Category Archives: Embryonic Stem Cells


The chromosomal protein SMCHD1 regulates DNA methylation and the 2c-like state of embryonic stem cells by antagonizing TET proteins – Science Advances

RESULTS Identification of SMCHD1 as a protein associated with TET proteins

Using mass spectrometry (MS), we identified SMCHD1 as a protein interacting with FLAG-tagged TET3 in 293T cells (Fig. 1, A and B, and table S1), where it scored among the eight most significantly enriched proteins, which included TET3 itself and the known TET3 binding partner O-linked -N-acetylglucosamine transferase (OGT) (2729). To verify the SMCHD1-TET interaction further, we created ES cell lines by homologous recombination that carried a FLAG tag at the C terminus of the endogenous Smchd1 coding sequence (fig. S1A). We carried out anti-FLAG pulldown with one of the clones and performed proteomics analysis. Among the identified proteins were SMCHD1 itself as the highest-scoring protein (54% coverage) (fig. S1B and table S2). We detected the known SMCHD1-interacting protein, LRIF1 (12.3% coverage) (30). There were also several components of the PRC2 complex (EZH2, SUZ12, and MTF2; 4.5 to 15% coverage) but no PRC1 components. SMCHD1 has been shown to be a protecting factor against formation of histone H3 lysine 27 trimethylation (H3K27me3) by the Polycomb complex (25). In this proteomics experiment, we specifically recovered the TET2 protein (4.92% coverage), as associated with SMCHD1, but not TET1. TET3 is expressed at very low levels in ES cells. The known TET-interacting protein OGT (2729) was also identified (9.37%). We then transfected FLAG-tagged TET2 into 293T cells. Although TET2 itself was identified at only 4.0% coverage (fig. S1C and table S2), we still found SMCHD1 (11.4% coverage) and OGT (46%) as TET2-interacting proteins.

(A) Flag purification of TET3FL and TET3S from 293T cells. The purified samples were subjected to Coomassie blue staining (left) and Western blotting (right). The gel segments indicated were analyzed by MS. M, molecular weight markers; IB, immunoblot. (B) Identification of SMCHD1 as a binding partner of TET3 by MS. TET3S was expressed in 293T cells and immunoprecipitated with anti-FLAG beads. Gel segment 2 (A) was subjected to LC-MS/MS (liquid chromatographytandem MS) analysis (see Materials and Methods and table S1). The top eight highest-scoring proteins are shown. M.W., molecular weight. (C) Endogenous coimmunoprecipitation (co-IP) of SMCHD1 with TET1, TET2, and TET3FL. (D) Interaction between TET proteins and SMCHD1 by co-IP using expression of tagged proteins in 293T cells. (E) Different domains of TET3 were cotransfected with full-length SMCHD1 into 293T cells. After IP, the interacting proteins were identified by Western blotting. Stars indicate IgG (immunoglobulin G) bands. aa, amino acids. (F) Different domains of SMCHD1 were cotransfected with TET3FL into 293T cells. After IP, the interacting proteins were identified by Western blotting. Stars indicate IgG bands. HATPase, histidine kinase-like ATPase domain.

Using coimmunoprecipitation (co-IP), we found that all mouse TET proteins, including the long and short isoforms of TET3 [TET3FL (full-length TET3) and TET3S, respectively (31)], and TET1 and TET2 interact with SMCHD1 as endogenous proteins in cell types in which the proteins are expressed at substantial levels (TET1 and TET2 in ES cells and TET3 in Neuro2a cells) (Fig. 1C). These interactions were confirmed by cotransfection of the respective expression constructs and IP experiments (Fig. 1D).

To further substantiate the SMCHD1-TET interactions in cells, we performed bimolecular fluorescence complementation (BiFC) experiments (32, 33) with SMCHD1 and TET3 (fig. S2). The data suggest an efficient interaction of TET3 and SMCHD1 at a level similar to a positive control (P.C.) experiment with TET3 and OGT. The latter two proteins are interaction partners, as reported previously (27, 28). Although this assay does not determine that the two proteins interact directly, it is an independent confirmation of the in vivo TET-SMCHD1 interaction, for example, within a protein complex.

We then determined the interacting domains of TET3 and SMCHD1 by cotransfection experiments. We found that the C-terminal double-stranded -helix domain of TET3, which represents the core catalytic region conserved between all three TET proteins (8, 20, 34), interacts strongly with SMCHD1 (Fig. 1E). Analyzing SMCHD1 domains, we found that the N-terminal region including the GHKL adenosine triphosphatase (ATPase) domain interacted most efficiently with TET3FL (fragment F1; Fig. 1F), but the long central domain and the C-terminal hinge domain did not show any appreciable binding.

We then examined whether SMCHD1 and TET proteins can interact directly in vitro. We initially failed to observe a direct interaction between the recombinant N-terminal (ATPase) domain of SMCHD1 and the TET2 catalytic domain (TET2-CD). Next, we prepared recombinant full-length SMCHD1 and recombinant TET2-CD or TETFL proteins. These proteins were purified from either baculovirus-infected cells (SMCHD1 and TET2-CD) or from mammalian cells (TET2FL or TET1FL). We used the AlphaScreen system (fig. S3A) for assessing binding reactions in a quantitative biophysical assay. In these assays, SMCHD1-FLAG was biotinylated via an introduced C-terminal biotinylation sequence (AviTag) and was coexpressed along with biotin ligase (BirA) in baculovirus-infected insect cells. This SMCHD1 protein could be collected on streptavidin beads indicating that it was biotinylated successfully (fig. S3B). The mammalian TET proteins were expressed as C-terminal His-tagged proteins (fig. S3B). In the AlphaScreen assays, binding between a biotinylated protein captured on streptavidin AlphaScreen donor beads and a His-tagged protein captured on nickel chelate (Ninitrilotriacetic acid) AlphaScreen acceptor beads is measured. After performing these assays, we did not observe any direct binding between SMCHD1 and TET2 proteins (TET1 tested negatively as well) (fig. S3C). We also performed in vitro biotinylation of SMCHD1 using biotinylation kits, or we biotinylated the anti-SMCHD1 antibody followed by SMCHD1 binding. We concluded that our consistently observed interactions between SMCHD1 and TET proteins in cells are most likely based on an indirect interaction, perhaps involving a larger protein complex or a bridging protein. One potential candidate for such a protein is OGT, which we recovered in SMCHD1 and TET protein complexes and which is known to interact with the TET2/3-CDs (27, 29, 35, 36).

When SMCHD1 was coexpressed in 293T cells together with TET3FL, TET activity was inhibited in an SMCHD1 dose-dependent manner, leading to the formation of lower amounts of the TET reaction product 5hmC (Fig. 2A), while total levels of 5mC did not change appreciably. Another in vivo assay of TET activity is based on demethylation and reactivation of a luciferase vector that is methylated in vitro at all CpG sites before transfection. In this assay, TET3S is more active than TET3FL (31). The luciferase activity of the fully CpG-methylated luciferase reporter vector was increased by cotransfection of TET3S, as reported previously (Fig. 2B) (31). This TET-induced activity was inhibited by SMCHD1, which did not reduce the activity of an unmethylated control reporter (Fig. 2B).

(A) Reduction in 5hmC levels by coexpression of SMCHD1 with TET3 in 293T cells. 5hmC and 5mC contents were assessed using antibody-based dot blots. One-way analysis of variance (ANOVA) was performed comparing the mean of each group with the mean of the second group (**P < 0.01 and ***P < 0.001; mean SEM). ns, not significant. (B) Inhibition of TET3S-induced reactivation of a methylation-silenced luciferase construct by SMCHD1 in 293T cells (top). One-way ANOVA was performed (**P < 0.01 and ****P < 0.0001). Data are for means SEM of three independent experiments. An unmethylated luciferase vector was used as a control (bottom). (C) FLAG purification of TET2-CD and SMCHD1 full length (SMCHD1-FL) from Sf9 insect cells. Coomassie blue staining. (D) Inhibition of TET2-CD activity on fully methylated DNA in the presence of SMCHD1 as shown by combined bisulfite restriction analysis (COBRA) assay (BstU I cleavage indicates methylation). P.C., positive control with excess TET protein (18 g); N.C., negative control without TET treatment. Different molar ratios of SMCHD1 and TET protein (1.15 g) are shown. The H19 imprinting control region was analyzed. (E) Bisulfite sequencing analysis of H19 methylation analyzed in duplicates. Solid black circles indicate modified CpGs; open circles indicate TET-oxidized mCpGs. The purple arrows indicate BstU I sites. (F) Percentages of modified cytosines (%Me) of the different samples. P values were determined by Fishers exact test (two sided).

We then proceeded to purify recombinant active TET proteins (TET2-CD and TET2FL) and full-length SMCHD1 from baculovirus-infected cells (Fig. 2C). TET2-CD was catalytically more active than TET2FL and was therefore used in our in vitro activity assays. The in vitro activity of TET2 was initially tested using combined bisulfite restriction analysis (COBRA) (37), an assay in which cleavage with BstU I (5CGCG) indicates methylation at those sites. In this assay, addition of SMCHD1 inhibited TET activity in a dose-dependent manner (Fig. 2D). We further verified this effect by sodium bisulfite sequencing (Fig. 2, E and F). This assay monitors the end-product of TET activity, 5caC, which scores as unmodified cytosine in bisulfite sequencing due to decarboxylation and deamination of 5caC. SMCHD1 inhibited TET activity effectively at a 1:1 molar ratio and caused almost complete inhibition at a ratio of 2:1 (Fig. 2E). SMCHD1 is a DNA-binding protein with binding likely mediated through its hinge domain (3840). We propose that binding of SMCHD1 to DNA leads to an occlusion of TET activity from its DNA target.

Next, we created and verified several Smchd1 knockout (KO) clones of male mouse ES cells (mESCs) using CRISPR-Cas9 technology (Fig. 3A and fig. S4A). Using immuno-dot blots, we determined that these KO clones have moderately increased levels of 5hmC (fig. S4B), suggesting that the lack of SMCHD1 leads to stimulation of the 5mC oxidation process, which is consistent with the in vitro data showing that SMCHD1 inhibits TET activity. Globally, TET and DNMT protein expression was not significantly altered in SMCHD1-deficient cells (fig. S4, C and D).

(A) Absence of SMCHD1 protein in three CRISPR-Cas9 KO ES cell clones. (B) Heatmap of RNA-seq data indicates differentially expressed genes between WT (n = 3 clones) and SMCHD1 KO (n = 3 clones) ES cells. (C) Gene set enrichment analysis (GSEA) of the 2c-like ES cell signature. The gene set represents genes activated during zygotic genome activation in 2c mouse embryos and enriched in 2C::tomato+ cells (42). The x axis shows the log2 fold change of the KO/WT-ranked transcriptome. GSEA analysis was performed as previously described (49). (D) The heatmap indicates the differentially expressed 2c-like genes between WT (n = 6) and SMCHD1 KO (n = 6) ES cells including two technical replicates for each clone. Typical 2c-like genes, such as Dux (indicated by red arrow), Zscan4c, Dub1, and Usp17l family members (indicated by purple arrows) are indicated. (E) The density plot indicates activation of repeat elements in SMCHD1 KO cells. The x axis shows the log2 (fold change of KO/WT) of repeat element expression. The y axis shows the density.

Next, we performed whole-genome bisulfite sequencing (WGBS) on three wild-type (WT) and three Smchd1 KO ES cell clones. We observed lower levels of modified cytosines in the knockouts on all chromosomes except for the Y chromosome, which became hypermethylated (fig. S5A). This moderate global reduction of modified cytosines affected all genomic compartments except for CpG islands, which have constitutively very low levels of methylation (fig. S5B). Using DMRseq analysis (41), we identified 283 hypomethylated and 223 hypermethylated differentially methylated regions (DMRs) in the clones lacking SMCHD1 (fig. S5C and table S3). One extensively hypomethylated genomic region was the Pcdha gene cluster, which is a known binding region for SMCHD1 (40).

To look for functionally relevant epigenetic changes upon loss of SMCHD1, we performed RNA sequencing (RNA-seq) and identified 1236 up-regulated and 256 down-regulated genes [fold change > 2, false discovery rate (FDR) < 0.05] in the Smchd1 KO cells compared to WT cells (Fig. 3B and table S3). This is consistent with a role of SMCHD1 as a transcriptional repressor. Up-regulated genes, but not down-regulated or unchanged genes, had slightly reduced levels of DNA methylation near the transcription start sites (TSSs) (fig. S5, D to F). There was an overall negative correlation between the direction of methylation change in the SMCHD1 knockouts and the expression change of the DMR-associated genes (fig. S3G). Gene ontology analysis for DMR-associated differentially expressed genes pointed to an enrichment of pattern-specific and organ developmentspecific processes (fig. S3H).

Using gene set enrichment analysis (GSEA), one notably up-regulated set of genes was identified as 2c embryolike genes (Fig. 3, C and D), which reflected the up-regulation of 136 genes normally expressed in 2c mouse embryos as a feature of the initial wave of zygotic genome activation (ZGA) (42). A similar set of genes found in ZSCAN4+ mESCs (43) or in CAF1 knockdown ES cells (44) was also enriched in the group of genes up-regulated in SMCHD1 KO cells. A small percentage of WT ES cells sporadically express 2c embryo stagespecific (2C) transcripts, such as Zscan4, and cycle in and out of this specialized state (42). Among the genes up-regulated in the absence of SMCHD1 was the Zscan4 gene cluster (Fig. 4A). The up-regulation of Zscan4, which encodes a protein involved in telomere maintenance (45), was confirmed at the protein level using a pan-ZSCAN4 antibody (Fig. 4B). The fraction of ZSCAN4-positive cells in the ES cell population increased from ~1.5% in WT cells to about 12% in the SMCHD1 KO cells (Fig. 4, C and D). Various repetitive element families, such as murine endogenous retroviruses (MERVK and MERVL), which are activated by ZSCAN4 (46) and also derepressed during ZGA (42), showed increased expression upon loss of SMCHD1 (Fig. 3E).

(A) Integrative Genomics Viewer screenshots of RNA-seq track peaks across all Zscan4 family members in WT and SMCHD1 KO ES cells. (B) Up-regulation of ZSCAN4 protein in SMCHD1 KO cell lines. (C) The fraction of ZSCAN4-positive cells in the ES cell population is increased in the absence of SMCHD1. ES cells were immunostained for ZSCAN4 (green). DNA was counterstained with DAPI (4,6-diamidino-2-phenylindole) (blue). Scale bars, 50 m. (D) Fractions of ZSCAN4+ cells in WT ES cells and Smchd1-KO ES cells. t test was performed for statistical analysis (P < 0.001). Error bars indicate SEM (six independent experiments). (E) Browser view of RNA-seq tracks across the Dux locus in WT and SMCHD1 KO ES cells. The Dux gene itself is shaded in yellow. (F) Quantitative real-time polymerase chain reaction (qRT-PCR) data confirm Dux activation upon SMCHD1 loss. -Actin was used as a control. One-way ANOVA was performed for statistical analysis, comparing the mean of each group with the mean of the WT group (***P < 0.001). Data are for means SEM of three independent KO clones.

We then focused our attention on the Dux locus, which encodes a double-homeobox transcription factor (DUX) implicated in ZGA and in 2c-like transcriptomes (4749). We found that Dux is strongly (>10-fold) activated in SMCHD1-deficient ES cells (Fig. 4, E and F). Within the same locus, several other transcripts including the 5UTR (5 untranslated region) of a Dux pseudogene (Gm4981) were also up-regulated upon loss of SMCHD1 (Fig. 4E). WGBS (Fig. 5A) and manual bisulfite sequencing (Fig. 5B) revealed substantial demethylation of the Dux promoter in the SMCHD1 KO clones (WGBS, P < 1 105; manual bisulfite sequencing, P < 0.01; t test). We then incorporated a MERVL-promoter-dTomato reporter construct into the SMCHD1 KO and WT ES cells and purified dTomato-expressing (2c-like) cells by fluorescence-activated cell sorting (FACS) (Fig. 5C). In this cell population, methylation of the Dux promoter was even further reduced compared to unsorted cell populations, and methylation levels were lowest in the sorted SMCHD1 KO cells (Fig. 5, D and E). Using chromatin IP (ChIP) and quantitative polymerase chain reaction (qPCR), we observed that the SMCHD1 protein is present at the two different locations examined in the mouse Dux promoter in WT, but not in SMCHD1 KO ES cells (fig. S6A).

(A) Single CpG modification levels of WT and SMCHD1 KO samples at the Dux locus, as determined by WGBS. The differential methylation region is shaded in purple. CpGs are denoted with tick marks. Red circles, WT; blue circles, SMCHD1 KO. Circle size is proportional to coverage. A smoothed line is shown for each sample. (B) Manual bisulfite sequencing of the Dux promoter in WT and SMCHD1 KO cells. Solid black circles indicate modified CpG sites; open circles indicate unmodified CpG sites. Total percentages of modified cytosines (%Me) are shown. The primers are also indicated in (A). (C) Representative fluorescence image and FACS plot of 2C::tdTomato+ cells in the Smchd1 KO ES cell populations. (D) Methylation of the Dux promoter in the dTomato-expressing (FACS-sorted) Smchd1 KO cell population is further reduced. The data show bisulfite sequencing analysis of the Dux promoter in reporter-expressing WT and SMCHD1 KO ES cells. Total percentages of modified cytosines (%Me) are shown. (E) Percentages of modified cytosines at the Dux promoter determined from (B) and (D). One-way ANOVA was performed (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). Error bars indicate SEM from triplicate clones (WT and Smchd1-KO) or duplicate samples (FACS-sorted 2c-Smchd1-KO cells).

