Category Archives: Embryonic Stem Cells


Qatar- WCM-Q explores law and ethics of stem cells and AI in medicine – MENAFN.COM

(MENAFN - The Peninsula) The legal and ethical implications of using stem cells and artificial intelligence (AI) in medicine were discussed at the latest instalment of Weill Cornell Medicine-Qatar's (WCM-Q) Intersection of Law & Medicine series.Expert speakers at the event discussed the impact of recent advances in stem cell science and AI on the practice of medicine in Qatar and explored how new legal frameworks could be developed to protect the rights and safety of patients in the MENA region. The day-long event was organized by WCM-Q in collaboration with Hamad Bin Khalifa University and the University of Malaya of Kuala Lumpur, Malaysia.Stem cells are an exciting area for medical researchers because they have the potential to repair damaged or diseased tissues in people with conditions such as Parkinson's disease, type 1 diabetes, stroke, cancer, and Alzheimer's disease, among many others. Stem cells can also be used by researchers to test new drugs for safety and effectiveness.WCM-Q's Dr. Amal Robay, WCM-Q assistant professor in genetic medicine and director of research compliance, said: 'Stem cells have the capacity for unlimited or prolonged self-renewal, and they can differentiate themselves into many different cell types to become tissue- or organ-specific cells with special functions. The central ethical dilemma of stem cell science arises from the fact that embryonic stem cells are derived from human embryos or by cloning, she explained.Visiting bioethics expert Dr. Jeremy Sugarman of Johns Hopkins University in Baltimore, US said that the public image of stem cell research had been damaged by a small number of high-profile cases in which scientists had behaved unethically. The field had also been hampered by different countries applying different laws to stem cell research, making international collaboration problematic, he said.Meanwhile, the use of AI in healthcare has the potential to leverage analysis of large amounts of data to improve patient outcomes, but poses ethical concerns regarding privacy, the diversity of data sources, biases and relying on non-human entities for potentially life-changing decisions.Dr. Barry Solaiman, assistant professor of law in the College of Law and Public Policy at HBKU said: 'It's very important that we bridge that gap between the professions of law and medicine, and that we understand the fundamental importance of ethicists to the advance of science. We need to consider how lawyers can help to develop laws to ensure that science advances and that it does so in ways that protect everyone involved.The event, which was co-directed by Dr. Solaiman and Dr. Thurayya Arayssi, professor of clinical medicine and senior associate dean for medical education and continuing professional development at WCM-Q, also featured other expert speakers.The event was accredited locally by the Qatar Council for Healthcare Practitioners-Accreditation Department (QCHP-AD) and internationally by the Accreditation Council for Continuing Medical Education (ACCME).

MENAFN1811201900630000ID1099287087

View original post here:
Qatar- WCM-Q explores law and ethics of stem cells and AI in medicine - MENAFN.COM

New cell therapy improves memory and stops seizures after brain injury – Drug Target Review

A recent study has shown that transplanting new inhibitory neurons may repair damaged brain circuits.

A breakthrough cell therapy to improve memory and prevent seizures in mice following traumatic brain injury (TBI) has been developed by researchers.

In the study, the research team from the University of California, US transplanted embryonic progenitor cells capable of generating inhibitory interneurons (a specific type of nerve cell that controls the activity of brain circuits) into the brains of mice with traumatic brain injury, targeting the hippocampus.

These are transplanted inhibitory neurons (green) successfully incorporated into the hippocampus of a mouse with traumatic brain injury (credit: UCI School of Medicine).

The researchers discovered that the transplanted neurons migrated into the injury where they formed new connections with the injured brain cells and thrived long term. Within a month after the treatment, the mice models showed signs of memory improvement.

The cell transplants also prevented the mice from developing epilepsy, which affected more than half of the mice who were not treated with new interneurons.

Inhibitory neurons are critically involved in many aspects of memory, and they are extremely vulnerable to dying after a brain injury, said Robert Hunt, PhD, assistant professor of anatomy and neurobiology at UCI School of Medicine who led the study. While we cannot stop interneurons from dying, it was exciting to find that we can replace them and rebuild their circuits.

To further test their observations, the team silenced the transplanted neurons with a drug, which caused the memory problems to return.

It was exciting to see the animals memory problems come back after we silenced the transplanted cells, because it showed that the new neurons really were the reason for the memory improvement, added Bingyao Zhu, a junior specialist and first author of the study.

