectory tree using the built-in PAGA functions.

The combined connectivity matrix based on both gene expression and spatial data with a range of weight parameters revealed the fully resolved invasion trajectory tree of the EVT with the correct topology (all connected cell state components, one branching point, no cycles, start at VCT-CCC population and two end points: eEVT and GC populations). The choice of parameter (contribution/weight of gene expression vs spatial part in the final matrix) in this last step depends on the goal of using this approach. In our case, we assumed: (1) the origin of EVT (VCT-CCC); (2) the end points of EVT (eEVT and GC); (3) the determination of a single branching point; and (4) the absence of cyclic trajectory. We therefore produced trajectory trees for 10,201 of (,) value pairs (from 0 to 1 with 0.01 increment step each) representative of different tree topologies corresponding to different ratios of gene expression vs spatial contribution. Out of the 10,201 tree structures we inspected, 3,574 trees represented the topology with the assumptions described above. These trajectories consistently assigned EVT-2 as the putative branching point. Tree structures with mainly gene expression-based connectivity values did not yield a branching point population we were looking for. Tree structures with mainly spatial based connectivities hindered the link between iEVT and GC populations, likely due to the large length scale of this invasion in space.

Our approach assumes the gradual nature of gene expression changes accompanied by gradual migration of cells in space while they differentiate. Thus, it may not yield meaningful results in scenarios where this underlying assumption is violated. In addition, it is recommended that the user estimates the spatial scale at which the process of interest is taking placewhether in current Visium resolution the differentiation and migration is happening over the course of only a few spots or many morethis will change the initial values of l parameter and help the model fit the data better.

Gene expression (snRNA-seq) counts of the multiome data for donor P13 were normalized by total counts (scanpy.pp.normalize_per_cell(rna, counts_per_cell_after=1e4)) and log-transformed (pp.log1p(rna)). Highly variable gene features were then calculated (sc.pp.highly_variable_genes(rna, min_mean=0.0125, max_mean=3, min_disp=0.5)) and the subsetted objects expression was scaled (sc.pp.scale(rna, max_value=10)).

Chromatin accessibility (scATAC-seq) counts of the multiome data for donor P13 were preprocessed using TF-IDF normalization (muon.atac.pp.tfidf(atac[key], scale_factor=1e4)). To select biologically meaningful highly variable peak features, ATAC counts were aggregated into pseodubulks by cell states and averaged, then variance of accessibility was calculated across these pseudobulks, and informative peak features were selected based on this measure (top 75th percentile (10,640) of peaks selected in total) as the peaks with highest variance. Finally, these data were scaled (sc.pp.scale(atac, max_value=10)).

Using the preprocessed RNA and ATAC data we used a pseudotime-aware dimensionality reduction method MEFISTO30 to extract major sources of variation from the RNA and ATAC data jointly and identify coordinated patterns along the invasion trajectory. As a proxy for the trophoblast invasion trajectory in the MEFISTO model we used 2-dimensional pseudotime coordinates based on a UMAP of the RNA data by calculating PCA (sc.tl.pca(rna, n_comps=8)), neighborhood graph (sc.pp.neighbors(rna)) and UMAP embedding (sc.tl.umap(rna)).

The MEFISTO model was trained using the following command within MUON (version 0.1.2) package interface:

muon.tl.mofa(mdata, outfile=,

use_obs = union,

smooth_covariate=[UMAP1, UMAP2],

use_float32=True)

We further excluded factor 5 from downstream analysis as a technical artefact due to its significant and high correlation (Spearman rank-order correlation coefficient 0.94 (over all cell states), P<10308, two-sided test) with the n_peaks_by_counts (number of ATAC peaks with at least 1 count in a nucleus) in ATAC view in all cell states (Supplementary Fig. 4k) and lack of smoothness along pseudotime (Supplementary Fig. 4j).