To examine whether TET-mediated 5mC oxidation is involved in demethylation of the Dux promoter when SMCHD1 is not functional, we analyzed 5hmC by a pulldown method following derivatization of the hydroxymethyl group with biotin (fig. S6B) (50) or by single-base resolution TET-assisted bisulfite sequencing [TAB sequencing; (51)] (fig. S6C; see fig. S7 for complete results). Both methods indicated a significant increase in 5hmC at the Dux promoter in SMCHD1-deficient cells. Using ChIP, we observed enhanced binding of TET1 to the R2 region of the Dux promoter in SMCHD1 KO cells (fig. S6D). This is the same location where SMCHD1 is normally bound (fig. S6A) in WT ES cells, suggesting a shielding effect of SMCHD1 toward the 5mC oxidase.

To delineate the contribution of Dux to the entire set of genes up-regulated after loss of SMCHD1, we biallelically inactivated Dux in Smchd1 KO ES cells and also in WT ES cells (confirmed by extensive DNA sequencing because no reliable anti-DUX antibody was available; Fig. 6A). The subsequent RNA-seq analysis showed that 47 of the 136 up-regulated 2c-like genes in SMCHD1 KO cells were no longer up-regulated in the absence of a functional Dux gene (Fig. 6, B and C). One example of such Dux-dependent genes is the Zscan4 gene cluster, the expression of which was strictly dependent on WT Dux (Fig. 6D). In a published study (48), 5738 genes were linked to HA-DUX peaks. On the basis of this gene set, we found that still, 49 of the 2c-like genes that are up-regulated in our Smchd1 single KO were not bound by DUX. So, we can confirm that a fraction of up-regulated 2c-like genes (49 of 136) in Smchd1-KO cells may not be directly regulated by DUX. The data indicate that DUX is a substantial but not exclusive contributor to the 2c-like transcriptome induced in the absence of SMCHD1 (Fig. 6).

(A) The small guide RNA (gRNA) targeting region is immediately downstream of the start codon (ATG) of the Dux gene. Sanger sequencing confirmed frameshift mutations. Sequences targeted by the gRNA are in blue, and the PAM (protospacer adjacent motif) sequence is shown in red. Biallelic frameshift mutation was shown for each clone. The gRNA was applied in WT and in SMCHD1 KO ES cells to obtain the Dux single-knockout and Smchd1/Dux double-knockout ES cell clones, respectively. (B) A heatmap indicates the differentially expressed 2c-like genes between Dux/Smchd1 double-knockout (n = 3 clones) and Smchd1 single-knockout (n = 3 clones, two replicates each) ES cells. The blue color indicates genes no longer up-regulated in the double knockouts. (C) The pie chart shows that 47 of the 136 single-KO up-regulated 2c-like genes were no longer up-regulated in the absence of Dux in the Smchd1/Dux double KO. (D) RNA-seq tracks generated by the GVIZ package across the Zscan4 gene family members in WT ES cells (black), Smchd1 KO ES cells (red), Dux KO ES cells (blue), and Smchd1 plus Dux (double-KO) ES cells (green).

Our data showed an interaction of SMCHD1 with TET proteins within cells (Fig. 1 and figs. S1 and S2) and an inhibition of TET-induced 5mC oxidation by SMCHD1 (Fig. 2). In the absence of SMCHD1, 5hmC levels are increased (fig. S4; fig. S6, B and C; and fig. S7), suggesting that SMCHD1 is a negative regulator of TET activities. To obtain genetic support for this interaction, we used Tet1/2/3 triple-knockout ES cells (52) and deleted SMCHD1 from these cells, as confirmed by Western blotting and DNA sequencing (Fig. 7A and fig. S8A). The Dux gene could no longer be activated upon loss of SMCHD1 in TET-TKO cells (Fig. 7, B and C; compare to Fig. 4, E and F). Consequently, DUX target genes such as Usp17lc, Zscan4f, and Zfp352 (4749), as well as other SMCHD1-regulated genes such as 1700013H16Rik and Gm12690, could also no longer be activated (Fig. 7D). Of the 136 2c-like genes up-regulated in the absence of SMCHD1, only 69 were still up-regulated in the absence of TET activities (Fig. 7E). In TET-TKO cells, the Dux promoter was >90% methylated at CpG sites. However, unlike in WT ES cells (Fig. 5B), loss of SMCHD1 in these cells did not elicit significant DNA demethylation (Fig. 7F). These experiments demonstrate that TET proteins are required to cause demethylation of the Dux promoter and activation of Dux when SMCHD1 is dysfunctional, genetically confirming that SMCHD1 operates as a negative regulator of TET activity.

(A) Absence of SMCHD1 protein in three CRISPR-Cas9targeted Tet triple-knockout ES cell clones. (B) RNA-seq tracks across Dux in WT, Tet triple-knockout ES cells, and Tet-Smchd1 quadruple-KO cells. (C) Quantitative RT-PCR analysis of Dux expression in WT, Tet triple-knockout and Tet-Smchd1 quadruple-knockout cells. One-way ANOVA was performed. Data are for means SEM of three independent clones. (D) RNA-seq analysis across different genes in WT, Smchd1 KO, Dux KO, Smchd1 and Dux (double) KO, Tet triple-knockout, and Tet-Smchd1 quadruple-knockout ES cells. One-way ANOVA was performed, comparing the mean of each group (n = 3 clones each) with the mean of the Smchd1-KO group (**P < 0.01 and ****P < 0.0001). Error bars indicate SEM. (E) The number of up-regulated 2c-like genes is decreased in the absence of TET proteins. (F) Bisulfite sequencing analysis of the Dux promoter in Tet-TKO cells and quadruple-knockout cells. Percentages of modified cytosines (%Me) are shown. (G) Eighty-nine percent (75 and 14%) of significantly up-regulated genes in the SMCHD1 single KO are no longer up-regulated in the absence of TET proteins in the Tet-Smchd1 quadruple-KO (qKO) cells. (H) Model of SMCHD1 as a negative regulator of TET proteins at the Dux promoter. Black circles, 5mC; light blue circles, 5hmC; white circles, unmethylated CpGs.

In the Smchd1, Tet1, Tet2, and Tet3 quadruple-knockout cells, a total of 921 of 1236 genes (75%), which were up-regulated in Smchd1 single-knockout cells, could no longer be activated (Fig. 7G and fig. S8B). Examples are shown in Fig. 7D. An additional 179 genes (14%), normally activated upon SMCHD1 loss, were even down-regulated in these quadruple knockouts (Fig. 7G). These data indicate that the aberrant transcriptome in the absence of SMCHD1 depends to a substantial extent on the presence of TET proteins (fig. S8, C and D).

In this study, we identified SMCHD1 as a TET-interacting protein initially by MS. There have been several previous studies in which TET- or SMCHD1-interacting proteins were analyzed by proteomics, but this interaction was not found (27, 28, 30, 53). One recent publication did identify SMCHD1 as a TET2-interacting protein in their proteomics data (54). Some studies used higher salt concentrations (300 mM) for cell lysis or washing steps (30, 53), but others used conditions similar to ours (27, 54). It is possible that the relatively milder extraction conditions we used may explain that we did find the TET-SMCHD1 association. The SMCHD1-TET complexes may be disrupted by 300 mM NaCl. Extraction and washing steps are certainly a determining factor for identification of interacting proteins. Using higher salt concentrations (>150 mM) will increase the risk of disassembling protein complexes. Other data in our manuscript, including endogenous co-IP, BiFC (which does not use cell extraction or salt washes), and the genetic studies, further support the TET-SMCHD1 interaction.

From our data, we propose a model in which SMCHD1 acts as a negative regulator of TET proteins by inhibiting their activity at target sequences (Fig. 7H). This regulation likely involves a shielding mechanism because DNA hypomethylation is most pronounced at known SMCHD1-bound genomic regions (e.g., Dux and Pcdha gene cluster). SMCHD1 may inhibit TET either by direct DNA binding or via its presence in heterochromatin. Localized TET inhibition or trapping of TET by SMCHD1 may also lead to a slight reduction in global 5mC oxidation, which is reversed upon SMCHD1 depletion leading to a moderate global DNA hypomethylation. Our data are conceptually consistent with other models that have posited that SMCHD1 functions in chromatin as an antagonistic protein against CCCTC binding factor (CTCF) binding (40), either by a shielding mechanism or by promoting DNA methylation that interferes with binding of CTCF. SMCHD1 also has been shown to be a protecting factor against formation of H3K27me3 by the Polycomb complex (25).

SMCHD1 loss-of-function mutation, often affecting its ATPase domain, is a hallmark of the human muscular dystrophy disease facioscapulohumeral dystrophy (FSHD2), which is characterized by inappropriate activation of the DUX4 gene, which is the human homolog of mouse Dux (5557). It is of interest to speculate that loss of TET restriction by dysfunction of SMCHD1 may lead to TET-induced hypomethylation of DUX4 control regions and unscheduled expression of DUX4, perhaps starting already during human embryonic development and later manifesting itself in muscle disease.

Our data suggest that SMCHD1 is critical for Dux suppression in mESCs, thus controlling the 2c-like state. Furthermore, SMCHD1 plays a key role in de novo methylation of CpG islands on the inactive X chromosome during mouse development (23). Recent data have shown, however, that loss of SMCHD1 in somatic cells does not lead to X chromosome reactivation (24, 25). Together, the existing data suggest that SMCHD1 functions in promoting de novo DNA methylation during development rather than in mediating methylation maintenance, and we propose the following mechanism: SMCHD1 operates in these critical DNA methylation events by inhibiting TET-mediated 5mC oxidation and demethylation at its target regions, as we show in this study, thereby shifting the balance of methylation versus demethylation toward the methylated state (Fig. 7H). When SMCHD1 is lost, but DNA methylation remains high in the absence of TETs (reduced DNA methylation dynamics), Dux expression may not be occurring because of inhibition of transcription by DNA methylation. On the other hand, in absence of SMCHD1 and presence of TET activity, and thus higher methylation-demethylation dynamics, Dux will be activated. This pathway is important in inhibiting the totipotent (2c-like state) of ES cells. Although a role of SMCHD1 in inactivation of Dux in late 2c mouse embryos has recently been proposed (58), this event seems initially independent of DNA methylation inasmuch as the Dux promoter region is almost completely unmethylated in 2c and 4c mouse embryos (59); therefore, the de novo methylation events must occur later during development. Further studies are needed to confirm whether SMCHD1 is responsible for the remethylation of the Dux locus during early embryo development and whether inhibition of TET proteins plays an important role in this process.

FLAG-tagged TET3FL or FLAG-tagged TET3S plasmids (31) were transfected into 293T cells. After 48 hours, cells were lysed in 10 mM tris-HCl (pH 7.4), 150 mM NaCl, 0.125% NP-40, and 2.5 mM EDTA. The lysate was added to M2 anti-FLAG affinity beads (Sigma-Aldrich), which were agitated overnight at 4C. After extensive washing with lysis buffer containing 200 mM NaCl followed by washing with 20 mM tris-HCl (pH 7.6) and 200 mM NaCl, the IP beads were mixed with 5 SDS loading buffer and heated for 10 min at 80C. Each protein sample was loaded onto 12% SDSpolyacrylamide gel electrophoresis (PAGE) gels. After visualization using Coomassie blue, the gel lanes were cut into eight segments and sliced into small pieces for in-gel digestion. Gel pieces were washed three times with distilled water to remove SDS and dehydrated using 100% acetonitrile. Proteins were treated with 10 mM dithiothreitol (DTT) in 50 mM NH4HCO3 for 45 min at 56C. After washing with 100% acetonitrile, alkylation of cysteines was performed with 55 mM iodoacetamide in 50 mM NH4HCO3 for 30 min in the dark. Last, each dehydrated gel piece was treated with sequencing-grade modified trypsin (12.5 ng/l; Promega, Madison, WI) in 50 mM NH4HCO3 buffer (pH 7.8) at 37C overnight. Following digestion, tryptic peptides were extracted with 5% formic acid in 50% acetonitrile solution at room temperature for 20 min. The supernatants were collected and dried in a SpeedVac. Samples were resuspended in 0.1% formic acid and were purified and concentrated using C18 ZipTips (Millipore, MA) before MS analysis.

Peptide separation was performed using a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific). Tryptic peptides from bead columns were reconstituted using 0.1% formic acid and separated on a 50-cm EASY-Spray column with a 75-m inner diameter packed with 2-m C18 resin (Thermo Scientific, USA) over 120 min (300 nl/min) using a 0 to 45% acetonitrile gradient in 0.1% formic acid at 50C. The liquid chromatography (LC) was coupled to a Q Exactive Plus mass spectrometer with a nano-ESI source (Thermo Fisher Scientific). Mass spectra were acquired in a data-dependent mode with an automatic switch between a full scan with 10 data-dependent tandem MS (MS/MS) scans. Target value for the full-scan MS spectra was 3,000,000 with a maximum injection time of 120 ms and a resolution of 70,000 at mass/charge ratio (m/z) of 400. The ion target value for MS/MS was set to 1,000,000 with a maximum injection time of 120 ms and a resolution of 17,500 at m/z 400. Dynamic exclusion of repeated peptides was applied for 20 s.

The acquired MS/MS spectra were searched using SequestHT on Proteome Discoverer (version 2.2, Thermo Fisher Scientific) against the Swiss-Prot database. Briefly, precursor mass tolerance was set to 10 ppm (parts per million) and MS/MS tolerance was set at 0.02 Da. FDRs were set at 1% for each analysis using Percolator. From the Sequest search output, peptide data were default values of Proteome Discoverer. Label-free quantitation was performed using peak intensity for unique and razor peptides of each protein. Normalization was done using total peptide amount.

To identify TET2 interaction partners, we transfected FLAG-tagged TET2FL with N-terminal FLAG and HA tags (Addgene plasmid no. 41710; a gift from A. Rao) into 293T cells, harvested the cells after 48 hours, and processed them similar as described below for ES cells. ES cells in which the SMCHD1 protein was tagged endogenously with a C-terminal FLAG tag were prepared as follows: We followed the protocol of CETCh-seq (60). Briefly, we designed guide RNA (gRNA; 5GTCTTCAGAAATGCTCAGTT) and cloned it into pSpCas9-2A-puromycin (PX459, Addgene; a gift from F. Zhang) to target and cut near SMCHD1s stop codon. We cloned 700 to 800base pair(bp)long homology arms of Smchd1 into the pFETCh-donor backbone vector (Addgene plasmid no. 63934; gift from E. Mendenhall and R. M. Myers) by Gibson assembly reaction. Then, we cotransfected the donor plasmid and gRNA plasmid at a ratio of 2:1. The single FLAG-tagged cell clones were selected in puromycin (1.5 g/ml) and G418 (200 g/ml). The DNA of selected clones was extracted and sequenced to detect the presence of the FLAG tag. Tagged SMCHD1 protein was detected by Western blot with anti-FLAG antibody and anti-SMCHD1 antibody.

The cells were harvested and lysed in ice-cold lysis buffer consisting of 10 mM tris-HCl (pH 7.4), 150 mM NaCl, 0.125% (v/v) NP-40, cOmplete protease inhibitor tablets (Sigma-Aldrich; 1 tablet/10 ml), and 2.5 mM EDTA at 4C for 1 hour. We centrifuged the cell lysate at 40,000g for 60 min at 4C, then transferred the supernatant onto equilibrated anti-FLAG M2 affinity beads (Sigma-Aldrich), and incubated the slurry on a rotation wheel overnight at 4C. We washed the beads with ice-cold wash buffer containing 10 mM tris-HCl (pH 7.4), 250 mM NaCl, 0.125% (v/v) NP-40, cOmplete (1 tablet/10 ml), and 2.5 mM EDTA on a rotation wheel at 4C for 5 min and repeated the washing five times. Following the final wash, the beads were then eluted twice with elution buffer containing 20 mM tris-HCl (pH 7.5), 150 mM NaCl, 0.02% (v/v) Tween 20, and 3 FLAG peptide (150 g/ml) for 5 min. The eluted samples were then mixed with 5 SDS loading buffer and denatured for 10 min at 99C. The protein samples were loaded and separated on a mini gel (Bio-Rad Mini-PROTEAN TGX 4 to 20%). The gel was stained using Coomassie blue and destained water. The cut gel samples were digested with trypsin and injected into a Thermo Orbitrap Fusion Lumos mass spectrometer at the University of Massachusetts Proteomics Core Facility. The data were searched against the Swiss-Prot human/mouse database using the Mascot search engine through Proteome Discoverer software.