So far, nobody has been able to convincingly create the same types of interneurons from human pluripotent stem cells, Hunt concluded. But I think were close to being able to do this.

The study was published in Nature Communications.

See more here:
New cell therapy improves memory and stops seizures after brain injury - Drug Target Review

Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Markets Gazette 24

Stem Cell Therapy Market is expected to reach 202.77 billion by 2026 from 12.25 billion in 2017 at CAGR of 42.02%.(Detailed analysis of the market CAGR is provided in the report) stands for use of stem cells to treat or prevent disease or condition.

Bone marrow transplant and some therapies derived from umbilical cord blood are mainly used in stem cell therapy. Advancement, in order to establish new sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions, are increased in recent years. Stem Cell Therapy Market Researchers are making efforts to discover novel methods to create human stem cells. This will increase the demand as well as supply for stem cell production and potential investigation in disease management. Increasing investment & research grants for developing safe and effective stem cell therapy products, the growing patient base for target diseases, concentrated product pipelines, increasing approval of the new clinical trials, rapid technological advancement in genomics, and the rising awareness about the stem cell are expected to drive the growth of the Stem Cell Therapy solutions market during the forecast period.

REQUEST FOR FREE SAMPLE REPORT: https://www.maximizemarketresearch.com/request-sample/522

However, improper infrastructure, insufficient storage systems, nascent technology in underdeveloped economies, Ethical issues related to an embryonic stem cell, low patient acceptance rate, Difficulty in the preservation of stem cell are expected to restrain the market growth. North America is expected to be the largest growing region by 2026; the reason behind that is extensive funding by Government. However, Emerging countries like India, china, Korea have low growth rate as compared to Developed regions in 2017 but increase in awareness about stem cell therapy will lead the Asia Pacific to generate a significant level of revenue by 2026.

Key Highlights of Stem Cell Therapy Market report

Detailed quantitative analysis of the current and future trends from 2017 to 2026, which helps to identify the prevailing market opportunities.Comprehensive analysis of factors instrumental in changing the market scenario, rising prospective opportunities, market shares, core competencies in terms of market development, growth strategies and identification of key companies that can influence this market on a global and regional scale.Assessment of Market definition along with the identification of key drivers, restraints opportunities and challenges for this market during the forecast period.Complete analysis of micro-markets with respect to individual growth trends, prospects, and contributions to the overall Stem Cell Therapy Solutions market.Stem Cell Therapy market analysis and comprehensive segmentation with respect to the Application, End users, Treatment, and geography to assist in strategic business planning.Stem Cell Therapy market analysis and forecast for five major geographies-North America, Europe, Asia Pacific, Middle East & Africa, Latin America, and their key regions.For company profiles, 2017 has been considered as the base year. In cases, wherein information was unavailable for the base year, the years prior to it have been considered.

Research Methodology:

The market is estimated by triangulation of data points obtained from various sources and feeding them into a simulation model created individually for each market. The data points are obtained from paid and unpaid sources along with paid primary interviews with key opinion leaders (KOLs) in the market. KOLs from both, demand and supply side were considered while conducting interviews to get an unbiased idea of the market. This exercise was done at a country level to get a fair idea of the market in countries considered for this study. Later this country-specific data was accumulated to come up with regional numbers and then arrive at a global market value for the stem cell therapy market.

Key Players in the Stem Cell Therapy Market are:

Chiesi Farmaceutici S.P.A Are:Gamida CellReNeuron Group, plcOsiris Therapeutics, Inc.Stem Cells, Inc.Vericel Corporation.Mesoblast, Ltd.

Key Target Audience:

Stem Cell Associations and OrganizationsGovernment Research Boards and OrganizationsResearch and consulting firmsStem Cell Therapy Market InvestorsHealthcare Service Providers (including Hospitals and Diagnostic Centers)Stem Cell Therapeutic Product Manufacturing OrganizationsResearch LabsClinical research organizations (CROs)Stem Cell Therapy Marketing PlayersPharmaceutical Product Manufacturing Companies

DO INQUIRY BEFORE PURCHASING REPORT HERE: https://www.maximizemarketresearch.com/inquiry-before-buying/522

Scope of the Stem Cell Therapy Market Report:

Stem Cell Therapy market research report categorizes the Stem Cell Therapy market based on Application, End users, Treatment, and geography (region wise). Market size by value is estimated and forecasted with the revenues of leading companies operating in the Stem Cell Therapy market with key developments in companies and market trends.

