Category Archives: Embryonic Stem Cells


Human Embryonic Stem Cells (HESC) Market by 2022 -Growth … – MilTech

Human Embryonic Stem Cells (HESC) Market is expected to witness growth of international market with respect to advancements and innovations including development history, competitive analysis and regional development forecast.

The report starts with a basic Human Embryonic Stem Cells (HESC) market overview. In this introductory section, the research report incorporates analysis of definitions, classifications, applications and industry chain structure.

In depth analysis of Human Embryonic Stem Cells (HESC) Marketis a crucial thing for various stakeholders like investors, CEOs, traders, suppliers and others.

Human Embryonic Stem Cells (HESC) Market split by product type,with production, revenue, price, market share and growth rate of each type, can be divided into

Adult Sources

Fetal Sources

Human Embryonic Stem Cells (HESC) Market split by application,report focuses on consumption, market share and growth rate of Human Embryonic Stem Cells (HESC) in each application and can be divided into

Regenerative Medicine

Stem Cell Biology Research

Tissue Engineering

Toxicology Testing

Browse more detail information about Human Embryonic Stem Cells (HESC) Market at:http://www.360marketupdates.com/10570506

To begin with, the report elaborates the Human Embryonic Stem Cells (HESC) Market overview. Various definitions and classification of the industry, applications of the industry and chain structure are given. Present day status of the Human Embryonic Stem Cells (HESC) Market in key regions is stated and industry policies and news are analysed.

Following are the key players covered in this Human Embryonic Stem Cells (HESC) Market research report:

Astellas Pharma Inc/ Ocata Therapeutics

STEMCELL Technologies

BIOTIME, INC

Thermo Fisher Scientific

CellGenix

ESI BIO

PromoCell

Lonza

Kite Pharma

Cynata

Sumanas

LifeCell

And Many Others

Get a PDF Sample of Human Embryonic Stem Cells (HESC) Market Research Report at:http://www.360marketupdates.com/enquiry/request-sample/10570506

After the basic information, the Human Embryonic Stem Cells (HESC) Market report sheds light on the production. Production plants, their capacities, global production and revenue are studied. Also, the Human Embryonic Stem Cells (HESC) Market growth in various regions and R&D status are also covered.

Following are Major Table of Content of Human Embryonic Stem Cells (HESC) Industry:

Human Embryonic Stem Cells (HESC) Market Competition by Manufacturers

Human Embryonic Stem Cells (HESC) Production, Revenue (Value) by Region (2017-2022)

Human Embryonic Stem Cells (HESC) Supply (Production), Consumption, Export, Import by Regions (2017-2022)

Human Embryonic Stem Cells (HESC) Production, Revenue (Value), Price Trend by Type

Human Embryonic Stem Cells (HESC) Market Analysis by Application

Human Embryonic Stem Cells (HESC) Manufacturers Profiles/Analysis

Human Embryonic Stem Cells (HESC) Manufacturing Cost Analysis

Industrial Chain, Sourcing Strategy and Downstream Buyers

Further in the Human Embryonic Stem Cells (HESC) Market Industry Analysis report, the Human Embryonic Stem Cells (HESC) Market is examined for price, cost and gross capacity. These three points are analysed for types, companies and regions. In continuation with this data sale price for various types, applications and region is also included. The Human Embryonic Stem Cells (HESC) Market for major regions is given.

Scope of the Human Embryonic Stem Cells (HESC) Industry on the basis of region:

The West

Southwest

The Middle Atlantic

New England

The South

The Midwest

Additionally, type wise and application wise consumption figures are also given. With the help of supply and consumption data, gap between these two is also explained.

To provide information on competitive landscape, this report includes detailed profiles of Human Embryonic Stem Cells (HESC) Market key players. For each player, product details, capacity, price, cost, gross and revenue numbers are given. Their contact information is provided for better understanding.

Read the original here:
Human Embryonic Stem Cells (HESC) Market by 2022 -Growth ... - MilTech

Research and Markets – Global Human Embryonic Stem Cells … – Markets Insider

DUBLIN, May 1, 2017 /PRNewswire/ --

Research and Markets has announced the addition of the "Human Embryonic Stem Cells (hESC) Market Analysis By Application (Regenerative Medicines, Stem Cell Biology Research, Tissue Engineering, Toxicology Testing), By Country (U.S., UK, Germany, Japan, China), And Segment Forecasts, 2014 - 2025" report to their offering.

