Category Archives: Induced Pluripotent Stem Cells


Global Induced Pluripotent Stem Cells Market 2020 Top Manufactures, Growth Opportunities and Investment Feasibility 2025 The Courier – The Courier

Global Induced Pluripotent Stem Cells Market 2020 by Company, Regions, Type and Application, Forecast to 2026 comes as one of the hard-to-find market data reports published by MarketQuest.biz that determine the market growth and market share for the estimated forecast period. The report examines trends, industry development, industry structure, supply and demand, industry capacity, marketing channels, and leading industry participants. The report shows several business perspectives on important factors such as key geographies, major key players, opportunities, drivers, restraints, and challenges. Historical data and long-term forecasts through 2021 and 2026 are an important part of this global Induced Pluripotent Stem Cells market research document. The study contains an examination of dynamic aspects such as industrial structure, application, classification, and definition.

What It Consist of?

The report involves classified segmentation of market covering product type, application, players, and regions. The research determines the competitive landscape of the market share, market size, for the estimated forecast period. The report covers the recent and futuristic Induced Pluripotent Stem Cells market share of each region alongside the significant nations in the respective regions. The research consists of info graphics and diagrams that show easy to understand examination of the global market. It provides an insight into the aspects within this segment that may encourage or demote the expansion of the global industry.

NOTE: Our report highlights the major issues and hazards that companies might come across due to the unprecedented outbreak of COVID-19.

DOWNLOAD FREE SAMPLE REPORT: https://www.marketquest.biz/sample-request/38294

Key players profiled in the report include:

Next, the report uncovers the gaps and opportunities to derive the most relevant insights from our research document to gain global Induced Pluripotent Stem Cells market size. For the region, type, and application, the sales, revenue, and market share, growth rate are key research objects. Here the report considers the key aspects such as areas of operation, production, and product portfolio as well as company size, market share, market growth, production volume, and profits.

Market segment by type, the product can be split into:

Market segment by regions/countries, this report covers:

The report offers examination and growth of the market in these districts covering:

The next section of the report takes a close review of the challenges and threats prevalent in the global Induced Pluripotent Stem Cells market. The report also includes classified information and intelligence related to geographical expanse, regional overview, as well as vital details associated with country-specific developments that have also been addressed in the report.

ACCESS FULL REPORT: https://www.marketquest.biz/report/38294/global-induced-pluripotent-stem-cells-market-2020-by-company-regions-type-and-application-forecast-to-2025

Crucial Highlights of The Market Report:

Customization of the Report:

This report can be customized to meet the clients requirements. Please connect with our sales team (sales@marketquest.biz), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

Contact Us Mark Stone Head of Business Development Phone: +1-201-465-4211 Email: sales@marketquest.biz Web: http://www.marketquest.biz

See original here:
Global Induced Pluripotent Stem Cells Market 2020 Top Manufactures, Growth Opportunities and Investment Feasibility 2025 The Courier - The Courier

Stem Cell Therapy Market worth $401 million by 2026 – Exclusive Report by MarketsandMarkets – PRNewswire

CHICAGO, April 28, 2021 /PRNewswire/ -- According to the new market research report "Stem Cell Therapy Marketby Type (Allogeneic, Autologous), Therapeutic Application (Musculoskeletal, Wound & Injury, CVD, Autoimmune & Inflammatory), Cell Source (Adipose tissue, Bone Marrow, Placenta/Umbilical Cord) - Global Forecasts to 2026", published by MarketsandMarkets, the global market is projected to reach USD 401 million by 2026 from USD 187 million in 2021, at a CAGR of 16.5% during the forecast period.

Browse and in-depth TOC on"Stem Cell Therapy Market" 142 - Tables 45 - Figures 160 - Pages

Download PDF Brochure: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=48

The Market growth is driven mainly by factors such as increasing investment in stem cell research and the rising number of GMP-certified stem cell manufacturing plants. However, factors such as ethical concerns and the high cost of stem cell research and manufacturing process likely to hinder the growth of this market.

