Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551561 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kin, K. et al. The transcriptomic evolution of mammalian pregnancy: gene expression innovations in endometrial stromal fibroblasts. Genome Biol. Evol. 8, 24592473 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wagner, G. P. Evolutionary innovations and novelties: let us get down to business! Zool. Anz. 256, 7581 (2015).
Article Google Scholar
Hertel, J. et al. The expansion of the metazoan microRNA repertoire. BMC Genom. 7, 25 (2006).
Article Google Scholar
Prochnik, S. E., Rokhsar, D. S. & Aboobaker, A. A. Evidence for a microRNA expansion in the bilaterian ancestor. Dev. Genes Evol. 217, 7377 (2007).
Article CAS PubMed Google Scholar
Grimson, A. et al. The early origins of microRNAs and Piwi-interacting RNAs in animals. Nature 455, https://doi.org/10.1038/nature07415 (2008).
Keniry, A. et al. The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r. Nat. Cell Biol. 14, 659665 (2012).
Article CAS PubMed PubMed Central Google Scholar
Munaut, C. et al. Dysregulated circulating miRNAs in preeclampsia. Biomed. Rep. 5, 686692 (2016).
Article CAS PubMed PubMed Central Google Scholar
Bastian, F. et al. MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res. 48, 1 (2020).
Google Scholar
Bastian, F. et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213242 (2015).
Article Google Scholar
Ito, M. et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development 142, 24252430 (2015).
CAS PubMed PubMed Central Google Scholar
Farrokhnia, F., Aplin, J. D., Westwood, M. & Forbes, K. MicroRNA regulation of mitogenic signaling networks in the human placenta. J. Biol. Chem. 289, 3040430416 (2014).
Article CAS PubMed PubMed Central Google Scholar
Luo, L. et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J. Cell Sci. 125, 3124 LP3132 (2012).
Google Scholar
Morales-Prieto, D. M. et al. MicroRNA expression profiles of trophoblastic cells. Placenta 33, 725734 (2012).
Article CAS PubMed Google Scholar
Tochigi, H. et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci. Rep. 7, 40001 (2017).
Article CAS PubMed PubMed Central Google Scholar
Fu, G., Brki, J., Hayder, H. & Peng, C. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci. 14, 55195544 (2013).
Article CAS PubMed PubMed Central Google Scholar
Harapan, H. & Andalas, M. The role of microRNAs in the proliferation, differentiation, invasion, and apoptosis of trophoblasts during the occurrence of preeclampsiaa systematic review. Tzu Chi Med. J. 27, 5464 (2015).
Article Google Scholar
Hosseini, M. K., Gunel, T., Gumusoglu, E., Benian, A. & Aydinli, K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep. 17, 49414952 (2018).
CAS PubMed PubMed Central Google Scholar
Rahman, M. L. et al. Regulation of birthweight by placenta-derived miRNAs: evidence from an arsenic-exposed birth cohort in Bangladesh. Epigenetics 13, 573590 (2018).
Article PubMed PubMed Central Google Scholar
do Imperio, G. E. et al. Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta. Cell. Physiol. Biochem. 45, 591604 (2018).
Article PubMed Google Scholar
Fallen, S. et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J. Cell. Mol. Med. 22, 27602773 (2018).
Article CAS PubMed PubMed Central Google Scholar
Suwen, C., Liping, S. & Guijiao, F. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed. Pharmacother. 117, 109133 (2019).
Wang, D., Tang, L., Wu, H., Wang, K. & Gu, D. MiR-127-3p inhibits cell growth and invasiveness by targeting ITGA6 in human osteosarcoma. IUBMB Life 70, 411419 (2018).
Ferri, C. et al. MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. J. Exp. Clin. Cancer Res. 41, 20 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liu, Q., Yan, S., Yuan, Y., Ji, S. & Guo, L. miR-28-5p improved carotid artery stenosis by regulating vascular smooth muscle cell proliferation and migration. Vascular 30, 764770 (2021).
Sheng, C. et al. MiR-340 promotes the proliferation of vascular smooth muscle cells by targeting von HippelLindau tumor suppressor gene. J. Cardiovasc. Pharmacol. 77, 875884 (2021).