The global human embryonic stem cells (hESCs) market is anticipated to reach USD 1.06 billion by 2025

Application of hESCs as a promising donor source for cellular transplantation therapies is anticipated to bolster progress through to 2025. hESCs technology tends to be useful for tissue engineering in humans due to high histocompatibility between host and graft.

Maintenance of developmental potential for contribution of derivatives of all three germ layers is an important feature of these cells. This ability remains consistent even after clonal derivation or prolonged undifferentiated proliferation, thus pronouncing its accelerated uptake.

In addition, these are capable in expressing high level of alkaline phosphatase, key transcription factors, and telomerase. These factors are found to be of great importance in the maintenance of the inner cellular mass pluripotency.

Furthermore, hESCs can be easily differentiated into defined neurons, neural lineages, oligodendrocytes, and astrocytes. Aforementioned characteristic makes it useful in studying the sequence of events that take place during early neurodevelopment.

However, use of stem cells derived from viable embryos is fraught with ethical issues, prompting scientists to explore other methods to generate ESCs. The other methods include derivation of embryonic germ cells, stem cells from dead embryos, and other techniques.

Further Key Findings from the Report Suggest:

Key Topics Covered:

1 Research Methodology

2 Executive Summary

3 Human Embryonic Stem Cells Market Variables, Trends & Scope 3.1 Market Segmentation & Scope 3.1.1 Market Driver Analysis 3.1.1.1 Technological advancement involving stem cells therapy 3.1.1.2 Rising demand for regenerative medicines 3.1.1.3 R&D in toxicology testing 3.1.1.4 Technological advanvcements for the production of embryonic stem cells through alternative methods 3.1.1.5 Increasing prevalence of genetic disorders 3.1.2 Market Restraint Analysis 3.1.2.1 Ethical concern related to stem cell research 3.2 Penetration & Growth Prospect Mapping for Application, 2015 3.3 Human embryonic stem cells -Swot Analysis, By Factor (Political & Legal, Economic And Technological) 3.4 Industry Analysis - Porter's

4 Human Embryonic Stem Cells Market: Application Estimates & Trend Analysis 4.1 Global Human Embryonic Stem Cells Market: Application Movement Analysis 4.2 Regenerative Medicine 4.3 Stem Cell Biology Research 4.4 Tissue Engineering 4.5 Toxicology Testing

5 Human Embryonic Stem Cells Market: Regional Estimates & Trend Analysis, by Application

6 Competitive Landscape 6.1 Strategy Framework 6.2 Market Participation Categorization 6.3 Company Profiles

For more information about this report visit http://www.researchandmarkets.com/research/cnx9vb/human_embryonic

Media Contact:

Research and Markets Laura Wood, Senior Manager rel="nofollow">press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/research-and-markets---global-human-embryonic-stem-cells-hesc-market-analysis-2014-2017--2025-key-players-are-cellgenix-international-stem-cell-thermo-fisher-scientific-kite-pharma-promocell-and-lonza-300448137.html

SOURCE Research and Markets

The rest is here:
Research and Markets - Global Human Embryonic Stem Cells ... - Markets Insider

Phys.org – embryonic stem cells

The formation of a human embryo starts with the fertilization of the oocyte by the sperm cell. This yields the zygote, the primordial cell that carries one copy each of the maternal and paternal genomes. However, this genetic ...

Scientists are getting closer to understanding how naked mole rats, the world's longest living rodent species, avoid cancer, which could lead to safer stem cell therapies for human diseases.

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Scientists have determined the first 3D structures of intact mammalian genomes from individual cells, showing how the DNA from all the chromosomes intricately folds to fit together inside the cell nuclei.

University of Tsukuba-led researchers explored the function of the reprogramming factor KLF4 in production of induced pluripotent stem cells (iPSCs). KLF4 was shown to bind upstream of the Tcl1 target gene, which controls ...

Scientists at the University of Cambridge have managed to create a structure resembling a mouse embryo in culture, using two types of stem cells - the body's 'master cells' - and a 3D scaffold on which they can grow.

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

A new nanofiber-on-microfiber matrix could help produce more and better quality stem cells for disease treatment and regenerative therapies.

A new report from the Stowers Institute for Medical Research chronicles the embryonic origins of planaria, providing new insight into the animal's remarkable regenerative abilities.