Full-length SMCHD1 was cloned into the pFastBac vector (Thermo Fisher Scientific) with a FLAG tag. We confirmed all expression vectors by Sanger sequencing. For FLAG-tagged SMCHD1 and TET2 protein expression, the bacmid DNA was transfected into Sf9 cells (Bac-to-Bac baculovirus expression system; Thermo Fisher Scientific) to obtain the passage 0 (P0) baculovirus at 96 hours after transfection. Then, we continued to generate P1 baculovirus by infecting the cells with P0 baculovirus. Proteins were expressed for 72 hours using 1000 ml of insect cells (2 million cells/ml) after transfecting P1 virus, and the cell pellet was resuspended in lysis buffer [50 mM Hepes (pH 7.5), 300 mM NaCl, 0.2% (v/v) NP-40, cOmplete, EDTA-free Protease Inhibitor Cocktail (Roche, 1 tablet/10 ml), and Benzonase Nuclease (10 U/ml) (Millipore) to destroy nucleic acids]. The lysate was cleared by centrifugation at 20,000g for 60 min. Anti-FLAG M2 affinity gel (Sigma-Aldrich) was equilibrated in lysis buffer following the manufacturers instructions. We incubated the cleared lysate with equilibrated FLAG M2 affinity gel at 4C for 2 hours. Bound protein was then washed five times with wash buffer [50 mM Hepes (pH 7.5), 150 mM NaCl, and 15% (v/v) glycerol]. We eluted the protein with the wash buffer containing 3 FLAG peptide (100 g/ml) (Sigma-Aldrich). Purified FLAG-tagged proteins were concentrated by Amicon Ultra Centrifugal Filters and DTT was added to 1 mM, then aliquots were flash-frozen in liquid nitrogen, and stored at 80C. The purification of TET proteins from mammalian cells was performed as described using anti-FLAG purification, as described above.

We performed TET protein in vitro assays on the basis of the established TET oxidation reaction (see TAB sequencing reactions for details). For a P.C., 18 g of TET2-CD protein was used to treat 500 ng of Sss Imethylated genomic DNA to get fully oxidized DNA containing 5caC. For a negative control (N.C.), no TET protein was used. For the testing samples, 1.15 g of TET protein was used to treat Sss Imethylated genomic DNA, and different amounts of recombinant full-length SMCHD1 were added into the TET oxidation reaction. Bovine serum albumin (BSA) was used as a control. For a blank control, only the elution buffer for protein purification was used to keep the volume of the reactions identical. After the TET oxidation reaction, we performed bisulfite conversion treatment on the purified DNA with the EZ DNA Methylation-Gold Kit (Zymo Research). This treatment converts the TET reaction product 5caC to uracil. For COBRA, BstU I was used to digest the PCR products obtained after bisulfite conversion. For sequence analysis, the PCR products obtained after bisulfite conversion were cloned into the Topo TA cloning vector, and clones were sequenced.

J1 mESCs (from American Type Culture Collection) were cultured under feeder-free conditions on 0.1% gelatincoated tissue culture plates in KO DMEM (Dulbeccos modified Eagles medium; Gibco, 10829-018) supplemented with 15% fetal bovine serum, LIF (1000 U/ml) (Millipore, ESG1106), 1 nonessential amino acids (Gibco, 11140-050), 100 M -mercaptoethanol (Invitrogen, 21985-203), and 2 mM l-glutamine (Gibco, 25030-081).

mESCs were transfected with pSpCas9-2A-puromycin (PX459) plasmids (Addgene plasmid no. 62988; a gift from F. Zhang) carrying the appropriate Smchd1 sgRNAs, by using the BioT transfection reagent (Bioland, B01-01) according to the manufacturers instructions. Single-cell clones were selected in puromycin (1.5 g/ml). To inactivate the Dux gene in WT and Smchd1 KO ES cell clones, we transfected WT cells or Smchd1 KO ES cells with a pSpCas9-2A-blasticidin plasmid carrying the appropriate Dux sgRNA. Single-cell clones were selected with blasticidin (8 g/ml). We used the same pSpCas9-2A-puromycin-gRNA vector to knock out Smchd1 in Tet1/Tet2/Tet3 triple-knockout ES cells. The DNA was extracted and sequenced to detect the presence of WT and/or mutant alleles. Three independently derived WT, three homozygous mutant Smchd1-KO clones, three homozygous Dux-knockout clones, three homozygous Smchd1/Dux double-knockout clones, and three homozygous mutant Tet1/Tet2/Tet3/Smchd1 quadruple-knockout clones were selected and used in this study.

For mammalian expression vectors, the Tet3FL, Tet3S, and Tet1 expression vectors were constructed as previously described (31). The pEF-Smchd1-FLAG expression vector was a gift from M. Blewitt. The pFastBac1-hTET2-CS construct was provided by R. Kohli (61). Fragments of TET3 and SMCHD1 were cloned into pEF-DEST51 expression vectors (Invitrogen, 430106). For co-IP of exogenously expressed full-length proteins, 293T cells were transfected by using a BioT transfection regent with plasmids expressing the appropriate FLAG- or V5-tagged proteins (5 g of each plasmid on a 10-cm dish). 293T cells were harvested at 48 hours after transfection, and nuclear lysates were purified by NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific, 78835) according to the manufacturers instructions. The nuclear lysates were incubated with 2 g of the appropriate antibody for 2 hours and then incubated with 20 l of Dynabeads Protein G (Invitrogen, 00671375) overnight to collect the immune complexes. We washed the immune complexes with ice-cold wash buffer containing 10 mM tris-HCl (pH 7.4), 150 mM NaCl, 0.125% (v/v) NP-40, cOmplete (1 tablet/10 ml), and 2.5 mM EDTA. The samples were boiled in SDS-PAGE loading buffer, followed by SDS-PAGE, and Western blotting. For co-IP of protein domains, 293T cells were transfected with plasmids expressing the appropriate FLAG- or V5-tagged proteins (5 g of each plasmid on a 10-cm dish). 293T cells were harvested 48 hours after transfection and lysed in IP buffer [10 mM tris-HCl (pH 7.4), 150 mM NaCl, 0.125% NP-40, and 2.5 mM EDTA], supplemented with protease inhibitor cocktail (Roche).The cell lysate was centrifuged at 12,000g for 15 to 30 min at 4C, incubated with 2 g of the appropriate antibody for 2 hours, and then incubated with 20 l of Dynabeads Protein G (Invitrogen, 00671375) overnight. The beads were then washed six times with IP buffer [10 mM tris-HCl (pH 7.4), 150 mM NaCl, 0.125% NP-40, and 2.5 mM EDTA]. Last, the samples were boiled in SDS-PAGE sample loading buffer, followed by SDS-PAGE, and Western blotting with the indicated antibodies. For endogenous co-IP, preparation of nuclear extract, buffer preparation, and co-IP, we used the Nuclear Complex Co-IP Kit (Active Motif, 54001) according to the manufacturers instructions. We used 5 g of antibody for endogenous co-IP: SMCHD1 (Bethyl, A302-871A), TET1 antibody (GeneTex, GTX124207), TET2 antibody (Cell Signaling Technology, 92529), and TET3 antibody (31). After the IP reactions, we performed Western blotting with the indicated antibodies.

ES cells were washed twice with phosphate-buffered saline (PBS) and fixed in 4% paraformaldehyde in PBS for 15 min at room temperature. The fixed cells were permeabilized in 0.4% Triton X-100 in PBS at room temperature for 30 min, washed twice with PBS, and blocked for 30 min with 1% BSA in PBS. Cells were then incubated for 1 hour with anti-ZSCAN4 antibody (1:1000; Millipore, ab4340). After washing several times in 0.05% Tween 20 in PBS, the cells were incubated with Alexa Fluor 488 goat anti-rabbit (1:1000; Invitrogen, A27034) secondary antibody at room temperature for 1 hour and washed again three times. Then, we treated the cells with ProLong Gold anti-fade reagent with DAPI (4,6-diamidino-2-phenylindole) (Invitrogen, P36935) and acquired fluorescence images using a Nikon TE300 microscope with NIS-Elements AR 4.20.01.

FACS analysis was performed with a Beckman cell sorting system. Smchd1-KO mESCs or WT cells containing the 2C::tdTomato reporter (Addgene plasmid no. 40281; a gift from S. Pfaff) were subjected to FACS sorting with a MoFlo Astrios instrument (Beckman Coulter).

We seeded 1 105 293T cells into 24-well plates before transfection. Cells were transfected with the TET3S and SMCHD1 expression vectors, 47.5 ng of pGL3 luciferase reporter vector (methylated or unmethylated), and 2.5 ng of internal control Renilla luciferase reporter vector (pRL-CMV, Promega, Madison, WI). We harvested the cells 48 hours after transfection. All transfections were carried out at least in three independent experiments and in triplicate. Firefly and Renilla luciferase activities were assayed with the Dual-Luciferase assay kit (Promega) according to the manufacturers instructions. The firefly luciferase activities were normalized relative to Renilla activity.

BiFC assays were performed for determining the in vivo interaction between SMCHD1 and TET3. The assay is based on interactions between bait and prey proteins that bring together two nonfluorescent fragments of a fluorescent protein (GFP) and then form a functional chromophore. In this study, all recombinant expression vectors were constructed on empty backbones of HA-GFP1-10-pDEST-C and FLAG-GFP11-pDEST-C (Addgene plasmid nos. 118369 and 118367; gifts from M. Vartiainen). We used human embryonic kidney 293T cells, which were cotransfected with pEF-SMCHD1-HA-GFP1-10 and pEF-TET3-FLAG-GFP11 expression vectors using the BioT transfection regent. At 48 hours after transfection, the cells were analyzed by confocal microscopy (Zeiss LSM 880 microscope) and by Cell Cytometer Counter (Celigo) to identify the interactions. Cotransfection of pEF-OGT-HA-GFP1-10 and pEF-TET3-FLAG-GFP11 was used as a P.C. Cotransfection of pEF-SMCHD1-HA-GFP1-10 and pEF-ccdB-FLAG-GFP11 and cotransfection of pEF-ccdB-HA-GFP1-10 and pEF-TET3-FLAG-GFP11 were the N.C.s.

AlphaScreen (PerkinElmer) assays were performed for determining the in vitro interaction between biotin-SMCHD1 and His-tagged TET proteins following the manufacturers protocol. Briefly, 200 nM SMCHD1-biotin and 200 nM TET2FL-His or TET2-CD-His were incubated at room temperature for 1 hour. The protein sample was then incubated with streptavidin-coated donor beads (final concentration of 10 g/ml) and nickel-chelate acceptor beads (final concentration of 10 g/ml) in a total volume of 100 l of AlphaScreen buffer containing 50 mM MOPS (pH 7.4), 50 mM NaF, 50 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and BSA (0.1 mg/ml) for 1 hour in the dark at room temperature. The photon counts were detected in 384-well plates by the EnVision Alpha reader (PerkinElmer).

Western blots and dots blot were performed as previously described (31), with minor modifications. For Western blots, we lysed the cells in buffer containing 50 mM tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, and proteinase inhibitor cocktail (Roche, 11873580001) on ice for 60 min followed by centrifugation at 12,000g for 15 min at 4C. The lysates were separated on 4 to 15% SDS-polyacrylamide gels and transferred onto PVDF (polyvinylidene difluoride) membranes (Bio-Rad) by wet transfer at 4C. We incubated the membranes with blocking buffer (5% nonfat milk and 0.1% Tween 20 in PBS) for 1 hour at room temperature and then with the indicated primary antibody at 4C overnight. After washing with PBS-Tween (0.1%), the membranes were incubated with peroxidase-conjugated secondary antibodies for 1 hour at room temperature. Signals were detected using an ECL Prime detection reagent (GE Healthcare). Antibodies used for Western blots were as follows: anti-SMCHD1 (1:2500; Abcam, ab31865), anti-SMCHD1 (1:2500; Bethyl, A302-871A), anti-TET1 (1:1000; GeneTex, GTX124207), anti-TET2 (1:2000; Cell Signaling Technology, 92529) or anti-TET2 (1:1000; ProteinTech, 21207-1-AP), anti-DNMT1 (1:1000; Novus Biologicals, NB100-56519), anti-DNMT3A (1:1000; Novus Biologicals, NB120-13888), anti-DNMT3B (1:1000; Novus Biologicals, NB300-516), anti-tubulin (1:10,000; Abcam, ab7291), anti-ZSCAN4 (1:2500; Millipore, AB4340), HRP (horseradish peroxidase) goat anti-rabbit immunoglobulin G (IgG) (1:10,000; Active Motif, 15015), and HRP goat anti-mouse IgG (1:10,000; Active Motif, 15014). For dot blots, genomic DNA was purified with Quick-DNA Miniprep Plus kits (Zymo Research, D4070) followed by ribonuclease A treatment. The DNAs were then sonicated and purified using a QIAquick PCR purification kit (Qiagen, 28104). The purified DNAs were serially diluted and denatured in TE buffer at 98C for 10 min and then immediately chilled on ice for 10 min. The DNAs were then spotted onto a wetted GeneScreen Plus hybridization nylon membrane (PerkinElmer, NEF988001PK) with a Bio-Dot apparatus (96-well; Bio-Rad). The blotted membranes were ultraviolet cross-linked. After incubation with the blocking buffer (5% nonfat milk and 0.15% Tween 20 in PBS) for 2 hours at room temperature, the membranes were then incubated with anti-5hmC antibody (1:8000; Active Motif, 39769) or anti-5mC antibody (1:1000; Active Motif, 39649) for 1 hour at room temperature. After washing with PBS-Tween (0.15%), the membranes were incubated with peroxidase-conjugated secondary antibodies for 1 hour at room temperature. Signals were detected using an ECL Prime detection reagent (GE Healthcare).

DNA was purified with a Quick-DNA Miniprep Plus kit (Zymo Research, D4070). The bisulfite conversion was performed with the EZ DNA Methylation-Gold Kit (Zymo Research, D5005) according to the manufacturers instructions. PCR primer sequences for amplification of specific targets in bisulfite-treated DNA were 5TTTGTTAGGGATGAGGAGTT (forward) and 5AAACCTCTAATAAACCTCTTTA (reverse) for the Dux promoter. For sequence analysis, the PCR products obtained after bisulfite conversion were cloned into the Topo TA cloning vector (Thermo Fisher Scientific, 450030), and clones were sequenced. For TAB sequencing, 500 ng of genomic DNA was incubated with T4-glucosyltransferase (10 U/l) [New England Biolabs (NEB)], 2 mM uridine diphosphateglucose (NEB), and 10 CutSmart Buffer (NEB) at 37C overnight, and then DNA was purified using standard phenol chloroform extraction followed by ethanol precipitation. Next, we performed the TET oxidation reaction as follows: The purified DNA was incubated with 12.5 g of in-house purified TET2-CD protein, gelatin (1600 g/ml), TET oxidation buffer 1 [1.5 mM Fe(NH4)2(SO4)2], and TET oxidation buffer 2 [83 mM NaCl, 167 mM Hepes (pH 7.5), 4 mM ATP, 8.3 mM DTT, 3.3 mM -ketoglutarate, and 6.7 mM sodium ascorbate] at 37C for 2 hours. Then, we added 1 l of proteinase K (20 mg/ml) to the reaction, mixed well, and incubated at 50C for 10 min. We performed phenol/chloroform purification and ethanol precipitation and dissolved the purified DNA in TE buffer [10 mM tris-HCl (pH 8.0) and 0.1 mM EDTA]. Last, we performed the bisulfite conversion treatment of the purified DNA with the EZ DNA Methylation-Gold Kit (Zymo Research). For sequence analysis, the PCR products obtained after bisulfite conversion were cloned into the Topo TA cloning vector and clones were sequenced.

Total RNA was extracted from whole cells with a PureLink RNA mini kit (Ambion, 12183020), according to the manufacturers instructions. Total RNA integrity was verified with an Agilent 2100 Bioanalyzer (Agilent Technologies) and quantified with a NanoDrop 8000 instrument (Thermo Fisher Scientific). RNA-seq libraries were prepared from total RNA with the KAPA RNA HyperPrep kit with RiboErase (KAPA Biosystems). Library size distributions were validated on the Bioanalyzer (Agilent Technologies). Sequencing was performed with an Illumina NextSeq500 machine and 75-bp single-end reads were obtained. Library demultiplexing was performed following Illumina standards.

Trim Galore (version 0.4.0) was used to trim the 75-bp single-end reads. Reads were aligned to the mouse genome mm9 with STAR (version 2.5.1), and gene count was performed with STAR. Gene counts matrix was imported into R (version 3.5.1). Differential gene expression was determined with the Limma (version 3.38.2) statistical package19. Differential expression P values were adjusted for multiple testing correction using the Benjamini-Hochberg method in the stats package. Statistical significance for differentially expressed genes was fold change > 2 with q < 0.05. Heatmaps were generated with Pheatmap package. GSEA was performed with the GSEA preranked module of the Broad Institutes GenePattern algorithm (62). For the GSEA analysis, all data were compared with the 2c-like gene set of Macfarlan et al. (42). One thousand gene-list permutations were used to determine the FDR value and the classic scoring scheme, according to methods previously described (49). Repeat element analysis was done by calculating read counts falling completely within RepeatMasker-annotated repeat elements, and the density plot was generated with R.

For the WGBS library preparations, we used Swift, Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences, 30024), and Zymos EZ DNA Methylation-Lightning kit (Zymo Research, D5030), according to the manufacturers instructions. Sequencing was performed with an Illumina HiSeq X with 150-bp paired-end read runs.