Stem Cell Therapy Market, By Treatments:

Allogeneic Stem Cell TherapyAutologous Stem Cell Therapy

Stem Cell Therapy Market, By End Users:

HospitalsAmbulatory Surgical Centers

Stem Cell Therapy Market, By Application:

OncologyCentral Nervous System DiseasesEye DiseasesMusculoskeletal DiseasesWound & InjuriesMetabolic DisordersCardiovascular DisordersImmune System Disorders

Stem Cell Therapy Market, By Geography:

North AmericaEuropeAsia PacificMiddle East & AfricaLatin America

Available Customization:

With the given market data, Maximize Market Research offers customization of report and scope of the report as per the requirement

Regional Analysis:

Breakdown of the North America stem cell therapy marketBreakdown of the Europe stem cell therapy marketBreakdown of the Asia Pacific stem cell therapy marketBreakdown of the Middle East & Africa stem cell therapy marketBreakdown of the Latin America stem cell therapy market

Company Information:Detailed analysis and profiles of addition

Browse Full Report with Facts and Figures of Stem Cell Therapy Market Report at: https://www.maximizemarketresearch.com/market-report/stem-cell-therapy-market/522/

MAJOR TOC OF THE REPORT

Chapter One: Stem Cell Therapy Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Stem Cell Therapy Market Competition, by Players

Chapter Four: Global Stem Cell Therapy Market Size by Regions

Chapter Five: North America Stem Cell Therapy Revenue by Countries

Chapter Six: Europe Stem Cell Therapy Revenue by Countries

Chapter Seven: Asia-Pacific Stem Cell Therapy Revenue by Countries

Chapter Eight: South America Stem Cell Therapy Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Stem Cell Therapy by Countries

Chapter Ten: Global Stem Cell Therapy Market Segment by Type

Chapter Eleven: Global Stem Cell Therapy Market Segment by Application

Chapter Twelve: Global Stem Cell Therapy Market Size Forecast (2019-2026)

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Lumawant Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website: http://www.maximizemarketresearch.com

The rest is here:
Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 - Markets Gazette 24

Global Stem Cell Assay Market 2019 Size, Share, Growth, Trends, Type, Application, Analysis and Forecast by 2026 – Markets Gazette 24

The investment made in the study would provide you access to the information such as:

Request for a sample of this research report @ https://www.orianresearch.com/request-sample/1353714

Highlights of the report:A complete backdrop analysis, which includes an assessment of the parent market. Important changes in market dynamics market segmentation up to the second or third level. Historical, current, and projected size of the market from the standpoint of both value and volume. Reporting and evaluation of recent industry developments market shares and strategies of key players. Emerging niche segments and regional markets. Objective assessment of the trajectory of the market. Recommendations to companies for strengthening their foothold in the market

On the basis of type, the market is split into:* Viability/Cytotoxicity* Isolation & Purification* Cell Identification* Proliferation* Differentiation* Function* Apoptosis

On the basis of cell type, the market is split into:* Human embryonic stem cells (hESCs)* Adult Stem Cells

On the basis of product & service, the market is split into:* Instruments* Kits* Services

The key players profiled in the market include:* Thermo Fisher Scientific* Merck KGaA* GE Healthcare* Bio-Rad Laboratories* Promega Corporation* Agilent Technologies* Perkinelmer

Buy one-Get one: https://www.orianresearch.com/checkout/1353714

Buy this report and get another report of the same price for free! Offer for limited period only!!!

Key Benefits of the Report:

* Global, regional, type, cell type, product & service, application, end user market size and their forecast from 2015-2026

* Identification and detailed analysis on key market dynamics, such as, drivers, restraints, opportunities, and challenges influencing growth of the market

* Detailed analysis on industry outlook with market specific PESTLE, and supply chain to better understand the market and build expansion strategies

* Identification of key market players and comprehensively analyze their market share and core competencies, detailed financial positions, key products, and unique selling points

* Analysis on key players strategic initiatives and competitive developments, such as joint ventures, mergers, and new product launches in the market

* Expert interviews and their insights on market shift, current and future outlook, and factors impacting vendors short term and long term strategies

* Detailed insights on emerging regions, type, cell type, product & service, application, end user with qualitative and quantitative information and facts

Target Audience:

* Stem Cell Assay Product Manufacturers

* Traders, Importers, and Exporters

* Raw Material Suppliers and Distributors

* Government and Research Organizations

* Associations and Industry Bodies

GET Flat 40% Discount: https://www.orianresearch.com/discount/1353714

Limited period discount offer!!! Purchase reports before the offer ends!!!