The adipose tissue-derived MSCs segment accounted for the largest share of the cell source segment in the Stem Cell Therapy Market in 2020.

Based on the cell source from which stem cells are obtained, the global market is segmented into four sources. These include adipose tissue-derived MSCs (mesenchymal stem cells), bone marrow-derived MSCs, placenta/umbilical cord-derived MSCs, and other cell sources (which includes human corneal epithelium stem cells, peripheral arterial-derived stem cells, and induced pluripotent stem cell lines). In 2020, adipose tissue-derived MSCs accounted for the markets largest share due to their increasing utilization in treating inflammatory diseases and wounds & injuries. There are several associated advantages, such as ease of harvesting stem cells by minimally invasive methods, simplicity of the isolation procedure, and better quality & proliferation capacity of adipose tissue-derived stem cells.

The musculoskeletal disorders segment accounted for the largest share of the therapeutic application segment in the Stem Cell Therapy Market in 2020

Based on therapeutic application, the global market is segmented into musculoskeletal disorders, wounds & injuries, cardiovascular diseases, surgeries, inflammatory & autoimmune diseases, neurological disorders, and other therapeutic applications (which include ocular diseases, fat loss, and peripheral arterial diseases). In 2020, the musculoskeletal disorders segment accounted for the largest share of the therapeutic application segment. The large market share of this segment is attributed to the increasing prevalence of musculoskeletal disorders such as osteoarthritis, bone repair, and regeneration

Request Sample Pages: https://www.marketsandmarkets.com/requestsampleNew.asp?id=48

The Asia Pacific region is the fastest-growing region of the Stem Cell Therapy Market in 2020.

The Asia Pacific region is estimated to grow at the highest CAGR in the market during the forecast period. Some of the major factors fueling the growth of the APAC market include regulatory approvals and guidelines for product approvals and the presence of major stem cell players in countries such as South Korea, Japan, India, and Australia.

Key players in the Stem Cell Therapy Market include Smith & Nephew (UK), MEDIPOST Co., Ltd. (South Korea), Anterogen Co., Ltd. (South Korea), PHARMICELL Co., Ltd. (South Korea), JCR Pharmaceuticals Co., Ltd. (Japan), and NuVasive, Inc. (US).

Speak to Analyst: https://www.marketsandmarkets.com/speaktoanalystNew.asp?id=48

Browse Adjacent Markets @ Biotechnology MarketResearch Reports & Consulting

Browse Related Reports:

Stem Cell Assay Market by Type (Viability, Purification, Identification), Cell Type (Mesenchymal, iPSCs, HSCs, hESCs), Product & Service (Instruments, Kits), Application (Regenerative Medicine, Clinical Research), End User - Global Forecast to 2023 https://www.marketsandmarkets.com/Market-Reports/stem-cell-assay-market-47610330.html

Stem Cell Manufacturing Market by Product (HSCs, MSCs, iPSCs, ESCs, Instruments, Media, Consumables), Application (Research, Target Identification, Therapy (Autologous, Allogeneic), Cell Banks), End User (Pharma, Hospitals) - Global Forecast to 2023 https://www.marketsandmarkets.com/Market-Reports/stem-cell-manufacturing-market-70743403.html

About MarketsandMarkets

MarketsandMarkets provides quantified B2B research on 30,000 high growth niche opportunities/threats which will impact 70% to 80% of worldwide companies' revenues. Currently servicing 7500 customers worldwide including 80% of global Fortune 1000 companies as clients. Almost 75,000 top officers across eight industries worldwide approach MarketsandMarkets for their painpoints around revenues decisions.

Our 850 fulltime analyst and SMEs at MarketsandMarkets are tracking global high growth markets following the "Growth Engagement Model GEM". The GEM aims at proactive collaboration with the clients to identify new opportunities, identify most important customers, write "Attack, avoid and defend" strategies, identify sources of incremental revenues for both the company and its competitors. MarketsandMarkets now coming up with 1,500 MicroQuadrants (Positioning top players across leaders, emerging companies, innovators, strategic players) annually in high growth emerging segments. MarketsandMarkets is determined to benefit more than 10,000 companies this year for their revenue planning and help them take their innovations/disruptions early to the market by providing them research ahead of the curve.