Paired-end whole-genome bisulfite reads were trimmed using TrimGalore!, version 0.5.0 (https://github.com/FelixKrueger/TrimGalore) with the following parameters to remove library preparation artifacts and low quality bases: --length 50, --clip_R1 10, --clip_R2 18, --three_prime_clip_R1 10, and --three_prime_clip_R2 10. Trimmed reads were aligned to the mm9 primary chromosomes using Bismark version 0.19.0 (63) and Bowtie2 version 2.3.3.1 (64) with the following parameters: -X 1000, --nucleotide_coverage, and --bowtie2. Duplicates were marked and removed using the deduplicate_bismark script provided with Bismark. CpG methylation values were extracted using the bismark_methylation_extractor script provided with Bismark and the following parameters: --no_overlap, --comprehensive, --merge_non_CpG, and --cytosine_report. We used DMRseq version 0.99.0 (41) to identify DMRs. Briefly, CpG loci with fewer than five reads were not considered for DMR calling, and a single CpG coefficient cutoff of 0.05 was used for candidate regions. Significant DMRs were identified using a q value < 0.05. Each CpG methylation value was averaged based on groups. t test showed a significant methylation difference between WT and KO (P < 2.2 1016). DMR-related genes were determined by defining a DMR within a genes proximity. DMRs were identified by bedtools (TSS 2K) and the Genomic Regions Enrichment Annotations Tool (GREAT) (65) and by long-range interaction between the DMRs and differentially expressed genes. We identified long-range interactions between the DMRs and differentially expressed genes by analyzing the Hi-C data in J1 ESC downloaded from GEO (Gene Expression Omnibus) dataset GSM862720 (SRR443885). Trim Galore (version 0.4.3) was used for adapter trimming for Hi-C data; HICCUP (version 0.5.9) was used for mapping and performing quality control. Significant interactions (default: P < 0.001 and z score > 1.0) were identified with HOMER, with a 40-kb resolution. Hi-C gene annotation involved identifying interactions with gene promoters, defined as 2 kb of a gene TSS (fig. S5G).

5hmC containing DNA was enriched by the EpiJET 5hmC Enrichment Kit (Thermo Fisher Scientific, K1491BID), according to the manufacturers instructions. The enriched DNA was then used for qPCR analysis of the Dux locus. qPCR reactions with target-specific primers included the forward (5GCTTTGCTACCAGGGAGGAG) and reverse (5GATCTTGAGCTGTGGGCCTG) primers for Dux region 1 and the forward (5CTAGCGACTTGCCCTCCTTC) and reverse (5GCTGATCAAGGAGGGGTTCC) primers for Dux region 2. PCR reactions were performed at 95C for 10 min followed by 50 cycles at 95C for 15 s, 57C for 30 s, and 72C for 30 s, using Power SYBR Green master mix (Applied Biosystems, 1809579) on a CFX96 real-time PCR cycler (Bio-Rad).

Total RNAs were isolated from cultured cells by using the PureLink RNA Mini Kit (Ambion). The SuperScriptIII reverse transcriptase (Invitrogen, 18080051) was used for reverse transcription of RNA, according to the manufacturers instructions. Real-time qPCR reactions with target-specific primers (available upon request) were performed at 50C for 2 min and 95C for 10 min followed by 50 cycles at 95C for 15 s and 60C for 1 min using TaqMan Gene Expression master mix (Applied Biosystems, 4369016) on a CFX96 real-time PCR cycler (Bio-Rad). The cDNA levels of target genes were analyzed using comparative Ct methods and normalized to internal standard, -actin.

ChIP was performed as previously described (31), with minor modifications. Briefly, cells were cross-linked with 1% formaldehyde (Thermo Fisher Scientific, 28908) in fixing buffer [50 mM Hepes (pH 7.5), 100 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA] for 10 min at room temperature, and chromatin from lysed nuclei was sheared to 300- to 500-bp fragments using a Covaris E220 sonicator (Covaris; Woburn, MA). Chromatin fragments were incubated with 5 g of the appropriate antibody [SMCHD1 (Abcam, ab31865), TET1 (GeneTex, GTX125888), or IgG control (Santa Cruz Biotechnology; SC-2027)] overnight at 4C with rotation. For ChIP-qPCR, real-time qPCR was carried out with a CFX96 real-time PCR cycler (Bio-Rad). Each sample was analyzed in quadruplicate. Data were analyzed according to the 2(Ct of IP sample Ct of IgG sample) method and are presented as fold change of a percentage of input. PCR primer sequences are available upon request.

Acknowledgments: We thank G. Xu for providing Tet1/2/3 triple-knockout ES cells and H. Liu, P. Li, Z. Yuan, M. Du, K. Melcher, and S.-G. Jin for the advice and discussions. We thank the genomics, flow cytometry, high-throughput computing, and bioinformatics core facilities at the Van Andel Institute for the support. Funding: This work was supported by an Innovation Award from the Van Andel Institute. Author contributions: Z.H., J.Y., and G.P.P. designed and initiated the study and planned experiments; Z.H. performed interaction studies, genetic knockouts, and epigenomics and transcriptomics experiments; J.Y. and K.K. performed MS and analyzed the data; Z.H. analyzed the DNA methylation and gene expression data, with support from B.K.J.; W.C. provided experimental support; Z.H. and G.P.P. prepared the manuscript. All authors discussed the results and commented on the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. Genome-wide datasets generated in this study were deposited at the GEO database under the accession numbers GSE126468.

Go here to read the rest:
The chromosomal protein SMCHD1 regulates DNA methylation and the 2c-like state of embryonic stem cells by antagonizing TET proteins - Science Advances

North America to be the Torchbearer to Stem Cell Characterization And Analysis Tools Market NeighborWebSJ – NeighborWebSJ

Stem cell characterization is the study of tissue-specific differentiation. Thera are various type of stem cell such as embryonic stem cell, epithelial stem cell and others. Further, various techniques are used to characterized stem cells such as immunological techniques, used for depiction of different population of stem cells. These techniques are generally based on immunochemistry using staining technique or florescent microscopy. Besides, stem cells characterization and analysis tools are used against target chronic diseases. In 2014, the San Diego (UCSD) Health System and Sanford Stem Cell Clinical Center at the University of California announced the launch of a clinical trial, in order to assess the safety of neural stem cellbased therapy in patients with chronic spinal cord injury.

The factors driving the growth of stem cell characterization and analysis tools market due to increasing chronic disorders such as cancer, a diabetes and others. In addition, increasing awareness about among people about the therapeutic potency of stem cells characterization in the management of effective diseases is anticipated to increase the demand for stem cell characterization and analysis tools. Further, there are various technologies such as flow cytometry which is used to characterize the cell surface profiling of human-bone marrow and other related purposes are expected to increase the growth of stem cell characterization and analysis tools market. In addition, increasing investment by private and public organization for research activities are likely to supplement the market growth in near future.

On the other hand, the unclear guidelines and the technical limitation for the development of the product are expected to hamper the growth of stem cell characterization and analysis tools market.

Rapid increase in corona virus all around the world is expected to hamper the growth of stem cell characterization and analysis tools market. The virus outburst has become one of the threats to the global economy and financial markets. The impact has made immense decrease in revenue generation in the field of all healthcare industry growth for the market in terms of compatibility and it has led in huge financial losses and human life which has hit very hard to the core of developing as well as emerging economies in healthcare sector. It further anticipated that such gloomy epidemiological pandemic environment is going to remain in next for at least some months, and this is going to also affect the life-science market which also include the market of stem cell characterization and analysis tools market.

To remain ahead of your competitors, request for a sample[emailprotected]

https://www.persistencemarketresearch.com/samples/31444

Based on the Products and Service Type, stem cell characterization and analysis tools market are segmented into:

Based on the Technology, stem cell characterization and analysis tools market are segmented into:

Based on the Applications, stem cell characterization and analysis tools market are segmented into:

Based on the End User, stem cell characterization and analysis tools market are segmented into:

To receive extensive list of important regions, Request Methodology here @

https://www.persistencemarketresearch.com/methodology/31444

Based on the segmentation, human embryonic stem cell is expected to dominate the market due to their indefinite life span and higher totipotency as compared to other stem cells. Further, on the basis of technology segmentations, cell production is anticipated to increase the demand for stem cell characterization and analysis tools due to their emerging applications for stem cells in drug testing in the management of the effective diseases. Furthermore, on the basis of application segmentations, oncology is expected to show significant growth rate due to increase in the number of pipelines products for the treatment of cancers or tumors. Based on the end user, pharmaceutical and biotechnology companies are expected to dominate the market due to rising global awareness about the therapeutics research activities.

Geographically, the global stem cell characterization and analysis tools market is segmented into regions such as Latin America, Europe, North America, South Asia, East Asia Middle East & Africa and Oceania. North America is projected to emerge as prominent market in the global stem cell characterization and analysis tools market due to growing cases of target chronic diseases and increasing investments for research activities. Europe is the second leading region to dominate the market due to technological advancement and also surge in therapeutic activities, funded by government across the world. Asia-pacific is likely to witness maximum growth in near future due to increasing disposable income and with the development of infrastructure.

Some of the major key players competing in the global stem cell characterization and analysis tools market are Osiris Therapeutics, Inc., Caladrius Biosciences, Inc., U.S. Stem Cell, Inc., Astellas Pharma Inc., TEMCELL Technologies Inc., BioTime Inc., Cellular Engineering Technologies Inc., Cytori Therapeutics, Inc., and BrainStorm Cell Therapeutics Inc.

You Can Request for TOC Here @https://www.persistencemarketresearch.com/toc/31444

About Us

Persistence Market Research is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research and consulting services. Persistence Market Research boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws on its multi-disciplinary capabilities and high pedigree team of analysts to share data that precisely corresponds to clients business needs.

Persistence Market Research stands committed to bringing more accuracy and speed to clients business decisions. From ready-to-purchase market research reports to customized research solutions, its engagement models are highly flexible without compromising on its deep-seated research values.

Contact Us:

Sourabh KJ

305 Broadway

7th Floor

New York City, NY 10007

United States

U.S.A Canada Toll-Free: 800-961-0353

Email: [emailprotected]

https://neighborwebsj.com/

Read this article:
North America to be the Torchbearer to Stem Cell Characterization And Analysis Tools Market NeighborWebSJ - NeighborWebSJ

New Research Grant Seeks to Clarify the Role Genes Play in Modulating Inflammation – NYU Langone Health

Researchers have implicated the pro-inflammatory cytokine interleukin-1 (IL-1) in a wide variety of diseases such as osteoarthritis, rheumatoid arthritis (RA), diabetes, and obesity. Steven Abramson, MD, the Frederick H. King Professor of Internal Medicine, professor of pathology, and chair of the Department of Medicine at NYU Langone Health, has long studied how IL-1 can propagate and exacerbate the disease process. That research effort has more recently expanded to include investigations into how the anti-inflammatory IL-1 receptor antagonist, IL-1Ra, can counter IL-1 and modulate the inflammatory response. Based on intriguing findings about how certain gene variants may influence osteoarthritis risk and severity, a new National Institutes of Health (NIH) research grant will help Dr. Abramson and collaborators seek out IL-1related targets for inflammatory disease prevention and treatment.

To help clarify the inflammatory process, Dr. Abramson and collaborators including Mukundan G. Attur, PhD, associate professor of medicine, and Jonathan Samuels, MD, associate professor of medicine, examined several variants of the IL-1Raencoding IL1RN gene in the knee joints and cells of osteoarthritis and rheumatoid arthritis patients. In particular, a haplotype designated TTG predicted which at-risk patients would go on to develop knee osteoarthritis and was associated with more severe radiographic osteoarthritis as well as new onset RA. Its a marker of both severity and increased risk for incident osteoarthritis, Dr. Abramson says.

Their 2019 study in osteoarthritis patients, published in Annals of the Rheumatic Diseases, suggested that the IL1RN TTG haplotype produced less IL-1Ra protein. So one explanation for the finding is that these people with the gene are deficient in the endogenous inhibitor of IL-1, which is driving the disease, Dr. Abramson says. Conversely, a separate haplotype called CTA yields more IL-1Ra protein production and may be protective.

In collaboration with Jef D. Boeke, PhD, professor of biochemistry and molecular pharmacology and director of the Institute for Systems Genetics, a new NIH grant may help clarify how each gene haplotype modulates inflammation, influences the associated gene regulatory networks, and contributes to the mechanics of disease pathogenesis. In particular, the research will focus on a haplotype block, or a section of DNA including multiple genes adjacent to the IL1RN gene. The researchers hope to learn whether any of the neighboring genes have inflammatory properties of their own, a synergistic effect on IL1RN, or even a more dominant effect on the underlying inflammatory pathway. One reason to do that is if youre developing a drug, you might find that one of these other genes is a better target than IL1RN, Dr. Abramson says.

One key to the unique research effort is Dr. Boekes expertise in using CRISPR-Cas9 gene editing technology to construct a series of what his lab calls assemblons, or precisely altered haplotype blocks. Led by Dr. Attur, the collaborators will then transfect embryonic stem cells with the manipulated DNA and use in vitro assays to gauge the effects of the putative risk and protective IL1RN haplotypes. The genetic manipulation is very technical. But if we can succeed, it allows us to really define the role of these haplotypes, not just in osteoarthritis but in other IL-1driven diseases, Dr. Abramson says.

After differentiating the engineered embryonic stem cells into macrophage cells, the researchers will measure production of the IL-1Ra protein. Well also be stimulating the macrophages in an inflammatory way and looking at the profile of inflammatory mediators that they produce, Dr. Abramson says. Experiments may reveal whether stimulated macrophages that carry the protective IL1RN CTA haplotype, for example, produce more IL1-Ra protein and fewer pro-inflammatory mediators such as IL-1, cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF). In the same way, sequential knockouts of other genes in the assemblon may clarify their own contributions to each haplotypes effects.

If the researchers can zero in on the principal drivers of disease through their in vitro experiments, they plan to inject the engineered embryonic stem cells into mice models of osteoarthritis and RA. The in vivo studies of the gene regulatory network may help determine how specific gene variants influence disease outcomes.

The research could have broad implications for understanding IL-1associated inflammatory diseases and for personalizing antiIL-1 therapies. It might be that in personalized medicine, antiIL-1 treatments will be more effective in patients who have a deficiency of IL-1 receptor antagonist, Dr. Abramson says. A patient who produces abundant IL-1Ra, on the other hand, may not benefit from receiving more of it as a therapy. Alternatively, the research may suggest that the IL1RN haplotypes are exerting their influence mainly by modulating other genes with key roles in the disease pathogenesis. It may be that they will emerge as targets that people hadnt even thought about in those diseases, he says.

Continued here:
New Research Grant Seeks to Clarify the Role Genes Play in Modulating Inflammation - NYU Langone Health

JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications – Science Magazine

Cryo-EM uncovers polycomb interactions

Polycomb family enzymes include the chromatin modifiers PRC1 and PRC2, which are involved in gene repression. Although the catalytic functions of these complexes are well known, their functional relationship is not. Kasinath et al. used cryoelectron microscopy (cryo-EM) to visualize the interactions between nucleosomes containing ubiquitinated histone H2A, the product of PRC1, and the PRC2-activating cofactors JARID2 and AEBP2, providing the molecular basis for PRC1-dependent recruitment of PRC2. They also show that JARID2 and AEBP2 partially overcome the inhibitory effect of PRC2 by two trimethyl lysine transcription marks on histones. This work suggests that PRC2 regulation involves an intricate interplay between PRC2 cofactors and histone posttranslational modifications.

Science, this issue p. eabc3393

Histone modification activity of the polycomb repressive complexes 1 and 2 (PRC1 and PRC2) is critical for the establishment and maintenance of gene expression patterns and, thus, to the maintenance of cell identity. Distinct classes of cofactor proteins are known to regulate the functional activity and interplay of these two complexes, but we presently lack a comprehensive, mechanistic understanding of this process. Furthermore, PRC2 cofactors like AEBP2 and JARID2 also play a role in mediating the cross-talk between different histone posttranslational modifications and PRC2 recruitment and activitya function that is important for the regulated control of gene expression.

PRC1 is an E3 ubiquitin ligase responsible for the monoubiquitination of histone H2A (H2AK119ub1), a histone mark recognized by PRC2 and linked to its genomic recruitment. We used cryoelectron microscopy (cryo-EM) and biochemical activity assays to probe the role played by PRC2 cofactors JARID2 and AEBP2 in the recognition of H2AK119ub1 and the regulation of PRC2 activity. We extended our cryo-EM and biochemical activity analysis to examine the possible role played by JARID2 and AEBP2 in the cross-talk between the histone H3K4me3, H3K36me3 modifications linked to transcriptionally active regions, and PRC2 activity.

We find that JARID2 recognizes both the ubiquitin moiety in H2AK119ub1 and the conserved histone H2A-H2B acidic patch. We also observe that the tandem zinc fingers of AEBP2 interact with ubiquitin and the histone H2A-H2B surface on the other side of the nucleosome. Biochemical assays show a secondary activation of PRC2 by JARID2 and AEBP2 on H2AK119ub1-containing nucleosomes besides the primary EED-mediated allosteric activation of PRC2 by methylated JARID2. Furthermore, we also find that the joint presence of JARID2 and AEBP2 partially reduces the inhibition of PRC2 methyltransferase activity by the transcriptionally active histone posttranslational modifications H3K4me3 and H3K36me3. Cryo-EM visualization of PRC2 that contains JARID2 and AEBP2 interacting with a H3K4me3-containing nucleosome shows the coexistence of states in which the histone H3 tail is either absent or engaged and reaching the catalytic site in PRC2, which provides a physical basis for the partial activity of the complex on H3K4me3-containing nucleosomes.

