Category Archives: Embryonic Stem Cells


Global Regenerative Medicine Market (2020 to 2024) – Size & Forecast with Impact Analysis of COVID-19 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024)" report has been added to ResearchAndMarkets.com's offering.

This report provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Regenerative medicines emphasise on the regeneration or replacement of tissues, cells or organs of the human body to cure the problem caused by disease or injury. The treatment fortifies the human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimer's, diabetes, Parkinson's, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Market Dynamics

Growth Drivers

Challenges

Market Trends

Companies Profiled

For more information about this report visit https://www.researchandmarkets.com/r/ufteqn

See more here:
Global Regenerative Medicine Market (2020 to 2024) - Size & Forecast with Impact Analysis of COVID-19 - ResearchAndMarkets.com - Business Wire

PMR Reveals In-Depth Analysis On The Cell Banking Outsourcing Market 2016-2022 – The Canton Independent Sentinel

A cell bank refers to a facility that store cells derived from various body fluids and organ tissue for future needs. The bank store the cells with detailed characterization of the cell line hence decrease the chances of cross contamination. Cell banking outsourcing industry involves collection, storage, characterization, and testing of cells, cell lines, and tissues. Cell banks provide cells, cell lines, and tissues for R&D, production of biopharmaceuticals with maximum effectiveness and minimal adverse events. The process for storage of cells includes first proliferation of cells that multiplied in large number of identical cells and then stored into cryovials for future use. Cells mainly used in the regenerative medicine production. Increasing demand of stem cell therapies and number of cell banks expected to boost the global market.

Global cell banking outsourcing market segmented based on bank type, cell type, phase, and geography. Based on bank type market is further segmented into master cell banking, working cell banking, and viral cell banking. Cell type segment further divided based on stem cell banking and non-stem cell banking. Stem cell banking includes dental, adult, cord, embryonic, and IPS stem cell banking. Based on phase, the global cell banking outsourcing market segmented into preparation, storage, testing, and characterization. Geographically, market divided into North America, Europe, Asia Pacific, Latin America, and Middle East Africa. By considering bank type master cell banking accounted largest share owing to longer duration of preservation that would attract the researcher. Stem cell banking accounted larger share than non-stem cell banking due to lower risk of contamination.

For detailed insights on enhancing your product footprint, request for a Sample Report herehttps://www.persistencemarketresearch.com/samples/8026

In stem cell banking cord stem cell banking accounted larger share by revenue in 2014 due to increasing number of cord blood banks, and services globally. Additionally, donor convenience, immediate availability, lower risk of viral contamination is major driving factors for cord stem cell banking. In bank phase, segment storage phase accounted largest share and expected to maintain its share due to development of sophisticated preservation technologies such as cryopreservation technique. Geographically, North America accounted largest share due to high number of ongoing research projects. However, Asia Pacific expected to show significant growth during forecast period owing to supportive government initiatives coupled with increasing awareness about cell therapies.

The global cell banking outsourcing market is witnessing lucrative growth during forecast period due to increased research in cell line development owing to rise in incidence of infectious chronic disorder, and cancer. Additionally, development of advanced preservation techniques, increasing adoption to the stem cell therapies, rise in cell bank facilities across globe, and moving focus of researcher towards stem cell therapies would drive the market. However, high cost of therapies, availability of right donors, and legal and changing ethical issues during collection across the globe are major restraint of the market. Risk associated with cell line banking is contamination of cell lines by manual errors or environmental conditions hence care should be taken during storing and handling of cells.

Major player in cell banking outsourcing market include BioOutsource (Sartorious), BioReliance, BSL Bioservice, Charles River Laboratories, Cleancells, CordLife, Covance, Cryobanks International India, Cryo-Cell International Inc., GlobalStem Inc., Goodwin Biotechnology Inc., LifeCell International Pvt. Ltd., and Lonza. Additionally, PXTherapeutics SA, Reliance Life Sciences, SGS Life Sciences, Texcell, Toxikon Corporation, Tran-Scell Biologics, Pvt. Ltd., and Wuxi Apptec are other companies in global cell banking outsourcing market.

For in-depth competitive analysis, Check Pre-Book herehttps://www.persistencemarketresearch.com/checkout/8026

Reasons to Purchase this Report:

Accuracy and Quality Our reports strive to offer superior quality reports based on authentic and accurate findings. Customer Satisfaction We aim to ensure that our clients research needs are met with customized, top-of-the-line solutions. Unmatched Expertise Our analysts and consultants are among the best in their field and promise to deliver excellent market intelligence. 360-degree Analysis We leave no stone unturned to give clients an exhaustive coverage of the industry.

Our client success stories feature a range of clients fromFortune 500 companiesto fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

About Us :

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance. To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources.

Contact Us

Persistence Market Research U.S. Sales Office 305 Broadway, 7th Floor New York City, NY 10007 +1-646-568-7751 United States USA-Canada Toll-Free: 800-961-0353 E-mail id-[emailprotected] Website:www.persistencemarketresearch.com

Rustil is a regular contributor to blog , Specializing in Industry Research and Forecast

Visit link:
PMR Reveals In-Depth Analysis On The Cell Banking Outsourcing Market 2016-2022 - The Canton Independent Sentinel

Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells – Science Advances

INTRODUCTION

Stochasticity in gene expression, also known as gene expression noise, induces substantial cell-to-cell heterogeneity in gene expression and introduces phenotypic diversity in unicellular organisms, improving species fitness by hedging against sudden environmental changes (1, 2). Gene expression noise is observed in a wide range of multicellular organisms as well (1, 3). For example, to acquire color vision during fly eye development, stochastic expression of a single transcription factor, Spineless, results in the mosaic expression of photoreceptors in individual ommatidia that detect light of different wavelengths (4). Similarly, the mosaic expression of olfactory receptors is well characterized in the olfactory system of several organisms, including humans (5). There are two orthogonal sources of gene expression noise: (i) intrinsic noise associated with stochasticity in biochemical reactions (such as transcription and translation) and (ii) extrinsic noise induced by true cell-to-cell variation (such as differences in microenvironment, cell size, cell cycle phase, and cellular component concentration) (3, 6, 7).

Transcription is the first step in gene expression, and its stochasticity is believed to be a major gene expression noise source (3). Noise at the transcription level, or transcription noise, is reflected in the production of RNA polymerase II (Pol II)mediated transcripts. Any transcription, by either a single Pol II or multiple Pol II complexes, so-called transcriptional bursting, could contribute to transcription noise. In a simplified model, transcriptional bursting is mediated by the stochastic switch between the ON and OFF states of a promoter (Fig. 1A), and multiple transcripts are produced only during the ON state (3, 811). The ON state typically occurs with short pulses between long periods of the OFF state, causing dynamic changes in gene expression and heterogeneity in gene expression between cells and even between two alleles in a diploid genome (Fig. 1, B and C). Transcriptional bursting is thus considered to be a major source of both transcription and intrinsic noises and has been observed in various organisms (3, 813). Transcriptional bursting kinetics can be expressed by the frequency of the promoter present in the active state (burst frequency, f) and the mean number of transcripts produced per burst (burst size, b). Assuming that transcriptional bursting is a main source of intrinsic noise, transcriptional bursting kinetics (f and b) can be estimated from intrinsic noise (int2), the mean mRNA expression level (), and RNA degradation rate (m; see Materials and Methods) (12, 14). Transcriptional bursting kinetics has also been studied using single-molecule fluorescence in situ hybridization (smFISH), MS2 system, and destabilized reporter proteins (810, 15, 16). These reports have indicated that mammalian genes are transcribed with broadly different transcriptional bursting kinetics and that the bursting can be influenced by the local chromatin environment (14). As for the mechanism of transcriptional bursting, promoter reactivation suppression has been proposed to be essential for its control (17), while cis-regulatory elements (such as the TATA box) and chromatin accessibility at the core promoter can regulate transcriptional bursting kinetics (11, 13, 17, 18). Imaging and genome-wide analyses have suggested that promoter and enhancer elements regulate burst size and frequency, respectively (10, 11).

(A) Schematic diagram of gene expression with stochastic switching between ON and OFF states. (B) Schematic representations of the dynamics of transcript levels of a gene with or without transcriptional bursting. (C) Transcriptional bursting induces inter-allelic and intercellular heterogeneity in gene expression (left). Scatter plots of the individual allele-derived transcript numbers (right). (D) Schematic representation of scRNA-seq using hybrid mESCs. (E) Scatter plot of mean normalized read counts and normalized intrinsic noise of individual transcripts revealed by scRNA-seq. (F) Representative scatter plots of normalized individual allelic read counts of high and low intrinsic noise transcripts. N. int. noise, normalized intrinsic noise. (G) Scatter plot of burst size and burst frequency of individual transcripts. (H) Schematic representation of KI of GFP and iRFP gene cassette into individual alleles of mESC derived from inbred mice. Targeted genes are listed in the lower panel. Asterisks indicate genes in which KI cassettes were inserted immediately downstream of the start codon. (I to L) Scatter plots of the mean number of transcripts of targeted genes in KI cell lines counted by smFISH versus mean normalized read counts of corresponding genes in hybrid mESCs revealed by scRNA-seq (I) or versus mean expression levels of targeted genes in KI cell lines revealed by flow cytometry (K). Scatter plots of normalized intrinsic noise of targeted gene transcripts in KI cell lines revealed by smFISH versus that of corresponding genes in hybrid mESCs revealed by scRNA-seq (J) or versus that of targeted genes in KI cell lines revealed by flow cytometry (L).

Mouse embryonic stem cells (mESCs) are derived from the inner cell mass of the preimplantation embryo. A large number of genes in mESCs, cultured on gelatin in standard (Std) medium containing serum and leukemia inhibitory factor (LIF), show expression with cell-to-cell heterogeneity (19). For example, several genes encoding key transcription factors, including Nanog, display heterogeneous expression in the inner cell mass and mESCs (19). Heterogeneity in gene expression has been proposed to break the symmetry within the system and prime cells for subsequent lineage segregation (19). Previously, we have quantified Nanog transcriptional bursting kinetics in live cells using the MS2 system and determined intrinsic noise as a major cause of heterogeneous NANOG expression in mESCs (20). A recent study using intron-specific smFISH has revealed that most of the genes in mESCs are transcribed through bursting kinetics (21). However, a comprehensive understanding of how the kinetic properties of transcriptional bursting (burst size, frequency, and intrinsic noise) are regulated at the molecular level is still lacking.

In the present study, we performed single-cell RNA sequencing (scRNA-seq) (22) using hybrid mESCs to obtain the parameters for intrinsic noise and mean mRNA levels to investigate transcriptional bursting kinetics. We identified the genes with high intrinsic noise, and their promoters and gene bodies were positively associated with the polycomb repressive complex 2 (PRC2) and/or negatively associated with transcription elongation factors, based on informatics analysis using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. In addition, CRISPR library screening revealed that the Akt/mitogen-activated protein kinase (MAPK) pathway regulates transcriptional bursting via modulation of the transcription elongation efficiency.

To study the genome-wide kinetic properties of transcriptional bursting, we analyzed allele-specific mRNA levels in 447 individual 129/CAST hybrid mESCs [grown on Laminin-511 (LN511) without feeder cells in the G1 phase] by single-cell (sc) random displacement amplification sequencing (RamDA-seq)a highly sensitive RNA sequencing (RNA-seq) method (Fig. 1D and figs. S1A and S2, A to E) (22). A subset of genes have transcript variants with different transcription start sites (TSSs). Because the kinetic properties of transcriptional bursting may differ depending on the promoter, we mainly used transcript-level abundance, rather than gene-level abundance, to estimate the kinetic properties of transcriptional bursting (see Materials and Methods; fig. S1, B to H). Intrinsic noise, which is mainly induced by transcriptional bursting (9, 12, 13), was estimated from distribution of the number of mRNAs produced by the two alleles (see Materials and Methods) (6, 7). We also normalized intrinsic noise based on the expression level and transcript length of the gene (Fig. 1E and fig. S1, B to H). We excluded low abundance transcripts (with a mean read count of less than 20) from downstream analysis, as it is difficult to distinguish whether technical or biological noise contributed to the measured heterogeneity of allele-specific expression. We ranked the genes based on their normalized intrinsic noise and defined the top and bottom 5% transcripts as high and low intrinsic noise transcripts, respectively (Fig. 1E). As expected, high intrinsic noise transcripts showed larger inter-allelic expression heterogeneity than low intrinsic noise transcripts (Fig. 1F and tables S1 and S2).

Because mRNA degradation rate could affect intrinsic noise (see Materials and Methods), we checked the relationship between the published mRNA degradation rate in mESCs (23) and the normalized intrinsic noise that we measured; however, no correlation was observed (fig. S1H). Following this, we estimated the burst size and frequency of each transcript based on the published mRNA degradation rate, intrinsic noise, and mean expression levels (fig. S2, F to K; see Materials and Methods) (12, 14). As expected, transcripts with larger burst size and lower burst frequency tended to show higher normalized intrinsic noise and vice versa (Fig. 1G). Thus, normalized intrinsic noise was positively correlated with the ratio of burst size to the burst frequency (Spearmans rho = 0.869).