MarketsandMarkets's flagship competitive intelligence and market research platform, "Knowledgestore" connects over 200,000 markets and entire value chains for deeper understanding of the unmet insights along with market sizing and forecasts of niche markets.

Contact: Mr. Aashish MehraMarketsandMarkets INC. 630 Dundee Road Suite 430 Northbrook, IL 60062 USA: 1-888-600-6441 Email: [emailprotected] Content Source: https://www.marketsandmarkets.com/PressReleases/stem-cells-market.asp Research Insight: https://www.marketsandmarkets.com/ResearchInsight/stem-cell-technologies-and-global-market.asp

SOURCE MarketsandMarkets

See more here:
Stem Cell Therapy Market worth $401 million by 2026 - Exclusive Report by MarketsandMarkets - PRNewswire

Fate Therapeutics Announces Four Presentations at the 2021 ASGCT Annual Meeting – GlobeNewswire

Two Oral Presentations to Cover iPSC-derived Cell-based Cancer Immunotherapy Pipeline

Company to Host Investor Event on May 13 to Highlight Interim Phase 1 Clinical Data from the Companys FT516 and FT538 Programs for Relapsed / Refractory AML

SAN DIEGO, April 27, 2021 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for patients with cancer, today announced that two oral and two digital presentations of the Companys induced pluripotent stem cell (iPSC) product platform were accepted for presentation at the 24th American Society of Gene & Cell Therapy Annual Meeting (ASGCT) being held virtually from May 11-14, 2021.

In addition to the Companys presentations at ASGCT, its iPSC-derived natural killer (NK) cell product pipeline is expected to be featured in a meeting symposium on May 11 by Jeffrey S. Miller, M.D., Professor of Medicine, University of Minnesota and Deputy Director of the Masonic Cancer Center and scientific advisor and collaborator of the Company, and its iPSC-derived CAR T-cell product platform is expected to be highlighted during the meetings plenary session on May 12 by Michel Sadelain, M.D., Ph.D., Stephen and Barbara Friedman Chair and Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center and collaborator of the Company.

The Company also plans to host a virtual investor event on May 13 to highlight interim Phase 1 clinical data from its FT516 and FT538 programs for the treatment of relapsed / refractory acute myeloid leukemia (AML). The Phase 1 clinical trial of FT516 has enrolled the first and second dose cohorts (90 million and 300 million cells per dose, respectively), and dose escalation is ongoing in the third dose cohort (900 million cells per dose). The Phase 1 clinical trial of FT538 is ongoing in the first dose cohort (100 million cells per dose).

ASGCT Oral Presentations

ASGCT Digital Presentations

About Fate Therapeutics iPSC Product Platform The Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 350 issued patents and 150 pending patent applications.

About FT516FT516 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel high-affinity 158V, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies. CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells. ADCC is dependent on NK cells maintaining stable and effective expression of CD16, which has been shown to undergo considerable down-regulation in cancer patients. In addition, CD16 occurs in two variants, 158V or 158F, that elicit high or low binding affinity, respectively, to the Fc domain of IgG1 antibodies. Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for the 158V variant, which is present in only about 15% of patients, have improved clinical outcomes. FT516 is being investigated in a multi-dose Phase 1 clinical trial as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-targeted monoclonal antibodies for the treatment of advanced B-cell lymphoma (NCT04023071). Additionally, FT516 is being investigated in a multi-dose Phase 1 clinical trial in combination with avelumab for the treatment of advanced solid tumor resistant to anti-PDL1 checkpoint inhibitor therapy (NCT04551885).