Our studies indicate that cofactors JARID2 and AEBP2 play a crucial role in both the recruitment and activation of PRC2 through their recognition of H2AK119ub1, which is generated by PRC1. Additionally, our work suggests that JARID2 and AEBP2 are likely to play a key role in regulating PRC2 activity on genomic regions with active transcription marks. The examination of the genomic distribution in embryonic stem cells of PRC2 core proteins together with JARID2 and AEBP2 will be important to further define their role in the tight regulation of PRC2 activity.

Although core PRC2 is a weak enzyme, it is allosterically activated by JARID2 and AEBP2. The presence of monoubiquitinated histone H2A, the product of PRC1 activity, is recognized by both JARID2 and AEBP2 through interactions that likely mediate recruitment of PRC2 to polycomb sites in the genome and further activate the methyltransferase activity of PRC2 on K27 of histone H3.

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) cooperate to determine cell identity by epigenetic gene expression regulation. However, the mechanism of PRC2 recruitment by means of recognition of PRC1-mediated H2AK119ub1 remains poorly understood. Our PRC2 cryoelectron microscopy structure with cofactors JARID2 and AEBP2 bound to a H2AK119ub1-containing nucleosome reveals a bridge helix in EZH2 that connects the SET domain, H3 tail, and nucleosomal DNA. JARID2 and AEBP2 each interact with one ubiquitin and the H2A-H2B surface. JARID2 stimulates PRC2 through interactions with both the polycomb protein EED and the H2AK119-ubiquitin, whereas AEBP2 has an additional scaffolding role. The presence of these cofactors partially overcomes the inhibitory effect that H3K4me3 and H3K36me3 exert on core PRC2 (in the absence of cofactors). Our results support a key role for JARID2 and AEBP2 in the cross-talk between histone modifications and PRC2 activity.

Read more from the original source:
JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications - Science Magazine

DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities – PRNewswire

PFFFIKON, Switzerland, Jan. 19, 2021 /PRNewswire/ -- DiNAQOR, a gene therapy platform company,today announcedthat it has acquired EHT Technologies GmbH, a Germany-based engineered heart tissue (EHT) technology platform company. Financial terms of the transaction were not disclosed.

EHT Technologies was founded in 2015 based upon research on human induced pluripotent stem cells (hiPSC) at the University Medical Center Hamburg-Eppendorf. Cardiomyocytes derived from hiPSC are an innovative research technology for cardiac drug development programs. Engineered heart tissues are three-dimensional, hydrogel-based muscle constructs that can be generated from isolated heart cells of chicken, rat, mouse, human embryonic stem cells and hiPSC. Proof-of-concept studies have shown that EHT can be transduced efficiently with adeno-associated virus (AAV) vectors, including AAV9, validating the use of this platform for gene therapy applications.

"EHT Technologies' proprietary hiPSC platform for disease modeling is a perfect complement to DiNAQOR's research and development efforts and leaps forward our ability to develop creative approaches for treating heart diseases in the future. EHT's intellectual property and know-how is industry-leading and we are excited to be able to harness its platform at DiNAQOR," commented Johannes Holzmeister, M.D., Chairman and CEO at DiNAQOR.

"After more than 25 years of development, I'm very excited that our engineered heart tissue technology is making the transition from an academic research model to a drug development tool. The combined application of human cardiomyocytes and a versatile, 3D in vitro assay will facilitate development and reduce reliance on animal studies. The hiPSC-derived EHT assay has great potential for the development of innovative cardiovascular therapeutics and DiNAQOR is the perfect fit for this enterprise," commented Professor Thomas Eschenhagen, M.D., co-founder of EHT Technologies. Professor Eschenhagen serves on DiNAQOR's Scientific Advisory Board.

"The EHT technology will accelerate the advancement of our discovery pipeline and bridge the translational gap between the animal model and human disease. We are proud that DiNAQOR is on the forefront of implementing this innovative technology to expedite new therapies into the clinic," said Valeria Ricotti, M.D., Chief Medical Officer at DiNAQOR.

About DiNAQORFounded in 2019,DiNAQOR is a global gene therapy platform company focused on advancing novel solutions for patients suffering from heart disease.The company is headquartered in Pfffikon, Switzerland, with additional presence in London, England and Hamburg, Germany. For more information visitwww.dinaqor.com.

ContactKWM Communications Kellie Walsh [emailprotected] or Stephanie Marks [emailprotected]

SOURCE DiNAQOR

DiNAQOR: A global gene therapy platform company

See the article here:
DiNAQOR Acquires EHT Technologies GmbH to Advance Engineered Heart Tissue R&D Capabilities - PRNewswire

TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a – Science Advances

INTRODUCTION

The expansion of the cerebral cortex during primate evolution is assumed to be associated with the acquisition of higher intelligence especially in the human species (1, 2). This process involves increased proliferative ability of cortical neural progenitors (NPs), including the ventricular radial glial cells (vRGs), the intermediate progenitors, and basal or outer RGs (bRGs or oRGs) (3, 4), which give rise to neurons or glia cells directly or indirectly. By contrast, disruption of the proliferative capacity of RGs has been shown to cause malformations of the cortex, which usually leads to intellectual disability (5). It has been shown that the epigenetic mechanisms, especially modifications of chromatin, play a critical role in regulating transcriptional programs that govern the stemness of NPs (6). However, the role of epigenetic factors in the process of cortical expansion during human evolution remains to be explored.

The epigenetic regulation at the level of chromatin is tightly controlled by posttranslational histone modification (7). The mono- or dimethylation of lysine 9 (K9) site at histone 3 (H3) (H3K9me1 and H3K9me2) mediated by histone methyltransferases G9a [also known as EHMT2 (euchromatic histone-lysine N-methyltransferase 2)] and G9a-like protein (GLP, also known as EHMT1) marks transcriptionally repressive genomic loci, which symbolize gene silencing in mammals (8). Notably, genetic ablation of G9a or GLP in the forebrain of adult mice has been shown to reactivate NP genes, leading to defects in cognitive and adaptive behaviors (9). Deletions or mutations of G9a/GLP genes are a cause of Kleefstra syndrome, a rare genetic disorder characterized by intellectual disability, autistic-like features, childhood hypotonia, and distinctive facial features (10). In addition, the differentiation of retinal progenitor cells requires G9a-mediated silencing of genes that sustain a proliferative state (11). It would be of interest to determine how the G9a activity is tightly controlled in neural stem cells during proliferation, in particular in human cortical NPs, which exhibit increased numbers of mitotic cell division compared with mice.

The cross-species analyses of epigenetic modifications between primate species and rodents have revealed major phenotypic changes during mammalian evolution (12, 13). Notably, comparative epigenetic analysis of human, rhesus macaque, and mouse genomes has identified the gained activity of promoters and enhancers in humans, which are substantially enriched in modules crucial for neural proliferation (14). Nevertheless, the factors responsible for these epigenetic differences underlying human brain development remain unclear.

Recently, we have found that the expression of the hominoid-specific gene TBC1D3 promotes production of cortical NPs, leading to expansion and folding of the cortex in mice (15). Here, we report a regulatory role of TBC1D3 for G9a-mediated H3K9me2 modification in human cortical NPs. We found that TBC1D3 physically interacted with G9a and inhibited G9a activity. Down-regulation of G9a promoted the proliferation of human NPs, resulting in expansion of human cerebral organoids. Disruption of TBC1D3/G9a interaction up-regulated the level of H3K9me2 and suppressed the expansion of human cerebral organoid. These results indicate that the inhibition of G9a by TBC1D3 ensures enhanced proliferation of human NPs and the expansion of human cerebral cortex.

In line with the hypothesis that duplication of specific genes in human might contribute to brain evolution, we found that expression of TBC1D3 gene, which is duplicated to form multiple paralogs in human genome and present in the chimpanzee genome as a single copy (16, 17), promoted cortex expansion and folding in mice (15). To assess whether the copy number correlated with the expression level of TBC1D3 in the chimpanzee and human, we analyzed accessible online datasets of RNA-sequencing (RNA-seq) information in NPs and differentiated neurons derived from induced pluripotent stem cells (18). Notably, the expression of TBC1D3 in chimpanzee cells was barely detectable, while it exhibited a substantial level in human cells, both in NPs and neurons (fig. S1A). To further determine the role of TBC1D3 in human cellular contexts, we generated human cerebral organoids by using guided differentiation of the H9 human embryonic stem cells (hESCs) into neuroectoderm with the addition of inhibitors for transforming growth factor (TGF-) or bone morphogenetic protein (BMP) pathway (19), as well as matrix embedding to promote neuroepithelium formation and organoid assembling (20). The quantitative polymerase chain reaction (PCR) analysis of organoids at different cultured stages revealed the expression of TBC1D3 since cultured day 16 (D16) as well as the appearance of forebrain marker FOXG1 (fig. S1, B and C). Then, we analyzed the effect of TBC1D3 up-regulation on organoid development by transducing hESCs with lentivirus encoding TBC1D3 (rLV-TBC1D3) or vehicle alone (rLV-Ctrl) (Fig. 1A). As shown in fig. S1D, the level of TBC1D3 mRNA in hESCs transduced with rLV-TBC1D3 was significantly higher than that in control cells. Intriguingly, the organoids with TBC1D3 up-regulation were markedly larger in size compared with control organoids at either the neuroectodermal stage (D12) or 6 days after induction for neuronal differentiation (D18) (Fig. 1B). Further analysis showed that the percentage of cells positive for KI67, a marker for proliferative cells, or phospho-vimentin (P-VIM), which marks mitotic radial glia cells, as well as PAX6, a typical marker for cortical NPs, among total DAPI+ (4,6-diamidino-2-phenylindolepositive) cells markedly increased in TBC1D3 organoids (Fig. 1C and fig. S1E). Thus, TBC1D3 up-regulation promotes the proliferation of NPs in human cerebral organoids.

(A) Schematic diagram for human cerebral organoid culture. (B) Analysis for the size of organoids (Ctrl, 6 organoids in D12 and 15 in D18; TBC1D3, 11 organoids in D12 and 17 in D18). Scale bars, 100 m. (C) Analysis for the percentage of KI67+ or P-VIM+ cells in D18 organoids (14 neuroepithelial rosettes from 6 control organoids; 16 rosettes from 8 TBC1D3 organoids). Scale bar, 20 m. (D) Analysis for the percentage of PAX6+ (white arrowheads) or DCX+ (yellow arrowheads) cells among GFP+ cells in D40 organoids infected with adenovirus (AV) expressing shTBC1D3 or shCtrl. Scale bar, 20 m. shCtrl, 23 rosettes from 15 organoids; shTBC1D3, 19 rosettes from 13 organoids. (E) TBC1D3 distribution in ReN cells. Scale bar, 10 m. (F) Immunostaining for PAX6, TBR2, and TBC1D3 in GW15.5 fetal human cortex. Scale bars, 200 m (left) and 5 m (magnified). Histograms show the percentage of cells with TBC1D3 enriched in cytoplasm/membrane (Cyt/Mem; gray arrows) or nucleus (Nuc; red arrows). Five regions for cortical plate (CP) or OSVZ; six regions for VZ/ISVZ from three slices. Data are presented as means SD, unpaired Students t test. **P < 0.01; ***P < 0.001.

To determine TBC1D3s loss-of-function effects, organoids at D37 were infected by adenovirus encoding small hairpin RNA sequence against TBC1D3 (AV-shTBC1D3) or scrambled control sequence (AV-shCtrl) (15), with vector-encoded green fluorescent protein (GFP) marking infected cells. As shown in Fig. 1D, the shTBC1D3 organoids at D40 exhibited marked decrease in the percentage of PAX6+ cells among GFP-marked infected cells, whereas the percentage of newborn differentiated neurons positively labeled by doublecortin (DCX) increased significantly (Fig. 1D). Furthermore, the shTBC1D3 organoids at D60 also exhibited a marked reduction in the percentage of cells labeled by HOPX (fig. S1F), a marker for oRGs (21). Thus, down-regulation of TBC1D3 impeded NP proliferation and caused precocious neuronal differentiation in human cerebral organoids.

Previous studies have shown the cytoplasmic or membrane localization of TBC1D3 in several non-neuronal cell types (2224). To reveal the molecular mechanism of TBC1D3 in human cortical development, we determined the subcellular localization of TBC1D3 in human neural cells. First, immunostaining of cultured human neural stem cell ReN showed that albeit TBC1D3 was widely distributed in the whole cell, it was enriched in the nuclei, which were marked by DAPI and devoid of -tubulin (Fig. 1E). Next, we determined the expression of TBC1D3 in human fetal brain at gestation week 15.5 (GW15.5) and found that TBC1D3 was expressed widely in PAX6- or TBR2-labeled NPs in ventricular zone (VZ)/inner subventricular zone (ISVZ) or outer subventricular zone (OSVZ) regions (fig. S1G). Intriguingly, while the signal of TBC1D3 was distributed dominantly in cytoplasmic and membrane regions in cells located in the cortical plate, it was enriched in the nuclei of a majority of TBR2+ cells in the OSVZ and a fraction of PAX6+ cells in VZ/ISVZ (Fig. 1F). The nuclear localization of TBC1D3 was also confirmed by immunoblot analysis for the biochemical fractions of human fetal brain tissues and ReN cells (fig. S1H). Substantial TBC1D3 signals were also observed in the nuclei of cells in cultured human cerebral organoids at D16 or D24, and the cells in organoids at D40 exhibited much less TBC1D3 signals in the nuclei (fig. S1I). The immunofluorescence signals for TBC1D3 were specific because cells in organoids infected by AV-shTBC1D3 exhibited markedly decreased TBC1D3 signals compared with uninfected cells, while AV-shCtrl had no effect (fig. S1J). These results suggest that the subcellular localization of TBC1D3 is dynamic, and its nuclear distribution in human NPs suggests a mechanism underlying its role in regulating NP proliferation.

To gain further insights into molecular mechanisms by which TBC1D3 executes its functions in human cortex development, we searched for proteins that directly interact with TBC1D3 using the yeast two-hybrid (Y2H) system (Fig. 2A). A screen of human fetal brain complementary DNA (cDNA) library using as bait the full length of TBC1D3 led to the identification of around 20 hits. Among them, G9a was the only candidate that has been shown to control transcriptional regulation in nervous system (9). Three cDNA clones in Y2H encoded fragments of G9a, with the sequences covering a part of ankyrin repeats (ANK) and the entire SET domain, which has the methyltransferase activity (Fig. 2B) (8, 25). To determine whether TBC1D3 and G9a interact in mammalian cells, hemagglutinin (HA)tagged G9a and Myc-TBC1D3 were cotransfected into human embryonic kidney (HEK) 293 cells, and cell lysates were subjected to immunoprecipitation (IP). We found that IP of HA-G9a caused co-IP of Myc-TBC1D3, and vice versa (Fig. 2C). Furthermore, we observed the interaction between endogenous TBC1D3 and G9a, as IP with G9a antibody caused co-IP of TBC1D3 in homogenates of the GW15 human cortical tissue (Fig. 2D). In the human fetal brain, the TBC1D3 signals were colocalized with that of G9a in the nucleus of cells in the OSVZ (fig. S2A). The direct interaction between TBC1D3 and G9a was further verified using a pull-down assay. HEK293T cells were transfected with a construct encoding Myc-tagged TBC1D3 (Myc-TBC1D3), and then the cell lysates were incubated with beads containing glutathione S-transferase (GST) protein or GST-tagged recombinant fragment of 649 to 1210 amino acids of G9a, which contained C-terminal ANK and SET domains and thus was shortened as G9a-CF (CF represents C-terminal fragment). As shown in Fig. 2E, G9a-CF, but not GST alone, interacted with TBC1D3. The truncated CF containing the catalytic SET domain (879 to 1210 amino acids), but not the ANK domain (649 to 879 amino acids), was able to bind TBC1D3 directly (fig. S2B). These results indicate that TBC1D3 directly interacts with G9a in the developing human cortex.

(A) Schematic diagram for Y2H screening assay. (B) Domain structure of human G9a protein and sequences of positive clones. (C) IB analysis of reciprocal co-immunoprecipitation (co-IP) results in HEK293T cells transfected with HA-G9a or HA-G9a plus Myc-TBC1D3. (D) Homogenates of GW15 human fetal cortical tissues were subjected to IP with anti-G9a antibody with immunoglobulin G (IgG) as a control and IB with antibodies against TBC1D3 or G9a. Shown is an example of two independent experiments with similar results. (E) Homogenates of HEK293cells transfected with Myc-TBC1D3 were subjected to pull-down with beads coupled with GST or GST-G9a-CF [649 to 1210 amino acids (aa)], followed by IB with anti-Myc antibody. (F) Addition of 6xHis-TBC1D3 attenuates the Histone3 methylation activity of G9a. Relative levels of H3K9me2 with respect to that of Histone3 from three independent experiments were quantified. (G) Levels of H3K9me2 in ReN cells transfected with control (Myc-Ctrl) or Myc-TBC1D3 plasmid (six independent experiments). (H) Levels of H3K9me2 in human cerebral organoids infected with AV-shCtrl or AV-shTBC1D3 (three independent experiments). The quantified data are presented as means SD by unpaired Students t test. *P < 0.05; **P < 0.01. bp, base pair.