To determine whether the intrinsic noise measured by scRNA-seq indicated true gene expression noise, we first chose 25 genes with medium expression levels and diverse intrinsic noise. Using CRISPR-Cas9 genome editing, we integrated a green fluorescent protein (GFP) and a near-infrared fluorescent protein (iRFP) reporter gene separately into both alleles of those genes in an inbred mESC line [knock-in (KI) mESC line; Fig. 1H and fig. S3]. It would be worth noting that the GFP and iRFP reporter cassettes were flanked by a 2A peptide and a degradation-promoting sequence, and were inserted immediately upstream of the stop codon of each allele (except one cell line, in which reporter cassettes were knocked in immediately downstream of the start codon; see Fig. 1H and fig. S3). The 2A peptide separated the reporter protein from the endogenous gene product. The degradation-promoting sequence ensured rapid degradation of GFP or iRFP reporter so that the amount of fluorescent protein produced in the cell would reflect the cellular mRNA levels. Using these cell lines, we measured mean expression levels and normalized intrinsic noise of the 25 genes with smFISH and found that the two parameters showed a significant correlation with scRNA-seqbased measurements (Fig. 1, I and J; fig. S1I; and table S3). Furthermore, flow cytometry analysis confirmed that the mean expression level and normalized intrinsic noise at the protein level also showed a significant correlation with the smFISH-based measurements (Fig. 1, K and L, and fig. S1J). There was a substantial correlation between expression level of the endogenous target protein and that of the knocked-in fluorescent protein in all tested genes as well (fig. S1, K and L). These validation experiments demonstrated the reliability of scRNA-seq in determining intrinsic noise and revealed that heterogeneity in expression of the tested genes largely originated from variation of the mRNA levels.

Recently, it has been reported that intrinsic noise can be buffered by nuclear retention of mRNA molecules (24). Here, we investigated the relationship between subcellular localization of mRNA and normalized intrinsic noise in KI mESC lines by smFISH (fig. S1M). We observed no correlation between nuclear retention rate of mRNA and intrinsic noise, total noise, or normalized intrinsic noise at either mRNA or protein level (fig. S1N). Thus, it is unlikely that nuclear retention of mRNA would play a role in buffering intrinsic noise for the 25 genes tested in mESCs.

It has been reported that promoters with a TATA box tend to show higher burst size and gene expression noise than those without in yeast and mESCs (11, 13, 17, 18). To confirm whether our results were consistent with the previous findings, we compared the kinetic properties of transcriptional bursting between genes with and without a TATA box. Although no significant difference was observed in burst frequency, both burst size and normalized intrinsic noise were significantly higher in the promoters with TATA box than in those without (Fig. 2, A to C). These data, which are consistent with those of previous reports, validated the quality of our results and supported the involvement of TATA box in burst size and gene expression noise (Fig. 2, A to C).

(A to C) Kinetic properties of transcriptional bursting of genes either with or without a TATA box. (D) Schematic representation of calculating reads per million (RPM) at the promoter and gene body from ChIP-seq data. In addition, similar calculations were also performed for enhancers (see Materials and Methods). (E) Heat maps of Spearmans rank correlation between promoter-, gene body, or enhancer-associated factors and either normalized intrinsic noise (N. int. noise), burst size, or burst frequency (burst freq.). (F) Effect of the Pol II pause release inhibitor, DRB, and flavopiridol treatment on the kinetic properties of transcriptional bursting. normalized intrinsic noise, burst size, and burst frequency are residuals of normalized intrinsic noise, burst size, and frequency of inhibitor-treated cells from that of control cells, respectively. Error bars indicate 95% confidence interval. (G) Effect of Suz12 K/O on normalized intrinsic noise. Suz12 K/O cell lines derived from Dnmt3l, Dnmt3b, Peg3, and Ctcf KI cell lines were established. Upper panel represents the result of Western blotting. In the lower part of the panel, the normalized intrinsic noise, burst size, and burst frequency compared with the control (cont1) are shown. Error bars indicate 95% confidence interval. Asterisks indicate significance at P < 0.05.

We next compared the kinetic properties of transcriptional bursting to genome-wide transcription factorbinding patterns (Fig. 2D; see Materials and Methods). Specifically, we calculated Spearmans rank correlations between the kinetic properties of transcriptional bursting and ChIP-seq enrichment in the promoter, gene body, or enhancer elements (Fig. 2E). We found that the localization of several transcription regulators (such as EP300, ELL2, and MED12) in the promoter showed substantial positive correlations with burst size. However, the correlation coefficients between the burst size and transcription regulators bound to enhancers were overall relatively low. This was consistent with the findings of a report showing that burst size is mainly controlled by the promoter region (11). Distal enhancers are reported to be important for regulating burst frequency (10). In our analysis, the localization of several factors (such as BRD9, TAF3, AFF4, and CTR9) in enhancers showed relatively lower yet positive correlations with burst frequency.

We found that localization of transcription elongation factors [such as trimethylated histone H3 at lysine 36 (H3K36me3), BRD4, AFF4, SPT5, and CTR9] on the gene body was positively correlated with burst frequency (Fig. 2E). Transcription is well known to occur in at least three stages: initiation, elongation, and termination. During early elongation, Pol II often pauses near the promoter region, a phenomenon known as Pol II promoter-proximal pausing (25). The paused Pol II transitions into productive elongation by the activity of positive transcription elongation factor b (P-TEFb), which phosphorylates serine-2 in the heptaptide (Tyr-Ser-Pro-Thr-Ser-Pro-Ser) repeats of the C-terminal domain. The extent of Pol II pausing, estimated by the pausing index, had a negative correlation with burst frequency (Fig. 2E).

To dissect the link between Pol II pause release and burst frequency, we inhibited P-TEFb with 5,6-dichloro-1--d-ribofuranosylbenzimidazole (DRB) and flavopiridol in KI mESC lines cultured in 2i conditions (26). Two days after DRB and flavopiridol treatment, cells were subjected to flow cytometry analysis (fig. S4, A and B). DRB and flavopiridol treatment increased the normalized intrinsic noise and burst size in most of the cell lines (Fig. 2F). However, the effects of DRB and flavopiridol treatment on burst frequency were highly gene specific, suggesting that Pol II pause release likely contributes to the regulation of both burst size and frequency, whereas the regulation of burst frequency by Pol II pause release is more context dependent.

Promoter localization of PRC2 subunits (EZH2, SUZ12, and JARID2) correlated inversely with burst frequency, while they correlated positively with burst size and normalized intrinsic noise (Fig. 2E), thus suggesting a possible link between PRC2 and intrinsic noise. To test how PRC2 regulates transcriptional bursting, we inactivated PRC2 functionality by knocking out SUZ12 (27) in Dnmt3l, Dnmt3b, Peg3, and Ctcf KI cell lines (Fig. 2G). These targeted genes showed relatively high trimethylated histone 3 at lysine residue 27 (H3K27me3) enrichment in the promoter compared to the other available KI-targeted genes. Loss of H3K27me3 modification in Suz12 knockout (K/O) cell lines was confirmed by Western blotting (Fig. 2G). Next, we quantified GFP and iRFP expression levels by flow cytometry in the Suz12 K/O and control cell lines and found that normalized intrinsic noise and burst size of Dnmt3l and Dnmt3b were significantly reduced by Suz12 K/O (Fig. 2G). In contrast, Suz12 K/O significantly increased normalized intrinsic noise and burst size of Peg3. No significant change was observed for Ctcf. While the burst frequency of Dnmt3l was increased significantly, that of Peg3 was markedly reduced by Suz12 K/O. These results suggest that PRC2-mediated control of the kinetic properties of transcriptional bursting is also possibly context dependent.

To study the combinatorial regulations underlying the kinetic properties of transcriptional bursting, we first classified the genetic and epigenetic features, based on the sequence and transcription regulatory factor binding patterns at the promoter and gene body of high intrinsic noise transcripts, into 10 clusters (Fig. 3). To identify the features that can distinguish a cluster of high intrinsic noise transcripts from low intrinsic noise transcripts, we performed orthogonal partial least squares discriminant analysis (OPLS-DA) modeling, which is a useful method for identifying features that contribute to class differences (28). In 8 of the 10 clusters, the model successfully separated the high intrinsic noise transcripts from the low intrinsic noise transcripts (Fig. 3). Specifically, we obtained the top three positively and negatively contributing factors using S-plot (Fig. 3). For example, in cluster 3, promoter binding of PRC2-related factors (SUZ12, EZH2, and H3K27me3) was a positive contributor to intrinsic noise, while the gene body localization of TAF1, BRD4, and CTR9 was a negative contributor. This result suggested that promoter localization of PRC2-related factors influences bursting properties in a gene-specific manner.

The left side of the panel shows a heat map of promoter and the gene body (GB) localization of various factors with high and low intrinsic noise transcripts. The high intrinsic noise transcripts were classified into 10 clusters, and each cluster of high intrinsic noise transcripts and low intrinsic noise transcripts was subjected to OPLS-DA modeling. The right side of the panel represents score plots of OPLS-DA [the first predictive component (t1) versus the first orthogonal component (to1)] and S-plots constructed by presenting the modeled covariance (p[1]) against modeled correlation {p(corr)[1]} in the first predictive component. In clusters 5 and 6, the first orthogonal component was not significant (NS).

In cluster 10, promoter localization of H3K36me3, a histone mark associated with transcriptional elongation, and promoter and gene body localization of CTR9, a subunit of the PAF1 complex involved in Pol II pausing and transcription elongation, were the positive contributors (Fig. 3). In contrast, promoter localization of negative elongation factor complex member A (NELFA) was a strong negative contributor (Fig. 3). These results implied that transcriptional elongation is involved in the regulation of normalized intrinsic noise in this cluster. We similarly identified the factors regulating burst size and frequency and found them to be also affected by a combination of promoter- and gene bodybinding factors (fig. S5). Collectively, the kinetic properties of transcriptional bursting in mammalian cells appear to be regulated by a combinatory suite of promoter- and gene bodybinding factors in a context-dependent manner.

To identify genes regulating intrinsic noise in an unbiased manner, we performed high-throughput screening with the CRISPR K/O library (29). The lentiviral CRISPR library targeting genes in the mouse genome was introduced into Nanog, Dnmt3l, and Trim28 KI cell lines. Although genes with high intrinsic noise showed a larger variation in the expression levels of one allele (such as GFP) and the other allele (such as iRFP) perpendicular to the diagonal line (Fig. 1, C and F), we found that the loss of genomic integrity (such as by loss of function of p53) induced instability in the number of alleles, resulting in an unintended increase in intrinsic noise levels in a pilot study. Therefore, to reduce false negatives and selectively enrich cell populations with suppressed intrinsic noise, we first sorted out cells showing expression levels close to the diagonal line of GFP and iRFP expression by fluorescence-activated cell sorting (FACS; Fig. 4A). After expanding the sorted cells for a week, the cells were sorted again. These sorting and expansion procedures were repeated four times in total to selectively enrich cell populations with suppressed intrinsic noise. Even for genes with high intrinsic noise, a large fraction of cells showed a smaller variation in the expression levels of one allele (such as GFP) and the other allele (such as iRFP) perpendicular to the diagonal line (Fig. 1, C and F). Therefore, enrichment of cells with low intrinsic noise by repeated sorting procedures appeared to reduce false positives. Last, we compared the targeted K/O gene profile in the sorted cells with that in an unsorted control by high-throughput genomic DNA sequencing (Fig. 4A). To gain a comprehensive picture of the genes involved in intrinsic noise regulation, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) (30) pathway enrichment analysis of the enriched (top 100) and depleted targeted genes (bottom 100) in the three cell lines (Fig. 4, B and C). We found that the mammalian target of rapamycin (mTOR) and MAPK signaling pathways were involved in promoting intrinsic noise in all three cell lines (Fig. 4C). Previous studies demonstrated that mTOR and MAPK pathways are involved in Proteoglycans in Cancer and Sphingolipid signaling pathways and cross-talk with each other via the PI3/Akt pathway (Fig. 4D) (31). To test whether these signaling pathways are involved in intrinsic noise regulation, we conditioned Nanog, Trim28, and Dnmt3l KI cells with inhibitors for the MAPK, mTOR, and Akt pathways (Fig. 4, D to F). When treated with the Akt inhibitor MK-2206 alone, normalized intrinsic noise decreased in all three cell lines (Fig. 4F). Furthermore, treatment with MK-2206 and MAPK kinase (MEK) inhibitor PD0325901 (PD-MK condition) resulted in a substantial decrease in the normalized intrinsic noise in all three cell lines (Fig. 4F). In addition, normalized intrinsic noise was reduced in most of the other KI cell lines under the PD-MK condition (Fig. 4G), while mRNA degradation rates were largely unaltered (fig. S6). Under PD-MK and 2i culture conditions, one and three genes, respectively, showed log10 (normalized intrinsic noise) > 0.05 (Fig. 4G), hence suggesting that more genes showed reduced normalized intrinsic noise under the PD-MK condition than under the 2i condition. It should be noted that the PD-MK condition, which decreased the burst size, increased the burst frequency for most genes, although the extent of changes varied depending on the genes. Therefore, decrease in normalized intrinsic noise under the PD-MK condition is likely caused by changes in both burst size and burst frequency.

