Category Archives: Embryonic Stem Cells


Ethical Guidelines on Lab-Grown Embryos Beg for Revamping … – Scientific American

For nearly 40 years scientists have observed their self-imposed ban on doing research on human embryos in the lab beyond the first two weeks after fertilization. Their initial reasoning was somewhat arbitrary: 14 days is when a band of cells known as a primitive streak, which will ultimately give rise to adult tissues, forms in an embryo. It is also roughly the last time a human embryo can divide and create more than one person, and a few days before the nervous system begins to develop. But the so-called 14-day rule has held up all this time partly because scientists could not get an embryo to grow that long outside its mother's body.

Researchers in the U.K. and U.S. recently succeeded for the first time in growing embryos in the lab for nearly two weeks before terminating them, showing that the so-called 14-day rule is no longer a scientific limitationalthough it remains a cultural one. Now, a group of Harvard University scientists has published a paper arguing that it is time to reconsider the 14-day rule because of advances in synthetic biology.

The U.S. has no law against growing embryos beyond two weeksas long as the research is not funded with federal dollars. But most scientific journals will not publish studies that violate the 14-day rule, and the International Society for Stem Cell Research requires its members to agree to the rule in order to qualify for membership.

The guideline, first proposed in the months after Louise Brown became the first baby to be born via in vitro fertilization in 1978, assumes that development always follows a linear path: a fertilized egg forms an embryo, which grows and develops each day. But thanks to advances in synthetic biology, the scientists warn in the new paper that researchers will someday be able to skip such developmental stepscreating humanlike collections of organs that do not have to go through these early embryonic stages of development. We can get so distracted by the apparent issues with embryos that we might miss issues more likely to have a huge impact on society and commercial and governmental policies, says George Church, the Harvard Medical School synthetic biologist and geneticist who is the senior author of the article, published Tuesday in eLife.

Church says he does not think any team is working to make an advanced-stage human embryo in a lab. But his own work suggests the 14-day rule does not provide adequate guidance for synthetic biologists, who take an engineering approach to understanding and manipulating life. Six years ago, for instance, researchers in his lab tried to grow human stem cells on an embryonic scaffold to see if the cells would develop into various organs. That particular attempt didn't work, he says, but someday research on such synthetic human entities with embryolike features or SHEEFs, might succeed.

In addition, scientists in his lab and others are making primitive organoidsmini organs made to work like the kidney, lung, heart or even the brainthat could be used to test drugs or someday even replace failing body parts. It is not unreasonable, Church says, to envision a time when a scientist could create organoids from a number of different organs to see how a drug affects multiple organ systems or when someone could make a cluster of nerve cells in a dish capable of sensing what we call pain.

Now is the time to begin a public discussion on experiments such as these, Church argues, before it is scientifically viable and poses an ethical challenge to the 14-day rule.

Not surprisingly, these ideas have triggered some opposition among bioethicists. The Rev. Tadeusz Pacholczyk, a neuroscientist and director of education at the National Catholic Bioethics Center in Philadelphia, wrote via e-mail that any research on embryos or something like them is unethical, regardless of the 14-day rule. In cases of doubt, where one has a suspicion but not certainty that one might be engendering an embryonic human, such experiments should not be continued, he wrote.

Others, however, praised Church for starting the discussion before the science catches up with it. I think its a service to write a paper like this, says Josephine Johnston, director of research at the Hastings Center, a nonpartisan bioethics research institution. Not every scientist wants to draw attention to why their research may cross some boundaries.

The work of synthetic biologists poses particular ethical challenges in part because their models are getting more and more accurate, says Insoo Hyun, a bioethicist at the Case Western Reserve University School of Medicine. Now were getting into experiments that call into question some of our deepest beliefs philosophically about what it means to be human and what it means to deserve moral respect. Between synthetic biology and artificial intelligence a future might not be far off in which we have to ask whether something created in a lab is truly alive, Hyun says, conjuring up images of Mary Shelleys Frankenstein. Having a discussion ahead of time should help prevent decision-making based on gut instinct of what seems offensive versus well-reasoned arguments, Hyun notes.

The eLife paper comes at a busy time in bioethics. Earlier this month researchers at the University of Cambridge published a mouse study showing that they could create a natural-looking embryostarting not with eggs and sperm but with embryonic stem cells that can become any tissue in the body as well as trophoblast stem cells, which give rise to the placenta. If these results could be reproduced with human cells, it would pose some serious ethical questions.

And earlier this year the National Academy of Sciences and the National Academy of Medicine issued a report updating guidance on editing the human germ linecells that can pass on their genetic material to future generationswhich has long been another ethical line in the sand for researchers. Its expert committee concluded that it remains too risky to change an embryos genes for the sake of enhancing a persons abilities. The group did, however, articulate a set of criteria by which modifying the human germ line would someday be permissible for treating or preventing disease. Although they kept the door locked against such genetic modification, their conclusions allowed scientists to metaphorically knock on that door, says committee member Jeffrey Kahn, director of the Johns Hopkins Berman Institute of Bioethics. We didnt even think about knocking on the door before.

There is no international body in place to make or revise guidelines such as the 14-day rule. In the U.S. the National Academy of Sciences or a presidential commission on bioethics has traditionally made ethical recommendations about scientific research, with Congress sometimes blocking federal funding. Some other countries have standing committees, such as the U.K.s Human Fertilization and Embryology Authority, which regulate embryonic research. Synthetic biology falls between the cracks, though, with no one having such clear authority to regulate the work, Church and his colleagues wrote in the eLife paper.

Church says he has seen more problems arise from underregulation of science rather than overregulation, citing the death of three early gene therapy patients and earlier from the drug thalidomide, which was sold to prevent morning sickness but led to terrible birth defects. Church says he does not know where new boundaries should be drawn to contain future synthetic biology researchbut instead of a stop sign at the end of the research road, like the 14-day rule, his team imagines a perimeter fence to keep scientists from straying too far from an ethical path.