Research Methodology:

The market is derived through extensive use of secondary, primary, in-house research followed by expert validation and third party perspective, such as, analyst reports of investment banks. The secondary research is the primary base of our study wherein we conducted extensive data mining, referring to verified data sources, such as, white papers, government and regulatory published articles, technical journals, trade magazines, and paid data sources.

For forecasting, regional demand & supply factors, recent investments, market dynamics including technical growth scenario, consumer behavior, and end use trends and dynamics, and production capacity were taken into consideration. Different weightages have been assigned to these parameters and quantified their market impacts using the weighted average analysis to derive the market growth rate.

The market estimates and forecasts have been verified through exhaustive primary research with the Key Industry Participants (KIPs), which typically include:

* Manufacturers

* Suppliers

* Distributors

* Government Body & Associations

* Research Institutes

See original here:
Global Stem Cell Assay Market 2019 Size, Share, Growth, Trends, Type, Application, Analysis and Forecast by 2026 - Markets Gazette 24

Oct4, Considered Vital for Creating iPSCs, Actually Isnt Needed – The Scientist

Since 2006, when Shinya Yamanaka, now the director of the Center for iPS Cell Research and Application at Kyoto University, discovered a method that could guide fully differentiated cells back to their pluripotent state, scientist have been using his recipe to produce induced pluripotent stem cells. The protocol relies on overexpressing the so-called Yamanaka factors, which are four transcription factors: Oct4, Sox2, Klf4, and cMyc (OSKM). While the technique reliably creates iPS cells, it can cause unintended effects, some of which can lead to cells to become cancerous. So researchers have worked to adjust the cocktail and understand the function of each factor.

No one had succeeded in creating iPS cells without forcing the overexpression of Oct4. It was thought that this was the most crucial factor of the four. At least until now.

If this works in adult human cells, it will be a huge advantage for the clinical applications of iPS cells.

Shinya Yamanaka, Kyoto University

Four years ago, Sergiy Velychko, a graduate student at the Max Planck Institute for Molecular Biomedicine in Hans Schlers lab, and his team were studying the role of Oct4 in creating iPS cells from mouse embryonic fibroblasts. He used vectors to introduce various mutations of the gene coding for Oct4 to the cells he was studying, along with a negative controlone that didnt deliver any Oct4. He was shocked to discover that even using his negative control, he was able to generate iPS cells.

Velychkos experiment was suggesting that it is possible to develop iPS cells with only SKM.

We just wanted to publish this observation, Velychko tells The Scientist, but he knew hed need to replicate it first because reviewers wouldnt believe it.

He and his colleagues, including Guangming Wu, a senior scientist in the lab, repeated the experiment several times, engineering vectors with different combinations of the four factors. SKMthe combination that didnt include Oct4was able to induce pluripotency in the cells with about 30 percent of the efficiency of OSKM, but the cells were of higher quality, meaning that the researchers didnt see evidence of common off-target epigenetic effects. They reported their results yesterday (November 7) in Cell Stem Cell.

Efficiency is not important. Efficiency means how many colonies do you get, explains Yossi Buganim, a stem cell researcher at the Hebrew University of Jerusalem, who was not involved in the study. If the colony is of low quality, the chances that eventually the differentiated cells will become cancerous is very high.

Finally, the team employed the ultimate test, the tetraploid complementation assay, in which iPS cells are aggregated with early embryos that otherwise would not have been able to form a fully functional embryo on their own. These embryos grew into mouse pups, meaning that the iPS cells the team created were capable of maturing into every type of cell in the animal.

Whats more is they found that the SKM iPS cells could develop into normal mouse pups 20 times more often than the OSKM iPS cells, suggesting that the pluripotency of iPS cells can be greatly improved by omitting Oct4 from the reprogramming factor cocktail.

The results will need to be verified in human cells, Buganim cautions. His team has developed methods for creating iPSCs that worked well in mouse cells only to be completely ineffective in humans.