Having shown the interaction between TBC1D3 and G9a, we next investigated whether this interaction regulates the methyltransferase activity of G9a. To this end, we used the in vitro histone methylation system. Because the full length of G9a was difficult to be purified, we generated G9a-CF as the catalytic enzyme instead. As shown in fig. S2C, in the presence of methyl group donor SAM (S-adenosyl-l-methionine), purified G9a-CF was capable of mediating H3K9me2 modification. Addition of TBC1D3 to the histone methylation system significantly decreased the level of H3K9me2 (Fig. 2F, lanes 3 and 4), suggesting the inhibitory effect of TBC1D3 on G9a activity. TBC1D3 itself had no effect on H3K9me2 modification (Fig. 2F, lanes 1 and 2).

We then determined whether TBC1D3 regulates histone methylation in human neural stem cells. We found that transfection with Myc-TBC1D3 in ReN cells caused a marked decrease in the level of H3K9me2 but had no effect on some other histone modifications such as H3K9me3, H3K27me2, and H3K36me2, compared with the vehicle control group (Fig. 2G and fig. S2D). In addition, H9 hESCs transduced with rLV-TBC1D3 as well as later induced cerebral organoids also showed markedly decreased H3K9me2 compared with vehicle control group (fig. S2, E and F). By contrast, down-regulation of TBC1D3 by small interference RNA in D40 human cerebral organoids caused a marked increase in the level of H3K9me2 (Fig. 2H). Thus, the level of TBC1D3 is reversely correlated with that of H3K9me2, supporting the hypothesis that TBC1D3 suppresses the activity of G9a.

Our previous study has demonstrated that the TBC1D3 transgenic (TG) mice show increased cortical expansion and folding (15). We determined levels of H3K9me2 in wild-type and TG mice and found that TG mice exhibited a decreased level of H3K9me2 at embryonic days 14.5 (E14.5) and 17.5 (E17.5) (fig. S2, G and H). These results suggest a correlation between the states of H3K9me2 modification and cortex expansion during evolution.

Next, we determined whether inhibition of G9a had any effect on cortex development by using compound UNC0638, a specific and competitive inhibitor of G9a with high efficiency and low cytotoxicity (26). First, we treated ReN cells with different concentrations of UNC0638 for 24 hours and found that these treatments reduced the level of H3K9me2 in a dose-dependent manner (fig. S3A). Then, an optimized concentration of UNC0638 (1 M) was added into the medium during organoid induction (D12) with dimethyl sulfoxide (DMSO) as control, with drug-containing medium renewed every other day. Again, UNC0638 treatment resulted in notable reduction in the level of H3K9me2, as measured by either immunoblotting (IB) (Fig. 3A) or immunostaining (fig. S3B). UNC0638-treated organoids exhibited a marked increase in size at different culture stages as exampled in D30 and D40 (Fig. 3B). Then, different molecular markers were used for detailed immunochemistry analysis for NPs and differentiated neurons. We found that the percentage of cells labeled by KI67 or the expression of PAX6 increased significantly in UNC0638-treated organoids at D18 (fig. S3, C and D). The augmentation of NPs in UNC0638-treated organoids persisted until later stages at D30, as reflected from increased percentage of cells labeled by PAX6, P-VIM, or KI67 (Fig. 3, C, D, and E to G). The cortical identity of cultured organoids was further confirmed by the appearance of TBR2-marked intermediate progenitors and DCX-labeled differentiated neurons, which were also increased in UNC0638-treated samples (Fig. 3, C, D, F, and I). We believe that G9a inhibition might have promoted replenishment of NPs, subsequently leading to enhanced neurogenesis.

(A) Levels of H3K9me2 in D16 cerebral organoids treated with G9a inhibitor UNC0638 or DMSO control, determined by IB. (B) Representative images of D30 and D40 cerebral organoids treated with UNC0638 or vehicle control and quantification for the average diameter. Numbers of organoids analyzed: D30, 19 organoids for control and 20 organoids for UNC0638 group; D40, 11 organoids for control and 12 organoids for UNC0638 group. Scale bar, 1000 m. (C) Immunostaining for signals of PAX6, TBR2, and DAPI in D30 organoids treated with UNC0638 or DMSO. Scale bar, 50 m. (D) Immunostaining for signals of KI67, P-VIM, and DCX in D30 organoids treated with UNC0638 or DMSO control, with DAPI marking cell nucleus. Scale bar, 50 m. (E and F) Quantification for the percentage of PAX6+ cells (E) or TBR2+ cells (F) among DAPI+ cells (20 rosettes from 14 control organoids; 31 rosettes from 17 UNC0638-treated organoids). (G to I) Quantification for the percentage of KI67+ (G), P-VIM+ (H), or DCX+ cells (I). Twenty-three rosettes from 15 organoids were analyzed in each group. Data are presented as means SD, unpaired Students t test. ***P < 0.001.

To investigate the proliferation and neuronal competency of NPs, D30 organoids were infected with GFP-expressing retrovirus, followed by culture for an additional 3 days in virus-free medium, to label dividing cells and the daughter progeny (fig. S3E). We found that the percentage of GFP+ cells among DAPI+ cells increased in UNC0638-treated organoids (fig. S3F), while the percentage of KI67+ GFP+ or DCX+ GFP+ among total GFP+ cells had no difference (fig. S3, G and H). These results suggest that G9a inhibition expanded the pool of dividing NPs without altering cellular lineage composition and neuronal competency. The effect induced by UNC0638 is reminiscent of the expansion of the human cerebral organoids with overexpression of TBC1D3 as well as a mutation of PTEN (27).

To precisely manipulate the interaction between TBC1D3 and G9a and seek the functional relevance, we mapped the TBC1D3 region that is essential for the interaction. We generated a battery of truncated forms of TBC1D3 tagged with Myc at the N terminus (Fig. 4A) and cotransfected each of them with HA-G9a into HEK293 cells. Then, the cell lysates were subjected to IP with anti-HA antibody. In the first round of domain mapping, we generated mutated forms of TBC1D3 with sequential deletion of a quarter of full length and found that the mutant with the deletion of C terminus (TBC1D3413549) failed to be associated with G9a, whereas other mutants maintained the binding activity (Fig. 4B). This result suggests that the C terminus of TBC1D3 is essential for the interaction with G9a. Based on this, we did other rounds of narrowing down to pinpoint the regions essential for the interaction (Fig. 4, C to E). Last, the minimal region was mapped to 465 to 481 amino acids, because TBC1D3465481 did not interact with G9a (Fig. 4E), but further partitioning had no effect (Fig. 4F).

(A) Schematic representation for full length of TBC1D3 protein and mutated forms with indicated fragment deletions. (B to F) HEK293 cells were cotransfected with constructs encoding HA-tagged G9a and Myc-tagged full-length or mutated forms of TBC1D3. Cell homogenates were subjected to IP with antibody against HA, followed by IB with antibody against Myc or HA. Data shown are blots of representative experiments performed for at least three times with similar results.

Because the 465 to 481amino acid segment of TBC1D3 was essential for the interaction with G9a, we asked whether the peptide covering this sequence is able to interfere with TBC1D3-G9a interaction. We synthesized the peptide composed of the cell-penetrating TAT sequence derived from the trans-activator of transcription of human immunodeficiency virus (28) and the 465 to 481 amino acids of TBC1D3 (shortened as T-T) or scrambled sequence (shortened as T-S) (Fig. 5A) and tested their effect on TBC1D3/G9a interaction. As shown in fig. S4A, the association between Myc-TBC1D3 and HA-G9a was attenuated in transfected HEK293 cells treated with T-T, but not T-S. Furthermore, the efficiency of GST-G9a-CF in pulling down Myc-TBC1D3 was markedly decreased in reactions with the presence of T-T, but not T-S (fig. S4B). Next, we asked whether the blockade of TBC1D3/G9a interaction changed the level of H3K9me2 or proliferation of NPs in human cerebral organoids. For this purpose, the organoids at D12 were treated with T-T or T-S for 4 days, followed by immunostaining with various antibodies. Notably, we found that the volume of human cerebral organoids reduced significantly in the T-T group (Fig. 5A). Moreover, the level of H3K9me2 was markedly increased, whereas the percentage of KI67+ cells or the intensity of PAX6+ signals was markedly decreased in T-Ttreated organoids (Fig. 5, B to D). These results were unlikely caused by a direct effect of peptides on G9a, because addition of T-T to the in vitro histone methylation assay did not change the level of H3K9me2 (fig. S4C). In addition, treatment of mouse neural stem cell N2A, which does not harbor TBC1D3, with T-T had no effect on H3K9me2 modification (fig. S4D). These results were in line with the idea that TBC1D3 interaction with G9a represses its histone dimethylation activity and thus maintains H3K9me2 at a low level, which may ensure high proliferative potency of human cortical NPs.

(A) Blockade of TBC1D3/G9a interaction with peptides suppresses organoid growth. At least 14 organoids were analyzed in each group. Scale bar, 200 m. (B) H3K9me2 signals in D16 organoids. Data are represented as means SD of 25 rosettes from 9 T-S organoids and 33 rosettes from 12 T-T organoids, with average value of T-S group normalized as 1. Scale bar, 20 m. (C) Analysis for the percentage of KI67+ in D16 organoids (29 rosettes from 7 T-S organoids; 16 rosettes from 6 T-T organoids). Scale bar, 40 m. (D) PAX6 signals in D16 organoids. Normalized intensity of PAX6 was quantified with the value of T-S group set as 1 (79 rosettes from 6 T-S organoids; 49 rosettes from 6 T-T organoids). Scale bar, 40 m. (E) Proliferative cells marked by EdU in mouse cortex transfected with indicated plasmids and yellow fluorescent protein (YFP). Histograms indicate percentage of EdU+ cells among YFP+ cells (9 embryos in the Myc-Ctrl or Myc-TBC1D3465481 group; 10 embryos in the Myc-TBC1D3 group). Scale bar, 20 m. Data are presented as means SD, unpaired Students t test. **P < 0.01; ***P < 0.001; ns, no significant difference.

We have shown previously that TBC1D3 expression promoted the generation and proliferation of basal cortical progenitors, leading to cortex expansion in mice (15). We wondered whether these effects were attributable to the TBC1D3 regulation of G9a. The fetal mice at E13.5 were subjected to in utero electroporation (IUE) to introduce various constructs into NPs in the VZ, followed by analysis of cell proliferation at E15.5. We first examined the effects of full-length (Myc-TBC1D3) and the mutated form of TBC1D3 with the deletion of 465 to 481 amino acids (Myc-TBC1D3465481) on NP proliferation by calculating the proportion of cells in the S phase determined by incorporation of pyrimidine analog 5-ethynyl-2-deoxyuridine (EdU) (Fig. 5E). Consistent with previous observation (15), we found that the Myc-TBC1D3 IUE mice exhibited an increase in EdU+ proliferating cells, as compared with control mice subjected to IUE with vesicle plasmid, while IUE with Myc-TBC1D3465481 had no effect on NP proliferation (Fig. 5E). These effects were evident in both apical and basal regions (Fig. 5E, right). Unlike the full length of TBC1D3, forced expression of TBC1D3465481 in ReN cells did not reduce the level of H3K9me2 (fig. S4E). These results suggest that the suppression of G9a-mediated histone dimethylation by TBC1D3 underlies its role in promoting NP proliferation.

As H3K9me2 modification is considered to be a typical repressive transcription mark (7), we analyzed the gene expression networks regulated by TBC1D3/G9a interaction. First, we compared global transcriptome profiles between human cerebral organoids (D16) treated with T-S or T-T using RNA-seq information. We conducted two replicates in each group to validate experimental consistency in terms of peptide treatment and sequencing process. The hierarchical clustering and Pearson correlation analysis revealed similar patterns in duplicates of either T-S (T-S-1 and T-S-2) or T-T (T-T-1 and T-T-2) duplicates (fig. S5, A and B). Among the differentially expressed genes (DEGs), the significantly changed ones were selected (fig. S5C) for further analysis. Gene ontology (GO) analysis showed that the down-regulated genes in T-T organoids were enriched in functional forebrain development or neuronal differentiation, while the up-regulated genes were enriched in apoptotic signaling pathways (fig. S5D). Further analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that DEGs were enriched in pathways involved in cell proliferation, such as AKT, WNT, or MAPK (mitogen-activated protein kinase) signaling, as well as pluripotency of stem cells (Fig. 6A). Among down-regulated genes, we found several genes that encode WNT ligands and receptor FZD10, FGF receptors, or PAX6 (Fig. 6B). Quantitative gene expression analysis using real-time reverse transcription PCR (RT-PCR) also validated the down-regulation of these representative genes in T-Ttreated organoids (Fig. 6C). These results support the conclusion that TBC1D3 interaction with G9a down-regulates the level of H3K9me2 and, hence, promotes the expression of genes involved in the proliferation of NPs.

(A) Top six enriched KEGG pathways by clustering analysis of down-regulated genes in T-T groups compared with T-S groups. (B) Heatmap showing representative down-regulated genes in T-Ttreated organoids. (C) Relative mRNA levels of indicated genes to GAPDH measured by quantitative PCR analysis for D16 organoids treated with T-T or T-S peptides. Data are presented as means SD of at least five experiments in each group with values from T-S group normalized as 1. Unpaired Students t test. **P < 0.01; ***P < 0.001. (D) ChIP-seq showing the count and distribution of peaks around TSSs in T-S or T-Ttreated organoids at D16. (E) H3K9me2-binding peaks increase in T-Ttreated organoids. (F) Genomic tracks showing differential H3K9me2 enrichment regions near TSS of FZD10 and WNT4. (G and H) Venn diagrams (G) and GO biological enrichment analysis (H) of genes corresponding to ChIP-seq peaks and DEGs identified by RNA-seq. (I) A proposed model showing a role of TBC1D3 in promoting NP proliferation and cortex expansion through down-regulating the level of H3K9me2. PI3K, phosphatidylinositol 3-kinase.

To identify the genomic locus associated with H3K9me2, we performed the genome-wide H3K9me2 chromatin immunoprecipitation sequencing (ChIP-seq) in human cerebral organoids treated with T-S or T-T peptides. The peak reads of H3K9me2 binding on transcriptional start sites (TSSs) were markedly increased in D16 organoids treated with T-T (Fig. 6, D and E, and fig. S5E). For example, many differential peaks appeared to be enriched in promoter regions of regulated genes, such as FZD10 or WNT4 (Fig. 6F, see the red peaks). Moreover, the comprehensive analysis showed that 253 genes were overlapped between the DEGs of RNA-seq and differential peaks observed in ChIP-seq (Fig. 6G). Further GO analysis indicated that the overlapped genes were mainly enriched in proliferative pathways, such as PI3K-Akt and MAPK signaling (Fig. 6H). These results support the conclusion that blockade of the TBC1D3/G9a interaction reactivates G9a activity, leading to increased level of H3K9me2, which marks suppressive gene expression. Together, the inhibitory role of TBC1D3 in G9a activity through direct interaction may maintain H3K9me2 at a low level, which allows expression of genes involved in NP proliferation and hominoid cortical expansion (Fig. 6I).

The expansion in human cerebral cortex is believed to facilitate emergence of higher cognitive skills (1). Prolonged duration of cortical neurogenesis may contribute to cortical expansion and folding, and this process involves markedly increased proliferation capacity of cortical NPs. Recently, several human-specific genes have been shown to promote cortical progenitor proliferation and expansion, and the underlying mechanisms varied from cell cycle transition (29) to glutaminolysis regulation (30). In this study, we found that the level of H3K9me2 modification is reversely correlated with the proliferation capacity of cortical NPs. The hominoid-specific protein TBC1D3 inhibits G9a-mediated H3K9me2 modification, and this regulation underlies TBC1Ds role in promoting the proliferation of cortical NPs. The down-regulation of H3K9me2 caused by TBC1D3 interaction with G9a may derepress the expression of genes involved in the proliferation of NPs, which, in turn, resulted in cortical expansion. This study shows an epigenetic mechanism underlying enhanced stemness of NPs during the evolution of neocortex.

Compared with rodents, the human cortex exhibits increased radial and tangential expansion and more abundant cortical progenitors, which have sustained capability of multiple rounds of division and prolonged neurogenic period (4, 31). Interspecies comparisons have led to identification of specific genomic changes on the human linage, including individual nucleotide variation, insertion-deletions, gene duplications, and a few purely de novo human-specific genes (32). Besides coding regions, many forms of variants in regulatory regions or epigenetic elements, such as human-specific microRNAs (33) and differential histone methylation compared with other nonhuman primates, have been identified (34). Nevertheless, connecting these changes to functions in human brain development has been challenging due to the limitation of ethical issues and the lack of appropriate experimental approaches. In this study, we have established a link between TBC1D3 and H3K9me2 modification in cultured human cerebral organoid system.

Previous studies have shown that the level of H3K9me2 is dynamically regulated in the contexts of memory formation, addiction, and stress (3537). G9a-deficient mice display severe growth retardation and early lethality, and H3-K9 methylation is decreased markedly in G9a-deficient embryos (38). In humans, haploinsufficiency or disruption of the GLP gene has been shown to be associated with congenital intellectual disability, including Kleefstra syndrome and autism spectrum disorder (10). In mice, heterozygous ablation of GLP gene caused developmental delay and abnormal behavior (39). It would be of interest to determine whether TBC1D3 is involved in any intellectual disability or neural developmental disorders. Given that many mammals without TBC1D3 also have cortical expansion compared with rodents, this study does not preclude other mechanisms governed by multiple genetic elements underlying cortex expansion during evolution.