George Annas, director of Boston University School of Public Healths Center for Health Law, Ethics and Human Rights, says he is glad Church and colleagues are flagging this research, which might otherwise be overlooked. He also agrees that recent advances in stem cell science, genetics and synthetic biology suggest it is time to question whether the 14-day rule has outlived its usefulness: I think its a fair question, he says.

Read more:
Ethical Guidelines on Lab-Grown Embryos Beg for Revamping ... - Scientific American

History | Boston Childrens Hospital Stem Cell Research

Since the 19th century, scientists from all over the world have studied stem cells, from plants, to mice, to patients in search of a cure for their diseases.

1868 The term stem cell appears in scientific literature, when German biologist Ernst Haeckel uses the phrase stem cell to describe the fertilized egg that becomes an organism, and also to describe the single-celled organism that acted as the ancestor cell to all living things in history. Read more.

1886 William Sedgwick uses the term stem cells to describe the parts of a plant that grow and regenerate.

June 1, 1909 Russian academic Alexander Maximow lectures at the Berlin Hematological Society on a theory that all blood cells come from the same ancestor cell. This introduces the idea of blood stem cells that are multi-potent, or have the ability to differentiate into several types of cells. Read more.

1953 Leroy Stevens, a Maine scientist performing cancer research in mice, finds large tumors in their scrotums. These tumors, known as teratomas, contained mixtures of differentiated and undifferentiated cells, including hair, bone, intestinal and blood tissue. Researchers concluded the cells were pluripotent, meaning they can differentiate into any cell found in a fully grown animal. Read more.

1957 E. Donnall Thomas, a physician-scientist working in Seattle, attempts the first human bone marrow transplantation. (He later wins the Nobel Prize for this work in 1990).

February 2, 1963 Canadian scientists Ernest McCulloch and James Till perform experiments on the bone marrow of mice and observe that different blood cells come from a special class of cells. This is one of the first pieces of evidence of blood stem cells.

1968 Robert A. Good of the University of Minnesota performs the first successful bone marrow transplant on a child patient suffering from an immune deficiency that killed others in his family. The boy received bone marrow from his sister, and he grew into healthy adulthood.

1981 Two scientists, Martin Evans of the University of Cambridge and Gail Martin of the University of California, San Francisco, conduct separate studies and derive pluripotent stem cells from the embryos of mice. These early cells are the first embryonic stem cells ever to be isolated.

Dec. 5, 1986 Andrew Lassar and Harold Weintraub of Seattle, Washington, report results from an experiment in which they converted rodent fibroblasts (a type of connective tissue) directly into myoblasts (which generate muscle cells), using a single gene (MyoD). Being able to convert one type of adult cell into another may be important for regenerative medicine.

1989 Research from scientists Mario Capecchi, Martin Evans and Oliver Smithies comes together, creating the first knockout mice, which are mice specially bred in the laboratory to be missing specific genes. These mice are created using embryonic stem cells and homologous recombination, a process in which similar strands of DNA switch genes. Since scientists bred the first knockout mice, there have been more than 500 different mouse models of human disease. In 2007, the Nobel Assembly recognized these three scientists for their research, which has proven to be invaluable in understanding how various human diseases, including diabetes and cancer, develop.

1997 Dominique Bonnet and John Dick of Canada discover that leukemia comes from the same stem cells that make our blood cells. This is one of the first major studies to say that cancer grows out of stem cells gone off course, supporting the concept of cancer stem cells.

Nov. 6, 1998 A team at the University of Wisconsin, Madison, led by James Thomson and Jeffrey Jones, reports the creation of the first batch of human embryonic stem cells, which they derived from early embryos. After finding the cells were pluripotent, the team sees the potential the cells have for drug discovery and transplantation medicine.

Aug. 9, 2001 President George W. Bush signs an order authorizing the use of federal funds for research on a limited number of existing human embryonic stem cell lines. (Click here for the Presidents remarks.) Scientists fear several of these available lines are now too old for research.

April 5, 2002 A Whitehead Institute team that includes future Childrens Hospital Boston stem cell researcher George Q. Daley, MD PhD reports combining the use of gene and cell-based therapy to treat a mouse model of immune deficiency. Read more.

Dec. 10, 2003 George Q. Daley and his team publish findings on converting stem cells from mice into germ cells and, eventually, primitive sperm cells that are able to fertilize egg cells. These embryonic germ cells give scientists a chance to study different processes, including cancer growth and the development of sperm cells.

May 19, 2005 South Korean scientists under the direction of Woo-Suk Hwang announce that theyve used therapeutic cloning to create 11 stem cell liness that match their donors, one year after reporting the creation of the first human stem cells with this method. The report excites the scientific community, since the immune systems of patients receiving their own stem cells are unlikely to reject the transplants, a common problem for donated organ transplants. However, the journal Science later retracts the Hwang paper, when it is revealed that the Korean scientists falsified their results. Researchers at Childrens show that one of the lines was actually created through parthenogenesis, a process in which a single egg cell is stimulated to divide without a sperm cell.

Dec. 15, 2005 Yuan Wang, George Q. Daley, and other researchers at Childrens publish findings in which they dramatically improved the process of converting embryonic stem cells from mice into blood stem cells for transplantation.

Aug. 25, 2006 Japanese scientists Shinya Yamanaka and Kazutoshi Takahashi announce the creation of rodent induced pluripotent cells (iPS cells). iPS cells are adult cells reprogrammed to look and function like embryonic stem cells, which makes them another valuable resource for stem cell research and eventual cellular therapeutics.

Dec. 14, 2006 George Q. Daley and colleagues at Childrens report the creation of donor-matched embryonic stem cells in mice through parthenogenesis. (Read Childrens press release.) Parthenogenesis may prove to be an alternative to embryonic stem cells or therapeutic cloning. The team hopes to one day use patient-specific, parthenogenetic stem cells for therapies in their female donors, whose immune systems are unlikely to reject the cells.