Freiburg plant biologist Prof. Dr. Thomas Laux and his research group have published an article in the journal Developmental Cell presenting initial findings on how shoot stem cells in plants form during embryogenesis, the ...

Embryonic stem cells (ES cells) are stem cells derived from the inner cell mass of an early stage embryo known as a blastocyst. Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells.

Embryonic Stem (ES) cells are pluripotent. This means they are able to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes ES cells from multipotent progenitor cells found in the adult; these only form a limited number of cell types. When given no stimuli for differentiation, (i.e. when grown in vitro), ES cells maintain pluripotency through multiple cell divisions. The presence of pluripotent adult stem cells remains a subject of scientific debate; however, research has demonstrated that pluripotent stem cells can be directly generated from adult fibroblast cultures.

Because of their plasticity and potentially unlimited capacity for self-renewal, ES cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. However Diseases treated by these non-embryonic stem cells include a number of blood and immune-system related genetic diseases, cancers, and disorders; juvenile diabetes; Parkinson's; blindness and spinal cord injuries. Besides the ethical concerns of stem cell therapy (see stem cell controversy), there is a technical problem of graft-versus-host disease associated with allogeneic stem cell transplantation. However, these problems associated with histocompatibility may be solved using autologous donor adult stem cells or via therapeutic cloning.

Read more here:
Phys.org - embryonic stem cells

Human Embryonic Stem Cells (HESC) Market Analysis and Growth Forecast by Applications, Types and Competitors to … – DailyNewsKs

Human Embryonic Stem Cells (HESC) Market research report is a professional and in-depth study on the current state. The Human Embryonic Stem Cells (HESC) Industry analysis is provided for the international market including development history, competitive landscape analysis, and major regional development status.

Browse more detail information about Human Embryonic Stem Cells (HESC) Market at:http://www.360marketupdates.com/10613660

Next part of the Human Embryonic Stem Cells (HESC) Market sheds light on the production, production plants, their capacities, global production and revenue are studied. Also, the Human Embryonic Stem Cells (HESC) Market growth in various regions and R&D status are also covered.

Human Embryonic Stem Cells (HESC) Market report key players-Astellas Pharma Inc/ Ocata Therapeutics, STEMCELL Technologies, BIOTIME, INC, Thermo Fisher Scientific, CellGenix, ESI BIO, PromoCell, Lonza, Kite Pharma, Cynata, Sumanas, LifeCell, Geron And Many Others

Get Sample PDF of report@ http://www.360marketupdates.com/enquiry/request-sample/10613660

Further in the report, Human Embryonic Stem Cells (HESC) Market is examined for price, cost and gross revenue. These three points are analysed for types, companies and regions. In prolongation with this data sale price for various types, applications and region is also included.

Human Embryonic Stem Cells (HESC) Market split by Product Type-Adult Sources, Fetal Sources Human Embryonic Stem Cells (HESC) Market split by Application Regenerative Medicine, Stem Cell Biology Research, Tissue Engineering, Toxicology Testing Human Embryonic Stem Cells (HESC) Market Segment by Regions-North America, China, Europe, Southeast Asia, Japan, India

With the help of supply and consumption data, gap between these two is also explained. To provide information on competitive landscape, this report includes detailed profiles of Human Embryonic Stem Cells (HESC) Market key players.

Have any query? Ask our expert @ http://www.360marketupdates.com/enquiry/pre-order-enquiry/10613660

Other Major Topics Covered in Human Embryonic Stem Cells (HESC) market report are as follows:

Marketing Strategy Analysis, Distributors/Traders: Marketing Channel, Direct Marketing, Indirect Marketing, Marketing Channel Development Trend, Market Positioning, Pricing Strategy, Brand Strategy, Target Client, Distributors/Traders List. Market Effect Factors Analysis: Technology Progress/Risk; Substitutes Threat; Technology Progress in Related Industry; Consumer Needs/Customer; reference Change; Economic/Political Environmental Change. Global Human Embryonic Stem Cells (HESC) Market Forecast 2017-2021: Global Human Embryonic Stem Cells (HESC) Capacity, Production, Revenue Forecast 2017-2021; Global Human Embryonic Stem Cells (HESC) Production, Consumption Forecast by Regions 2017-2021; Global Human Embryonic Stem Cells (HESC) Production Forecast by Type 2017-2021; Global Human Embryonic Stem Cells (HESC) Consumption Forecast by Application 2017-2021; Human Embryonic Stem Cells (HESC) Price Forecast 2017-2021.