(A) Schematic diagram of CRISPR lentivirus library screening. Screening was performed independently for each of the three (Nanog, Trim28, and Dnmt3l) KI cell lines. (B) Ranked differentially expressed (DE) score plots obtained by performing CRISPR screening on three cell lines. The higher the DE score, the more the effect of enhancing intrinsic noise. (C) KEGG pathway enrichment analysis. KEGG pathway enrichment analysis was performed using clusterProfiler (see Materials and Methods), with the upper or lower 100 genes of DE score obtained from the CRISPR screening (referred as posi and nega, respectively). The pathways shown in red indicate hits in multiple groups of genes. Genes corresponding to these pathways are labeled in (B). (D) Simplified diagram of MAPK, Akt, and mTOR signaling pathways. These pathways are included in the pathways highlighted in red in (C) and cross-talk with each other. (E) Western blot of cells treated with signal pathway inhibitors. (F) normalized intrinsic noise of cells treated with signal pathway inhibitors against control [dimethyl sulfoxide (DMSO)treated] cells. Error bars indicate 95% confidence interval. (G) Twenty-four KI cell lines were conditioned to 2i or PD-MK conditions and subjected to flow cytometry analysis. normalized intrinsic noise, burst size, and burst frequency against control (DMSO-treated) cells are shown. Error bars indicate 95% confidence interval.

The phenotype observed under PD-MK treatment could be due to its effects on cell viability and/or pluripotency. We observed that PD-MK treatment substantially reduced the proliferation rates of mESCs (Fig. 5A), consistent with the function of Akt or MAPK pathways in cell cycle progression (31). However, we did not observe increased cell apoptosis after the PD-MK treatment (Fig. 5B). Cell cycle distribution was also unaffected by the PD-MK treatment (Fig. 5C), suggesting a global slowdown of individual cell cycle phases under the PD-MK condition. Thus, the reduced intrinsic noise caused by PD-MK does not appear to be the result of cell death or cell cycle arrest. We also analyzed the expression of pluripotent markers and found that they were largely unaffected under the PD-MK condition (Figs. 4E and 5D). Furthermore, we were able to generate chimeric mice using mESCs cultured in the PD-MK condition, indicating that PD-MK treatment does not affect mESC pluripotency (Fig. 5E).

(A) Growth curve of mESC conditioned to Std, 2i, and PD-MK conditions. Error bars indicate SD (n = 3). (B) Percentage of apoptotic cells of mESC conditioned to Std, 2i, and PD-MK conditions. Error bars indicate SD (n = 3). (C) Cell cycle distribution of mESCs conditioned to Std, 2i, and PD-MK conditions. (D) Immunofluorescence of pluripotency markers (NANOG, OCT4, and SSEA1) of mESCs conditioned to Std, 2i, and PD-MK conditions. The images show maximum intensity projections of stacks. Scale bar, 50 m. (E) Chimeric mice with black coat color generated from C57BL/6NCr ES cells conditioned to the PD-MK condition and then to the Std condition before injection into albino host embryos. Photo credit: T. Okamura (National Center for Global Health and Medicine).

To further characterize how the PD-MK condition affects mESC gene expression programs, we performed RNA-seq analysis of mESCs cultured in Std, 2i, and PD-MK conditions (Fig. 6A). Flow cytometry analysis revealed that more genes showed decreased normalized intrinsic noise under the PD-MK condition than under the 2i condition (Fig. 4G). To obtain a comprehensive view of the genes involved in intrinsic noise suppression under the PD-MK condition compared to that under the 2i condition, we performed gene ontology (GO) analysis and found that the transcription elongation factor complexrelated genes were significantly enriched in the up-regulated genes under PD-MK (Fig. 6, B and C). Furthermore, the up-regulated genes were enriched in factors involved in transcriptional regulation (Fig. 6B), consistent with our observation of a positive correlation between gene body localization of transcription elongation factor and burst frequency (Fig. 2C). Thus, it is possible that up-regulation of transcription elongation factors promotes burst frequency, thereby reducing the intrinsic noise under the PD-MK condition. We also found that the expression of Aff1 and Aff4, which encode subunits of the super elongation complex (SEC) that regulates Pol II pause release and transcription elongation rate (32), was significantly up-regulated under the PD-MK condition (Fig. 6C).

(A) Comparison of transcriptome of cells conditioned to Std, 2i, and PD-MK conditions. (B) GO analysis of genes whose expression significantly increased in the PD-MK condition against the 2i condition. BP, biological process; CC, cellular components; MF, molecular function. (C) Expression levels of genes encoding transcriptional elongation factors were elevated under the PD-MK condition as compared to the 2i condition. (D) Effect of RNA Pol II pause release inhibitor flavopiridol and SEC inhibitor KL-2 treatment on normalized intrinsic noise, burst size, and frequency. The KI cell lines conditioned to PD-MK were treated with flavopiridol or KL-2 for 2 days and analyzed by flow cytometry, and normalized intrinsic noise, burst size, and frequency were calculated. normalized intrinsic noise, burst size, and burst frequency are residuals of normalized intrinsic noise, burst size, and frequency of inhibitor-treated cells from that of control cells (PD-MK condition), respectively. Error bars indicate 95% confidence interval. (E) Schematic summary of the determination of kinetic properties of transcriptional bursting (including intrinsic noise, burst size, and burst frequency) by a combination of promoter- and gene bodybinding proteins, including PRC2 and transcription elongation factors.

To examine the contribution of SEC in the regulation of bursting, we treated cells cultured under the PD-MK condition with the P-TEFb inhibitor flavopiridol or AFF1/4 inhibitor KL-2 (32) for 2 days and then compared the intrinsic noise in these cells with that in control cells under the PD-MK condition (Fig. 6D and fig. S4, C and D). We found that the normalized intrinsic noise was significantly increased in most of the genes, although a decrease was also observed in a small fraction of genes (Fig. 6D). We next examined how the chemical inhibitors could affect the burst size and frequency. For most of the genes, burst sizes, which are residuals of burst size of inhibitor-treated cells from that of control cells, were small, while the burst frequency was substantially reduced overall. This suggested that PD-MK treatment enhances Pol II pause release and transcription elongation efficiency without strongly affecting the burst size, at least in the genes tested here. Because P-TEFb and SEC inhibitors affected burst frequency, which is a residual of burst frequency of inhibitor-treated cells from that of control cells, in a similar fashion in most genes analyzed, SEC is probably responsible for regulating Pol II pause release in these genes. It should be noted here that most genes displayed reduced burst sizes under the PD-MK condition (Fig. 4G), suggesting that Pol II pause release is not the only downstream effector of Akt and MAPK pathways regulating the normalized intrinsic noise.

The hybrid mESC line F1-21.6 (129Sv-Cast/EiJ, female), a gift from J. Gribnau, was grown on either LN511 (BioLamina, Stockholm, Sweden) or gelatin-coated dish in either Std medium [15% fetal bovine serum (FBS; Gibco), 0.1 mM -mercaptoethanol (Wako Pure Chemicals, Osaka, Japan), and LIF (1000 U/ml; Wako Pure Chemicals, Osaka, Japan)] or 2i medium [StemSure Dulbeccos modified Eagles medium (DMEM; Wako Pure Chemicals, Osaka, Japan), 15% FBS, 0.1 mM -mercaptoethanol, 1 MEM nonessential amino acids (Wako Pure Chemicals), a 2 mM l-alanyl-l-glutamine solution (Wako Pure Chemicals), LIF (1000 U/ml; Wako Pure Chemicals), gentamicin (20 mg/ml; Wako Pure Chemicals), 1 M PD0325901 (CS-0062, ChemScene), and 3 M CHIR99021 (034-23103, Wako Pure Chemicals)]. This cell line was previously described in (38).

Wild-type (WT) mESCs derived from inbred mouse (Bruce 4 C57BL/6J, male, EMD Millipore, Billerica, MA) and other KI derivatives were cultured on either LN511 or gelatin-coated dish under either Std, 2i, or PD-MK medium [StemSure DMEM (Wako Pure Chemicals, Osaka, Japan), 15% FBS, 0.1 mM -mercaptoethanol, 1 MEM nonessential amino acids (Wako Pure Chemicals), a 2 mM l-alanyl-l-glutamine solution (Wako Pure Chemicals), LIF (1000 U/ml; Wako Pure Chemicals), gentamicin (20 mg/ml; Wako Pure Chemicals), 1 M PD0325901 (CS-0062, ChemScene), and 4 M MK-2206 2HCl (S1078, Selleck Chemicals, Houston TX)]. Inhibitors were added at the following concentrations: 40 M DRB (D1916, Sigma-Aldrich, St. Louis, MO), 0.25 M flavopiridol (CS-0018, ChemScene, Monmouth Junction, NJ) in the 2i condition, 0.125 M flavopiridol in the PD-MK condition, 3 M CHIR99021 (034-23103, Wako Pure Chemicals) in Std medium, 1 M PD0325901 (CS-0062, ChemScene) in Std medium, 5 M BGJ398 (NVP-BGJ398; S2183, Selleck Chemicals) in Std medium, 1 M rapamycin (R-5000, LC Laboratories, MA, USA) in Std medium, 0.2 M INK128 (11811, Cayman Chemical Company, MI, USA) in Std medium, and 4 M MK-2206 2HCl (S1078, Selleck Chemicals) in Std medium. C57BL/6NCr mESCs (male) were cultured on gelatin-coated dish under the PD-MK condition.

To quantify the intrinsic noise level of a particular gene, it is necessary to establish a cell line with the GFP and iRFP reporter genes individually knocked into both alleles of the target genes. Therefore, on the basis of the scRNA-seq data, 25 genes (Fig. 1H) with medium expression levels and variable intrinsic noise levels were manually selected.

GFP/iRFP KI cell lines were established using CRISPR-Cas9 or transcription activator-like effector nuclease (TALEN) expression vectors and targeting vectors [with about 1-kbp (kilobase pair) homology arms]. Vectors used in this study are listed in table S4. C57BL/6J mESCs (5 105) conditioned to 2i medium were plated onto gelatin-coated six-well plates. After 1 hour, the cells were then transfected with 1 g each of GFP and iRFP targeting vectors (table S4), 1 g total of nuclease vectors (table S4), and pKLV-PGKpuro2ABFP (puromycin resistant, Addgene, plasmid #122372) using Lipofectamine 3000 (catalog no. L3000015, Life Technologies, Gaithersburg, MD), according to the manufacturers instructions. Cells were selected by adding puromycin (1 g/ml) to the 2i medium 24 hours after transfection. After another 24 hours, the medium was exchanged. The medium was exchanged every 2 days. At 5 days after transfection, cells were treated with 25 M biliverdin (BV). BV is used for forming a fluorophore by iRFP670. Although BV is a molecule ubiquitous in eukaryotes, the addition of BV to culture medium increases the fluorescence intensity. Twenty-four hours later, cells were trypsinized and subjected to FACS analysis, and GFP/iRFP double-positive cells were sorted and seeded on a gelatin-coated 6-cm dish. The medium was exchanged every 2 days. One week after sorting, 16 colonies were picked for downstream analysis and checking gene targeting. Polymerase chain reaction (PCR) was carried out using primers outside the homology arms, and cells that seemed to be successfully knocked into both alleles were selected. Thereafter, candidate clones were further analyzed by Southern blotting as described before (fig. S3) (20). Restriction enzymes and genomic regions used for Southern blot probes are listed in table S4. Probes were prepared using the PCR DIG Probe Synthesis Kit (Roche Diagnostics, Mannheim, Germany).

ICR mice were purchased from CLEA Japan (Tokyo, Japan). All mice were housed in an air-conditioned animal room under specific pathogenfree conditions, with a 12-hour light/12-hour dark cycle. All mice were fed a standard rodent CE-2 diet (CLEA Japan, Tokyo, Japan) and had ad libitum access to water. All animal experiments were approved by the President of the National Center for Global Health and Medicine, following consideration by the Institutional Animal Care and Use Committee of the National Center for Global Health and Medicine (approval ID no. 17043), and were carried out in accordance with the institutional procedures, national guidelines, and the relevant national laws on the protection of animals.

To construct the lentiCRISPRv2-sgSuz12_1, lentiCRISPRv2-sgSuz12_2, lentiCRISPRv2-sgSuz12_3, and lentiCRISPRv2_sgMS2_1 plasmids, which are single-guide RNA (sgRNA) expression vectors, we performed inverse PCR using R primer (5-GGTGTTTCGTCCTTTCCACAAGAT-3) and either of F primers (5-AAAGGACGAAACACCGCGGCTTCGGGGGTTCGGCGGGTTTTAGAGCTAGAAATAGCAAGT-3, 5-AAAGGACGAAACACCGGCCGGTGAAGAAGCCGAAAAGTTTTAGAGCTAGAAATAGCAAGT-3, 5-AAAGGACGAAACACCGCATTTGCAACTTACATTTACGTTTTAGAGCTAGAAATAGCAAGT-3, or 5-AAAGGACGAAACACCGGGCTGATGCTCGTGCTTTCTGTTTTAGAGCTAGAAATAGCAAGT-3), respectively, and lentiCRISPR v2 (Addgene, plasmid #52961) as a template, followed by self-circularization using the In-Fusion HD Cloning Kit (catalog no. 639648, Clontech Laboratories, Mountain View, CA, USA).

129/CAST hybrid mESCs need to be maintained on feeder cells in the gelatin/Std condition. To eliminate the need for feeder cells, we decided to maintain the hybrid mESCs on dishes coated with LN511, enabling maintenance of mESCs without feeder cells in the Std condition. To compare the transcriptomes of mESCs cultured on gelatin-coated dish and those cultured on LN511-coated dish, we performed RNA-seq analysis as follows. First, C57BL/6J WT mESCs were conditioned on either gelatin- or LN511-coated dish in either Std or 2i medium for 2 weeks. Next, RNA was recovered from 1 106 cells using the NucleoSpin RNA Kit (Macherey-Nagel, Dren, Germany). The RNA was sent to Eurofins for RNA-seq analysis. RNA-seq reads were aligned to the mouse reference genome (mm10) using TopHat (version 2.1.1) (https://ccb.jhu.edu/software/tophat/index.shtml). Fragments per kilobase per million mapped reads (FPKM) values were quantified using Cufflinks (version 2.1.1) (http://cole-trapnell-lab.github.io/cufflinks/) to generate relative gene expression levels. Hierarchical clustering analyses were performed on FPKM values using CummeRbund (v2.18.0) (https://bioconductor.org/packages/release/bioc/html/cummeRbund.html). In comparison, the transcriptomes of mESCs cultured on gelatin-coated dish and those cultured on LN511-coated dishes showed no considerable difference in expression patterns (fig. S1A).