November/December, 2007 Three independent teams in Japan, Wisconsin and Boston, led by Shinya Yamanaka, James Thomson, and George Q. Daley, respectively, announce that they have created human iPS cells. The study in the Daley Lab at Childrens is the first iPS project to begin with a donor walking in and having a sample taken, rather than being generated from a frozen sample. Genetically matched to their donor, iPS cells would theoretically not be rejected by the immune system, an important advantage in transplantation medicine.

Aug. 6, 2008 The Stem Cell Program at Boston Childrens Hospital announces the creation of 10 disease-specific lines of iPS cells. These cells provide scientists with laboratory models of diseases such as Down syndrome and muscular dystrophy, and will help them find innovative ways to understand, prevent and treat such diseases. (Read Childrens press release.) This work was recognized at the end of 2008 as contributing to the Breakthrough of the Year in Science magazine.

In the video above, George Daley is interviewed for a Science magazine video introducing cell reprogramming as its 2008 Breakthrough of the Year.

Aug. 27, 2008 A team of scientists from Harvard and Childrens publish an experiment in which they turn a rodent pancreatic exocrine cell into an insulin-producing cell. Similar to the pioneering work of Andrew Lassar and Harold Weintraub from 1986, this experiment shows it is possible to reprogram one type of adult cell into another type of adult cell, skipping the intermediary step of creating iPS cells.

Jan. 23, 2009 Geron Corporation announces the FDAs approval for a limited phase I trial of Gerons new treatment for spinal cord injuries. This was the first FDA approval of a clinical trial for a therapy based on human embryonic stem cells.

March 1, 2009 Scientists in Toronto report the creation of iPS cells in their lab in a manner that is safer than previously used methods. These researchers are able to remove the genes necessary to reprogram an adult cell into a stem cell after the reprogramming step is complete.

March 9, 2009 President Barack Obama signs Executive Order 13505 to repeal some of the restrictions on human embryonic stem cell research funds placed by the previous administration. The order requires the National Institutes of Health to draft new guidelines for federal funding policies within 120 days.

July 7, 2009 The NIH issues the revised guidelines on federal funding for stem cell research. Included are strict provisions for informed donor consent and the ethical procurement of leftover embryos from in vitro fertilization.

May 2009 Phase I clinical trials begin for PGE2, a known drug that Childrens researcher Leonard Zon discovered can increase production of blood stem cells. These trials are being conducted in leukemia and lymphoma patients who have been implanted with blood stem cells from donated umbilical cords. If the trials are successful, single doses of umbilical cord blood stem cells, combined with PGE2, may be a viable source for blood stem cells for adult patients who cannot receive a bone marrow transplant. Read more.

Dec. 2, 2009 The NIH deems 13 lines of human embryonic stem cells, the first under the new administrations guidelines, eligible for research funding. Eleven of these 13 lines were created at Boston Childrens Hospital. Any scientist wanting to conduct research on any of these cell lines can now apply for federal funding. Read more in this blog post.

Stem cells hold great promise and potential in the field of medicine, whether doctors inject them into patients to replace diseased bone marrow, or lab scientists scrutinize them under a microscope to see how lung cancer develops. The road to innovation is long and full of obstacles, and there are plenty of questions left unanswered. But progress is ongoing and in many cases startling. At Childrens Hospital Boston, researchers continue the journey to bring these advances to the clinic, ethically and safely.

See the original post:
History | Boston Childrens Hospital Stem Cell Research

Stem Cell Journals | Peer Reviewed | High Impact Articles list

Index Copernicus Value: 85.83

Cell is the structural and the functional unit of all the organisms on the earth and Cell Science is a scientific discipline that studies the structure and the physiological characters of these cells. Human beings are multi-cellular organisms with an estimated 1014 cells.

The Journal of Stem Cell Research & Therapy is the best Open Access journal that acts as a forum for translational research into stem cell therapies. Stem cells differ from other types of cells as they are unspecialized cells that are capable of changing themselves into almost any type of specialist cells. Journal of Stem Cell Research & Therapy is scientific journal that overlays the study of Cancer stem cells, stem cell therapy, stem-cell transplantation, regenerative medicine, human embryonic stem cells, Neural stem cells, Murine Embryonic Stem Cells, Adult stem cell, Pancreatic stem cells, Totipotent Stem Cells, Pluripotent Stem Cells, Mesenchymal Stem Cells, Hematopoietic Stem Cells (HSCs), Multipotent Stem Cells, Myeloid Stem Cells, Fetal Stem Cell Therapy, Stem Cell Therapy for Diabetes, Plant Stem Cells, Dental Stem Cells, Stem Cell Preservation, Stem Cell Therapy for Osteoarthritis, etc.

Scholarly Journal of Stem Cell Research & Therapy is using online manuscript submission, review and tracking systems of Editorial Manager for quality and quick review processing. Review processing is performed by the editorial board members of Journal of Stem Cell Research and Therapy or outside experts; at least two independent reviewers approval followed by editor approval is required for acceptance of any citable manuscript.

It is an undifferentiated cell which is capable of transforming into more cells of same type or multiple other types. They are found in multicellular organisms. They can differentiate into cells of blood, skin, heart, muscles, brain etc. In adult human being, they replenish the dead cells of various organs. Stem cells are being used for treatment of various diseases like diabetes, arthritis, few cancers, bone marrow failure etc.

Related Journals of Stem Cell

Insights in Stem Cells, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology,Stem Cells, Cell Stem Cell, Stem Cells and Development, Stem Cell Reviews and Reports, Current Stem Cell Research and Therapy, Stem Cell Research

They can develop into any cell type or organ in the body. A single totipotent stem cell can give rise to an entire organism. Fertilized egg or a zygote is the best example. Zygote divides and produces more totipotent cells. After 4 days the cells lose totipotency and become pluripotent.