TBC1D3 has been shown to be involved in RAB guanosine triphosphatase signaling, vesicle trafficking, and tissue repair (16, 2224). All these functions seem to rely on its cytosolic and/or membrane localization. Notably, TBC1D3 can also shuttle between cytoplasm and nucleus, and its cytoplasmic retention needs microtubule network (40). In this study, we unraveled a role of TBC1D3 in the nucleus, especially in human NPs. Intriguingly, TBC1D3 was expressed in almost all PAX6+ or TBR2+ cells, and notably, most of those in the OSVZ and a fraction of vRGs had TBC1D3 enriched in the nucleus. This heterogeneous subcellular localization may reflect different states of vRGs. As shown in our previous study, the expression of TBC1D3 in vRGs caused destabilization of Cdh2 mRNA, leading to down-regulation of N-cadherin and delamination of vRGs in mice (15). How the dynamic spatial localization of TBC1D3 is determined in NPs at various states and/or positions warrants further study. Furthermore, its dominant distribution in the cytosol of differentiated neurons suggests multifaceted functions.

C57BL6/J mice and TBC1D3-TG mouse line maintained in C57BL6/J background were used for the IUE experiments. All animal manipulations including mouse housing, breeding, and surgical procedures were executed in compliance with the ethical guidelines of the Institutional Animal Care and Use Committee of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and ShanghaiTech University. All mice were housed under a 12-hour light-dark cycle in the institutional animal care facility. The TBC1D3-TG mice were generated as described previously (15). Mice at E13 to E17 were used for experimental processing without discrimination of the sex of embryos.

The human fetal cortical tissue samples were obtained from medical pregnancy termination. The collection and usage of the human fetuses were conducted in strict observance of the ethical guidelines approved by the ethics committee in Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (approval identifier number: ER-SIBS-221506). After release from clinical autopsy procedure, the brain tissues were transported in ice-cold Leibowitz-15 medium (Gibco, 21083027) and stored in liquid nitrogen for protein extraction or embedded in optimal cutting temperature (OCT) compound (Tissue-Tek Sakura, catalog no. 4583) for further frozen sectioning and immunostaining.

N2A and HEK293T cells were cultured in Dulbeccos modified Eagles medium (DMEM) (Gibco, 11966-025) supplemented with 10% fetal bovine serum (FBS; Gibco, 10099-141) in a 37C incubator with 5% CO2. HEK293T cells were transfected with plasmids using Lipofectamine 2000 (Thermo Fisher Scientific, 11668019). ReN cells derived from human mesencephalon were grown in DMEM/F12 medium (Gibco, H330057) supplemented with B27 (Gibco, 17504044), heparin (10 U/ml; Sigma-Aldrich, H3393), epidermal growth factor (20 ng/ml; Stem cell, 78073), and fibroblast growth factor (10 ng/ml; Stem cell, 78003). The cultured dishes for ReN cells were pretreated with 0.5% laminin (Sigma-Aldrich, L2020) dissolved in DMEM medium for at least 4 hours at 37C. ReN cells were transfected with plasmids using Nucleofector (Lonza Nucleofector II, 2B). H9 hESCs (NEST) were grown on Matrigel (BD Biosciences, 354277)pretreated dishes and cultured in mTeSR medium (STEMCELL Technologies, 5850). Clones of H9 hESCs were passaged using the ReLeSR kit (STEMCELL Technologies, 5872) according to the protocol when the size of clones reached 1 to 2 mm in diameter.

Constructs encoding mutated forms of TBC1D3 with various deletions were generated using site-directed mutagenesis with a PrimeSTAR GXL DNA polymerase kit (Takara, R050A) according to standard protocol with Myc-TBC1D3 plasmid (15) as template and primers listed in table S1. TBC1D3 was also subcloned into PGB plasmid as bait for Y2H screening, into lentiviral vector rLV-EF1a-2A-EGFP-T2A-puro-WPRE for transduction of ES clones, and into PET-28a plasmid to produce 6xHis-tagged recombinant proteins. The full-length coding sequence of G9a or 649 to 1210amino acid fragment was amplified by PCR and subcloned into pGEX-2T-GST or pKH3-HA vector (see table S1 for the list of plasmids and sequences of primers used in PCR amplification).

Y190 yeast cells were cotransfected with PGB-TBC1D3 plasmid and the human fetal brain cDNA library (Clontech, catalog no. HL4028AH). The hits in the positive yeast clones were amplified and sequenced to obtain the gene information. False-positive clones were excluded from the following analysis.

The plasmids encoding GST-tagged G9a truncated fragments or 6xHis-tagged TBC1D3 were transformed into Rosetta Escherichia coli BL21 strain. After 0.5 mM isopropyl--d-thiogalactopyranoside (IPTG) induction (16C for 20 hours) for protein expression, cells were collected and lysed in phosphate-buffered saline (PBS) buffer supplemented with dithiothreitol (DTT) and phenylmethylsulfonyl fluoride (PMSF) using ultrasonication. For GST-fusion protein, the precleared supernatants were collected and incubated with Glutathione Sepharose 4B (GE Healthcare, 17-0756-01) beads, followed by washes in PBS and elution with glutathione (5 mg/ml). For 6xHis-tagged proteins, the lysis buffer was changed to phosphate buffer containing 10 mM imidazole, 300 mM sodium chloride, 50 mM sodium phosphate buffer, 10% glycerol, and 0.5% Tween, and recombinant proteins were purified with Ni column using elution buffer (30 mM sodium phosphate buffer, 300 mM imidazole, 300 mM sodium chloride, and 10% glycerol).

The cell lysates (1 mg/ml protein) of HEK293T cells transfected with Myc-TBC1D3 or various mutants were incubated with GST-tagged G9a fragments coupled with glutathione agarose beads at 4C with gentle rotation. For TAT blockade experiments, the peptide of T-S or T-T (100 M) was added into the mixture of Myc-TBC1D3 and GST-G9a-CF before following incubation. The beads were then washed in cell lysis buffer and subjected to IB analysis with corresponding antibody.

HEK293T cells transfected with various plasmids were lysed in modified radioimmunoprecipitation assay (RIPA) buffer containing 50 mM tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40, 0.25% Na-deoxycholate, 1 mM EDTA, and protease inhibitor cocktail. After centrifugation (12,000 rpm for 15 min), supernatants were collected and incubated with primary antibodies at 4C overnight and then incubated with Protein-G or Protein-A beads at 4C for 4 hours. After five washes with lysis buffer, the beads were boiled in 30 to 50 l of 1 SDS loading buffer and subjected to IB analysis. Nuclear and cytoplasmic fractions were prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Pierce, 78833) following the manufacturers instructions. For IB analysis, protein samples were loaded and separated in SDSpolyacrylamide gel electrophoresis (PAGE) and transferred to polyvinylidene difluoride membranes. After blocking in 5% milk in TBS-T (tris buffered saline-Tween) for 1 hour at room temperature, the membranes were probed with primary antibodies and visualized with horseradish peroxidase (HRP)conjugated secondary antibodies. Antibodies for IB analysis were as follows: TBC1D3 (rabbit, Abcam, Ab139034), H3K9me2 (Cell Signaling Technology, 4658s), GAPDH (glyceraldehyde-3-phosphate dehydrogenase; Proteintech, 60004-1), Histone3 (Cell Signaling Technology, 4499s), Myc (rabbit, Sigma-Aldrich, C3956; mouse, Millipore, 05-419), HA (rabbit, Cell Signaling Technology, 3724s; mouse, Sigma-Aldrich, H3663), H3K9me3 (Abcam, Ab8898), H3K27me2 (Cell Signaling Technology, 9728T), H3K36me2 (Cell Signaling Technology, 2901T), HRP anti-mouse (Abcam, Ab64259), and HRP anti-rabbit (Abcam, Ab64261).

Histone proteins were extracted and purified from cultured ReN cells following the protocol as described previously (41). Briefly, 5 106 cells were collected and lysed in hypotonic lysis buffer containing 10 mM tris-HCl (pH 8.0), 1 mM KCl, 1.5 mM MgCl2, 1 mM DTT, and protease inhibitor cocktail (Selleck, B14001) to release the intact nuclei. The nuclei pellets were then resuspended in 0.4 N H2SO4 and incubated on a rotator for at least 30 min or overnight at 4C. Histone proteins were precipitated in 33% trichloroacetic acid (TCA) (Sigma-Aldrich, T4885), washed with ice-cold acetone, air dried for 20 min at room temperature, and, lastly, dissolved in appropriate volume of ddH2O.

The purified histone proteins (about 30 ng/l) were mixed with GST-G9a (649 to 1210 amino acids) (30 ng/l) in 30 l of reaction buffer containing 0.5 mM SAM (New England Biolabs) as the methyl group donor, 50 mM tris-HCl (pH 8.0), 2 mM MgCl2, 0.01% Trion X-100 (Takara), 1 mM tris (2-carboxyethyl) phosphine (TCEP) (Hampton Research), and protease inhibitor cocktail, and incubated for 12 hours at room temperature, without or with 6xHis-TBC1D3 (30 ng/l). The SDS-PAGE sample buffer was added to stop the reaction, and the products were subjected to IB analysis.

Human cerebral organoids were derived from H9 ES cells following the protocol introduced previously (20) with some modifications. First, after culturing for 48 hours, the ES clones were digested to single cells and passaged to new dishes. Then, the clones were digested into single cells using 1 ml of Accutase at 37C for 5 min, washed in mTeSR medium, centrifuged at 800 rpm for 90 s, and resuspended in 2 ml of mTeSR medium. The cell suspension was seeded into low-attachment V-bottom 96-well plates with about 7000 cells per well in 180 l of mTeSR medium supplemented with 10 M Y27632 (Stem cell, 72304). After 2 days, the medium was changed to the hES medium containing 80% DMEM/F12, 20% KSR (KnockOutTM Serum Replacement) (Gibco, 10828028), 1% GlutaMAX (Thermo Fisher Scientific, 35050061), 1% MEM_NEAA (Invitrogen, 11140050), 0.0004% 2-mercaptoethanol, 2.5 M dorsomorphine (Tocris, Oct-93), and 2 M A83-01 (Tocris, Oct-39) and cultured for 4 days. At D6 to D12, half of the hES medium was replaced with neural induction medium: DMEM/F12 supplemented with 1% N2 supplement (Thermo Fisher Scientific, 17502048), 1% GlutaMAX, 1% MEM_NEAA, heparin (1 g/ml; Sigma-Aldrich, H3393), 200 nM LDN-193189 (Selleck, S7507), and 2 M SB431542 (Selleck, S1067). At D12, the organoids were embedded in Matrigel and cultured in neural differentiation medium containing 50% DMEM/F12, 50% Neurobasal medium (Life Technology, 12348-017), 0.5% N2 supplement, 1% GlutaMAX, 1% MEM_NEAA, 1% B27, 0.0004% 2-mercaptoethanol, and 0.025% insulin (Sigma-Aldrich, I9278) for 4 days, without or with the addition of small molecular inhibitors UNC0638 (1 M; Selleck, S8071), DMSO vehicle control, or 30 M peptides (T-T: YGRKKRRQRRR-EGPWFRHYDFRQSCWVR; T-S: YGRKKRRQRRR-FRVRYWFQGCHSEDPWR). The drug-containing medium was renewed every other day. At D16, B27 supplemented with vitamin A was used in differentiation medium, and the culture condition was maintained for the following days. For lentivirus-transduced cerebral organoids, H9 ES clones (1 to 2 mm in diameter) were infected with control lentivirus (rLV-EF1a-2A-EGFP-T2A-puro-WPRE, shortened as rLV-Ctrl) or TBC1D3 expressing lentivirus (rLV-EF1a-TBC1D3-2A-EGFP-T2A-puro-WPRE, shortened as rLV-TBC1D3). Two days later, puromycin (1/1000; Sigma-Aldrich, P8833) was added to select transfected cells with GFP as selection marker. The clones grown from single GFP+ cells were subjected to quantitative real-time PCR to determine the RNA level of TBC1D3 and used in the following analyses. The nucleotide sequence of small interference RNA for TBC1D3 (target sequence: 5-GCCTCTATGAAGAAACTAA-3) or control (target sequence: 5-TTCTCCGAACGTGTCACGT-3) was inserted into adenovirus vector to generate the pDKD-CMV-eGFP-U6-shTBC1D3 construct. The packaged adenovirus was added into organoid culture medium at D37 and maintained for 3 days. For retrovirus infection, virus was added into organoid culture medium at D26 and maintained for 24 hours. Then, the medium with virus was removed, and organoids were washed immediately with fresh medium for at least three times. After another 3-day culture, organoids were fixed in 4% paraformaldehyde (PFA) and subjected to immunostaining.

The total RNA from brain tissue or human brain organoids was extracted with TRIzol reagent (Life Technology, 15596018) following the manufacturers instructions. RNA samples were subjected to reverse transcription and quantitative real-time PCR using SYBR Green (Selleck, B21702) on QuantStudio 7 Flex System (Life Technologies). The QuantStudio Real-Time PCR Software v1.3 was used for data analysis. The primers used were as follows: TBC1D3, 5-AGGTTCAGCAGAAGCGCCTCA-3 (forward), 5-GCCTGGATGCCGACGACCCTT-3 (reverse); human GAPDH, 5-GACCTGCCGTCTAGAAAAACCT-3 (forward), 5-CTGTTGCTGTAGCCAAATTCGT-3 (reverse); mouse GAPDH, 5-GGGTCATCATCTCCGCCCC-3 (forward), 5-TTGGCAGCACCAGTGGATGCA-3 (reverse); PAX6, 5-TGCATTTGCATGTTGCGGAG-3 (forward), 5-TTAGCGAAGCCTGACCTCTG-3 (reverse); FZD10, 5-CAAACCTCGAAACAGCTGCC-3 (forward), 5-AACAATACCGGGAAGCGAGG-3 (reverse); FGFR3, 5-AGGAGCTCTTCAAGCTGCTG-3 (forward), 5-ACAGGTCCAGGTACTCGTCG-3 (reverse); WNT1, 5-CAAGATCGTCAACCGAGGCT-3 (forward), 5-AAGGTTCATGAGGAAGCGCA-3 (reverse); WNT4, 5-CGTGCCTGCGTTCGCT-3 (forward), 5-GGCAAGGAGTCGAGTGTGG-3 (reverse); FOXG1, 5-CCCTCCCATTTCTGTACGTTT (forward), 5-CTGGCGGCTCTTAGAGAT (reverse).

High-throughput sequencing of total RNA isolated from human cerebral organoids was performed on Illumina NovaSeq 6000 system with average length of 150 nucleotides for every read of paired end. Raw data were filtered by FASTX-Toolkit to generate clean reads and then mapped to human GRCh38. The level of a specific transcript was expressed as FRKM (fragments per kilobase of transcript per million fragments mapped) measured using StringTie software with statistical criterion set as P < 0.05. GO analysis was performed using EdgeR software with false discovery rate <0.05 and log2 (fold change) >1 or <1.

The samples for ChIP analysis were extracted using SimpleChIP Enzymatic Chromatin IP Kit (Cell Signaling Technology, 91820s). Briefly, tissues were fixed in 1% formaldehyde to cross-link proteins to DNA for 10 to 20 min at room temperature, and the reaction was stopped by addition of glycine. Then, cells were lysed to release nucleus, and Micrococcal Nuclease was added to digest chromatin into protein-associated DNA fragments, followed by sonication to break nuclear membranes and generate chromatin fragments of appropriate size. The samples were incubated with antibody against H3K9me2 (Cell Signaling Technology, 4658s) at 4C overnight and then incubated with ChIP-grade Protein G magnetic beads at 4C for 2 hours, followed by DNA elution and purification. DNA samples in input and IP groups were pair-end sequenced on HiSeq 2500 (XTen) platform. The sequence reads were trimmed for adaptor sequence using FASTP software (version 0.19.11), and peak calling was conducted using MACS2 (version 2.1.0). Peaks were mapped to genome using BWA software (version 0.7.12-r1039), and GO analysis was conducted using Goseq and Bioconductor (version 4.10.2). The enrichGO function in the clusterProfiler (v3.13) R package was used for overrepresentation analysis of GO biological processes overlapped in ChIP-seq and RNA-seq. Venn diagram is plotted by VennDiagram R package.

Pregnant mice with embryos at D13.5 or D14.5 were anesthetized with a mixture of pentobarbital sodium (2.5 g/kg body weight) and ketamine (50 mg/ml of solution) and subjected to IUE. The uterus was exposed under sterile conditions, and plasmid solutions containing DNA (1 to 2 g/l) mixed with fast green (0.1 mg/ml; Sigma-Aldrich, F7252) were manually injected into the lateral ventricles with a beveled glass micropipette (VWR International, 53432-921). Two tweezer electrodes connected to an electroporator (BTX830) were used in the electroporation procedure to deliver five 50-ms pulses of 30-V voltage with 950-ms interval. The mice were surgically sutured and placed on warm electric blanket until recovery.

Cultured cells on coverslips were fixed in 4% PFA for 10 min at room temperature. Embryonic mouse brains were dissected out and postfixed in 4% PFA overnight at 4C. Cultured human brain organoids were soaked in 4% PFA for 2 to 4 hours at 4C. The fixed tissues were dehydrated in 20% sucrose in PBS at 4C and then sectioned at 30-m (mouse brain) or 20-m thickness (organoids) using a freezing microtome (Leica, CM1950). Sections of control and experimental groups were pasted on the same slide to maintain uniform conditions during staining and image collection processes. For immunohistochemistry, fixed cells were washed with PBS for three times and permeabilized in 0.1% Triton X-100 in PBS for 10 min. Tissue slices were subjected to antigen retrieval by citrate and then permeabilized in 0.3% Triton X-100 in PBS for 30 min. After blocking with 10% FBS for 50 min, the cells or slices were incubated with various primary antibodies at 4C overnight, washed with PBS for three times, incubated with secondary antibodies for 2 hours at room temperature in the dark, and mounted with mounting reagent (DAKO, S3023) for observation.