About FT538 FT538 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered with three functional components: a novel high-affinity 158V, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies; an IL-15 receptor fusion (IL-15RF) that augments NK cell activity; and the deletion of the CD38 gene (CD38KO), which promotes persistence and function in high oxidative stress environments. FT538 is designed to enhance innate immunity in cancer patients, where endogenous NK cells are typically diminished in both number and function due to prior treatment regimens and tumor suppressive mechanisms. In preclinical studies, FT538 has shown superior NK cell effector function, as compared to peripheral blood NK cells, with the potential to confer significant anti-tumor activity to patients through multiple mechanisms of action. FT538 is being investigated in a multi-dose Phase 1 clinical trial for the treatment of acute myeloid leukemia (AML) and in combination with daratumumab, a CD38-targeted monoclonal antibody therapy, for the treatment of multiple myeloma (NCT04614636).

About Fate Therapeutics, Inc. Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for patients with cancer. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology pipeline includes off-the-shelf, iPSC-derived natural killer (NK) cell and T-cell product candidates, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens using chimeric antigen receptors (CARs). The Companys pipeline also includes ProTmune, a pharmacologically modulated, donor cell graft that is currently being evaluated in a Phase 2 clinical trial for the prevention of graft-versus-host disease in patients with hematologic malignancies undergoing allogeneic stem cell transplant. Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking Statements This release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the Companys clinical studies and preclinical research and development programs. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that results observed in prior studies of its product candidates, including preclinical studies and clinical trials of any of its product candidates, will not be observed in ongoing or future studies involving these product candidates, and the risk that the Company may cease or delay preclinical or clinical development of any of its product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities on the initiation or conduct of clinical trials or to support regulatory approval, difficulties or delays in subject enrollment in current and planned clinical trials, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development). For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications.Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact: Christina Tartaglia Stern Investor Relations, Inc. 212.362.1200 christina@sternir.com

Read more from the original source:
Fate Therapeutics Announces Four Presentations at the 2021 ASGCT Annual Meeting - GlobeNewswire

Induced Pluripotent Stem Cells (iPSCs) Market 2021 Is Booming Across the Globe by Share, Size, Growth, Segments and Forecast to 2027 | Top Players…

Industry Growth Insights (IGI) has added a latest report on the Global Induced Pluripotent Stem Cells (iPSCs) Market that covers the 360 scope of the market and various parameters that are speculated to proliferate the growth of the market during the forecast period, 2021-2028. The market research report provides in-depth analysis in a structured and concise manner, which in turn, is expected to help the esteemed reader to understand the market exhaustively.

Major Players Covered In This Report:

Fujifilm Holding Corporation (CDI) Ncardia Sumitomo Dainippon Pharma Astellas Pharma Inc Fate Therapeutics, Inc Pluricell Biotech Cell Inspire Biotechnology ReproCELL Induced Pluripotent Stem Cells (iPSCs

The research report confers information about latest and emerging market trends, key market drivers, restraints, and opportunities, supply & demand scenario, and potential future market developments that are estimated to change the future of the market. This report also serves the strategic market analysis, latest product developments, comprehensive analysis of regions, and competitive landscape of the market. Additionally, it discusses top-winning strategies that has helped industry players to expand their market share.

Get Exclusive Sample Report for Free @ https://industrygrowthinsights.com/request-sample/?reportId=171605

9 Key Report Highlights

Historical, Current, and Future Market Size and CAGR

Future Product Development Prospects

In-depth Analysis on Product Offerings

Product Pricing Factors & Trends

Import/Export Product Consumption

Impact of COVID-19 Pandemic

Changing Market Dynamics

Market Growth in Terms of Revenue Generation

Promising Market Segments

Impact of COVID-19 Pandemic On Induced Pluripotent Stem Cells (iPSCs) Market

The COVID-19 pandemic had persuaded state government bodies to impose stringent regulations on the opening of manufacturing facilities, corporate facilities, and public places. It had also imposed restrictions on travelling through all means. This led to the disruption in the global economy, which negatively impacted the businesses across the globe. However, the key players in the Induced Pluripotent Stem Cells (iPSCs) market created strategies to sustain the pandemic. Moreover, some of them created lucrative opportunities, which helped them to leverage their market position.

The dedicated team at Industry Growth Insights (IGI) closely monitored the market from the beginning of the pandemic. They conducted several interviews with industry experts and key management of the top companies to understand the future of the market amidst the trying times. The market research report includes strategies, challenges & threats, and new market avenues that companies implemented, faced, and discovered respectively in the pandemic.