Related Journals ofTotipotent Stem Cells

Breast Cancer: Current Research, Cancer Diagnosis, Reproductive Medicine, Genetics & Stem Cell Biology, Stem Cell Research and Therapy, Stem Cells International, Stem cells translational medicine, Current Protocols in Stem Cell Biology

They can differentiate into any cell type in the human body. Embryonic stem cells are mostly pluripotent stem cells. They have the ability to differentiate into any of three germ layers: endoderm, mesoderm, or ectoderm.

Related Journals ofPluripotent Stem Cells

Cancer Science & Therapy, Cervical Cancer: Open Access, Reproductive Medicine, Genetics & Stem Cell Biology, Stem Cell Reports, Hematology/ Oncology and Stem Cell Therapy, Journal of Stem Cells, International Journal of Stem Cells

These are multipotent stem cells normally found in the bone marrow and are derived from mesenchyme. They differentiate into adipocytes, chondrocytes, osteoblasts, myocytes and tendon. MSCs can also be extracted from blood, fallopian tube, fetal liver and lungs.

Related Journals ofMesenchymal Stem Cells

Insights in Stem Cells, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology, Journal of Stem Cells and Regenerative Medicine, Stem Cells and Cloning: Advances and Applications, International Journal of Hematology-Oncology and Stem Cell Research

They are the multipotent stem cells derived from mesoderm and located in red bone marrow. They are responsible for production of red blood cells, white blood cells and platelets. HSCs give rise to myeloid lineage (which forms erythrocytes, eosinophils, basophils, neutrophils, macrophages, mast cells and platelets) and lymphoid lineage (which forms T-lymphocytes, plasma cells and NK cells).

Related Journals ofHematopoietic Stem Cells

Insights in Stem Cells, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology, International Journal of Hematology-Oncology and Stem Cell Research, Open Stem Cell Journal, Stem Cell, Stem Cell Research Journal

They can differentiate into more than one cell type, but only into a limited number of cell types. Hematopoietic stem cells are considered multipotent as they can differentite into red blood cells, platelets, white blood cells but they cannot differentiate into hepatocytes or brain cells.

Related Journals ofMultipotent Stem Cells

Cancer Medicine & Anti Cancer Drugs, Colorectal Cancer: Open Access, Reproductive Medicine, Genetics & Stem Cell Biology, Blood, Journal of Cerebral Blood Flow and Metabolism, Biology of Blood and Marrow Transplantation, Pediatric Blood and Cancer, Blood Cells, Molecules, and Diseases, Blood Reviews

Cells with stem cell like abilities have been observed breast cancer, colon cancer, leukemia, melanoma, prostate cancer which can form new cells and lead to tumorigenesis. They cause relapse and metastasis by giving rise to new tumors. Scientists are developing methods to destroy CSCs in place of traditional methods which focus on bulk of cancer cells.

Related Journals ofCancer Stem Cells

Head and Neck Cancer Research, Lung Cancer Diagnosis & Treatment, Genetics & Stem Cell Biology, Cancer Research, Nature Reviews Cancer, Journal of the National Cancer Institute, Clinical Cancer Research, Cancer Cell, Cancer, International Journal of Cancer, British Journal of Cancer

They are derived from Hematopoietic stem cells. They differentiate into Erythrocyte progenitor cell (forms erythrocytes), Thrombocyte progenitor cell (forms platelets) and Granulocyte-Monocyte progenitor cell (forms monocytes, macrophages, neutrophils, basophils, eosinophils, dendritic cells).

Related Journals ofMyeloid Stem cells

Insights in Stem Cells, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology, Clinical Medicine Insights: Blood Disorders, Electrolyte and Blood Pressure, Integrated Blood Pressure Control, Indian Journal of Hematology and Blood Transfusion, Current Studies in Hematology and Blood Transfusion, Blood Research, High Blood Pressure and Cardiovascular Prevention, Blood Cancer Journal, BMC Blood Disorders, Blood Transfusion

They are the self-renewing, multipotent stem cells in the nervous system that differentiate into neurons, astrocytes and oligodendrocytes. They repair the nervous system after damage or an injury. They have potential clinical use the management of Parkinsons disease, Huntingtons disease and multiple sclerosis.

Related Journals ofNeural Stem Cells

Oncology & Cancer Case Reports, Prostate Cancer, Reproductive Medicine, Genetics & Stem Cell Biology, Journal of Nervous and Mental Disease, Cortex; a journal devoted to the study of the nervous system and behavior, Child's Nervous System, Journal of the Peripheral Nervous System, Central Nervous System Agents in Medicinal Chemistry

They are derived from embryo in the blastocyst stage. They are pluripotent stem cells. They give rise to all derivatives of the three primary germ layers: endoderm (stomach, colon, liver, pancreas, intestines etc.), mesoderm (muscle, bone, cartilage, connective tissue, lymphatic system, circulatory system, genitourinary system etc.) and ectoderm (brain, spinal cord, epidermis etc.).

Related Journals ofEmbryonic Stem Cells

Human Genetics & Embryology, Breast Cancer: Current Research, Reproductive Medicine, Genetics & Stem Cell Biology, Birth Defects Research Part C - Embryo Today: Reviews, Advances in Anatomy Embryology and Cell Biology, Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, Italian Journal of Anatomy and Embryology, Romanian Journal of Morphology and Embryology, Neuroembryology, Neuroembryology and Aging

Embryonic stem cells are derived from the fetus are used in treatment of various diseases. As ESCs are pluripotent, they can differentiate into any cell type. Researchers are able to grow ESC s into complex cells types like pancreatic -cells and cardiocytes. Fetal cell therapy is generating lot of controversy from religious groups and ethics committees.

Related Journals ofFetal Stem Cell Therapy

Insights in Stem Cells, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology, Archives of Disease in Childhood: Fetal and Neonatal Edition, Seminars in Fetal and Neonatal Medicine, Journal of Maternal-Fetal and Neonatal Medicine, Fetal Diagnosis and Therapy, Journal of Maternal-Fetal Medicine, Fetal and Pediatric Pathology, Fetal and Maternal Medicine Review, Journal of Maternal-Fetal Investigation, International Journal of Infertility and Fetal Medicine

Research is being done to use stem cells for the treatment of diabetes mellitus. Human embryonic stem cells may be grown in vivo and stimulated to produce pancreatic -cells and later transplanted to the patient. Its success depends on response of the patients immune system and ability of the transplanted cells to proliferate, differentiate and integrate with the target tissue.