Library preparation for single-cell RamDA-seq was performed as described previously (22). Briefly, hybrid mESC line F1-21.6 (129Sv-Cast/EiJ) conditioned to the LN511/Std condition was dissociated with 1 trypsin (Thermo Fisher Scientific, Rochester, NY) with 1 mM EDTA at 37C for 3 min. The dissociated cells were adjusted to 1 106 cells/ml and stained with Hoechst 33342 dye (10 g/ml; Sigma-Aldrich) in phosphate-buffered saline (PBS) at 37C for 15 min to identify the cell cycle. After Hoechst 33342 staining, the cells were washed once with PBS and stained with propidium iodide (PI; 1 g/ml; Sigma-Aldrich) to remove dead cells. Single-cell sorting was performed using MoFlo Astrios (Beckman Coulter; table S4). Recent studies of scRNA-seq using mESCs have suggested that genes related to the cell cycle demonstrate considerable heterogeneity in expression (35). Therefore, to minimize this variation, 474 cells only in the G1 phase were collected (table S4). Single cells were collected in 1 l of cell lysis buffer [1 U of RNasin Plus (Promega, Madison, WI), RealTime ready Cell Lysis Buffer (10%; catalog no. 06366821001, Roche), 0.3% NP-40 (Thermo Fisher Scientific), and ribonuclease (RNase)free water (Takara, Japan)] in a 96-well PCR plate (BIOplastics).

The cell lysates were denatured at 70C for 90 s and held at 4C until the next step. To eliminate genomic DNA contamination, 1 l of genomic DNA digestion mix [0.5 PrimeScript Buffer, 0.2 U of DNase I Amplification Grade, and 1:5,000,000 ERCC RNA Spike-In Mix I (Thermo Fisher Scientific) in RNase-free water] was added to 1 l of the denatured sample. The mixtures were agitated for 30 s at 2000 rpm using ThermoMixer C at 4C, incubated in a C1000 thermal cycler at 30C for 5 min, and held at 4C until the next step. One microliter of RT-RamDA mix [2.5 PrimeScript Buffer, 0.6 pmol of oligo(dT)18 (catalog no. SO131, Thermo Fisher Scientific), 8 pmol of 1st-NSRs (22), 100 ng of T4 gene 32 protein (New England Biolabs), and 3 PrimeScript enzyme mix (catalog no. RR037A, TAKARA Bio Inc.) in RNase-free water] was added to 2 l of the digested lysates. The mixtures were agitated for 30 s at 2000 rpm and 4C and incubated at 25C for 10 min, 30C for 10 min, 37C for 30 min, 50C for 5 min, and 94C for 5 min. Then, the mixtures were held at 4C until the next step. After RT (reverse transcription), the samples were added to 2 l of second-strand synthesis mix [2.5 NEBuffer 2 (New England Biolabs), 0.625 mM each dNTP mixture (Takara), 40 pmol of 2nd-NSRs (22), and 0.75 U of Klenow Fragment (3 5 exo-; New England Biolabs) in RNase-free water]. The mixtures were agitated for 30 s at 2000 rpm and 4C and incubated at 16C for 60 min, 70C for 10 min, and then 4C until the next step. Sequencing library DNA preparation was performed using the Tn5 tagmentation-based method with one-fourth volumes of the Nextera XT DNA Library Preparation Kit (catalog nos. FC-131-1096, FC-131-2001, FC-131-2002, FC-131-2003, and FC-131-2004, Illumina, San Diego, CA) according to the manufacturers protocol. The above-described double-stranded complementary DNAs (cDNAs) were purified by using 15 l of AMPure XP SPRI beads (catalog no. A63881, Beckman Coulter) and a handmade 96-well magnetic stand for low volumes. Washed AMPure XP beads attached to double-stranded cDNAs were directly eluted using 3.75 l of 1 diluted Tagment DNA Buffer (Illumina) and mixed well using a vortex mixer and pipetting. Fourteen cycles of PCR were applied for the library DNA. After PCR, sequencing library DNA was purified using 1.2 the volume of AMPure XP beads and eluted into 24 l of TE buffer.

All the RamDA-seq libraries prepared with Nextera XT DNA Library Preparation were quantified and evaluated using a MultiNA DNA-12000 kit (Shimadzu, Kyoto, Japan) with a modified sample mixing ratio (1:1:1; sample, marker, and nuclease-free water) in a total of 6 l. The length and yield of the library DNA were calculated in the range of 161 to 2500 bp. The library DNA yield was estimated as 0.5 times the value quantified from the modified MultiNA condition. Subsequently, we pooled each 110 fmol of library DNA in each well of a 96-well plate. The pooled library DNA was evaluated on the basis of the averaged length and concentration using the Bioanalyzer Agilent High-Sensitivity DNA Kit (catalog no. 5067-4626) in the range of 150 to 3000 bp and the KAPA Library Quantification Kit (catalog no. KK4824, Kapa Biosystems, Wilmington, MA). Pooled library DNA (1.5 pM) was sequenced using Illumina HiSeq2000 (single-read 50-cycle sequencing).

Trypsinized cells (2 105) were transferred onto LN511-coated round coverslips and cultured for 1 hour at 37C and 5% CO2. Cells were washed with PBS, fixed with 4% paraformaldehyde in PBS for 10 min, and washed with PBS two times. Then, cells were permeabilized in 70% ethanol at 4C overnight. Following a wash with 10% formamide dissolved in 2 saline sodium citrate buffer, the cells were hybridized to probe sets in 60 l of hybridization buffer containing 2 saline sodium citrate, 10% dextran sulfate, 10% formamide, and each probe set (table S4). Hybridization was performed for 4 hours at 37C in a moist chamber. The coverslips were washed with 10% formamide in 2 saline sodium citrate solution and then with 10% formamide in 2 saline sodium citrate solution with Hoechst 33342 (1:1000). Hybridized cells were mounted in catalase/glucose oxidase containing mounting media [0.4% glucose in 10 mM tris, 2 saline sodium citrate, glucose oxidase (37 g/ml), and 1/100 catalase (Sigma-Aldrich, C3155)]. Images were acquired using a Nikon Ti-2 microscope with a CSU-W1 confocal unit, a 100 Nikon oil-immersion objective of 1.49 numerical aperture (NA), and an iXon Ultra EMCCD camera (Andor, Belfast, UK), with laser illumination at 405, 561, and 637 nm, and were analyzed using NIS-elements software (version 5.11.01, Nikon, Tokyo, Japan); 101 z planes per site spanning 15 m were acquired. Images were filtered with a one-pixel-diameter three-dimensional median filter and subjected to background subtraction via a rolling ball radius of 5 pixels, using FIJI software. Detection and counting of smFISH signals were performed using FISH-quant software version 3 (https://bitbucket.org/muellerflorian/fish_quant/src/master/). FISH-quant quantifies the number of mRNAs in the cell nucleus and cytoplasm. Mixtures of mNeonGreen and iRFP670 probes conjugated with CAL Fluor Red 590 and Quasar 670 were obtained from Biosearch Inc. (Novato, CA) and used at 0.25 M. Probe sequences are shown in table S4. Intrinsic noise was calculated as described in the Estimation of the kinetic properties of transcriptional bursting using transcript-level count data section. Because smFISH has almost the same average value, correction between alleles was not carried out. The count normalized log ratios of intrinsic noise (normalized intrinsic noise) were calculated as the residuals of the regression line (fig. S1I). Normalization by gene length had not been applied for the smFISH data.

On the day before flow cytometry, cells were treated with 25 M BV. Cells that became 80% confluent were washed with PBS, trypsinized, inactivated with FluoroBrite DMEM (Thermo Fisher Scientific) containing 10% FBS, and centrifuged to collect the cells. Cells were suspended in PBS to be 1 106 to 5 106 cells/ml. Fluorescence data of side scatter (SSC), forward scatter (FSC), GFP, and iRFP were obtained with BD FACSAria III. Cells were gated on the basis of FSC and SSC using a linear scale to gate out cellular debris. Among GFP and iRFP data, extreme values indicating 20 * interquartile range or more were excluded from analysis. The mean value of the negative control data of WT mESC was subtracted from the data to be analyzed, and the data that fell below zero were excluded. We confirmed that the mean number of GFP and iRFP mRNAs in the KI cell lines are almost exactly matched that obtained in the smFISH analysis, suggesting that the expression levels of GFP and iRFP proteins are also similar. Therefore, we applied a correction using the following equations so that the mean fluorescence intensity between GFP and iRFP was consistentGFPn=GFPGFPiRFPGFPiRFPn=iRFPGFPiRFPiRFP

Here, the ith element of vectors GFP and iRFP contains the fluorescence intensities of GFP and iRFP, respectively, of the ith cell in the sample. GFPn and iRFPn represent mean normalized GFP and iRFP, respectively. Then, intrinsic noise is calculated as described in the Estimation of the kinetic properties of transcriptional bursting using transcript-level count data section. The relationship between mean fluorescence intensities and intrinsic noise was plotted (fig. S1J). The fluorescence intensity normalized log ratios of intrinsic noise (normalized intrinsic noise) were calculated as the residuals of the regression line (fig. S1J).

On the day before immunostaining, Trim28, Dnmt3l, Klf4, Peg3, Npm1, Dnmt3b, Nanog, Rad21, and Hdac1 KI cell lines at ~70% confluence were treated with 25 M BV. After 24 hours, 1 105 cells were plated onto the eight-well Lab-Tek II chambered coverglass (Thermo Fisher Scientific) coated with LN511. For immunostaining of C57BL/6J WT mESCs conditioned to Std/LN511, 2i/LN511, and PD-MK/LN511 conditions, cells were plated 1 105 onto an eight-well Lab-Tek II chambered coverglass coated with LN511. After 1 hour, cells were washed once with PBS and fixed with 4% paraformaldehyde for 10 min at room temperature. Fixed cells were washed with BBS buffer [50 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 280 mM NaCl, 1.5 mM Na2HPO42H2O, and 1 mM CaCl2] two times and blocked for 30 min in BBT-BSA buffer [BBS with 0.5% bovine serum albumin (BSA), 0.1% Triton, and 1 mM CaCl2] at room temperature. Cells with primary antibodies were incubated overnight at 4C at the following dilutions: anti-TRIM28 (1:500; GTX102227, GeneTex, RRID:AB_2037323), anti-DNMT3L (1:250; ab194094, Abcam, Cambridge, MA, RRID:AB_2783649), anti-KLF4 (1:250; ab151733, Abcam, RRID:AB_2721027), anti-PEG3 (1:500; BS-1870R, Bioss Antibodies, RRID:AB_10855800), anti-NPM1 (1:100; A302-402A, Bethyl Laboratories Inc., RRID:AB_1907285), anti-DNMT3B (1:500; 39207, Active Motif, RRID:AB_2783650), anti-NANOG (1:500; 14-5761-80, eBioscience, RRID:AB_763613), anti-RAD21 (1:500; GTX106012, GeneTex, RRID:AB_763613), anti-HDAC1 (1:500; GTX100513, GeneTex, RRID:AB_1240929), antiOCT-4A (1:400; 2840, Cell Signaling Technology, RRID:AB_2167691), and anti-SSEA1 (1:1000; 4744, Cell Signaling Technology, RRID:AB_1264258). Cells were washed and blocked in BBT-BSA. Then, for KI cell lines, cells were incubated with Alexa Fluor 594conjugated secondary antibodies (1:500; Life Technologies). For C57BL/6J WT mESCs, cells were incubated with Alexa Fluor 488 goat anti-mouse immunoglobulin G (IgG), Alexa Fluor 594 goat anti-rabbit IgG, and Alexa Fluor 647 goat anti-rat IgG secondary antibodies (1:500; Life Technologies). Images were acquired using a Nikon Ti-2 microscope with a CSU-W1 confocal unit, a 100 Nikon oil-immersion objective of 1.49 NA, and an iXon Ultra EMCCD camera (Andor, Belfast, UK).

Dnmt3l, Dnmt3b, Peg3, and Ctcf KI cell lines conditioned to the gelatin/2i condition were trypsinized and plated onto a 24-well plate at 5 105 cells per 500 l each. One hour later, for Suz12 K/O, 330 ng each of lentiCRISPRv2-sgSuz12_1, lentiCRISPRv2-sgSuz12_2, and lentiCRISPRv2-sgSuz12_3 and 300 ng of pCAG-mTagBFP2 (Addgene, plasmid #122373) plasmids or, for control, 1000 ng of lentiCRISPRv2_sgMS2_1 and 300 ng of pCAG-mTagBFP2 (Addgene, plasmid #122373) plasmids were transfected using Lipofectamine 3000 into each cell line. Two days later, blue fluorescent protein (BFP)positive cells were sorted by FACS and plated onto a 6-cm dish. After 1 week, we picked up eight colonies for Suz12 K/O and four colonies for control for downstream analysis. We checked the expression of PRC2-related proteins by Western blotting (see below). Then, cells were conditioned to LN511/Std medium for at least 2 weeks. As described above, flow cytometry analysis was performed to calculate normalized intrinsic noise, burst size, and burst frequency.