To further interpret ATAC features, we annotated them based on their genomic location using GenomicRanges package (version 1.42.0). In parallel, we used epigenetic data from62 to mark peak features in close proximity to trophoblast-specific enhancer features. To do so, we used peak files corresponding to H3K4me1, H3K27ac and H3K27me3 histone modifications marks for second trimester trophoblast samples (obtained from authors of aforementioned study upon request) to infer regions of the genome corresponding to active (H3K27ac + H3K27me3), primed (only H3K4me1) or repressed (H3K4me1 + H3K27me3) enhancers. This was done using bedtools (version 2.30.0) in the following way:

bedtools subtract -a H3K4me1_file.bed -b H3K27ac_file.bed > interm_file.bed bedtools subtract -a interm_file.bed -b H3K27me3_file.bed > primed_enhancers.bed To produce primed enhancers file

bedtools intersect -a H3K4me1_file.bed -b H3K27ac_file.bed > active_enhancers.bed To produce active enhancers file

bedtools intersect -a H3K4me1_file.bed -b H3K27me3_file.bed > repressed_enhancers.bed To produce repressed enhancers file

The enhancer files produced were then overlapped with peaks in ATAC analysis (bedtools intersect -a atac_peaks_file.bed -b enhancer_file.bed -wa) and any peaks having a >1-bp overlap with an enhancer feature were considered to be proximal to those features (done separately for active, primed and repressed enhancers).

Gene set enrichment analysis for gene features was performed based on the C5 category and the Biological Process subcategory from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb) using GSEA functionality implemented in MOFA2 (run_enrichment command, MOFA2 version 1.3.5). This was done separately for negative and positive weights of each factor.

Peak group enrichment for peak features was performed using the same run_enrichment command in MOFA2 on peak groups defined as described above (Defining groups of ATAC peak features).

To extract information about transcription factor binding motif enrichment in ATAC features of MEFISTO factors, we first performed enrichment analysis of peaks using GSEA functionality implemented in MOFA2 (run_enrichment command, MOFA2 version 1.3.5) on the peak-motif matrix produced by Signac package (version 1.5.0). Then, to identify which MEFISTO factors contribute the most to each transition of cell states along the invading trophoblast trajectory (inferred with StOrder), we trained logistic regression classifiers for each transition along the trajectory (overall for 6 transitions: VCTVCT-CCC, VCT-CCCEVT-1, EVT-1EVT-2, EVT-2iEVT, iEVTGC, EVT-2eEVT) on the matrix of factor values. For each transition the factor with the highest absolute coefficient separating the two cell states was selected, accounting for the sign of contribution in the logistic regression (positive or negative). If the top factor is contributing to a transition with a positive coefficient, transcription factor binding motifs coming from MEFISTO enrichment analysis of this factors top positive values are further considered in general transcription factor analysis as transcription factors upregulated upon this transition, whereas transcription factor binding motifs coming from MEFISTO enrichment analysis of this factors top negative values are further considered in general transcription factor analysis as transcription factors downregulated upon this transition. All of these transcription factor motifs are marked as having evidence from the MEFISTO factor relevant for this transition. Reverse procedure is applied in case if the top factor is contributing to a transition with a negative coefficient in the corresponding logistic regression model.

For more details please see the following notebook: https://github.com/ventolab/MFI/blob/main/2_inv_troph_trajectory_and_TFs/2-5_MEFISTO_analysis_inv_troph/S3_DEG_comparison_to_MEFISTO_factor_translation.ipynb

To derive trophoblast pseudotime based on transcriptomic similarity, we used Slingshot v1.8.0. With Slingshot we fitted a cluster-based minimum spanning tree (MST) over the two-dimensional UMAP of P13 trophoblasts, and inferred the global lineage topology to assign cell states to lineages. Only donor P13 cells in the G1 phase of the cell cycle were included. To balance trophoblast state contributions, we downsampled each trophoblast state to account for up to 100 cells per state. VCT was assigned as the initial cell state (start.clus), while eEVT, SCT and GC were assigned as terminal states (end.clus). Slingshot fits simultaneous principle curves to smooth the MST and assigns a weight for each trophoblast cell in each lineage. Slingshot outputs lineage-specific pseudotimes and weights of assignment for each cell.