In this Human Embryonic Stem Cells (HESC) Market analysis, traders and distributors analysis is given along with contact details. For material and equipment suppliers also, contact details are given. New investment feasibility analysis is included in the report.

Continue reading here:
Human Embryonic Stem Cells (HESC) Market Analysis and Growth Forecast by Applications, Types and Competitors to ... - DailyNewsKs

Stem cells were one of the biggest controversies of 2001. Where are they now? – Vox

Remember stem cells? They were one of the biggest scientific controversies during the early years of George W. Bushs presidency.

At the time, scientists had realized thatembryonic stem cells had the incredible capacity to transform into virtually any cell in the human body and so could potentially lead to new treatments or cures for a multitude of illnesses. On the other hand, extracting these stem cells required destroying human embryos, an action opposed by some pro-life individuals.

EMBRYONIC stem-cell THERAPIES ARE GETTING TESTED IN ACTUAL PATIENTS

The stem-cell debate got really heated. But then ... it just sort of fizzled out from public view. So whatever happened to stem cells?

A couple of things helped lessen the controversy. By the late 2000s, researchers discovered other ways to createcells similar to embryonic stem cells without destroying human embryos, a promising advance that helped defuse the culture-war aspect. Then, in 2009, Obama somewhat loosened the Bush-era restrictions on federal funding for stem-cell research and thecompromise seemed to quiet both sides down a fair amount.

So, lately, scientists have been patiently continuing their stem-cell research in a less noisy atmosphere. And that work has actually led to a few advances like restoring some sight in 10 patients with vision diseases. But the stem-cell controversy is far from dead. Researchers still might need cells from embryos to create certain treatments. If it turns out that non-embryonic stem cells aren't good enough, that could re-ignite the culture wars. So here's a guide to the debate:

Shinya Yamanaka (right) receiving flowers from Sweden's ambassador to Japan in 2012, after it was announced that Yamanaka won a Nobel Prize in medicine. (Jiji Press/AFP/Getty Images)

Embryonic stem cells attracted scientific attention because they have the potential to grow into virtually any cell in the human body say, insulin-producing cells for people with diabetes, brain cells for people with Parkinsons, or even wholenew organs to replace faulty ones.

But for many people, there was one huge ethical problem: creating them required destroying an embryo. That's why, in 2001,George W. Bush decided to limit federal funding of research to a list of 60 pre-existing embryonic stem-cell lines (so as to discourage the destruction of any more embryos). Many scientists viewed the rules as too strict. Hence the controversy.

Obama SOMEWHAT relaxed Bushs restrictions on embryonic stem cells

But then in 2007, Japanese scientistShinya Yamanaka and his colleagues managed to coax cells from adult humans into embryo-like flexibility. In other words, they were able to create cells that seemed to resemble embryonic stem cells but that didn't require destroying an embryo. (These new cells were named induced pluripotent stem cells, IPSCs.) Other researchers began finding that adult stem cells have similar, but more limited, properties, too.

Meanwhile, the politics shifted. In 2009, Barack Obama came into office and signed anexecutive order that somewhat relaxed Bushs restrictions on embryonic stem cells. Under the new rules, the federal government would fund work on new stem-cell lines, but only if they had been made from leftover embryos from fertility clinics andwith non-federal money. That compromise seemed tohelp thecontroversy settledown.

A figure of visual ability after an embryonic-stem-cell-derived treatment (red line) in patients with macular degeneration over the course of 360 days. (Schwartz et al., The Lancet, October 15, 2014)

While the controversy has calmed down, stem-cell research is taking off and scientists are making advances with both embryonic and non-embryonic cells.

Much of the initial research on stem-cell therapies has focused on eye treatments. (That's because stem-cell therapies can be unpredictable and have sometimes lead to tumors in previous experiments. A tumor in an eye would be relatively easier to deal with and remove than tumors hidden deeper inside the body.)

In October 2014, researchers from the company Advanced Cell Technology (now called Ocata Therapeutics)showed that they had created new retina cells from embryonic stem cells for 18 patients who were going blind. Afterward, 10 of them had improved eyesight. Another group of researchers in Japan is trying to do the same thing with non-embryonic cells (those aforementioned IPSCs).