Yamanaka himself was enthusiastic about the results, telling The Scientist in an email that his team would definitely try the method in other cell types, especially adult human blood cells and skin fibroblasts. If this works in adult human cells, it will be a huge advantage for the clinical applications of iPS cells.

S.Velychkoet al.,Excluding Oct4 from Yamanaka cocktail unleashes the developmental potential of iPSCs,Cell Stem Cell,doi:10.1016/j.stem.2019.10.002,2019.

Emma Yasinski is a Florida-based freelance reporter. Follow her on Twitter@EmmaYas24.

Go here to read the rest:
Oct4, Considered Vital for Creating iPSCs, Actually Isnt Needed - The Scientist

A winding romp through advances in cell biology pushes readers to ponder the boundaries of life – Science Magazine

Philip BallUniversity of Chicago Press2019384 pp.Purchase this item now

A small bundle of human nerve cells are being cultured in a petri dish. The cells divide. They differentiate into cell types found in the brain. The cell network grows dense and develops brain-like structureslayers and folds. The cells begin to signal. The brain cell cluster has been derived from skin cells harvested from science writer Philip Balls shoulder.

The scientists who created Balls skin-turned-brain organoid study brain development and want to understand the basis of neurodegeneration. But what exactly goes on inside these cell aggregates, and could we reach a point at which they are more brain than brain-like?

Biologists can also build embryo-like structures (embryoids) from human stem cells, which can be used to study early prenatal development. However, synthetic embryos can develop certain featuressuch as the primitive streak, a structure that establishes bilateral symmetry in an organismthat mark, for some, the transition from embryo to individual human being.

Balls experience grappling with how to think about these living structures, as documented in his new book, How to Grow a Human, is part of a larger question with which humanity has wrestled for centuries: What is life, and how might our understanding of it change with our ever-increasing capability to manipulate it?

The book offers a provocative, meandering take on the progression of groundbreaking biotechnological capabilities. For example, in chapter 3, Ball explores the dawn of tissue culture at the turn of the 20th century and the motivations of the scientists who conducted the research. Ross Harrison sought to settle a debate between Camillo Golgi and Santiago Ramny Cajal over the makeup of nervous systems; the former argued that nervous systems were one uninterrupted structure, whereas the latter believed there to be distinct nerve cells. Along the way to showing that nerve fibers lengthen through nerve cell proliferation, confirming Ramny Cajals hypothesis, Harrison was the first to develop a technique to keep tissues alive with active cell growth in vitro, sustaining amphibian embryonic tissue in jars.

Alexis Carrel, on the other hand, was a white supremacist striving to preserve a superior stock of humankind. Carrel and his team iterated on and applied Harrisons method to many different tissues, including those of birds, embryonic chickens, and, of course, humans. Here, Ball also works in how science fiction writing was influenced by early advances in cell biology, describing Julian Huxleys The Tissue-Culture King, which centers on a biologist who redesigns members of a remote tribe and builds living objects of worship from the flesh of the tribes king. Although interesting, asides such as this disrupt the narratives continuity.

Balls writing is most absorbing when he reflects on boundary-pushing research, such as advances toward converting human skin cells to eggs or sperm or the promise of approaches for fabricating human organs to help people who need transplants. In chapter 5, for example, he describes experiments in which rat cells formed pancreases in mice, and others in which human cells survived in pig and cattle embryos, and then considers how governments and the public might approach the prospect of harvesting human organs grown in other animals.

Discussing how and where we have drawn ethical and legal lines for procedures such as in vitro fertilization and preimplantation genetic diagnosis (PGD) of embryos, Ball contemplates what historical precedent may mean for the governance of emerging biotechnological capabilities. Unlike in the United Kingdom, where PGD is permitted only to avoid implanting an embryo with a serious heritable disease, the United States does not regulate PGD-enabled embryo selection at the federal level, meaning PGD can be used to select for offspring of a particular gender or to rule out embryos that have an elevated risk of intellectual disability. (As Ball points out, it may be possible to adapt this testing to screen for embryos that are predicted to have exceptional cognitive ability.)

At the center of an adjacent debate are germline genome-editing technologies. As exemplified by the so-called CRISPR-baby controversy and expounded upon by Ball, access to, and affordability of, new biotechnologies may serve some segments of society while underserving others. Ball appeals to the democratic process to determine the balance between personal liberty and state-dictated equity, acknowledging that everyone has a stake in and therefore the right to be heard on this important issue.