Kuang, M. J. et al. CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: experimental studies. Biochem. Biophys. Res. Commun. 509, 255261 (2019).
Farre-Garros, R. et al. Quadriceps miR-542-3p and -5p are elevated in COPD and reduce function by inhibiting ribosomal and protein synthesis. J. Appl. Physiol. 126, 15141524 (2019).
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, 138 (2015).
Article Google Scholar
Esnault, C., Cornelis, G., Heidmann, O. & Heidmann, T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genet. 9, e1003400 (2013).
Article CAS PubMed PubMed Central Google Scholar
Dunwell, T. L., Paps, J. & Holland, P. W. H. Novel and divergent genes in the evolution of placental mammals. Proc. Biol. Sci. 284, 20171357 (2017).
PubMed PubMed Central Google Scholar
Than, N. G. et al. A primate subfamily of galectins expressed at the maternalfetal interface that promote immune cell death. Proc. Natl Acad. Sci. USA 106, 9731 LP9739736 (2009).
Article Google Scholar
Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710D716 (2016).
Article CAS PubMed Google Scholar
Hauguel-de Mouzon, S. & Guerre-Millo, M. The placenta cytokine network and inflammatory signals. Placenta 27, 794798 (2006).
Article CAS PubMed Google Scholar
Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental development and its impact on fetal growthnew insights from mouse models. Front. Endocrinol. 9, 570 (2018).
Article Google Scholar
Gal, H. et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 38, e100849e100849 (2019).
Article PubMed PubMed Central Google Scholar
Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 11541159 (2011).
Article CAS PubMed Google Scholar
Tian, X. et al. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos. Trans. R. Soc. B Biol. Sci. 373, 20160443 (2018).
Article Google Scholar
McNab, B. K. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. Part A 151, 528 (2008).
Article Google Scholar
Garratt, M., Gaillard, J.-M. J., Brooks, R. C. P., Lemaitre, J.-F. & Lematre, J.-F. Diversification of the eutherian placenta is associated with changes in the pace of life. Proc. Natl Acad. Sci. USA 110, 77607765 (2013).
Article CAS PubMed PubMed Central Google Scholar
Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).
Article PubMed PubMed Central Google Scholar
Spencer, T. E. & Bazer, F. W. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the Ewe1. Biol. Reprod. 53, 15271543 (1995).
Article CAS PubMed Google Scholar
Godkin, J. D., Bazer, F. W., Moffatt, J., Sessions, F. & Roberts, R. M. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at Day 1321. Reproduction 65, 141150 (1982).
Article CAS Google Scholar
Morgan, F. J. & Canfield, R. E. Nature of the subunits of human chorionic gonadotropin. Endocrinology 88, 10451053 (1971).
Article CAS PubMed Google Scholar
Tinning, H. et al. The role of CAPG in molecular communication between the embryo and the uterine endometrium: Is its function conserved in species with different implantation strategies? FASEB J. 34, 1101511029 (2020).
Article CAS PubMed Google Scholar
Forde, N. et al. Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?1. Biol. Reprod. 85, 144156 (2011).
Article CAS PubMed Google Scholar
Morgan, C. C. et al. Heterogeneous models place the root of the placental mammal phylogeny. Mol. Biol. Evol. 30, 21452156 (2013).
Article CAS PubMed PubMed Central Google Scholar
Tarver, J. E. et al. The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8, 330344 (2016).
Article CAS PubMed PubMed Central Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403410 (1990).
Article CAS PubMed Google Scholar
Giribet, G. TNT: tree analysis using new technology. Syst. Biol. 54, 176178 (2005).
Article Google Scholar
Bartel, D. P. MicroRNA target recognition and regulatory functions. Cell 136, 215233 (2009).
Article CAS PubMed PubMed Central Google Scholar
Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419D426 (2019).
Article CAS PubMed Google Scholar
Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481D487 (2016).
Article CAS PubMed Google Scholar
Anisimova, M. & Yang, Z. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol. Biol. Evol. 24, 12191228 (2007).
See the original post:
A burst of genomic innovation at the origin of placental mammals ... - Nature.com