Cells are washed twice with PBS, trypsinized, and collected by centrifugation. Cells were counted and then washed twice with PBS. Last, cells were lysed in the lysis buffer [0.5% Triton X-100, 150 mM NaCl, and 20 mM tris-HCl (pH 7.5)] to obtain 1 106 cells per 100 l. Then, the lysates were incubated at 95C for 5 min and filtered by QIAshredder homogenizer (Qiagen). The extracted proteins were analyzed by 5 to 20% gradient SDSpolyacrylamide gel electrophoresis and transferred onto Immobilon Transfer Membranes (Millipore, Billerica, MA, USA) for immunoblotting analyses. The primary antibodies used were anti-SUZ12 (1:1000; 3737, Cell Signaling Technology, RRID:AB_2196850), anti-EZH2 (1:1000; 5246, Cell Signaling Technology, RRID:AB_10694683), antihistone H3K27me3 (1:1000; 39155, Active Motif, RRID:AB_2561020), anti-GAPDH (1:5000; 5174, Cell Signaling Technology, RRID:AB_10622025), antiphospho-MEK1/2 (Ser217/Ser221; 1:1000; 9154, Cell Signaling Technology, RRID:AB_2138017), anti-MEK1/2 (1:1000; 8727, Cell Signaling Technology, RRID:AB_10829473), anti-p44/42 MAPK (Erk1/2; 1:1000; 4695, Cell Signaling Technology, RRID:AB_390779), antiphospho-p44/42 MAPK (Erk1/2; Thr202/Tyr204; 1:2000; 4370, Cell Signaling Technology, RRID:AB_2315112), antiphospho-4E-BP1 (Thr37/Thr46; 1:1000; 2855, Cell Signaling Technology, RRID:AB_560835), antiphospho-Akt (Ser473; 1:1000; 4060, Cell Signaling Technology, RRID:AB_2315049), antiphospho-Akt (Thr308; 1:1000; 13038, Cell Signaling Technology, RRID:AB_2629447), anti-Akt (pan; 1:1000; 4691, Cell Signaling Technology, RRID:AB_915783), antic-Myc (1:1000; ab32072, Abcam, RRID:AB_731658), anti-FoxO1 (1:1000; 14952, Cell Signaling Technology, RRID:AB_2722487), anti-FOXO3A (1:2500; ab12162, Abcam, RRID:AB_298893), anti-Nanog (1:500; 14-5761-80, eBioscience, RRID:AB_763613), antiOCT-4A (1:500; 2840, Cell Signaling Technology, RRID:AB_2167691), and anti-SOX2 (1:1000; ab97959, Abcam, RRID:AB_2341193).

Nanog, Trim28, and Dnmt3L KI cells were transduced with the Mouse CRISPR K/O Pooled Library (GeCKO v2; Addgene, #1000000052) (29) via spinfection as previously described. We used only Mouse library A gRNA. Briefly, 3 106 cells per well (a total of 1.2 107 cells) were plated into an LN511-coated 12-well plate in the Std media supplemented with polybrene (8 g/ml; Sigma-Aldrich). Each well received a virus amount equal to a multiplicity of infection (MOI) of 0.3. The 12-well plate was centrifuged at 1000g for 2 hours at 37C. After the spin, media were aspirated and fresh media (without polybrene) were added. Cells were incubated overnight. Twenty-four hours after spinfection, cells were detached with trypsin and replated into four of LN511-coated 10-cm dishes with puromycin (0.5 g/ml) for 3 days. Media were refreshed daily. At 6 days after transduction, cells were treated with 25 M BV. After 24 hours, at least 1.75 105 cells showing GFP/iRFP expression ratio close to 1 were sorted by FACS and plated on 12-well plates (LN511/Std condition). Unsorted cells were passaged to 10-cm plates, 5 105 each. After the expansion of these sorted cells for 1 week, cells with GFP/iRFP expression ratio close to 1 were sorted again. These sorting and expansion procedures were repeated four times in total. At 3 days after the fourth sorting, 2 105 cells were collected and genomic DNA was extracted. PCR of the virally integrated sgRNA coding sequence was performed on genomic DNA at the equivalent of approximately 2000 cells per reaction in 48 parallel reactions using KOD FX Neo (TOYOBO, Japan). Amplification was carried out with 22 cycles. Primers are listed as follows: forward primer, AATGATACGGCGACCACCGAGATCTACACTCTTTC CCTACACGACGCTCTTCCGATCTNNNNNNNN(18-bp stagger) GTGGAAAGGACGAAACACCG; reverse primer, CAAGCAGAAGACGGCATACGAGATNNNNNNNN GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTGGGCGATGTGCGCTCTG (8-bp index read barcode indicated in italics). PCR products from all 48 reactions were pooled, purified using a PCR purification kit (Qiagen, Hilden, Germany), and gel-extracted using the Gel Extraction Kit (Qiagen, Hilden, Germany). The resulting libraries were deep-sequenced on Illumina HiSeq platform with a total coverage of >8 million reads passing filter per library.

Cells (4 105) were seeded on LN511-coated six-well plates. After overnight culture, the cells were incubated for 1 hour with 5-ethynyl-2-deoxyuridine (EdU) diluted to 10 M in the indicated embryonic stem (ES) cell media. All samples were processed according to the manufacturers instructions (Click-iT Plus EdU Alexa Fluor 647 Flow Cytometry Assay Kit, catalog no. C10634, Thermo Fisher Scientific). EdU incorporation was detected by Click-iT chemistry with an azide-modified Alexa Fluor 647. Cells were resuspended in EdU permeabilization/wash reagent and incubated for 30 min with Vybrant DyeCycle Violet (Thermo Fisher Scientific). Flow cytometry was performed on FACSAria III (BD Biosciences) and analyzed with Cytobank (www.cytobank.org; Cytobank Inc., Santa Clara, CA).

Annexin V staining was performed using Annexin V Apoptosis Detection Kit APC (catalog no. 88-8007-72, Thermo Fisher Scientific) as described in the manufacturers manual. Briefly, cells were trypsinized and centrifuged, and then the supernatant was removed. The remaining cells were resuspended in PBS and counted. Cells were washed once with PBS and then resuspended in 1 Annexin V binding buffer at 1 106 to 5 106 cells/ml. Pellets were resuspended in 100 l of Annexin V buffer to which 5 l of fluorochrome-conjugated Annexin V was added. Cells were incubated in the dark at room temperature for 15 min, washed in 1 Binding Buffer, and resuspended in 200 l of 1 Binding Buffer. PI Staining Solution (5 l) was added and immediately analyzed by flow cytometry.

C57BL/6J WT mESCs conditioned to LN511/Std or LN511/PD-MK conditions were treated with 400 M 4-thiouridine (4sU) for 20 min. Then, RNA was extracted from more than 1 107 cells using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA). Three biological replicates were prepared for each condition. We synthesized mRuby2 RNA for spike-in RNA by standard PCR, in vitro transcription using the T7 High Yield RNA Synthesis Kit (catalog no. E2040, New England Biolabs), and purification with RNeasy Plus Mini Kit (Qiagen, Valencia, CA). Biotinylation of 4sU-labeled RNA was carried out in RNase-free water with 10 mM tris-HCl (pH 7.4), 1 mM EDTA, and Biotin-HPDP (0.2 mg/ml; catalog no. 341-09101, Dojindo) at a final RNA concentration of 1 g/l extracted RNA (a total of 125 g) with spike-in RNA (125 ng/l) for 3 hours in the dark at room temperature. To purify biotinylated RNA from an excess of Biotin-HPDP, a phenol:chloroform:isoamylalcohol (v/v = 25:24:1; Nacalai Tesque, Kyoto, Japan) extraction was performed. Phenol:chloroform:isoamylalcohol was added to the reaction mixture in a 1:1 ratio, followed by vigorous mixing, and centrifuged at 20,000g for 5 min at 4C. The RNA containing aqueous phase was removed and transferred to a fresh, RNase-free tube. To precipitate RNA, 1/10 reaction volume of 5 M NaCl and an equal volume of 2-propanol were added and incubated for 10 min at room temperature. Precipitated RNA was collected through centrifugation at 20,000g for 30 min at 4C. The pellet was washed with an equal volume of 75% ethanol and precipitated again at 20,000g for 20 min. Last, RNA was reconstituted in 25 to 50 l of RNase-free water. For removing of biotinylated 4sU-RNA, streptavidin-coated magnetic beads (Dynabeads MyOne Streptavidin C1 beads, Thermo Fisher Scientific) were used according to the manufacturers manual. To avoid unfavorable secondary RNA structures that potentially impair the binding to the beads, the RNA was first denatured at 65C for 10 min followed by rapid cooling on ice for 5 min. Dynabeads magnetic beads (200 l per sample) were transferred to a new tube. An equal volume of 1 B&W [5 mM tris-HCl (pH 7.5), 0.5 mM EDTA, 1 M NaCl] was added to the tube and mixed well. The tube was placed on a magnet for 1 min, and the supernatant was discarded. The tube was removed from the magnet. The washed magnetic beads were resuspended in 200 l of 1 B&W. The bead washing step was repeated for a total of three times. The beads were washed twice in 200 l of solution A [diethyl pyrocarbonate (DEPC)treated 0.1 M NaOH and DEPC-treated 0.05 M NaCl] for 2 min. Then, the beads were washed once in 200 l of solution B (DEPC-treated 0.1 M NaCl). Washed beads were resuspended in 400 l of 2 B&W Buffer. An equal volume of 20 g of biotinylated RNA in distilled water was added. The mixture was incubated for 15 min at room temperature with gentle rotation. The biotinylated RNA-coated beads were separated with a magnet for 2 to 3 min. Unbound (unbiotinylated) RNA from the flow-through was recovered using the RNeasy MinElute Kit (Qiagen) and reconstituted in 25 l of RNase-free water. cDNA was synthesized with the ReverTra Ace qPCR RT Kit (catalog no. FSQ-101, TOYOBO, Japan) from both total RNA and unbound (unbiotinylated) RNA. The relative amount of existing RNA (unbiotinylated RNA)/total RNA was quantified by quantitative PCR (qPCR) with THUNDERBIRD SYBR qPCR Mix (catalog no. QPS-201, TOYOBO). cDNAs were derived from total and unbound RNA, and primers used are listed in table S4.

C57BL/6NCr ES cells derived from C57BL/6NCr (Japan SLC, Hamamatsu, Japan) were cultured in PD-MK medium on a gelatin-coated dish for 2 weeks. The day before injection, the culture medium was changed to Std medium. mESCs were microinjected into eight-cellstage embryos from ICR strain (CLEA Japan, Tokyo, Japan). The injected embryos were then transferred to the uterine horns of appropriately timed pseudopregnant ICR mice. Chimeras were determined by the presence of black eyes at birth and by coat color around 10 days after birth.

For each scRamDA-seq library, the FASTQ files of sequencing data with 10 pg of RNA were combined. Fastq-mcf (version 1.04.807) (https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md) was used to trim adapter sequences and generate read lengths of 50 nucleotides with the parameters -L 42 -l 42 -k 4 -q 30 -S. The reads were mapped to the mouse genome (mm10) using HISAT2 (version 2.0.4) (https://ccb.jhu.edu/software/hisat2/index.shtml) with default parameters. We confirmed that there was no large difference in the number of reads and mapping rates across the cell samples (table S4). We removed 27 abnormal samples showing abnormal gene body coverage of sequencing reads by human curation. Using the remaining data derived from 447 cells, allelic gene expressions were quantified using EMASE (version 0.10.11) with default parameters (https://github.com/churchill-lab/emase). 129 and CAST genomes by incorporating single-nucleotide polymorphisms and indels into reference genome and transcriptome were created by Seqnature (https://github.com/jaxcs/Seqnature). Bowtie (version 1.1.2) (http://bowtie-bio.sourceforge.net/index.shtml) was used to align scRamDA-seq reads against the diploid transcriptome with the default parameters.