Because of the immense power of emerging biotechnologies, those of us who are intimately involved with these advances must make a concerted effort to equip both policy-makers and the public with the knowledge and tools needed to navigate this evolving landscape. Ambitious and expansive, How to Grow a Human could be one piece of this effortBalls look at the state of human-facing cutting-edge bioscience is a thought-provoking read

The reviewer co-leads the Congressional Science Policy Initiative at the Federation of American Scientists, Washington, DC 20036, USA

More:
A winding romp through advances in cell biology pushes readers to ponder the boundaries of life - Science Magazine

Cell Isolation Market ||Becton, Dickinson, and Company, Thermo Fisher Scientific, Inc., Merck KGaA – Industry News Info

Zion Market Research published a new 110+ pages industry researchCell Isolation Market by Product (Instruments and Consumables), by Cell Type (Animal and Human), by Cell Source (Adipose Tissue, Embryonic/Cord Blood Stem Cells, and Bone Marrow), by Technique (Surface Marker-Based Cell Isolation, Centrifugation-Based Cell Isolation, and Filtration-Based Cell Isolation), by Application (Cancer Research, Biomolecule Isolation, Tissue Regeneration & Regenerative Medicine, Stem Cell Research, In Vitro Diagnostics, and Others), and By End-User (Hospitals & Diagnostic Laboratories, Research Laboratories & Institutes, Biotechnology & Biopharmaceutical Companies, and Others): Global Industry Perspective, Comprehensive Analysis, and Forecast, 20182025.

TheGlobal Cell Isolation Market Is Expected To Reach Around USD 15.16 Billion By 2025complete outline is crystal clear penned down in the GlobalCell Isolation Marketresearch report such that not only an unskilled individual but also a professional can easily extrapolate the entire Cell Isolation Market within a few seconds.The research study covers research data which makes the document a handy resource for managers, analysts, industry experts, and other key people get ready-to-access and self-analyzed study along with TOC, graphs and tables to help understand the market size, share, trends, growth drivers and market opportunities and challenges.

Download FREE PDF Sample Brochure for more Industry Insights @CLICK HERE NOW

The Cell Isolation Market research report covers major industry player profiles that include:

Becton, Dickinson, and Company, Thermo Fisher Scientific, Inc., Merck KGaA, Beckman Coulter Inc., Terumo BCT, Bio-Rad Laboratories, Inc.

This report employs the SWOT analysis technique for the assessment of the development of the most remarkable market players. It additionally considers the latest upgrades while assessing the development of leading market players. Moreover, in the global Cell Isolation Market report, the key product categories of the global Cell Isolation Market are included. The report similarly demonstrates supportive data related to the dominant players in the market, for instance, product offerings, revenue, segmentation, and business synopsis. The global Cell Isolation Market is as well analyzed on the basis of numerous regions.

Download FREE PDF Sample for more Insights@CLICK HERE NOW

Global Cell Isolation Market: Regional Analysis

To understand the competitive landscape in the market, an analysis of Porters five forces model for the market has also been included. The study encompasses a market attractiveness analysis, wherein all segments are benchmarked based on their market size, growth rate, and general attractiveness. This report is prepared using data sourced from in-house databases, secondary and primary research team of industry experts.

Browse Press Release@CLICK HERE NOW

The report answers important questions that companies may have when operating in the Global Cell Isolation Market. Some of the questions are given below:

What is the current CAGR of the Global Cell Isolation Market?

Which product is expected to show the highest market growth?

Which application is projected to gain a lions share of the Global Cell Isolation Market?

Which region is foretold to create the most number of opportunities in the Global Cell Isolation Market?

Will there be any changes in market competition during the forecast period?

Which are the top players currently operating in the global market?

How will the market situation change in the coming years?

What are the common business tactics adopted by players?

What is the growth outlook of the Global Cell Isolation Market?

Also, Research Report Examines:

Browse for more Research Reports:http://fnfresearch.com/

Thanks for reading this article; you can also get individual chapter wise section or region wise report versions like North America, Europe or Asia.

Sorry! The Author has not filled his profile.