10 PEOPLE WHO WERE GOING BLIND HAD Improved eyesight AFTER EMBRYONIC STEM-CELL THERAPY

Other embryonic stem-cell research has focused on developing cells that can help treat spinal-cord injuries. A company called Geron startedsafety tests in such patients in 2010.

Although a few groups are continuing to work on embryonic stem cells, many are now focusing on non-embryonic stem cells like IPSCs because they're less contentious. "Everyone jumped very, very quickly on the IPS[C] bandwagon because it was eligible for federal funding, and then also any of the controversy [regarding embryos] was dropped," says Susan Solomon, CEO of the nonprofit New York Stem Cell Foundation.

But Solomon also thinks researchers have moved away from embryonic stem cells too quickly. "We felt that it was way too early to do that," she adds. Her organization still studies embryonic stem cells, among others in part because they may be able to do things that non-embryonic stem cells can't. It's just too early to tell.

It's important to note that despite all the overhype over the years, stem-cell science has been moving at the same slow pace as most scientific fields. There are still no FDA-approved treatments that use either embryonic stem cells or IPSCs. And that means that controversy over whether embryonic stem cells are needed for science and medicine is still unresolved.

(Shutterstock)

That said, the fight over stem cells hasn't gone away forever. And there's likely to be more conflict in the future.

Even after the Obama administration relaxed the rules on funding stem-cell research, there are still plenty of hurdles. For example, federal funding is currently prohibited for research on embryonic stem-cell lines made through a technique calledSCNT or cloning, which requires creating embryos in the lab.

This technique could one day prove useful because it can turn a person's own cells into a customized embryonic stem-cell line and would therefore stop people's immune systems from rejecting stem-cell treatments.

In 2013 and 2014, two groups published the firstdemonstrations of this technique with human cells. But all such research in the US must be done with private funds.

On top of all of this, some states directly ban some or all stem-cell research within their borders no matter who's paying for it:

Note: Minnesota has a vague law on the books that's currently interpreted to mean that embryonic stem-cell research is ok. Missouri's law is a bit self-conflicting. For more details, check out The Hinxton Group's site, which includes quotations from the relevant regulations themselves.

"We went from more of a legislative vacuum to our current patchwork quilt, with legislation enacted in all of the jurisdictions where interest groups had enough clout to get the job done," Alan Regenberg, Director of Outreach and Research Support at the Johns Hopkins Berman Institute of Bioethics, told me in an email.

Several things could bring the stem-cell fight back. For example, a clinical trial could come out with some really impressive results on some sort of stem-cell treatment renewing the debate over whether regulations should be loosened. Conversely, a social conservative could run for president and bring up the ethical issues on the campaign trail. And no matter who lands in the White House in 2016, its reasonable to expect some major changes in federal policy and fast. Both George W. Bush and Barack Obama implemented their rules within the first year in office.

In 2013, Obama's stem-cell policy survived Supreme Court case Sherley v. Sebelius.

A piece on the first embryonic stem-cellmedical trials in people, by Sarah Boseley at the Guardian

Update: Clarified the current interpretation of Minnesota's stem cell laws and changed the map to match.

More:
Stem cells were one of the biggest controversies of 2001. Where are they now? - Vox

Protein that kick-starts gene expression in developing embryos. – Science Daily

Protein that kick-starts gene expression in developing embryos.
Science Daily
Next, they looked at mouse embryonic stem cells, which contain the mouse version of the DUX4 gene (called simply DUX). When in culture, a small fraction of these cells exhibit a any given time the gene expression pattern of 2-cell stage embryos, before ...

and more »

View post:
Protein that kick-starts gene expression in developing embryos. - Science Daily

Lab-grown ‘mini-brains’ mimic brain development – Spectrum

Download PDF Multicolored mind: Fluorescent markers pinpoint cells inside a 'mini-brain' grown from human stem cells.

M. Renner et al. / The EMBO Journal

A new method for examining lab-grown mini-brains reveals structures like those in the human brain1.

Mini-brains, also known as cerebral organoids, can provide clues to brain development. To build them, scientists coax clusters of stem cells into becoming neurons and other brain cells. They can even start with skin cells from a person with autism to see how the persons genes influence the mini-brains structure. But researchers debate how closely mini-brains resemble human brains.