We next fitted a tradeSeq (v1.4.0) gene expression model (negative binomial generalized additive model) using the trajectory pseudotime and the weights computed with Slingshot (with nknots=6). Next, we tested whether the gene expression is significantly changing along trophoblast pseudotime. For such a purpose, we used the statistical test implemented in the associationTest function, which tests the null hypothesis that all smoother coefficients are equal to each other. Genes with a P<106 and mean logFC>0.5 were selected as the main drivers of the trophoblast trajectory.

To transfer cell labels from donor P13 snRNA-seq in vivo trophoblast to the scRNA-seq TSC and PTO we trained two independent logistic regression models. The P13 dataset was downsampled to 500 cells per trophoblast state, except for GC and eEVT, which were discarded from the training due to their scarcely abundance. The common highly variable genes (1,695 genes for PTO and 1,565 for TSC), of the 4,000 selected per dataset, between the in vivo and each individual organoid dataset were selected as features for model training. The in vivo dataset was split into 80/20 training and test set, hyperparameters were explored employing a threefold cross-validation and scored employing the mean Matthews correlation coefficient of each fold. Top-ranked models were selected and assessed on the test set, with no significant differences found between them. Finally, the best model for each organoid dataset was employed to transfer cell labels from donor P13.

To retrieve interactions between invading trophoblast and other cell populations identified in our samples, we used the CellPhoneDB degs_analysis method13,63 (https://github.com/ventolab/CellphoneDB) described in ref. 33. In short, we retrieved the interacting pairs of ligands and receptors meeting the following requirements: (1) all the protein members were expressed in at least 10% of the cell type under consideration; and (2) at least one of the protein members in the ligand or the receptor was a DEG in an invading trophoblast subset (according to our analysis of differential expression, for details please see Differential gene expression analysis), with an adjusted P-value below 0.05 and logFC>0.1. We further selected which cell states are spatially co-located in each microenvironment via visual inspection of cell2location deconvolution results for our Visium data. The analysis was done on an updated version of CellPhoneDB-database (v4.1) which includes novel intercellular interactions from refs. 64,65. Only bona fide manually curated interactions were considered in the analysis.

To prioritize the transcription factors relevant for each invading trophoblast cell state or microenvironment, we integrate four types of measurements: (1) expression levels of the transcription factor and (2) the activity status of the transcription factor measured from (2a) the expression levels of their targets (described in Transcription factor activities derived from scRNA-seq and snRNA-seq) and/or (2b) the chromatin accessibility of their binding motifs (described in Transcription factor motif activity analysis from scATACseq) and/or (2c) evidence of the chromatin accessibility of their binding motifs in relevant factors from multimodal RNA-ATAC analysis (with MEFISTO). Plots in main figures include transcription factor meeting the following criteria: (1) transcription factor was differentially expressed, with adjusted P-value<0.05) and/or (2) transcription factor was differentially active, with log2 fold change greater than 0.25 and adjusted P-value<0.05 in at least one of the transcription factor activity measurements (2a or 2b).

We compute differential expression using the procedure described in Differential gene expression analysis and further subset resulting gene targets to transcription factors only based on the list of transcription factors provided by DoRothEA.

We estimated protein-level activity for human transcription factor as a proxy of the combined expression levels of their targets. Target genes were retrieved from Dorothea66, an orthogonal collection of transcription factor targets compiled from a range of different sources. Next, we estimated transcription factor activities for each cell using Viper67, a GSEA-like approach, as implemented in the Dorothea R package and tutorial68 for the genes differentially expressed along the invading trophoblast trajectory (see Differential gene expression analysis).

Transcription factor motif activities were computed using chromVar69 v. 1.12.2 with positional weight matrices from JASPAR201870, HOCOMOCOv1071, SwissRegulon72, HOMER73. chromVar returns a matrix with binding activity estimates of each transcription factor in each cell, which we used to test for differential transcription factor binding activity between trophoblast cell states with FindMarkers function in Seurat (default parameters) in the same way as described in Differential gene expression analysis (backwards along invading trophoblast trajectory).

Further information on research design is available in theNature Portfolio Reporting Summary linked to this article.

Follow this link:
Spatial multiomics map of trophoblast development in early pregnancy - Nature.com

Introducing Dr Freya Storer – new Research Associate in Developmental Biology – Imperial College London

We interviewed Dr Freya Storer - a new Research Associate in Developmental Biology who joined us in February.