More:
Cell Isolation Market ||Becton, Dickinson, and Company, Thermo Fisher Scientific, Inc., Merck KGaA - Industry News Info

Cell Banking Outsourcing Market to 2027 – Global Analysis and Forecasts By Product Type (Cord Cell Banking, Adult Stem Cell Banking, Embryonic Stem…

The report on Cell Banking Outsourcing Market will help Major Players and the new entrants to understand scrutinize the market in detail. This information will encourage the Major Players to decide their business strategy and achieve proposed business aims.

Stem cells have become important phenomenon in the medical field it has been used to treat various chronic conditions. Stem cell preservation is widely done in most of the countries across the world. Thus, the cell banking outsourcing allows to derive, characterize, and preserve different cells for the future use.

The cell banking outsourcing market is likely to foster its growth during the forecast period owing to the factors such as increase in the stem cell technology, rising stem cell preservation, increasing vaccine production through stem cells and others. The market is expected to have growth opportunities due to the factors such as rising awareness about the stem cell preservation in the developing regions and rising stem cells preservation for treating chronic diseases.

Top Companies Covered in this Report:1. BioReliance (Merck KGaA), 2. BSL BIOSERVICE (Eurofins Scientific), 3. CLEAN CELLS, 4. Charles River Laboratories, 5. BioOutsource Ltd. (Sartorius Stedim Biotech Group), 6. GlobalStem, Inc., 7. SGS Life Sciences, 8. Goodwin Biotechnology, Inc., 9. LifeCell International Pvt. Ltd., 10. CordLife

Get sample copy of Cell Banking Outsourcing Market at: https://www.premiummarketinsights.com/sample/TIP00020800

The Global Cell Banking Outsourcing Market Analysis to 2027 is a specialized and in-depth study of the healthcare IT industry with a special focus on the global market trend analysis. The report aims to provide an overview of Cell Banking Outsourcing market with detailed market segmentation by service type, age group, and geography. The global Cell Banking Outsourcing market is expected to witness high growth during the forecast period. The report provides key statistics on the market status of the leading Cell Banking Outsourcing market players and offers key trends and opportunities in the market.

The global cell banking outsourcing market is segmented on the basis of by product type, bank type, and phase. Based on the product type the market is segmented as cord cell banking, adult stem cell banking, embryonic stem cells, and IPS stem cell banking. On the basis of bank type the market is segmented as master cell banking, viral cell banking, and working cell banking. Based on the phase the market is classified as cell bank storage, cell bank characterization and testing, gene expression testing, gene sequencing testing, cell bank preparation, and others.

The report analyzes factors affecting Cell Banking Outsourcing market from both demand and supply side and further evaluates market dynamics effecting the market during the forecast period i.e., drivers, restraints, opportunities, and future trend. The report also provides exhaustive PEST analysis for all five regions namely; North America, Europe, APAC, MEA and South & Central America after evaluating political, economic, social and technological factors effecting the Cell Banking Outsourcing market in these regions.

Have any query? Enquire about report at: https://www.premiummarketinsights.com/discount/TIP00020800

Fundamentals of Table of Content:

1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered1.4 Market Analysis by Type1.5 Market by Application1.6 Study Objectives1.7 Years Considered

2 Global Growth Trends2.1 Cell Banking Outsourcing Market Size2.2 Cell Banking Outsourcing Growth Trends by Regions2.3 Industry Trends

3 Market Share by Key Players3.1 Cell Banking Outsourcing Market Size by Manufacturers3.2 Cell Banking Outsourcing Key Players Head office and Area Served3.3 Key Players Cell Banking Outsourcing Product/Solution/Service3.4 Date of Enter into Cell Banking Outsourcing Market3.5 Mergers & Acquisitions, Expansion Plans

4 Breakdown Data by Product4.1 Global Cell Banking Outsourcing Sales by Product4.2 Global Cell Banking Outsourcing Revenue by Product4.3 Cell Banking Outsourcing Price by Product

5 Breakdown Data by End User5.1 Overview5.2 Global Cell Banking Outsourcing Breakdown Data by End User

Get Complete Report at: https://www.premiummarketinsights.com/buy/TIP00020800

Contact Us: Call: +912067274191Email: sales@premiummarketinsights.com

About Premiummarketinsights:

Premiummarketinsights.com is a one stop shop of market research reports and solutions to various companies across the globe. We help our clients in their decision support system by helping them choose most relevant and cost effective research reports and solutions from various publishers. We provide best in class customer service and our customer support team is always available to help you on your research queries.