In the new study, published 10 March in The EMBO Journal, researchers probed the cellular and regional structure of 104 mini-brains grown from human embryonic stem cells. They first froze the mini-brains and cut them into ultra-thin sections, which they mounted onto glass slides. They then labeled the sections with different combinations of colored fluorescent tags that are specific to certain cell types, and imaged the sections using an automated scanner.

The tags revealed a mixture of cells, including mature neurons and star-shaped support cells called astrocytes. The mini-brains are irregular blobs with small inner chambers, but the researchers found that they contain complex tissues.

A region within each mini-brain resembles the human forebrain, which governs complex cognitive tasks such as integrating sensory information. This region often develops as a folded, ribbon-like structure near the outside of the organoid. It contains layers of cells like those seen in the human cortex.

The researchers used a chemical cocktail to render some of the mini-brains transparent. This revealed bridges of tissue that connect different parts of the forebrain-like region.

The researchers also examined mini-brains at various time points from 33 to 160 days old, when their cells are fully mature. The cells matured into neurons and other brain cells at a speed and in a sequence similar to those in the developing human brain.

Some mini-brains formed patches of cells that secrete chemical cues that spur the development of certain cell types or delineate regions. These patches are similar to so-called organizing centers in the developing human brain.

The method revealed significant variability in the size and location of the forebrain. This may arise from when and where the organizing centers form, or whether they form, the researchers say.

Read more:
Lab-grown 'mini-brains' mimic brain development - Spectrum

‘Growing brains in a dish’ will help in fight against disorders – Irish Independent

Neural circuits from the most advanced part of the human brain have been recreated in tiny 3D balls of cells that could help scientists investigate psychiatric disorders.

The "brains in a dish", known as spheroids, were grown from stem cells and followed the same developmental process that takes place in the womb.

Two linked spheroids were made, each measuring about one-sixteenth of an inch across.

They modelled different areas of the forebrain including the cerebral cortex, the most highly evolved "thinking" part of the brain.

The research is the first to allow key events unfolding in the brain at late stages of foetal development to be viewed in real time.

As part of the proof-of-concept study, the scientists generated abnormal brain circuits typical of Timothy syndrome, a rare inherited condition leading to heart problems, autism and epilepsy. They were able to pinpoint the defective development path and correct it using two drugs.

Lead scientist Dr Sergiu Pasca, from Stanford University in the US, said: "We've never been able to recapitulate these human brain developmental events in a dish before.

"The process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.

"Our method of assembling and carefully characterising neuronal circuits in a dish is opening up new windows through which we can view the normal development of the foetal human brain.

"More importantly, it will help us see how this goes awry in individual patients."

The research, reported in the journal 'Nature', is expected to open a new window on a wide range of brain conditions including mental disorders such as schizophrenia.

To create the "brains" the scientists first reprogrammed ordinary skin cells, transforming them into induced pluripotent stem cells (IPS cells) with the properties of embryonic stem cells. Floating in a nutrient-rich broth, the stem cells were coaxed into becoming precursor neurons and finally mature brain circuits.

Go here to read the rest:
'Growing brains in a dish' will help in fight against disorders - Irish Independent

Custer considered for stem cell study | The Miami Student – Miami Student

WSU student fractured spine at Oxford party

Ryan Custer, a Wright State University student who was severely injured at an Oxford party, is being considered for a stem cell study at Rush University Hospital in Chicago. The 19-year-old, a first-year forward for the Raiders varsity basketball team, will be evaluated for five days before doctors determine if he qualifies for the study.

Custer suffered a severe spinal injury after jumping into a makeshift pool at a party on S. Main Street on Saturday, April 8. Custer collided with another persons knee when he slid into the pool, causing the injury. Custer was immediately transported to the University of Cincinnati Medical Center where he underwent surgery on his spine that night.

Feeling in Custers legs has not returned, and he has only recently regained some movement in his fingers.

Custer was transported from the UC Medical Center to Rush Hospital on Sunday, April 22. According to a post from the Ryan Custer Recovery Care Page, a Facebook page updated almost daily by Custers family, he spent the first day in Chicago getting acclimated in his new room in Rushs ICU and meeting the doctor who will lead the study, Dr. Richard Fessler.

Dr. Fessler, a renowned spinal surgeon, has focused his research on developing and refining new ways to perform minimally invasive spinal surgeries. In 2010, Fessler performed surgery on former Indianapolis Colts quarterback Peyton Manning, which Custer was happy to learn, the post said.