Related Journals of Stem Cell Therapy for Diabetes

Endocrinology & Diabetes Research, Diabetes & Metabolism, Reproductive Medicine, Genetics & Stem Cell Biology, Diabetes Care, Diabetes, Diabetes, Obesity and Metabolism, The Lancet Diabetes and Endocrinology, Endocrine-Related Cancer, Best Practice and Research in Clinical Endocrinology and Metabolism, Journal of Endocrinology

The procedure to replace damaged cells (in cancers, aplastic anemia etc.) with healthy stem cells of the same person or in another compatible person to restore the normal production of cells. It can either be autologous or allogeneic. Bone marrow HSCs are generally used for the transplantation.

Related Journals of Stem Cell Transplant

Cancer Diagnosis, Cancer Science & Therapy, Cervical Cancer: Open Access, Gastrointestinal Cancer and Stromal Tumors, Genetics & Stem Cell Biology, Cell Transplantation, Journal of Cell Biology, Nature Reviews Molecular Cell Biology, Molecular Cell, Nature Cell Biology, Molecular and Cellular Biology, Cancer Cell, Current Opinion in Cell Biology

They are the totipotent, undifferentiated cells present in the meristems (shoot and root apices) of a plant. They never undergo aging process and can grow into any cell in the plant throughout its lifetime. They have numerous applications in production of cosmetics, perfumes, pigments, insecticides and antimicrobials.

Related Journals ofPlant Stem Cells

Plant Pathology & Microbiology, Plant Biochemistry & Physiology, Plant Physiology & Pathology, Genetics & Stem Cell Biology, Plant Cell, Plant Physiology, Plant Journal, Trends in Plant Science, Current Opinion in Plant Biology, Plant, Cell and Environment, American Journal of Transplantation, Plant Molecular Biology

Several types of dental stem cells have been isolated from mature and immature teeth, exfoliated deciduous teeth and apical papilla, MSCS from tooth germs and from human periodontal ligament. They are found to be multipotent and can give rise to osteogenic, adipogenic, myogenic and neurogenic cell lineages.

Related Journals of Dental Stem Cells

Oral Health and Dental Management, Research & Reviews: Journal of Dental Sciences, Dental Implants and Dentures: open access, Genetics & Stem Cell Biology, International Endodontic Journal, Dental Materials, Journal of Dental Research, Caries Research, Journal of Endodontics, Monographs in Oral Science, Molecular Oral Microbiology, Journal of Dentistry,International journal of oral science

Adipose tissue is a huge source of mesenchymal stem cells which differentiate into various cell types. They can be easily extracted in large numbers by a simple lipo-aspiration. They have good application potential in regenerative medicine. ASCs are found to have the ability to differentiate into bone cells, cartilage cells, nerve cells, adipocytes etc.

Related Journals of Adipose Derived Stem Cells

Childhood Obesity, Obesity and Eating Disorders, Reproductive Medicine, Genetics & Stem Cell Biology, International Journal of Obesity, Obesity, Obesity Surgery, Obesity Reviews, Diabetes, Obesity and Metabolism, Diabetes, Obesity and Metabolism, Surgery for Obesity and Related Diseases, Pediatric obesity

Preservation of stem cells is critical for both research and clinical application of stem-cell based therapies. Properly preserved stem cells can be later used in the field of regenerative medicine for treating congenital disorders, heart defects etc. Currently there is no universal method for preserving stem cells and the existing methods are expensive.

Related Journals ofStem Cell Preservation

Oncology & Cancer Case Reports, Prostate Cancer, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology, Journal of Stem Cells and Regenerative Medicine, Stem Cells and Cloning: Advances and Applications, International Journal of Hematology-Oncology and Stem Cell Research, Open Stem Cell Journal, Stem Cell, Stem Cell Research Journal

MSCs can be applied in osteoarthritis treatment through implantation and microfracture as well as intra-articular injections. Single injection studies have showed improvement from pain which decreased overtime. Multiple, regular MSC injections into joints may be necessary.

Related Journals ofStem Cell Therapy for Osteoarthritis

Osteoporosis and Physical Activity, Osteoarthritis, Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology, Osteoarthritis and Cartilage, Arthritis and Rheumatism, Arthritis Care and Research, Arthritis Research and Therapy, Seminars in Arthritis and Rheumatism

OMICS International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS International hosts over 700 leading-edge peer reviewed Open Access Journals and organizes over 1000 International Conferences annually all over the world. OMICS Publishing Group journals have over 10 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 50000 eminent personalities that ensure a rapid, quality and quick review process. OMICS International signed an agreement with more than 1000 International Societies to make healthcare information Open Access. OMICS International Conferences make the perfect platform for global networking as it brings together renowned speakers and scientists across the globe to a most exciting and memorable scientific event filled with much enlightening interactive sessions, world class exhibitions and poster presentations.

Read more from the original source:
Stem Cell Journals | Peer Reviewed | High Impact Articles list

Regenerative Stem Cell Treatment Offers Hope for People with … – Healthline

A phase II stem cell treatment is the talk of the rheumatology community.

Stem cell treatments have been a topic of conversation among many people with autoimmune and degenerative forms of arthritis.

Now, an Australian pharmaceutical company is trying to figure out if this type of regenerative medicine could play a key role in treating or managing rheumatic diseases like rheumatoid arthritis (RA).

Mesoblast has developed a stem cell therapy that is administered intravenously to people with RA who didnt experience success taking anti-TNF drugs like Remicade, Enbrel, and Humira.

Read more: Stem cell therapy possible treatment for rheumatoid arthritis

The phase II study followed 48 patients who received one injection of the stem cell therapy.