Can you tell me a little about your background?

I was born into a family of contrasting interests. My father studied engineering and now works in intellectual property, whilst my mother studied languages, going on to teach French and Italian. Being surrounded by different passions has always helped me to explore topics using a holistic approach.

Although I am a British national, I had a largely European upbringing. Due to my fathers job, we moved around, after a brief period in the UK, we moved to Normandy (France) and later to Bavaria (Germany). It was only as I left for university that I established myself back in the UK, and even then, it hasnt been static. The freedom to move and explore education through different cultures has been a privilege and lends itself to the collaborative nature of academia.

Can you tell us a bit about your study prior to now?

My interest in biosciences was nurtured at the University of Bristol, where I read Cellular and Molecular Medicine, a course that married genetic mechanisms with microbiology and disease. It established a broad foundation on techniques to study cellular processes, applying them to diverse medical contexts from cancer metastasis to pathogen-host evasion tactics. It was during my final year project that I was first introduced to the organism that I work with today.

Drosophila melanogaster, a well-characterised invertebrate model, has been central to many discoveries in the field of genetics and comes with an array of technical possibilities. In my bachelors, I worked with Prof. Will Wood and Dr Andrew Davidson on a project investigating the key regulators of actin during debris clearance by Drosophila embryonic haemocytes. Thanks to this opportunity, I pursued a research masters in a neighbouring lab, under Dr Marc Amoyel, where I studied how differing translation initiation mechanisms might drive the decision of stem cell fate in the Drosophila testis niche.

Having committed myself to the fruit fly, I ventured into the field of neuroscience during my PhD at the Dementia Research Institute in Cardiff. With the support of Dr Gaynor Smith, I identified two genes that may regulate the immune responses of the brain contributing to Alzheimers pathology. Most recently, I worked with Dr Peter Lawrence and Dr Jose Casal at Cambridge University, where we studied the distribution of Frizzled during pupal development to understand the mechanisms that govern planar cell polarity.

What is your new role at Imperial?

I recently joined Dr Tony Southalls team as the newest Research Associate. Here, I am working on a unique project to understand the genetic factors that mediate neuronal cell fate plasticity. We have come far since Waddingtons landscape model of cell differentiation, with increasing evidence suggesting that cells may in fact (under certain conditions) return to an earlier state. We hope to use novel tools, such as adapted CRISPR methods and DamID to explore how the shift between eu- and hetero-chromatin states, through most translational modifications, can restrict plasticity. Research is a core part of my position, but I am also devoted to cultivating a friendly and inspiring learning environment for aspiring researchers and students.

What motivated you to work in this area?

My project incorporates all my experience and interests, combining my extensive knowledge of cellular mechanisms and development, with Drosophila biology. It means it feels familiar, but I am also learning something new in epigenetics, a complex research field which I have always been captured by and wanted to study. I am also honoured to work with Dr Tony Southall, who has already made tremendous progress in the field and designed numerous innovative tools to study it. I believe it is easy to be motivated to study biosciences, as it satisfies a curiosity for the natural world with the possibility of contributing to new therapies that may solve devastating diseases.

What attracted you to working in Life Sciences at Imperial?

I was excited to be a part of the rich history of discovery that has produced so many internationally renowned and impactful scientists, from Nobel laureates to pioneering female scientists such as Helen Porter and Winifred Watkins. The project I am working on feels meaningful and I feel privileged to share the halls with some of todays brilliant minds, who inspire me to go beyond my expectations of research. I am arriving at an exciting time in Imperials evolution, with the introduction of the White City Campus expanding the possibilities for entrepreneurship and multidisciplinary research. Beyond that, London is home to a large community of geneticists and entomologists, providing a space for collaboration and the sharing of ideas.

Tell us an interesting/unusual fact about yourself.

Other than my obvious enthusiasm for science and research, I love music. I am an avid listener but have also enjoyed performing in bands as a singer/keyboardist.