The five-day period of testing began Monday, and, if selected for the study, treatment for Custer will begin on Friday. The study, called the SCiStar study, will evaluate how the injection of AST-OPC1, particular neural cells produced from human embryonic stem cells, at a single time 14 to 30 days after an injury can benefit the patients recovery.

According to the SCiStar webpage, the studys researchers are seeking adults between the ages of 18 and 69 who recently experienced a spinal cord injury in the neck which resulted in a loss of feeling below the site of the injury in addition to some paralysis in the arms and legs.

HBO has contacted Dr. Fessler about following a patient through this research process.

Ryan thinks it would be cool to do it, so we said yes,an April 22 Facebook post reads. Another step in the plan God has mapped out for Ryan.

A fundraising page created for Custer, The Ryan Custer 33 Recovery Fund, is close to raising its entire $100,000 goal. At the time of publication, the fund was just about $4,000 shy of the 100k mark.

Over 6,500 people have liked the page and are following along with Custers recovery through the familys Facebook updates.

View original post here:
Custer considered for stem cell study | The Miami Student - Miami Student

We need a new NIH director: Column – USA TODAY

David A. Prentice 6:04 a.m. ET April 25, 2017

Francis Collins speaks to the USA TODAY Editorial Board in 2014.(Photo: Jack Gruber, USA TODAY)

Over his first 100 days in office, President Trump has set a new direction for the country in a variety of areas, from Defense policy to health care and federal hiring.One by one, he has been making good on his campaign promises.He is burnishing his pro-life credentials as well as proving his drive to innovate and put America back in a position of global leadership.Next on the presidents list should be a new director for the National Institutes of Health (NIH).

The incumbent, Dr. Francis Collins, is a leftover from the Obama administration.That is startling enough for such a vital role, but Collins is most definitely not pro-life nor in the same leadership class as Trump.Collins left the NIH in 2008 to work for the Obama campaign team, where he helped set the Obama research priorities, including creating the NIH registry of human embryonic stem cell lines. The registry is a listing of cells created by destroying human embryos that are eligible for federal taxpayer dollars, and the power to approve for this deathly listing rests with the NIH director.

Collins also supports human cloning to create embryos for experiments.Some call such a technique clone and kill since the cloned human embryo is not allowed to survive and develop, but is disaggregated to use her cells in laboratory tests.

He takes the completely unscientific view that a cloned embryo is not really an embryo, because, he says, this is not the natural way that embryos come into existence.This makes any cloned human beings fair game to be used, including destroyed, for experiments.By Collins logic, Dolly the cloned sheep was not really a sheep.

Democrats aren't the party of science: Jonah Goldberg

Why I march for life: Column

Unethical research under the Collins-led NIH doesnt stop there.In 2016, NIH began consideration of allowing creation with taxpayer dollars of human-animal chimeras,including creation of animals that could contain human sperm, human eggsor a human brain. This macabre, unethical science certainly does not represent innovation in healthcare.

Even though we are now in the Trump era, Collins continues to approve more cell lines from destroyed human embryos for use intaxpayer-funded research; the most recent approvals were last month.Embryonic stem cell science relies on destroying embryos to harvest their cells.Collins not only approves of this technique but continues to award federal dollars to the destroyers of young embryos.He has called it important, life-saving research, despite the fact that embryonic stem cells have not saved a single human life nor had any proven success in patients.Its all about destruction and lives lost.

POLICING THE USA:Alook atrace, justice, media

We're scaring off future Einsteins: USD president

Personnel, the adage goes, is policy.Leftovers represent stale policy.Trump needs someone in this critical leadership role for American research who aligns with his strong pro-life ethic and his desire to unleash American ingenuity.There arewell-qualified candidates to rev up Americas biomedical engine and to make it a fountainhead of new therapies against some of the worst diseases facing our world.

In this enterprise, we havent a moment to lose.We just need a new NIH Director.

David A. Prentice is vice president & director of research at Charlotte Lozier Institute, research and education institute of the Susan B. Anthony List, an organization dedicated to electing candidates and pursuing policies that will reduce and ultimately end abortion..

You can readdiverse opinions from ourBoard of Contributorsand other writers ontheOpinion front page,on Twitter@USATOpinionand in our dailyOpinion newsletter.To respond to a column, submit a comment toletters@usatoday.com.

Read or Share this story: http://usat.ly/2pZSabK

Read more:
We need a new NIH director: Column - USA TODAY