To calculate intrinsic noise using the equations indicated below, we used three normalization steps. First, the global allelic bias in expression level was subjected to the Trimmed Means of M values (TMM) normalization method implemented in the R package edgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html; see the next section). This normalization removes global allelic bias in expression level as well as differences in sequencing depth in each cell. The total noise (tot2) for each transcript was calculated using the following equation (6)tot2=a12+a222a1a22a1a2

Here, the ith element of vectors a1 and a2 contains the read counts of transcript from allele 1 or allele 2, respectively, of the ith cell in the sample. Global normalization did not substantially change the shape of the read counttotal noise distribution (fig. S1B). Second, the read counts were subjected to quantile normalization between alleles at each transcript by the normalize.quantiles.robust method using the Bioconductor preprocessCore package (version 1.38.1; https://bioconductor.org/packages/release/bioc/html/preprocessCore.html). Third, we performed a correction using the following equations so that the mean read counts among the alleles were consistentagn1=ag1ag1ag2ag1agn2=ag2ag1ag2ag2

Here, the ith element of vectors ag1 and ag2 contains the globally and allelically normalized read counts of transcript from allele 1 or allele 2, respectively, of the ith cell in the sample. agn1 and agn2 represent the mean normalized ag1 and ag2, respectively. Angled brackets denote means over the cell population. From these read count matrices, the intrinsic noise (int2) for each transcript was calculated using the following equation (6, 7)int2=(agn1agn2)22agn1agn2

Transcripts showing a relatively large difference in expression level between alleles before correction (the average prenormalized expression level between alleles was >100 read counts) were excluded from subsequent analysis. A large fraction of transcripts (25,481 transcripts) showed intrinsic noise below Poisson noise (fig. S1C). Theoretically, intrinsic noise cannot be below Poisson noise (17). These transcripts are extremely similar in expression between the alleles, resulting in very low intrinsic noise values (fig. S1D). The expression level of each allele was originally calculated using the polymorphisms contained in the sequencing reads (see the previous section). However, if the sequencing reads for a particular transcript does not contain polymorphisms, the expression levels for each allele cannot be accurately calculated, and the expression levels for each allele are considered equal. Thus, transcripts with intrinsic noise below Poisson noise were excluded from the downstream analysis. A decrease in intrinsic noise was observed as the expression level increased, as theoretically expected (fig. S1C). To investigate the factors involved in the intrinsic noise and bursting properties independent of expression level, the count normalized log ratios of intrinsic noise were calculated as the residuals of a regression line that was calculated using a dataset with more than 1 mean read count (fig. S1E). In addition, a global correlation was found between the length of the transcript and the count normalized intrinsic noise (fig. S1F). Thus, the count and transcript length normalized log ratios of intrinsic noise were calculated as the residuals of a regression line (fig. S1, F and G). We call these read count and transcript length normalized intrinsic noise simply normalized intrinsic noise. For transcripts with low expression levels, it is difficult to distinguish whether their heterogeneity in expression level is due to technical or biological noise. Therefore, transcripts with read counts less than 20 were excluded from the downstream analysis (remaining 5992 transcripts).

Intrinsic noise is a function of the mRNA degradation rate (9, 12, 14). The mRNA degradation rate in mESC has been genome-wide analyzed (23). Genes whose degradation rate is unknown were provisionally assigned a median value. The burst size (b) and burst frequency (f) of each transcript can be estimated by the mRNA degradation rate (m), intrinsic noise (int2), and mean number of mRNA () according to the following equations (9, 12, 14)b=(int2)1f=mint21

Previous studies have reported the estimation of the burst size and burst frequency for each allele using a Poisson-Beta hierarchical model with scRNA-seq data of hybrid cells (11, 40). To evaluate the validity of the parameters derived from the abovementioned equations, we used our hybrid mESC scRNA-seq data and the SCALE software (version 1.3.0) that enables the estimation of the burst frequency and burst size per allele using a Poisson-Beta hierarchical model (40). Because the SCALE software always sets the RNA degradation rate to 1, the resulting parameters can be considered as RNA degradation ratenormalized parameters. Therefore, for comparison, the burst frequency calculated from intrinsic noise was divided by the RNA degradation rate to obtain RNA degradation ratenormalized burst frequency (see above formula). The SCALE- and intrinsic noisebased parameters were well correlated (R > 0.8; fig. S2, F to K), suggesting that the burst size and burst frequency calculated using intrinsic noise are valid. In hybrid cells, as the expression levels of alleles can vary depending on the polymorphisms present in the genome (41), a three-step normalization was used before the calculation as mentioned above. To determine whether the intrinsic noise measured by scRNA-seq of hybrid mESCs indicates true gene expression noise, we integrated GFP and iRFP reporter genes separately into both alleles of 25 genes in an inbred mESC line (KI mESC lines; Fig. 1H and fig. S3). Using these cell lines, the mean expression levels and normalized intrinsic noise of the 25 genes were measured by smFISH, resulting in a significant correlation with scRNA-seqbased measurements (Fig. 1, I and J; table S3). These validation experiments also confirmed the conclusions derived from the intrinsic noise calculation.

As noted above, TMM normalization, commonly used in bulk RNA-seq analysis, was used to normalize the global allelic bias in expression levels of scRNA-seq. TMM normalization is based on the construction of the size factor, which represents the ratio at which each cell is normalized by a reference cell constructed by some kind of averaging across all other cells per cell. scRNA-seq generally has fewer reads per sample and is prone to generate dropout events, where expressed transcripts stochastically appear to have zero reads due to technical limitations. Therefore, the size factors of TMM may be inappropriately large or equal to zero when applied to scRNA-seq. Hence, normalization methods optimized for scRNA-seq have been developed (42). To validate our use of TMM normalization on scRNA-seq data, we normalized scRNA-seq data using scran (http://bioconductor.org/packages/release/bioc/html/scran.html; version 1.14.5), a normalization tool optimized for scRNA-seq data. We then used the scran-normalized data to calculate intrinsic noise and compare the results with those previously obtained through TMM normalization. Among the transcripts with an average expression level of more than 20, the average expression (R = 0.97), intrinsic noise (R = 0.95), and normalized intrinsic noise (R = 0.94) derived from TMM-normalized dataset were highly correlated with those from scran-normalized dataset. TMM, scran, and other scRNA-seqoptimized normalization methods have been reported to not show large differences in performance when there are relatively few DE genes among samples (42). In this case, the target dataset for normalization is derived from cells of the same cell type in the G1 phase; therefore, the difference in expression levels between samples is considered to be relatively small. Hence, we consider the use of TMM normalization appropriate to calculate intrinsic noise in this case.

It is thought that the RNA detected by smFISH is not a specific transcript and contains multiple transcript variants. Therefore, intrinsic noise data calculated using transcript-level count data could not be compared to those from smFISH data. To solve this problem, scRamDA-seq data for each transcript were summed up for each gene, and intrinsic noise was recalculated. For this purpose, global allelic bias in expression level was first normalized as described above. Then, data of each transcript were summed up for each gene at this time point. Next, the read counts were normalized between alleles at each gene by the normalize.quantiles.robust method using the Bioconductor preprocessCore package. Furthermore, correction was made so that the mean read counts among the alleles were consistent as described above. From these read count matrices, the intrinsic noise for each gene can be calculated as described above. Data with intrinsic noise below Poisson noise were excluded from the downstream analysis. To investigate the factors involved in the intrinsic noise and bursting properties independent of expression level, the count normalized log ratios of intrinsic noise were calculated as the residual of a regression line that is calculated using a dataset with more than 1 mean read counts. Then, the count and gene length normalized log ratios of intrinsic noise were calculated as the residual of a regression line. We call these read count and gene length normalized intrinsic noise simply normalized intrinsic noise. The burst size (b) and burst frequency (f) of each gene can be estimated as described above.

We used FindM (https://ccg.epfl.ch/ssa/findm.php) to determine whether a sequence of 50 bp upstream from the TSS of transcripts, with an average read count of more than 20 in our scRNA-seq, contained a TATA box.

We used bioinformatics tools freely available on Galaxy Project platform (https://galaxyproject.org/). Various ChIP-seq data were obtained from the bank listed in table S4. Then, we mapped them to mm10 genome with Bowtie (Galaxy version 1.1.2) and converted them to bam file with SAM-to-BAM tool (Galaxy version 2.1). Reads per million mapped reads (RPM) data from 1000 to +100 from TSS and gene body of individual transcripts were analyzed by ngs.plot (version 2.61; https://github.com/shenlab-sinai/ngsplot). Of these, extreme outliers (100 times the average value) were excluded from analysis. In addition, we also considered the replication timing, promoter proximal pausing of RNA Pol II, considered to be related to the characteristics of transcriptional bursting. To determine the pausing index of Pol II, GRO-seq (global run-on sequencing) data in mESCs were used [Gene Expression Omnibus (GEO) ID: GSE48895]. We obtained the fastq file from the bank [ENA (European Nucleotide Archive) accession number (fastq.gz): PRJNA 21123]. As described previously, after removing the adapter sequence with the Cutadapt tool (version 2.4; https://cutadapt.readthedocs.io/en/stable/index.html), reads were mapped to mm10 genome with Bowtie (Galaxy version 1.1.2) and converted to bam file with SAM-to-BAM tool (Galaxy version 2.1). These data were analyzed with the pausingIndex function of the groHMM tool (size, 500; up, 250; down, 250; http://bioconductor.org/packages/release/bioc/html/groHMM.html; version 1.10.0). Data of replication timing of mESCs were obtained from the following source (GEO ID: GSM450272). Spearmans rank correlation coefficient between either normalized intrinsic noise, burst size, or burst frequency and either promoter or gene body localization degree (RPM) of various factors at the upper and lower 5% transcripts of normalized intrinsic noise, burst size, and burst frequency was calculated. Next, the promoter-interacting distal enhancers were considered. Enhancers are believed to regulate gene expression by physical interaction with the promoter (10). Candidate distal cis-regulatory elements that interact with specific genes have been identified using capture Hi-C in mESCs (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0727-9). These data contain regions that interact with promoters and may include insulators and other elements in addition to enhancers. To identify the enhancers from regions that interact with the promoter of a particular gene, we manually screened for enhancers with relatively high RPM of H3K27ac ChIP-seq (RPM > 1.5; fig. S2L). Using these data, the RPM of other ChIP-seq data was calculated in the same manner as mentioned above in the candidate enhancers. Extreme outliers (with values 100 times the average) were excluded from the analysis. These enhancer data do not correspond to each transcript; instead, they rather correspond to each gene. Thus, the intrinsic noise, burst size, and burst frequency calculated using the gene-level count data were applied at this stage. Spearmans rank correlation coefficient of normalized intrinsic noise, burst size, and burst frequency with localization degree (RPM) of various factors in the upper and lower 5% enhancer of normalized intrinsic noise, burst size, and burst frequency of corresponding genes were calculated.

First, we classified promoter- and gene bodyassociated features of high (either intrinsic noise, burst size, or burst frequency) transcripts into 10 clusters. Then, to identify the most contributing features for characterization of a cluster of high transcripts (either intrinsic noise, burst size, or burst frequency) against low transcripts (either intrinsic noise, burst size, or burst frequency), we performed OPLS-DA modeling using ropls R package with 500 random permutations (version 1.8.0; https://bioconductor.org/packages/release/bioc/html/ropls.html). One predictive component and one orthogonal component were used. To find the most influential variables for separation of high groups (either intrinsic noise, burst size, or burst frequency) against low groups (either intrinsic noise, burst size or burst frequency), an S-plot with loadings of each variable on the x axis and correlation of scores to modeled x matrix [p(corr)[1]=Corr(t1,X),t1 = scores in the first predictive component] on the y axis was constructed. Three each of the top and bottom variables with absolute value of loadings were selected.

After primer trimming with the Cutadapt software (https://cutadapt.readthedocs.io/en/stable/guide.html), read counts were generated and statistical analysis was performed using MAGeCK (v0.5.5) (https://sourceforge.net/p/mageck/wiki/Home/). DE scores were calculated from the gene-level significance returned by MAGeCK with the following formula: DE score = log10(gene-level depletion P value) log10(gene-level enrichment P value). Genes with allelically normalized mean read count less than 10 from scRamDA-seq analysis were excluded from the downstream analysis. Then, genes were ranked by DE score. Subsequently, the top and bottom 100 genes were subjected to KEGG pathway enrichment analysis using an R package, clusterProfiler (v3.9.2; https://github.com/GuangchuangYu/clusterProfiler).

mRNA half-life can be determined using the following equation (37)T12=tln(2)ln(111+existingtotalnewtotal)where t, existing, new, and total indicate the 4sU treatment time and amounts of existing, newly synthesized, and total RNA, respectively. Here, t is 1/3; new/total is 1 (existing/total)T12=13ln(2)ln(111+existingtotal1existingtotal)(1)

All samples contained spike-in RNA. Because they are unlabeled by 4sU and biotin, they are not trapped by streptavidin beads, except for nonspecific adsorption and technical loss. Therefore, by normalization with the amount of spike-in RNA in total and unbound (existing), the true ratio of total and unbound transcript can be obtained using the following equationNorm.Ratio(existing/total)=[unbound(target)/unbound(spikein)]/[total(target)/total(spike-in)]=[unbound(target)/total(target)]/[unbound(spike-in)/total(spike-in)]

Unbound (target)/total (target) and unbound (spike-in)/total (spike-in) can be obtained by qPCR. Although most of the genes showed Norm.Ratio(existing/total) of more than 1, this is theoretically impossible (fig. S6B). It is possible that reverse transcription efficiency is drastically decreased by biotinylation of RNA. Here, we assumed that the presence of biotinylated RNA during reverse transcription may trap reverse transcriptase and that the efficiency of reverse transcription is further reduced globally. We assume that the global suppression effect of reverse transcriptase trapping is Ig (global inhibitory effect). Moreover, the reverse transcription inhibitory effect of biotinylated RNA itself is defined as Is. Also, we defined N, E, T, and Reff as the amount of biotinylated (newly synthesized) RNA, the amount of existing unbiotinylated RNA, the amount of reverse transcriptase, and reverse transcription efficiency of reverse transcriptase, respectively. From these definitions, the cDNA amount derived from total and existing RNA can be determined by the following equationstotalcDNA=ETReffIg+NTReffIgIsexistingcDNA=ETReffexistingcDNAtotalcDNA=EEIg+NIgIs=EIg(E+NIs)(2)

Next, a known value is introduced into Eq. 1 to solve coefficients. The half-life of Nanog mRNA under Std conditions has been reported to be approximately 4.7 hours (20). Therefore, the ideal ratio of existing/total Nanog mRNA amount is approximately 0.95203. In this case, the ideal relationship between newly synthesized and existing RNA is as followsEE+N=0.95203N=0.0503871E

The mean ratio of existing/total Nanog cDNA revealed by qPCR was 3.436867. Therefore, the relationship between Is and Ig is as follows from Eq. 2Ig=0.2909630.0503871Is+1

To determine the appropriate value of Is, several values were assigned to Is, and mRNA half-lives in the Std condition were compared with the previously reported mRNA half-lives (fig. S6C) (23). We found that the scaling of mRNA half-lives in the Std condition and that of previously reported mRNA half-lives were quite similar when Is is 0.1 and Ig is 0.289. Using Eqs. 1 and 2, the half-lives of mRNA can be obtained on the basis of the data using the value obtained from qPCR (fig. S6D). No significant difference in mRNA half-life was observed between Std and PD-MK conditions for the genes examined.