These patients received therapeutic benefits as long as nine months after the initial dosing, company officials reported.

While more studies will be conducted in a phase III trial in order to validate the results, the results could mean positive things for the many people with RA who dont fare well on TNF-inhibitors.

Anti-TNF drugs are a billion dollar industry as well as a source of relief for many people with RA.

However, 20 to 40 percent of people treated with these medications either have an adverse reaction, or find no relief.

Perhaps the best news for people with RA who are sensitive to medications or experience pharmacophobia is that unlike some other treatments, little toxicity or side effects were indicated in the studies of Mesoblasts stem cell treatment.

Read more: Green tea for rheumatoid arthritis

The treatment uses mesenchymal precursor cells (MCPs).

Because the immune system doesnt recognize these MCPs as foreign or invaders, they dont tend to produce a negative response.

The MCP cells are adult stem cells, not embryonic stem cells.

The cells work because they contain certain receptors targeting the RA response and altering the way the bodys immune system works or, in the sense of RA, the way it malfunctions.

According to a published statement to the press from Mesoblast, The way the cells work is, they have receptors on their surface that are activated by every major cytokine that is important in progressive rheumatoid arthritis, including TNF, IL-1, IL-6, IL-17. Those cytokines drive the disease and also bind to receptors on our cells. And when they bind to our cells they activate the cells to release other factors that switch off the very cells that made those cytokines.

There continues to be more research done on stem cell therapy as a way to treat immune, autoimmune, and inflammatory diseases.

In the United States, a company called Regenexx shares some stem cell success stories on their website, often pertaining to healing osteoarthritis or injury.

While in the past, stem cells were only used to treat orthopedic injuries and conditions, newer research like the targeted regenerative stem cell therapy that is being created by Mesoblast also aims to treat other forms of arthritis like RA.

Read more: Biologic treatments for rheumatoid arthritis

Read this article:
Regenerative Stem Cell Treatment Offers Hope for People with ... - Healthline

Ralph Shortey, Oklahoma Lawmaker, Hit With Child Prostitution Charges – NBCNews.com

Oklahoma state Senator Ralph Shortey, speaks during a Senate committee meeting in Oklahoma City on Feb. 22, 2017. Sue Ogrocki / AP

Later, they discovered an online conversation between Shortey and JM.

"Would you be interested in sexual stuff?" Shortey allegedly wrote.

"Yes," JM allegedly replied.

From there, the conversation as described in DA's charging papers veered off from logistics to graphic lewdness and included a "smiley face emoji."

Both Shortey and JM admitted to police that they met a year ago through a Craigslist "personal encounter ad," the papers state. And police also found an "open box of condoms" in a backpack.

When asked what he was doing at the motel with the teen, Shortey said they were "just hanging out." according to a Moore Police report.

This is not the first time Shortey made national news. Back in 2012, he proposed a bill

"There are companies that are using embryonic stem cells to research and basically cause a chemical reaction to determine whether or not something tastes good or not," he told

"As a pro-life advocate, it kind of disturbed me that we would use aborted embryos or aborted human fetuses to extract stem cells and use them for research to basically make things taste better."

The bill, which could have been lifted from the 1973 science fiction movie "Soylent Green," was referred to the Agriculture and Rural Development committee where it died, according to The Daily Oklahoman.

Shortey, who identifies himself as a member of the Rosebud Sioux Indian Tribe on his

The rest is here:
Ralph Shortey, Oklahoma Lawmaker, Hit With Child Prostitution Charges - NBCNews.com

Scientists create first 3D structure of active DNA – The Indian Express


The Indian Express
Scientists create first 3D structure of active DNA
The Indian Express
3D structures, invidual cells, DNA, mouse embryonic stem cell, master cells, A genome's structure controls when and how strongly genes particular regions of the DNA are switched 'on' or 'off'. ( Image for representation, Source: Thinkstock ...
These 3D Images Are Our First Ever Look at How DNA Shapes Itself Inside CellsScienceAlert
Cambridge scientists create first 3D DNA structuresITV News

all 5 news articles »

See the original post:
Scientists create first 3D structure of active DNA - The Indian Express

Stem Cells Used to Create Artificial Embryo for the First Time Ever – TrendinTech

A team of scientists from the University of Cambridge has made revolutionary news because for the first time ever an artificial mouse embryo has been grown using stem cells. This is fantastic news for the researchers as understanding the beginning stages of embryo formation could prove essential in understanding what two thirds of all human pregnancies fail at this time.

While attempting to grow embryos is not a new feat, its one thats had very limited success over the years. This is mainly due to the fact that early embryo development needs different cell types to work closely with one another. However, the new study demonstrates how embryos can actually be grown using a combination of genetically-modified mouse ESCs and TSCs along with an extracellular matrix.

Both the embryonic and extra-embryonic cells start to talk to each other and become organized into a structure that looks like and behaves like an embryo, said Professor Magdalena Zernicka-Goetz, leader of the research. She continues, It has anatomically correct regions that develop in the right place and at the right time. We knew that interactions between the different types of stem cell are important for development, but the striking thing that our new work illustrates is that this is a real partnership these cells truly guide each other. Without this partnership, the correct development of shape and form and the timely activity of key biological mechanisms doesnt take place properly.

As part of the research the team was able to show how stem cells are organized, with ESCs and TSCs at separate ends, and followed the same pattern of development to that of a human embryo. But, without the third form of stem cell, the one that would allow development of the yolk sac, its unlikely the embryo would ever develop into a healthy fetus. Also the actual system itself is not yet designed to be able to develop placenta.

Zernicka-Goetz believes that one of her recently developed techniques will enable researchers to for the first time ever gain a real insight into the first initial stages if human embryo development. She says, We think that it will be possible to mimic a lot of the developmental events occurring before 14 days using human embryonic and extra-embryonic stem cells using a similar approach to our technique using mouse stem cells. We are very optimistic that this will allow us to study key events of this critical stage of human development without actually having to work on embryos. Knowing how development normally occurs will allow us to understand why it often goes wrong.