On What Basis the Market Is Segmented in The Report?

The global Induced Pluripotent Stem Cells (iPSCs) market is fragmented on the basis of:

Products

Human iPSCs Mouse iPSCs Human iPSCs had a market share of 89% in 2018, followed by Mouse iPSCs. Induced Pluripotent Stem Cells (iPSCs

The drivers, restraints, and opportunities of the product segment are covered in the report. Product developments since 2017, products market share, CAGR, and profit margins are also included in this report. This segment confers information about the raw materials used for the manufacturing. Moreover, it includes potential product developments.

Applications

Academic Research Drug Development and Discovery Toxicity Screening Regenerative Medicine

The market share of each application segment is included in this section. It provides information about the key drivers, restraints, and opportunities of the application segment. Furthermore, it confers details about the potential application of the products in the foreseeable future.

Regions

North America

Asia Pacific

Europe

Latin America

Middle East & Africa

Note: A country of choice can be included in the report. If more than one country needs to be added in the list, the research quote will vary accordingly.

The market research report provides in-depth analysis of the regional market growth to determine the potential worth of investment & opportunities in the coming years. This Induced Pluripotent Stem Cells (iPSCs) report is prepared after considering the social and economic factors of the country, while it has also included government regulations that can impact the market growth in the country/region. Moreover, it has served information on import & export analysis, trade regulations, and opportunities of new entrants in domestic market.

Buy the complete report @ https://industrygrowthinsights.com/checkout/?reportId=171605

7 Reasons to Buy This Report

Usage of Porters Five Force Analysis Model

Implementation of Robust Methodology

Inclusion of Verifiable Data from Respectable Sources

Market Report Can Be Customized

Quarterly Updates On Market Developments

Presence of Infographics, Flowcharts, And Graphs

Provides In-Depth Actionable Insights to Make Crucial Decisions

Ask for discount @ https://industrygrowthinsights.com/ask-for-discount/?reportId=171605

Below is the TOC of the report:

Executive Summary

Assumptions and Acronyms Used

Research Methodology

Induced Pluripotent Stem Cells (iPSCs) Market Overview

Global Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast by Type

Global Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast by Application

Global Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast by Sales Channel

Global Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast by Region

North America Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast

Latin America Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast

Europe Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast

Asia Pacific Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast

Asia Pacific Induced Pluripotent Stem Cells (iPSCs) Market Size and Volume Forecast by Application

Middle East & Africa Induced Pluripotent Stem Cells (iPSCs) Market Analysis and Forecast

Competition Landscape

If you have any doubt regarding the report, please connect with our analyst @ https://industrygrowthinsights.com/enquiry-before-buying/?reportId=171605

About Industry Growth Insights (IGI)

Industry Growth Insights (IGI) has extensive experience in the creation of tailored market research reports in several industry verticals. We cover in-depth market analysis which includes producing creative business strategies for the new entrants and the emerging players of the market. We take care that our every report goes through intensive primary, secondary research, interviews, and consumer surveys. Our company provides market threat analysis, market opportunity analysis, and deep insights into the current and market scenario.

To provide the utmost quality of the report, we invest in analysts that hold stellar experience in the business domain and have excellent analytical and communication skills. Our dedicated team goes through quarterly training which helps them to acknowledge the latest industry practices and to serve the clients with the foremost consumer experience.

Contact Info: Name: Alex Mathews Address: 500 East E Street, Ontario, CA 91764, United States. Phone No: USA: +1 909 414 1393 Email: [emailprotected] Website: https://industrygrowthinsights.com

See the article here:
Induced Pluripotent Stem Cells (iPSCs) Market 2021 Is Booming Across the Globe by Share, Size, Growth, Segments and Forecast to 2027 | Top Players...