View post:
Introducing Dr Freya Storer - new Research Associate in Developmental Biology - Imperial College London

What a startups woolly mammoth meatball tells us about the future of meat – The Indian Express

While this will be a one-off creation, perhaps garner publicity for the food-tech company, founder Tim Noakesmith told the AP that through the mammoth meatball, the company hoped to start a conversation around global meat consumption.

Cultivated meat also called cultured or cell-based meat is made from animal cells but livestock does not need to be killed in order to produce it. Notably, it is different from plant-based meat substitutes in that it actually uses animal DNA to recreate in a lab the taste and texture of meat. Plant-based substitutes, on the other hand, try and mimic the taste and texture of meat using other plant-based alternatives.

For the woolly mammoth project, Vow worked with Prof Ernst Wolvetang, at the University of Queenslands Australian Institute for Bioengineering, The Guardian reported. The aim was to create the mammoth muscle protein from available DNA. Prof Wolvetangs team took the DNA sequence for mammoth myoglobin, a key muscle protein in giving the meat its flavour, and filled in any gaps using the DNA of the African elephant, the closest living relative of the extinct woolly mammoth.

The prepared DNA sequence was then placed in myoblast (embryonic precursor to muscle cells) stem cells from a sheep, which soon replicated in the right lab conditions to grow to the nearly 20 billion cells subsequently used by the company to create the mammoth meatball.

It was ridiculously easy and fast, Prof Wolvetang told The Guardian. We did this in a couple of weeks. Initially, the idea was to produce dodo meat. However, the DNA sequences required for that do not exist.

The mammoth meatball has not been tasted by anyone, even its creators. Nor does Vow plan to put it into commercial production. Instead, the idea has been to use the meatball to start a much-needed conversation.

We wanted to get people excited about the future of food being different to potentially what we had before. That there are things that are unique and better than the meats that were necessarily eating now, and we thought the mammoth would be a conversation starter and get people excited about this new future, Noakesmith told the AP.

But also the woolly mammoth has been traditionally a symbol of loss. We know now that it died from climate change. And so what we wanted to do was see if we could create something that was a symbol of a more exciting future thats not only better for us, but also better for the planet, he added.

Multiple studies have pointed out the massive impact that the global meat industry has on the environment. According to the Food and Agriculture Organization of the United Nations (FAO), global meat consumption has increased significantly in recent decades, with per capita consumption almost doubling since the early 1960s.

This means that roughly 14.5 per cent of global emissions of greenhouse gases are attributable to livestock farming. This includes not just carbon dioxide but also methane and nitrous oxide, which scientists say have a climate warming potential of anywhere between 25 times and 300 times higher than that of carbon dioxide.

Most greenhouse gas emissions from plant-based foods are lower than those linked to animal-based foods.

Experts say that if cultivated/cultured meat is widely adopted, it could vastly reduce the environmental impact of global meat production in the future.

By cultivating beef, pork, chicken, and seafood, we can have the most impact in terms of reducing emissions from conventional animal agriculture and satisfying growing global demand for meat while meeting our climate targets, Seren Kell, science and technology manager at Good Food Institute, a nonprofit that promotes plant- and cell-based alternatives to animal products, told the AP.

This is because cultivated meat uses much less land and water than livestock, and produces no methane emissions. The industry can run on energy produced purely from renewable sources. While the woolly mammoth meatball is, as was planned, an unconventional idea, most of the industry has been focussing on commonly consumed meats like pork, chicken and beef.

However, there is a long way to go before cultivated meat becomes mainstream across the world. Currently, Singapore is the only country to have approved cell-based meat for consumption. Vow hopes to enter the market later this year, with its quail-based meat product.

More than getting regulatory approvals, for cultivated meat to really take off, there has to be a massive, global-scale behavioural and cultural change. We have a behaviour change problem when it comes to meat consumption, George Peppou, CEO of Vow, told The Guardian.

Projects such as Vows woolly mammoth meatball help draw attention and start conversations on the possibilities of cultivated meat. (This) will open up new conversations about cultivated meats extraordinary potential to produce more sustainable foods, Kell told the media.

See the rest here:
What a startups woolly mammoth meatball tells us about the future of meat - The Indian Express