More News To Read

comments

See the rest here:
Stem Cells Used to Create Artificial Embryo for the First Time Ever - TrendinTech

Here’s the first 3D glimpse of how DNA is packaged up in a single cell – Ars Technica

Enlarge / Intact genome from a mouse embryonic stem cell with 20 chromosomes colored differently

In a first, researchers have worked out a way to unravel and model the tangled, 3D structures of intact mammalian genomes from individual cells.

The new method, published Monday in Nature, could help researchers study how the complex loops, twists, and bunches of a tightly packaged genome influence which bits of the blueprints are actively used by the cells, and when.

In humans, for instance, genome packaging bundles nearly two meters worth of DNA strings into a nucleus about 0.005 millimeters wide. How all that DNA is bundled affects whether important genes are available for decoding by cellular machinery, while others are boxed up and shoved aside until theyre needed. Such carefully orchestrated genetic activity affects everything a cell doesfrom carrying out basic functions, to allowing stem cells to differentiate into any type of cell, to triggering diseases.

Intact genome from a mouse embryonic stem cell with 20 chromosomes colored differently.

Tom Collins, a genetics and molecular scientist at Wellcome Trust, who was not a study author, called the new, more detailed method an exciting step forward. This detail will reveal some of the underlying principles that govern the organization of our genomesfor example, how chromosomes interact or how structure can influence whether genes are switched on or off, he said in a statement. If we can apply this method to cells with abnormal genomes, such as cancer cells, we may be able to better understand what exactly goes wrong to cause disease and how we could develop solutions to correct this.

To pull off the high resolution look at DNA-packaging, researchers at the University of Cambridge and the Wellcome TrustMRC Stem Cell Institute joined colleagues to combine cell images and a molecular technique called Hi-C. First, the researchers took super zoomed-in images of eight mouse embryonic stem cells genomes. Next, researchers turned to Hi-C, an established method to reveal the structure of genome packaging based on DNA sequences that are caught residing near each other. (Hi-C isnt an acronym. Its a riff on 3C, a shorthand for Chromosome Conformation Capture Analysis.)

Basically, in Hi-C, the cells are fixed with formaldehyde so that bits of DNA held together by protein packing tapestay stuck together. Then researchers use enzymes that act like molecular scissors and snip the genome into tiny fragments. This leaves scraps of DNA strings held together by packaging proteins that are themselves held together by the formaldehyde.

Imagine two short pieces of DNA pinched together at the middle by a piece of tape, creating an X shape. Researchers then fuse those dangling DNA fragments together and create a single piece of DNA from the two fragment that were once just physically close together. After stripping away the tape, the researchers can sequence across the fusion points and reveal which bits of DNA were close to each other thanks to packaging.

This is the structure of a mouse embryonic stem cell genome. The blue indicates active genes, while the yellow indicates genes interacting with the membrane.

From the the eight stem cells, processed individually, the researchers captured between 37,000 and 122,000 DNA junctions. This represents just 1.2 to 4.1 percent of the total possible junctions that could have been in the genomes. But, combined with the high resolution images, they captured enough to assemble 3D structures. When the researchers overlaid data indicating which genes were active or dormant onto their 3D structures, that data squared with the genes positions within the messy balls.

"Knowing where all the genes and control elements are at a given moment will help us understand the molecular mechanisms that control and maintain their expression," saidErnest Laue, lead study author and biochemist at Cambridge.

Nature, 2017. DOI: 10.1038/nature21429 (About DOIs).

Read more from the original source:
Here's the first 3D glimpse of how DNA is packaged up in a single cell - Ars Technica

The craftsmanship of mimicking embryogenesis in a dish – BioNews

The regulatory mechanisms governing organ development are, in general, poorly defined. To recreate the complex processes involved in organ growth and maturation, scientists have started fiddling with three-dimensional (3D) cell culture. The 3D self-organisation cell/tissue culture approach is conceptually quite different from standard tissue engineering, where cells are cultured in a flat 2D environment. The idea behind itis that realistic tissue formation is dictated both by the internal processes of the cells, and their interactions with the surrounding environment, including communication with neighbouring cells. Therefore, in vivo tissue development could be more accurately simulated by placing cells within an optimal 3D microenvironment.

A breakthrough happened in 2011, when a Japanese group from RIKEN Centre for Developmental Biology in Kobe reported that in a 3D culture of mouse embryonic stem cell aggregates, the cells self-organised to form organoid tissues including an eyecup-like structure and a functional frontal part of the pituitary gland (1, 2). Although mice are not men, in biological science a standard path is to be able to reproduce in human systems what was discovered first in mice. Indeed, a couple of years later, a team from Austria grew cerebral organoids with discrete brain regions by placing human pluripotent stem cells in a 3D culture system (3).

The next major game-changer in the field of organoids was a study reporting self-assembly of functional human liver 'buds'. Liver buds are functional units formed at the early stages of organ development (4). This time, the starting point was not 3D aggregates of one pluripotent stem cell line; instead, three different cell types liver cells derived from induced pluripotent stemcells, connective tissue stem cells, and blood vessel cells were mixed in a specific ratio, which led to the self-assembly of a functional liver bud. Such functional organoids, built from several distinct cell types, represent a new generation of organoids. By using advanced genome editing techniques, such as CRISPR, to interfere with a single gene expression or function in each of the participating cell types, we will be able to study the complex cell communication signals that govern organogenesis. We will be able to define which cell type is providing which signalling molecules and what their roles are establishing the different cell types that make up tissue.

The laboratory of Professor Magdalena Zernicka-Goetz from the University of Cambridge used a similar approach to generate structures highly resembling post-implantation mouse embryos (5). They combined a single mouse embryonic stem cell with a small clump of three trophoblast stem cells (stem cells that would form the placenta), and cultured them within Matrigel, a 3D extracellular matrix (ECM) scaffold, in a medium that allowed both cell types co-develop. To examine the cross-talk between the two cells types and the signalling pathways involved, the team used cell lines with specific mutations in one of the two cell types, and monitored how lack of a specific gene and/or signal affected the morphogenesis of an embryo-like structure.