Induced Pluripotent Stem Cells (iPSCs) Market 2021 Industry Size, Share, Growth and Top Companies Analysis- Fujifilm Holding Corporation (CDI),…

Industry Growth Insights (IGI) recently published a latest research study on the global Induced Pluripotent Stem Cells (iPSCs) market for the forecast period, 2021-2028. As per the study, the global Induced Pluripotent Stem Cells (iPSCs) market was valued at USDXX million and is projected to surpass USDXX million by the end of 2027, expanding at a CAGR of XX% during the forecast period. This research report offers a comprehensive outlook of the market with detailed information about drivers, restraints, opportunities, trends, and challenges, which are the key factors that can influence the market outcome in the targeted years.

The market report offers a concise overview of the segments and sub-segments including the product types, applications, players, and regions to provide the key aspects of the market. The report focuses on the COVID-19 pandemic and its impact on the current market and provides an in-depth explanation about the market situation in the coming years. The report thoroughly studies the market dynamics, changing consumer behavior, and the flow of the global supply chain of the market, impacted by the ongoing pandemic. These critical insights of the report aim to present a robust guideline for the clients to arrive an informed business decision about their investment in the market since it evaluates the factors that are likely to influence the current and future market situation.

The global Induced Pluripotent Stem Cells (iPSCs) market includes

Fujifilm Holding Corporation (CDI) Ncardia Sumitomo Dainippon Pharma Astellas Pharma Inc Fate Therapeutics, Inc Pluricell Biotech Cell Inspire Biotechnology ReproCELL Induced Pluripotent Stem Cells (iPSCs

** Additional companies can be provided at the request of clients.

Get Exclusive Free Sample Report: https://industrygrowthinsights.com/request-sample/?reportId=171605

Segmentation Insight

The report offers an in-depth analysis of segments and sub-segments of the Induced Pluripotent Stem Cells (iPSCs) market. It provides a broad outlook regarding the performance, market valuation, and growth opportunities of each segment along with the expected CAGR including various sub-segments of each segment during the forecast period. Moreover, the segment part includes both drivers and restraining factors to explain the potential expansion of the market. The report covers the major industries that extensively use the product for their various applications. A detailed explanation is provided in the report about the areas of applications describing where the product is adopted by key industries to leverage their business portfolio.

The global Induced Pluripotent Stem Cells (iPSCs) market is segmented into

By Types/Product

Human iPSCs Mouse iPSCs Human iPSCs had a market share of 89% in 2018, followed by Mouse iPSCs. Induced Pluripotent Stem Cells (iPSCs

By Applications/End-Users

Academic Research Drug Development and Discovery Toxicity Screening Regenerative Medicine

Buy The Complete Report: https://industrygrowthinsights.com/checkout/?reportId=171605

Regional Markets

The report conducts a compressive study about potential growth opportunities, revenue share, and major challenges of five major regions namely Asia Pacific, Europe, North America, Latin America, and Middle East & Africa (MEA) of Induced Pluripotent Stem Cells (iPSCs) market. A wide range of information is included in the report about the performance and potential market destination in sub-regions and countries within a region. North America includes countries such as the U.S., and Canada. Europe as a region is further categorized as the U.K., France, Germany, Italy, Spain, Russia, and Rest of Europe. Asia Pacific is classified as China, Japan, South Korea, India, Australia, South East Asia, and Rest of Asia Pacific. Latin America as a region is further segmented into Brazil, Mexico, and Rest of Latin America, and the MEA region includes GCC, Turkey, South Africa, and Rest of MEA.

Additionally, the COVID-19 pandemic and its impacts on these regional markets comprises a major part of the chapter to understand a broad picture of the overall market development. Meanwhile, this report can be customized and available for any specific region as per the need of the clients.

Competitive Landscape

The report covers key players of the Induced Pluripotent Stem Cells (iPSCs) market and their market position as well as performance over the years. It offers a detailed insight about the latest business strategies such as mergers, partnerships, product launch, acquisitions, expansion of production units, and collaborations, adopted by some major global players. In this chapter, the report explains about the key investment on R&D activities from key players to help expand their existing business operations and geographical reach. Additionally, the report evaluates the scope of growth and market opportunities of new entrants or players in the market.