For EdU labeling, pregnant mice that recovered from the IUE surge were injected intraperitoneally with EdU (50 mg/kg body weight) (Thermo Fisher Scientific, C10640). EdU staining was performed immediately after the secondary antibody incubation using a Click-iT Plus EdU Imaging Kit (Thermo Fisher Scientific, C10640). Antibodies for immunostaining were as follows: DAPI (Beyotime, C1002), TBC1D3 (rabbit, Abcam, Ab139034), TBC1D3 (mouse, Santa Cruz, sc-376073), KI67 (Abcam, Ab66155), PAX6 (Covance, PRB-278P), H3K9me2 (Cell Signaling Technology, 4658s), G9a (Abcam, Ab185050), -tubulin (Cell Signaling Technology, 2128s), TBR2 (Invitrogen, 14-4877-82), DCX (Santa Cruz, sc-8066), HOPX (Sigma-Aldrich, HPA030180), Alexa Fluor 488 (Jackson, 703-546-155), Alexa Fluor 555 (Invitrogen, A31572), and Alexa Fluor 647 (Invitrogen, A31571).

Images of immunostaining were collected using confocal microscopy with Nikon TiE, Nikon A1R, Leica P8, or Olympus FV3000 and processed with ImageJ software. The shooting parameters were kept the same between each control and experimental group. Statistical tests were performed using GraphPad Prism software, and data were presented as means SD. Data satisfied to Gaussian distribution test were quantified with Students t test, while others were quantified with unpaired Students t test. The statistical significance was indicated by *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significant difference.

Acknowledgments: We are grateful to A. L. Sheng for the assistance with brain organoid culture, L. Du for suggestions on ChIP-seq analysis, Y. Jin for sharing ReN cells, and J. P. Ding for the modified PET-28a vector. Funding: This study was partially supported by grants from the National Natural Science Foundation of China (31490591 to Z.-G.L. and 31871034 to X.-C.J.), the National Key R&D Program of China (2017YFA0700500), the Frontier Key Project of the Chinese Academy of Sciences (QYZDJ-SSW-SMC025), and Shanghai Municipal Science and Technology Projects (2018SHZDZX05 and 201409001700). Author contributions: Q.-Q.H. designed the experiments, conducted data collection and analysis, and wrote the original draft. Q.X. and X.-C.J. participated in RNA-seq and ChIP- seq data analysis. X.-Y.S. participated in human cerebral organoid culture. Z.-G.L. conceived the project and wrote the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: RNA-seq data and ChIP-seq data were deposited in the Gene Expression Omnibus (GEO) with accession number GSE136283. The dataset for evaluating TBC1D3 expression in human and chimpanzee neural cells was deposited in the GEO with accession number GSE83638. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Originally posted here:
TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a - Science Advances

‘He was very honored in his work’ – Mercer Island Reporter

Dr. Sen-itiroh Hakomori was honored as a hometown hero at the Mercer Island Summer Celebration Parade in 2000. Courtesy photo

Pioneering scientist Dr. Sen-itiroh Hakomori dies at age 91.

Dr. Sen-itiroh Hakomori couldnt leave his lab work alone. He would often log 13-hour days, seven days a week, and even spend some time at his job on Christmas morning, intensely focused on his glycosphingolipid medical and biochemical research.

I realized fairly recently that all of the cells are just like a pet. You have to check up on them and make sure that things are going well because theyre alive, said his daughter Naoko Vaughn. As children, we did not understand why he went to work every single day. I realized that he had to.

Vaughns father, who she said had a heart of gold and would help anybody, died of natural causes at the age of 91 on Nov. 10 at his home on Mercer Island.

Roger Laine, a colleague and friend who was the last professor to visit Hakomori, said that he was truly a pioneering scientist in glycobiology, a field in which he spent seven decades participating in groundbreaking studies.

He worked most of his career showing differences between cancer cells and normal cells that could be targeted for therapy. If you asked him what was his goal in life, he would answer, cure cancer, said Laine, a professor, scientist and researcher at Louisiana State University.

Hakomori is survived by his wife, Mitsuko (they were married for 74 years); Vaughn; sons, Yoichiro and Kenjiro; four grandchildren and two great-grandchildren; two brothers and a sister.

A native of Japan, professor Hakomori made crucial contributions to new cancer-cell studies at the Cancer Research Institute at Tohoku Pharmaceutical University, and continued his vast research in the field when the family immigrated to the United States to the Boston area.

The family moved from Boston to Bellevue in the late 1960s and set up their new home on Mercer Island 46 years ago. Hakomori relocated his family to the Pacific Northwest to become involved with the Fred Hutchinson Cancer Research Center, and served as University of Washington professor of pathobiology and professor of microbiology. He was named a UW professor emeritus of pathobiology and global health in 2006.

Hakomori retired at the age of 88, finishing his career working at the Pacific Northwest Cancer Center in Seattle. During a celebration in Japan three years ago, Hakomori who was a member of the prestigious National Academy of Sciences spoke to the attendees and noted, We are all globally connected with research and science.

His two sons reflected on their fathers vital contribution to their lives.

Dad was passionate about his work and a great mentor to many of his younger colleagues. He has inspired me to try to emulate that passion in the work I do as an architect and professor, said Yoichiro.

Added Kenjiro: Dad taught me by example to work hard on trying to find out and work on resolving research questions it is a lifelong passion.

Vaughn added that her father instilled a high-level work ethic in his children, telling them, Whatever you do, whatever you choose to do, whatever your passion is, you do it 120 percent.

Hakomori made a worldwide impact with his research and was nominated five times for the Nobel Prize in chemistry. He received numerous awards, including the Philip Levine Immunohematology Award, the Karl Meyer Award from the Society of Glycobiology and the Rosalind Kornfield Award for Lifetime Achievement in Glycobiology.

He published 585 articles in peer-reviewed journals, and a pair of his many major scientific achievements were methylation analysis of glycoconjugates with mass spectrometry, and cell adhesion based on carbohydrate-carbohydrate interaction, particularly through GSL clusters at the embryonic stem cell surface.

He was very honored in his work, and he did not do it for money. He was very much just trying to help, which is rare these days, said Vaughn, adding that a host of his students and colleagues from around the world are assembling a memorial for her father to be published in a glycosphingolipid journal.

He was just a wonderful person. I think the most important thing is his colleagues really admired him. He made them successful in their lives, Vaughn added.

When Sarah Spiegel was a graduate student, she was drawn to Hakomoris papers and reviews on the role of glycoconjugates in cancer. Those documents sparked her imagination and inspired her to pursue a career in sphingolipids, she wrote on the Evergreen Washelli Funeral Home & Cemetery memorial page.

He was a champion of advancing careers of young female scientists and his generous spirit influenced my generation and generations to come, said Spiegel, Ph.D., professor and chair in the Department of Biochemistry and Molecular Biology at the Virginia Commonwealth University School of Medicine. His legacy will live on through the works of countless researchers who continue working in the field of sphingolipids and many colleagues throughout the world will miss him tremendously.

In consideration of how we voice our opinions in the modern world, weve closed comments on our websites. We value the opinions of our readers and we encourage you to keep the conversation going.

Please feel free to share your story tips by emailing editor@mi-reporter.com.

To share your opinion for publication, submit a letter through our website https://www.mi-reporter.com/submit-letter/. Include your name, address and daytime phone number. (Well only publish your name and hometown.) We reserve the right to edit letters, but if you keep yours to 300 words or less, we wont ask you to shorten it.

Go here to read the rest:
'He was very honored in his work' - Mercer Island Reporter

Israeli biotech firm’s ALS treatment shows safety of use in trials – The Jerusalem Post

Ness Ziona-based biotech firm Kadimastem has shown encouraging results of Cohort B of its Phase 1/2a clinical trial for AstroRx, its Amyotrophic Lateral Sclerosis (ALS) treatment trial. The objective of this trial was to evaluate the safety of their treatment, with a secondary objective of the trial of estimating its preliminary efficacy. The treatment was developed by Kadimastem and contains functional, healthy astrocytes (nervous system support cells) derived from Human Embryonic Stem Cells (hESC) that aim to protect diseased motor neurons. The company's technology allows injecting AstroRx into the spine of the patient, to slow down the progression of the disease. The treatment has been granted orphan drug designation by the FDA for the treatment of ALS. The five patients included in this part of the trial showed no serious adverse effects during the half a year follow up after the treatment was given. The rate in which it slows down the disease was also tested for, using the ALS Functional Rating Scale-Revised (ALSFRS-R), which tracks ALS progression, and has shown that after the treatment was given, there was a 45% decline in the disease's progression rate. At the end of the 6-month post-treatment period, the rate of ALSFRS-R progression was similar to the rate that was measured before treatment. "The results after 6 months of follow up are encouraging, as they suggest a clinically meaningful signal of effect for 3 months by a single administration of AstroRx and confirm the safety of AstroRx," said Dr. Marc Gotkine, Head of the ALS Clinic at the Department of Neurology at Hadassah Medical Center in Jerusalem, and the Principal Investigator of the trial.

cnxps.cmd.push(function () { cnxps({ playerId: '36af7c51-0caf-4741-9824-2c941fc6c17b' }).render('4c4d856e0e6f4e3d808bbc1715e132f6'); });

See more here:
Israeli biotech firm's ALS treatment shows safety of use in trials - The Jerusalem Post

Ca Bishops To Work w/ Govt on Vaccination Campaigns – Catholic Herald Online

The bishops of California have said that taking either the Moderna or Pfizer COVID-19 vaccine is not a sin, despite controversy that the vaccines are derived from embryonic stem cells.

In a December 3 statement, the California Catholic Conference of bishops stated that it, affirms that the imminent Pfizer and Moderna COVID-19 vaccines are morally acceptable and commits to working closely with Catholic health care ministries and Catholic Charities to promote and encourage COVID-19 vaccinations in collaboration with state and local governments and other entities, Catholic San Francisco reported.

The California bishops join many other bishops, including those of Alberta and Northwest Territories, who stated Dec. 2, The Catholic Church does certainly support and encourage ethical scientific research into the development of vaccines that will mitigate or even end the harm caused by this terrible disease.

However, the bishop of Fresno said a few weeks prior that there are concerns that the vaccine is derived from stem cells of an aborted baby.

Citing ethical concerns about the use of fetal cells in vaccine development, Bishop Joseph Brennan of Fresno has urged Catholics not to jump on the COVID-19 vaccine bandwagon, Los Angeles Times reported a few weeks ago.

Experts have explained that the vaccines by Moderna and Pfizer are made from proteins that do not come from embryonic or fetal tissues, ABC Action News stated.

Bishop Brennan explained, I wont be able to take a vaccine, I just wont, brothers and sisters, and I encourage you not to, if it was developed with material derived from stem cells of a baby who was aborted. Or material that was cast off from artificial insemination.

Kevin McCormack of the California Stem Cell Agency in Oakland explained that the Pfizer and the Moderna vaccines, use messenger RNA. So these are made from genetically tweaked proteins so they have nothing to do with embryonic tissue or fetal tissue, he said.

The AstraZeneca/Oxford vaccine has reportedly been developed from cell-lines originating from the cells of an aborted fetus in 1983, and the bishops of England and Wales have stated that the vaccine is still morally acceptable, according to The Catholic Universe.

View original post here:
Ca Bishops To Work w/ Govt on Vaccination Campaigns - Catholic Herald Online

Human Embryonic Stem Cells (HESC) Market 2019 | Analyzing The Impact Followed By Restraints, Opportunities And Projected Developments | DataIntelo -…

DataIntelo, one of the worlds prominent market research firms has released a new report on Global Human Embryonic Stem Cells (HESC) Market. The report contains crucial insights on the market which will support the clients to make the right business decisions. This research will help both existing and new aspirants for Human Embryonic Stem Cells (HESC) market to figure out and study market needs, market size, and competition. The report talks about the supply and demand situation, the competitive scenario, and the challenges for market growth, market opportunities, and the threats faced by key players.

The report also includes the impact of ongoing global crisis i.e. COVID-19 on the Human Embryonic Stem Cells (HESC) market and what the future holds for it. The published report is designed using a vigorous and thorough research methodology and DataIntelo is also known for its data accuracy and granular market reports.

You can buy the report @ https://dataintelo.com/checkout/?reportId=94347

A complete analysis of the competitive scenario of the Human Embryonic Stem Cells (HESC) market is depicted by the report. The report has a vast amount of data about the recent product and technological developments in the markets. It has a wide spectrum of analysis regarding the impact of these advancements on the markets future growth, wide-range of analysis of these extensions on the markets future growth.

Human Embryonic Stem Cells (HESC) market report tracks the data since 2015 and is one of the most detailed reports. It also contains data varying according to region and country. The insights in the report are easy to understand and include pictorial representations. These insights are also applicable in real-time scenarios.

Request Free Sample Report @ https://dataintelo.com/request-sample/?reportId=94347

Components such as market drivers, restraints, challenges, and opportunities for Human Embryonic Stem Cells (HESC) are explained in detail. Since the research team is tracking the data for the market from 2015, therefore any additional data requirement can be easily fulfilled.

Some of the prominent companies that are covered in this report:

ESI BIO Thermo Fisher BioTime MilliporeSigma BD Biosciences Astellas Institute of Regenerative Medicine Asterias Biotherapeutics Cell Cure Neurosciences PerkinElmer Takara Bio Cellular Dynamics International Reliance Life Sciences Research & Diagnostics Systems SABiosciences STEMCELL Technologies Stemina Biomarker Discovery Takara Bio TATAA Biocenter UK Stem Cell Bank ViaCyte Vitrolife

*Note: Additional companies can be included on request

The industry looks to be fairly competitive. To analyze any market with simplicity the market is fragmented into segments, such as its product type, application, technology, end-use industry, etc. Segmenting the market into smaller components helps in understanding the dynamics of the market with more clarity. Data is represented with the help of tables and figures that consist of a graphical representation of the numbers in the form of histograms, bar graphs, pie charts, etc. Another key component that is included in the report is the regional analysis to assess the global presence of the Human Embryonic Stem Cells (HESC) market.

Following is the gist of segmentation:

By Application:

Research Clinical Trials Others

By Type:

Totipotent Stem Cells Pluripotent Stem Cells Unipotent Stem Cells

By Geographical Regions

Asia Pacific: China, Japan, India, and Rest of Asia Pacific Europe: Germany, the UK, France, and Rest of Europe North America: The US, Mexico, and Canada Latin America: Brazil and Rest of Latin America Middle East & Africa: GCC Countries and Rest of Middle East & Africa

You can also go for a yearly subscription of all the updates on the Human Embryonic Stem Cells (HESC) market.

Reasons you should buy this report:

Below is the TOC of the report:

Executive Summary

Assumptions and Acronyms Used

Research Methodology

Human Embryonic Stem Cells (HESC) Market Overview

Human Embryonic Stem Cells (HESC) Supply Chain Analysis

Human Embryonic Stem Cells (HESC) Pricing Analysis

Global Human Embryonic Stem Cells (HESC) Market Analysis and Forecast by Type

Global Human Embryonic Stem Cells (HESC) Market Analysis and Forecast by Application

Global Human Embryonic Stem Cells (HESC) Market Analysis and Forecast by Sales Channel

Global Human Embryonic Stem Cells (HESC) Market Analysis and Forecast by Region

North America Human Embryonic Stem Cells (HESC) Market Analysis and Forecast

Latin America Human Embryonic Stem Cells (HESC) Market Analysis and Forecast

Europe Human Embryonic Stem Cells (HESC) Market Analysis and Forecast

Asia Pacific Human Embryonic Stem Cells (HESC) Market Analysis and Forecast

Middle East & Africa Human Embryonic Stem Cells (HESC) Market Analysis and Forecast

Competition Landscape

If you have any questions on this report, please reach out to us @ https://dataintelo.com/enquiry-before-buying/?reportId=94347

About DataIntelo:

DataIntelo has a vast experience in designing tailored market research reports in various industry verticals. We also have an urge to provide complete client satisfaction. We cover in-depth market analysis, which consists of producing lucrative business strategies for the new entrants and the emerging players of the market. We make sure that each report goes through intensive primary, secondary research, interviews, and consumer surveys before final dispatch. Our company provides market threat analysis, market opportunity analysis, and deep insights into the current market scenario.

We invest in our analysts to ensure that we have a full roster of experience and expertise in any field we cover. Our team members are selected for stellar academic records, specializations in technical fields, and exceptional analytical and communication skills. We also offer ongoing training and knowledge sharing to keep our analysts tapped into industry best practices and loaded with information.

Contact Info:

Name: Alex Mathews

Address: 500 East E Street, Ontario,

CA 91764, United States.

Phone No: USA: +1 909 545 6473

Email:[emailprotected]

Website:https://dataintelo.com

View post:
Human Embryonic Stem Cells (HESC) Market 2019 | Analyzing The Impact Followed By Restraints, Opportunities And Projected Developments | DataIntelo -...