Read the original post:
Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells - Science Advances

Stem Cells Without Ethical Implications Are Ready for the Spotlight – Press Release – Digital Journal

Induced Pluripotent Stem Cells Forming an Emerging Market

WELLESLEY, Mass. - June 16, 2020 - (Newswire.com)

The global market for induced pluripotent stem cells (iPSCs), should reach $3.8 billion, growing 9.2% annually, according to the latest report by BCC Research, Induced Pluripotent Stem Cells: Global Markets.

iPSCs are reprogrammed cells from a patients body and are not harvested from embryos, thus avoiding the ethical debates associated with embryonic stem cells. Like other stem cells, they hold the immense promise of transforming into various types of human tissue cells and potentially representing highly effective treatments for serious illnesses.

Report Highlights

Read the full report here: https://www.bccresearch.com/market-research/biotechnology/induced-pluripotent-stem-cells-report.html

As a breakthrough technology recognized by the Nobel Prize in Physiology or Medicine 2012, iPSCstechnology has brought a revolutionary change to modern medicine, write BCC Research analysts. iPSC-related products are forming an emerging market despite the fact that clinical applications are still at their early stage. The potential scope of the iPSC market is becoming clear.

About BCC Research BCC Research publishes market research reports that provide organizations with intelligence to drive smart business decisions. By partnering with industry experts worldwide, BCC Research provides unbiased measurements and assessments of global markets covering current and emerging industrial and technology sectors. For more information about BCC Research, visit bccresearch.com.

Press Release Service by Newswire.com

Original Source: Stem Cells Without Ethical Implications Are Ready for the Spotlight

View post:
Stem Cells Without Ethical Implications Are Ready for the Spotlight - Press Release - Digital Journal

Stem Cell Banking Market will Generate Massive Revenue to $6,956 million by 2023 | Cord Blood Registry, ViaCord, Cryo-Cell, China Cord Blood…

The global stem cell banking market was valued at $1,986 million in 2016, and is estimated to reach $6,956 million by 2023, registering a CAGR of 19.5% from 2017 to 2023. Stem cell banking is a process where the stem cell care isolated from different sources such as umbilical cord and bone marrow that is stored and preserved for future use. These cells can be cryo-frozen and stored for decades. Private and public banks are different types of banks available to store stem cells.

Top Companies Covered in this Report: Cord Blood Registry, ViaCord, Cryo-Cell, China Cord Blood Corporation, Cryo-Save, New York Cord Blood Program, CordVida, Americord, CryoHoldco, Vita34

Get sample copy of Report at:

https://www.premiummarketinsights.com/sample/AMR00013812

Increase in R&D activities in regards with applications of stem cells and increase in prevalence of fatal chronic diseases majorly drive the growth of the global stem cell banking market. Moreover, the large number of births occurring globally and growth in GDP & disposable income help increase the number of stem cell units stored, which would help fuel the market growth. However, legal and ethical issues related to stem cell collections and high processing & storage cost are projected to hamper the market growth. The initiative taken by organizations and companies to spread awareness in regards with the benefits of stem cells and untapped market in the developing regions help to open new avenues for the growth of stem cell banking market in the near future.

The global stem cell banking market is segmented based on cell type, bank type, service type, utilization, and region. Based on cell type, the market is classified into umbilical cord stem cells, adult stem cells, and embryonic stem cells. Depending on bank type, it is bifurcated into public and private. By service type, it is categorized into collection & transportation, processing, analysis, and storage. By utilization, it is classified into used and unused. Based on region, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.

Get Discount for This Report https://www.premiummarketinsights.com/discount/AMR00013812

Table Of Content

CHAPTER 1: INTRODUCTION

CHAPTER 2: EXECUTIVE SUMMARY

CHAPTER 3: MARKET OVERVIEW

CHAPTER 4: STEM CELL BANKING MARKET, BY CELL TYPE

CHAPTER 5: STEM CELL BANKING MARKET, BY BANK TYPE

CHAPTER 6: STEM CELL BANKING MARKET, BY SERVICE TYPE

CHAPTER 7: STEM CELL BANKING MARKET, BY UTILIZATION

CHAPTER 8: STEM CELL BANKING MARKET, BY REGION

CHAPTER 9: COMPANY PROFILES

Enquire about report at: https://www.premiummarketinsights.com/buy/AMR00013812

About Premium Market Insights:

Premiummarketinsights.com is a one stop shop of market research reports and solutions to various companies across the globe. We help our clients in their decision support system by helping them choose most relevant and cost effective research reports and solutions from various publishers. We provide best in class customer service and our customer support team is always available to help you on your research queries.

Contact Us:

Sameer Joshi

Call: +912067274191

Email: [emailprotected]

Pune

See the original post:
Stem Cell Banking Market will Generate Massive Revenue to $6,956 million by 2023 | Cord Blood Registry, ViaCord, Cryo-Cell, China Cord Blood...

Study identifies mechanism affecting X chromosome that could lead to new disease therapies – Science Codex

Researchers at Massachusetts General Hospital (MGH) have identified a key mechanism in X chromosome inactivation, a phenomenon that may hold clues that lead to treatments for certain rare congenital disorders.

Their findings, published in the journal Developmental Cell on June 11, 2020, may also aid in the creation of novel medicines for certain cancers.

Female humans and other mammals have two copies of the X chromosome in each of their cells. Both X chromosomes contain many genes, so only one of the pair can be active; having both X chromosomes expressing genes would be toxic to the cell.

For this reason, female mammals developed a mechanism called X chromosome inactivation, which silences one chromosome, explains Jeannie Lee, MD, PhD, of the Department of Molecular Biology at MGH, senior author of the Developmental Cell study.

Learning how to inactivate and reactivate an X chromosome would have important implications for medicine. A notable category of beneficiaries could be people with certain congenital diseases known as X-linked disorders, which are caused by mutations in genes on the X chromosome.

One example is Rett syndrome, a disorder brought on by a mutation in a gene called MECP2 that almost always occurs in girls and results in profound problems with language, learning, coordination, and other brain functions.

In theory, it may be possible to treat a disorder like Rett syndrome by reactivating the X chromosome. "Why don't we put the dormant X chromosome to work and rescue the cells that are lacking a proper copy of MECP2?" asks Lee.

The goal of X chromosome reactivation has led scientists to focus on epigenetic factors, which turn genes "on" or "off" without altering the genetic code. Silencing genes on the X chromosome occurs when a form of noncoding RNA called Xist spreads across the X chromosome, explains Lee.

However, Xist doesn't act alone: It must attract proteins called Polycomb repressive complexes (PRC) 1 and 2 to complete inactivation of the X chromosome.

But how Xist pulls in PRC1 and PRC2 had been unclear and the subject of debate. Research indicates that repeating sequences of nucleotides on Xist called Repeat A and Repeat B appear to act as magnets for these proteins. Yet some recent research suggests that Repeat A plays no role.

In the new study, Lee and her colleagues showed that both Repeat A and Repeat B are needed to attract PRC1 and PRC2 and complete X chromosome inactivation. By deleting Repeat A from Xist in mouse embryonic stem cells, they found that X chromosome inactivation is not only thwarted, but one X chromosome is eliminated entirely in order for the cells to survive in culture.

In human females, when one X chromosome is missing, the result is Turner syndrome, which affects stature, fertility, and other physical traits.

Understanding how Xist "recruits" PRC1 and PRC2 could have far-reaching implications, especially since the latter plays a key role in maintaining overall cell health.

"We think that through interfering with the Xist recruitment of Polycomb and other silencing complexes, we may eventually be able to treat X-linked diseases like Rett syndrome and perhaps even cancer," says Lee.

See the original post here:
Study identifies mechanism affecting X chromosome that could lead to new disease therapies - Science Codex

Exploring the Therapeutic Potential of ST266 Against Numerous Diseases Including COVID-19 – Technology Networks

Noveome Biotherapeutics is a clinical-stage company focused on developing therapies for the regenerative repair of tissues. Their product ST266, a first-of-its-kind, multi-targeted, non-cellular platform biologic comprised of a complex mixture of biomolecules, is currently being evaluated as a potential treatment for the severe inflammatory response observed in the lungs of some COVID-19 patients.Technology Networks recently spoke with William J. Golden, Noveome Biotherapeutics Founder, Chairman and CEO, who explains the underlying basis for investigating ST266s potential against COVID-19. Golden also elaborates on many of the other indications for which ST266 is being developed to treat.Laura Lansdowne (LL): Could you provide our readers with a brief overview of Noveome Biotherapeutics?William J. Golden (WJG): Noveome is a clinical-stage biotherapeutics company located in Pittsburgh, PA. The company was founded in 2000 by Bill Golden and Lancet Capital. The group was interested in exploring non-embryonic stem cells and identified a technology at the University of Pittsburgh that was using cells derived from human amnion, a membrane that closely covers the fetus during development. The company, named Kytaron Technologies, Inc. at the time, licensed that amnion cell technology but, ultimately, Noveome scientists were able to discover, develop and patent their own unique population of cells, called Amnion-derived Multipotential Progenitor (AMP) cells, using a proprietary culture method that follows current Good Manufacturing Practice (cGMP) regulations. These novel cells were used to produce our product, ST266.LL: What is ST266? Could you elaborate on its mechanism of action in relation to the healing process?WJG: Noveomes product, ST266, is the secretome produced by the AMP cells. It is a completely cell-free solution and is comprised of hundreds of biologically active molecules, including cytokines and growth factors. Interestingly, these cytokines and growth factors exist at very low physiological levels ranging from pg/mL ng/mL concentrations.1 The fact that such low concentrations of these molecules are biologically active is quite remarkable when you consider that traditional protein-based therapies are usually administered at concentrations that are orders of magnitude greater than the concentrations found in ST266.Because the composition of ST266 is so complex, its multiple mechanisms of action have only been partially elucidated. Clinical and preclinical studies have shown ST266 to be anti-inflammatory,2,3 promote wound healing,4,5 reduce apoptosis, reduce vascular permeability (manuscript in preparation), and restore cellular homeostasis.3 Preclinical studies have also shown ST266 to be neuroprotective. In a traumatic brain injury model, ST266 significantly protected against reactive gliosis, suggesting potent anti-inflammatory activity, and resulted in significant recovery of rotarod motor function.6,7 In another study, ST266 was tested in the experimental autoimmune encephalopathy (EAE) mouse model of multiple sclerosis (MS). In this model, the mice develop optic neuritis, which is among the presenting symptoms of MS in humans. ST266 was administered to the nares of mice 15 or 22 days after disease induction. ST266 is absorbed via capillary action along the olfactory nerves which bypasses the blood-brain barrier. This unique route of administration allows for the delivery of high molecular weight biologics to the optic nerve of the eye and the central nervous system. ST266 attenuated visual dysfunction, prevented retinal ganglion cell (RGC) loss, reduced inflammation, and decreased the rate of demyelination of the optic nerve in EAE mice.3Mechanistically, ST266 simultaneously acts on multiple cell receptor-activated and intracellular signaling pathways. For example, in the EAE MS model, neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling.3 In a Phase 2 UV light burn study, ST266 reduced erythema and DNA damage and increased the expression of XPA DNA repair proteins.2Importantly, ST266 has a proven clinical safety profile. It has been administered to 243 patients by various routes of administration (topical skin, topical ocular, topical oral, targeted intranasal), and no drug-related serious adverse events have been reported. Preclinical studies of systemically administered ST266 have also yielded no drug-related safety concerns.LL: For what indications is ST266 currently being evaluated as a treatment?WJG: We refer to ST266 as a platform biologic. By this, we mean that ST266 is one product that has the potential to treat numerous and varied diseases. In the clinic, we have shown anti-inflammatory activity when ST266 is applied topically to UV light-burned the skin2 and topical application to the gums of patients with gingivitis and periodontitis showed a reduction in proinflammatory cytokines in the patients crevicular fluid (manuscript in preparation). We are currently conducting a Phase 2 open label trial of ST266 to treat persistent corneal epithelial defects (PEDs) when applied topically to the eye. Results from this trial will be published soon. We are currently planning a Phase 2b multi-center, randomized, double-masked trial to further evaluate the safety and efficacy of ST266 in this indication. Finally, we are conducting a Phase 1 study in patients at risk for developing glaucoma. This study is using the intranasal route of delivery described above in combination with a novel delivery device. The goal is to deliver ST266 directly to the optic nerve, where it can protect the RGCs that are damaged in glaucoma. We envision this route of delivery will be applicable to central nervous system and other back-of-the eye indications.We also have several ongoing preclinical programs that are evaluating systemically administered ST266 for more generalized inflammatory conditions. These data are not yet published but combined with the data we have compiled in preclinical and clinical studies of topical skin, topical oral and topical ocular administration, we believe ST266 has the potential to be an effective therapy for numerous systemic inflammatory conditions.LL: Could you elaborate on the underlying basis for your evaluation of ST266 as a potential treatment for COVID-19?WJG: As you know, a major complication of COVID-19 is the severe inflammatory response seen in the lungs of some patients. This response is called cytokine storm or cytokine release syndrome. As the pandemic continues and more data have become available, it is now known that the cytokine storm does not just affect the lungs. Multi-organ damage occurs in many of these patients. We believe that systemic delivery of ST266 and its anti-inflammatory activity has the potential to calm the storm. Our as-yet-unpublished preclinical studies with intravenous ST266 support this hypothesis and we are moving rapidly to initiate intravenous ST266 in a Phase 1 study. Once safety in humans is established by this route of administration, we will commence Phase 2 studies in COVID-19 patients.William J. Golden was speaking to Laura Elizabeth Lansdowne, Senior Science Writer for Technology Networks.References

1. Steed, DL, C Trumpower, D Duffy, C Smith, V Marshall, R Rupp, and M Robson. (2008). Amnion-Derived Cellular Cytokine Solution: A Physiological Combination of Cytokines for Wound Healing. Eplasty 8: 15765.