For Any Question Regarding This Report: https://industrygrowthinsights.com/enquiry-before-buying/?reportId=171605

Reasons to buy this report

This report offers a broad and concise analysis of the Induced Pluripotent Stem Cells (iPSCs) market using a robust research methodology and focusing on various data available for the historical period of past two years. It also covers some key segments and potential regional market in details that are expected to boost the overall market significantly during the forecast period. Moreover, this report is prepared with an objective to ease the understanding of contents as it provides a range of concise graphical representations, tables, and figures.

Additionally, the report answers some of these main questions of the market:

Major Points Covered In This Report:

Chapter 1. Report Overview

Chapter 2. Global Growth Trends

Chapter 3. Market Share by Key Players

Chapter 4. Breakdown Data by Type and Application

Chapter 5. Market by End Users/Application

Chapter 6. COVID-19 Outbreak: Induced Pluripotent Stem Cells (iPSCs) Industry Impact

Chapter 7. Opportunity Analysis in Covid-19 Crisis

Chapter 9. Market Driving Force

And Many More

Contact Info: Name: Alex Mathews Address: 500 East E Street, Ontario, CA 91764, United States. Phone No: USA: +1 909 414 1393 Email: [emailprotected] Website: https://industrygrowthinsights.com

https://neighborwebsj.com/

View original post here:
Induced Pluripotent Stem Cells (iPSCs) Market 2021 Industry Size, Share, Growth and Top Companies Analysis- Fujifilm Holding Corporation (CDI),...

A New CRISPR Tool Flips Genes On and Off Like a Light Switch – Singularity Hub

CRISPR is revolutionary. Its also a total brute.

The classic version of the gene editing wunderkind literally slices a gene to bits just to turn it off. Its effective, yes. But its like putting an electrical wire through a paper shredder to turn off a misbehaving light bulb. Once the wires are cut, theres no going back.

Why not add a light switch instead?

This month, a team from the University of California, San Francisco (UCSF) reimagined CRISPR to do just that. Rather than directly acting on genesirrevocably dicing away or swapping genetic lettersthe new CRISPR variant targets the biological machinery that naturally turns genes on or off.

Translation? CRISPR can now flip a light switch to control geneswithout ever touching them directly. It gets better. The new tool, CRISPRoff, can cause a gene to stay silent for hundreds of generations, even when its host cells morph from stem cells into more mature cells, such as neurons. Once the sleeping beauty genes are ready to wake up, a complementary tool, CRISPRon, flips the light switch back on.

This new technology changes the game so now youre basically writing a change [into genes] that is passed down, said author Dr. Luke Gilbert. In some ways we can learn to create a version 2.0 of CRISPR-Cas9 that is safer and just as effective.

The crux is something called epigenetics. Its a whole system of chemicals and proteins that controls whether a gene is turned on or off.

If that sounds confusing, lets start with what genes actually look like inside a cell and how they turn on. By turning on, I mean that genes are made into proteinsthe stuff that builds our physical form, controls our metabolism, and makes us tick along as living, breathing humans.

Genes are embedded inside DNA chains that wrap very tightly around a core proteinkind of like bacon-wrapped asparagus. For genes to turn on, the first step is that they need a bunch of proteins to gently yank the DNA chain off the asparagus, so that the genes are now free-floating inside their cellular space capsule, called the nucleus.

Once that chunk of bacon-y DNA is free, more proteins rush over to grab onto the gene. Theyll then roll down the genes nucleotides (A, T, C, and G) like a lawn mower. Instead of mulch, however, this biological machine spews out a messenger that tells the cell to start making proteinsmRNAs. (Yup, the same stuff that makes some of our Covid-19 vaccines.) mRNA directs our cells protein factory to start production, and voil, that gene is now turned on!

Anything that disrupts this process nukes the genes ability to turn into proteins, essentially shutting it off. Its enormously powerfulbecause one single epigenetic machine can control hundreds or thousands of genes. Its a master light switch for the genome.

The team started with a CRISPR system that has a neutered Cas9. This means that the protein normally involved in cutting a gene, Cas9, can no longer snip DNA, even when tethered to the correct spot by the other component, the guide RNA bloodhound. They then tacked on a protein thats involved in switching off genes to this version of CRISPR.