Go here to see the original:
Cell Banking Outsourcing Market to 2027 - Global Analysis and Forecasts By Product Type (Cord Cell Banking, Adult Stem Cell Banking, Embryonic Stem...

Scientists Made Mice Live 12% Longer by Hacking Their Telomeres – Futurism

A team of researchers at the Spanish National Cancer Research Center have managed to extend the average lifespan of lab mice by more than 12 percent by cultivating embryonic cells in a special way,according to Science Alert no genetic modification required.

They looked at a natural process thats linked to aging: the strands of nucleotide sequences at the end of each chromosome, called telomeres,that act as a buffer to protect the genetic material inside the chromosomes. These telomeres tend get shorter over time as we age so longevity researchers have long pondered whether increasing their length could help us live longer.

In this case, the Spanish researchers left stem cells in a petri dish to multiply on their own, giving them unusually long telomeres. Mice bred with chromosomes featuring the twice-as-long telomeres showed a significant increase of 12.74 percent in median longevity, according to the researchers paper, which was published last week by the journal Nature Communications.

They also found that the specially-bred mice showed no difference in cognitive function, retained the longer telomeres over time, and were 20 percent less likely to develop age-related tumors.

The experiment isnt quite as revolutionary as it sounds this kind of technique isnt about to make humans live longer any time soon. But it could give scientists insight into the process of aging and perhaps find ways to slow it down in the future.

Read the original:
Scientists Made Mice Live 12% Longer by Hacking Their Telomeres - Futurism

Scientists extend mice lifespan 12% by tweaking telomeres – Big Think

Scientists successfully extended the average lifespan of mice by breeding them using embryonic stem cells with extra-long telomeres. The findings are significant because the researchers managed to extend lifespan without genetic modification, and they also shed light on the aging process and techniques that might someday slow it.

The study published October 17 in Nature Communications focuses on telomeres, which are stretches of DNA found at the end of chromosomes.

Because telomeres protect the genetic material inside chromosomes, they've been likened to the plastic tips on the ends of shoelaces. But telomeres have also been compared to bomb fuses, or "molecular clocks," because they become shorter each time a cell divides, eventually shrinking so much that the cell dies or stops dividing. This shortening of our telomeres is associated with aging, cancer, and death.

"Telomere shortening is considered one of the hallmarks of aging as short telomeres are sufficient to cause organismal aging and decreased lifespan," the researchers wrote. "Telomere length is determined genetically and both average telomere length and the rate of telomere shortening varies between species. In this regard, humans are born with shorter telomeres than mice, but mice telomeres shorten 100-times faster than humans."

For years, scientists have been exploring how lengthening telomeres might help stave off disease and aging in animals, and, perhaps someday, in humans. But these attempts have all involved genetic modification. In the new study, a team of researchers at the Spanish National Cancer Research Center left induced stem cells to multiply in a petri dish, a process which eventually results in cells that have extra-long telomeres, as researchers first discovered in 2009.

Using these specially cultivated embryonic stem cells, the team generated mice with extra-long telomeres. Compared to a control group, these mice experienced "significant increase of 12.74 percent in median longevity", showed no cognitive defects and were less likely to develop cancer and obesity.

"This finding supports the idea that, when it comes to determining longevity, genes are not the only thing to consider," says molecular biologist Maria Blasco, from the Spanish National Cancer Research Centre (CNIO). "There is margin for extending life without altering the genes."

Shorter telomeres are linked to a shorter lifespan in humans. And although we're unlikely to see any experiments involving that are similar to the recent study, there are some steps you can take to lengthen your telomeres and increase your chances at a longer life. The main step: endurance exercise.

A 2018 study published in the European Heart Journal found that telomerase activity spikes in people who regularly do endurance exercises, defined as 45 minutes of continuous running. Interestingly, this effect was not observed in people who lifted weights or walked for 45 minutes. The results echoed those of a similar 2017 study, which found that people who ran regularly appeared to be biologically younger than those who didn't. But it takes some effort.

"If you want to see a real difference in slowing your biological aging, it appears that a little exercise won't cut it," study author Larry Tucker told Science Daily. "You have to work out regularly at high levels."

Related Articles Around the Web

Read more from the original source:
Scientists extend mice lifespan 12% by tweaking telomeres - Big Think