2. Guan, Linna, Amanda Suggs, Emily Galan, Minh Lam, and Elma D. Baron. (2017). Topical Application of ST266 Reduces UV-Induced Skin Damage. Clinical, Cosmetic and Investigational Dermatology. DOI: https://doi.org/10.2147/CCID.S147112.

3. Khan, Reas S, Kimberly Dine, Bailey Bauman, Michael Lorentsen, Lisa Lin, Helayna Brown, Leah R Hanson, et al. (2017). Intranasal Delivery of A Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function In A Mouse Multiple Sclerosis Model. Scientific Reports. DOI: https://doi.org/10.1038/srep41768.

4. Bergmann, Juri, Florian Hackl, Taro Koyama, Pejman Aflaki, Charlotte a Smith, Martin C Robson, and Elof Eriksson. (2009). The Effect of Amnion-Derived Cellular Cytokine Solution on the Epithelialization of Partial-Thickness Donor Site Wounds in Normal and Streptozotocin-Induced Diabetic Swine. Eplasty 9: e49.

5. Franz, Michael G, Wyatt G Payne, Liyu Xing, D K Naidu, R E Salas, Vivienne S Marshall, C J Trumpower, Charlotte A Smith, David L Steed, and M C Robson. (2008). The Use of Amnion-Derived Cellular Cytokine Solution to Improve Healing in Acute and Chronic Wound Models. Eplasty 8: e21.

6. Deng-Bryant, Ying, Zhiyong Chen, Christopher van der Merwe, Zhilin Liao, Jitendra R Dave, Randall Rupp, Deborah a Shear, and Frank C Tortella. (2012). Long-Term Administration of Amnion-Derived Cellular Cytokine Suspension Promotes Functional Recovery in a Model of Penetrating Ballistic-like Brain Injury. The Journal of Trauma and Acute Care Surgery DOI: https://doi.org/10.1097/TA.0b013e3182625f5f.

7. Deng-Bryant, Ying, Ryan D. Readnower, Lai Yee Leung, Tracy L. Cunningham, Deborah A. Shear, and Frank C. Tortella. (2015). Treatment with Amnion-Derived Cellular Cytokine Solution (ACCS) Induces Persistent Motor Improvement and Ameliorates Neuroinflammation in a Rat Model of Penetrating Ballistic-like Brain Injury. Restorative Neurology and Neuroscience. DOI: https://doi.org/10.3233/RNN-140455.

Original post:
Exploring the Therapeutic Potential of ST266 Against Numerous Diseases Including COVID-19 - Technology Networks

Cellular Reprogramming Tools Market to Witness Robust Expansion Throughout the F – News.MarketSizeForecasters.com

Market Study Report, LLC, adds a comprehensive research of the ' Cellular Reprogramming Tools market' that mentions valuable insights pertaining to market share, profitability graph, market size, SWOT analysis, and regional proliferation of this industry. This study incorporates a disintegration of key drivers and challenges, industry participants, and application segments, devised by analyzing profuse information about this business space.

The research report on Cellular Reprogramming Tools market provides a granular assessment of this business vertical and includes information concerning the market tendencies such as revenue estimations, current remuneration, market valuation, and market size over the estimated timeframe.

Request a sample Report of Cellular Reprogramming Tools Market at:https://www.marketstudyreport.com/request-a-sample/2701683?utm_source=marketsizeforecasters.com&utm_medium=ADS

An overview of the performance assessment of the Cellular Reprogramming Tools market is enlisted. The document also comprises of crucial insights pertaining to the major industry trends and the expected growth rate of the said market. The study encompasses specifics related to the growth avenues as well as the restraining factors for this business space.

Major factors underlined in the Cellular Reprogramming Tools market report:

Considering the geographical landscape of the Cellular Reprogramming Tools market:

Cellular Reprogramming Tools Market Segmentation: North America, Europe, Asia-Pacific & Middle East and Africa.

A summary of the details offered in the Cellular Reprogramming Tools market report:

Ask for Discount on Cellular Reprogramming Tools Market Report at:https://www.marketstudyreport.com/check-for-discount/2701683?utm_source=marketsizeforecasters.com&utm_medium=ADS

An overview of the Cellular Reprogramming Tools market in terms of product type and application scope:

Product landscape:

Product types: Adult Stem Cells, Human Embryonic Stem Cells, Induced Pluripotent Stem Cells and Other

Key parameters included in the report:

Application Spectrum:

Application segmentation: Drug Development, Regenerative Medicine, Toxicity Test, Academic Research and Other

Specifics offered in report:

Additional information mentioned in the report:

Other insights regarding the competitive scenario of the Cellular Reprogramming Tools market:

Vendor base of Cellular Reprogramming Tools market: Celgene, FUJIFILM Holdings, BIOTIME, Advanced Cell Technology, Mesoblast, Human Longevity, Cynata, STEMCELL Technologies, Astellas Pharma, Osiris Therapeutics, EVOTEC and Japan Tissue Engineering

Key parameters as per the report:

Highlights of the report:

Key questions answered in the report:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-cellular-reprogramming-tools-market-growth-status-and-outlook-2020-2025

Some of the Major Highlights of TOC covers:

Chapter 1: Methodology & Scope

Definition and forecast parameters

Methodology and forecast parameters

Data Sources

Chapter 2: Executive Summary

Business trends

Regional trends

Product trends

End-use trends

Chapter 3: Cellular Reprogramming Tools Industry Insights

Industry segmentation

Industry landscape

Vendor matrix

Technological and innovation landscape

Chapter 4: Cellular Reprogramming Tools Market, By Region

Chapter 5: Company Profile

Business Overview

Financial Data

Product Landscape

Strategic Outlook

SWOT Analysis

Related Reports:

2. Global Deuterium-substituteddrugs Market Growth (Status and Outlook) 2020-2025Deuterium-substituteddrugs Market report covers the market landscape and its growth prospects over the coming years, the Report also brief deals with the product life cycle, comparing it to the relevant products from across industries that had already been commercialized details the potential for various applications, discussing about recent product innovations and gives an overview on potential regional market.Read More: https://www.marketstudyreport.com/reports/global-deuterium-substituteddrugs-market-growth-status-and-outlook-2020-2025

Read More Reports On: https://www.marketwatch.com/press-release/global-public-safety-drones-market-size-to-show-robust-growth-through-2027-2020-06-12?tesla=y

Read More Reports On: https://www.marketwatch.com/press-release/global-industrial-refrigeration-equipment-market-size-to-witness-prominent-gains-during-2020-2026-2020-06-06?tesla=y

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

See the original post here:
Cellular Reprogramming Tools Market to Witness Robust Expansion Throughout the F - News.MarketSizeForecasters.com

Assisted fertilization, the referendum 15 years ago – NJ MMA News

Years 15 have passed since the popular referendum on the repeal of many of the prohibitions imposed by the law 40/04. The quorum was not reached, but the 12 and the 13 June 2005, the 80% of those who went to vote asked that the prohibitions on assisted reproduction and research on embryonic stem cells embryonic were canceled. Over the years it was the courts that lifted the bans (three out of four), thanks to the appeals promoted with the couples and coordinated by the lawyer Filomena Gallo, secretary of the Luca Coscioni association, which protects the right to health and science, and with many patient associations.

Since then the heterologous fertilization , the are possible fertilization of more than three gametes by canceling the obligation of simultaneous implantation, and access to medically assisted procreation for couples fertile carriers of genetic pathologies . Only the ban on scientific research on embryos unsuitable for pregnancy remains. But, in conjunction with this important anniversary, the Coscioni association also announces further legal actions to guarantee preimplantation diagnoses in the Lea (the essential levels of assistance, i.e. the services and services that the National Health Service is required to provide to all citizens), the free research on embryos, the cancellation of the age limit and the regulation of gestational support for others.

The dream of being able to hold your child in your arms for hundreds of aspiring mothers and fathers was broken with a referendum boycotted by political and Vatican interference, explains Filomena Gallo -. Thanks to the determination of some couples, that joy was achieved later, with the decisions of the courts aroused by actions that, according to the latest available data, those of the 2017, have led to the birth of at least 705 children thanks to the preimplantation diagnosis, for a total of 14 . 000 born per year with all medically assisted procreation techniques in force in Italy today .

And, now, we are active at all levels to eliminate the last ban on the referendum , that of scientific research on embryos not suitable for pregnancy and in general to achieve the goal of full protection of the right to health. We recently reiterated to the Government the urgent need to include the preimplantation genetic diagnosis among the Lea , a necessary action to avoid abortions .

In addition, the association is asking the regions to extend the age limit currently provided. For now only Campania, Lazio and Tuscany have reacted positively. We also asked gamete donors for a refund.

Coronavirus, stop assisted fertilization. 4500 children less

Valencia, inside the laboratory where children are born

My husband and I, parents thanks to assisted fertilization

In vitro fertilization, I was not wrong

Read this article:
Assisted fertilization, the referendum 15 years ago - NJ MMA News

Growth in Sales of Cell Banking Outsourcing Market to Push Revenue Growth in the Market – The Canton Independent Sentinel

A cell bank refers to a facility that store cells derived from various body fluids and organ tissue for future needs. The bank store the cells with detailed characterization of the cell line hence decrease the chances of cross contamination. Cell banking outsourcing industry involves collection, storage, characterization, and testing of cells, cell lines, and tissues. Cell banks provide cells, cell lines, and tissues for R&D, production of biopharmaceuticals with maximum effectiveness and minimal adverse events. The process for storage of cells includes first proliferation of cells that multiplied in large number of identical cells and then stored into cryovials for future use. Cells mainly used in the regenerative medicine production. Increasing demand of stem cell therapies and number of cell banks expected to boost the global market.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/8026

Global cell banking outsourcing market segmented based on bank type, cell type, phase, and geography. Based on bank type market is further segmented into master cell banking, working cell banking, and viral cell banking. Cell type segment further divided based on stem cell banking and non-stem cell banking. Stem cell banking includes dental, adult, cord, embryonic, and IPS stem cell banking. Based on phase, the global cell banking outsourcing market segmented into preparation, storage, testing, and characterization. Geographically, market divided into North America, Europe, Asia Pacific, Latin America, and Middle East Africa. By considering bank type master cell banking accounted largest share owing to longer duration of preservation that would attract the researcher. Stem cell banking accounted larger share than non-stem cell banking due to lower risk of contamination.

In stem cell banking cord stem cell banking accounted larger share by revenue in 2014 due to increasing number of cord blood banks, and services globally. Additionally, donor convenience, immediate availability, lower risk of viral contamination is major driving factors for cord stem cell banking. In bank phase, segment storage phase accounted largest share and expected to maintain its share due to development of sophisticated preservation technologies such as cryopreservation technique. Geographically, North America accounted largest share due to high number of ongoing research projects. However, Asia Pacific expected to show significant growth during forecast period owing to supportive government initiatives coupled with increasing awareness about cell therapies.

The global cell banking outsourcing market is witnessing lucrative growth during forecast period due to increased research in cell line development owing to rise in incidence of infectious chronic disorder, and cancer. Additionally, development of advanced preservation techniques, increasing adoption to the stem cell therapies, rise in cell bank facilities across globe, and moving focus of researcher towards stem cell therapies would drive the market. However, high cost of therapies, availability of right donors, and legal and changing ethical issues during collection across the globe are major restraint of the market. Risk associated with cell line banking is contamination of cell lines by manual errors or environmental conditions hence care should be taken during storing and handling of cells.

You Can Buy This PMR Healthcare Report From Here @ https://www.persistencemarketresearch.com/checkout/8026

Major player in cell banking outsourcing market include BioOutsource (Sartorious), BioReliance, BSL Bioservice, Charles River Laboratories, Cleancells, CordLife, Covance, Cryobanks International India, Cryo-Cell International Inc., GlobalStem Inc., Goodwin Biotechnology Inc., LifeCell International Pvt. Ltd., and Lonza. Additionally, PXTherapeutics SA, Reliance Life Sciences, SGS Life Sciences, Texcell, Toxikon Corporation, Tran-Scell Biologics, Pvt. Ltd., and Wuxi Apptec are other companies in global cell banking outsourcing market.

Rustil is a regular contributor to blog , Specializing in Industry Research and Forecast

Visit link:
Growth in Sales of Cell Banking Outsourcing Market to Push Revenue Growth in the Market - The Canton Independent Sentinel