I do not see why we would not be technically able to mimic human embryogenesis in a dish using a similar approach. However, I could see how that can be viewed with a touch of controversy even though, in my mind, there are no ethical issues or controversy at all. Although the embryo-like structures might resemble human embryos in vivo, they would have no potential to develop into a live organism. To those prophets who would see such development as a collapse of ethos and humanity, I want to say that I am pretty confident that in the future women will still be a part of our society. They will still be pregnant and they will still deliver babies. They will not be replaced with incubators nurturing endless copies of some future version of Kim Jong-un, Vladimir Putin or Donald Trump. Pregnancy and fetal development are too complex to be simulated.

The future of this work, as I see it, is not only as a 'powerful platform to dissect physical and molecular mechanisms that mediate critical crosstalk during natural embryogeneisis', as the Cambridge team say (5), but also as a sophisticated model for human embryotoxicity screening, to learn more about embryo development and the causes of infertility. Currently used in vitro testing protocols are based on animal embryos, not human embryos, and therefore lack specificity and predictability. This model has the potential to be used for large-scale throughput screening of the multiple stages of human embryo development. By studying and testing these stages, we can learn about the growth and differentiation processes of the embryo in great detail. Furthermore, we can test in vitro whether potential drug candidates affect any of these early embryo development stages. In such a way the embryotoxic or cancerous potential of an agent could be easily assessed in a human system, and many unexplained infertility cases classified as 'infertility of unknown etiology' could be resolved and appropriately addressed.

Link:
The craftsmanship of mimicking embryogenesis in a dish - BioNews

Treating sickle cell disease with gene therapy – Jamaica Observer

After nearly two years of debate about its possible benefits and risks, the gene editing technique is now here to stay.

An article in the December 27, 2015 edition of the Sunday Observer told of the first recorded use of the inexpensive CASPR-Cas9 gene editing technology to cut and splice out bad genes and replace them with healthy genes.

INHERITED DISEASE

A gene is a unit of heredity that is passed down from parent to child, and which carries characteristics that become apparent in the child. Each cell of the human body has around 25,000 genes, and each of those genes carry information that determines the individual traits or features of the person. So there is a gene for eye colour, hair colour, skin colour, and so on.

However, when some genes are defective or they undergo changes or mutation, illnesses can occur. Illnesses may also occur when there are missing genes which should have played a particular role. Some of the problems with genes may also be inherited from a parent.

One such illness well known to us in Jamaica is sickle cell disease. This is a severe hereditary disease in which the haemoglobin protein that is present in red blood cells to carry oxygen around the body is mutated and abnormal. Red blood cells are customarily round and circular in shape to flow smoothly through our blood vessels, but when oxygen levels are low in the bloodstream, the abnormal haemoglobin that is present in people with sickle cell disease cause the red blood cells to bend into a sickle crescent shape, making it difficult for them to flow through the tiny blood vessels of the body, and consequently may cause severe joint pains and other complications.

GENE THERAPY

The concept behind gene therapy is to use the technology of genetic engineering to replace abnormal genes with healthy ones.

Whilst this concept has been around for 30 years, the process became much more accessible with the development of the inexpensive CASPR-Cas9 gene editing technology around two years ago.

In April 2015, scientists in China were able to use the technology to splice out bad genes that were present in human embryonic stem cells and replace them with healthy ones. The stem cells, however, were never implanted into women at the time for their development into humans.

In December 2015, a speaker at the annual symposium of the American Society of Hematology described possible work in which an infant with sickle cell disease would have his or her blood stem cells edited to repair the haemoglobin gene, thereby preventing the formation of blood cells that would have caused sickling. The specific work would involve harvesting the blood stem cells of the diseased infant, editing them outside the body with a normal DNA sequence, then returning them to the infant in a bone marrow transplant.

ETHICAL CONCERNS

As this technique involved editing the haemoglobin gene within the somatic stem cell rather than in the embryonic stem cell, this choice was deemed by many to be the more ethically acceptable approach. Many people are very concerned that the gene editing technique may be used to make long-lasting hereditable changes at the embryo stage or on germ cells (human sperm or eggs), and some find this unacceptable.

This notwithstanding, in February 2016, the United Kingdom Fertilisation and Embryology Authority, who are the UK regulators on fertility matters, granted permission for scientists in London to edit the genomes (the complete set of genetic instructions, which includes all genes) of human embryos for research purposes. The developmental biologists were allowed to use the gene editing technique in healthy embryos to alter genes that are active within the first few days after fertilisation of the egg.

The approved research would utilise healthy human embryos that had been left over from in vitro fertilisation procedures performed in fertility clinics. However, the caveat was that the researchers should stop the research after seven days of study, and the researched embryos destroyed. The study would illuminate how the modification of genes could assist in developing treatments for infertility.

MOST RECENT SUCCESS

A report in the most recent edition of the New England Journal of Medicine informed that a teenage boy with sickle cell disease appeared to have been cured using the gene therapy technique. The treatment had stopped the painful symptoms of the disease, and the teenager was doing well.

Success stories such as this are normally the first step in efforts to reproduce the benefits obtained in individual cases by conducting clinical trials of the treatment on large groups of affected people. Hopefully we will hear of such studies and their outcomes in the near future.

Until preliminary results are verified, however, scepticism will exist regarding whether the positive results obtained in one person will be translated to many more people. Time will tell.

Derrick Aarons MD, PhD is a consultant bioethicist/family physician, a specialist in ethical issues in medicine, the life sciences and research, and is the Ethicist at the Caribbean Public Health Agency CARPHA. (The views expressed here are not written on behalf of CARPHA)

Original post:
Treating sickle cell disease with gene therapy - Jamaica Observer