Heres the clever part: the protein is designed to hijack a natural epigenetic process for switching genes off. Genes are often shut down through a natural process called methylation. Normally, the process is transient and reversible on a gene. CRISPRoff commandeers this process, in turn shutting down any targeted gene but for a far longer period of timewithout physically ripping the gene apart.

Thanks to epigenetics enhancing power, CRISPRoff lets researchers go big. In one experiment targeting over 20,000 genes inside immortalized human kidney cells with CRISPRoff, the team was able to reliably shut those genes off.

Not satisfied with a one-way street, the team next engineered a similar CRISPR variant, with a different epigenetics-related protein, dubbed CRISPRon. In cells inside petri dishes, CRISPRon was able to override CRISPRoff, and in turn, flip the genes back on.

We now have a simple tool that can silence the vast majority of genes, said study author Dr. Jonathan Weissman. We can do this for multiple genes at the same time without any DNA damage and in a way that can be reversed.

Even crazier, the off switch lasted through generations. When the team turned off a gene related to the immune system, it persisted for 15 monthsafter about 450 cellular generations.

The edits also lasted through a fundamental transformation, that is, a cells journey from an induced pluripotent stem cell (iPSC) to a neuron. iPSCs often start as skin cells, and are rejuvenated into stem cells through a chemical bath, when they then take a second voyage to become neurons. This process often wipes away epigenetic changes. But to the authors surprise, CRISPRoffs influence remained through the transformations. In one experiment, the team found that shutting off a gene related to Alzheimers in iPSCs also reduced the amount of subsequently encoded toxic proteins in the resulting neurons.

What we showed is that this is a viable strategy for silencing Tau and preventing that protein from being expressed, said Weissman, highlighting just one way CRISPRoffand controlling the epigenome in generalcan alter medicine.

This isnt the first time someones tried to target the epigenome with CRISPR. The same team previously experimented with another set of CRISPR variants that tried the same thing. The difference between the two is time and stability. With the previous setup, scientists struggled to keep the light switch off for a single generation. The new one has no trouble maintaining any changes through multiple divisionsand transformationsin the genome.

A reliable CRISPR tool for epigenetics is insanely powerful. Although we have drugs that work in similar ways, theyre far less accurate and come with a dose of side effects. For now, however, CRISPRoff and CRISPRon only work in cells in petri dishes, and the next step towards genomic supremacy would be to ensure they work in living beings.

If thats the case, it could change genetic editing forever. From reprogramming biological circuits in synthetic biology to hijacking or reversing ones to prevent disease, epigenetic reprogramming offers a way to do it all without ever touching a gene, nixing the threat of mutationswhile leading to lasting effects through generations.

I think our tool really allows us to begin to study the mechanism of heritability, especially epigenetic heritability, which is a huge question in the biomedical sciences, said study author Dr. James Nuez.

Image Credit: nobeastsofierce/Shutterstock.com

Continue reading here:
A New CRISPR Tool Flips Genes On and Off Like a Light Switch - Singularity Hub

Stem Cell Characterization Kits Market Report 2021 by Global Key Players, Types, Applications, Countries, Size, Forecast to 2027 Good News Gum – Good…

The recent report on Stem Cell Characterization Kits Market Report 2021 by Key Players, Types, Applications, Countries, Market Size, forecast to 2027 offered by Credible Markets, comprises of a comprehensive investigation into the geographical landscape, industry size along with the revenue estimation of the business. Additionally, the report also highlights the challenges impeding market growth and expansion strategies employed by leading companies in the Stem Cell Characterization Kits Market.

An exhaustive competition analysis that covers insightful data on industry leaders is intended to help potential market entrants and existing players in competition with the right direction to arrive at their decisions. Market structure analysis discusses in detail Stem Cell Characterization Kits companies with their profiles, revenue shares in market, comprehensive portfolio of their offerings, networking and distribution strategies, regional market footprints, and much more.

Request for Sample with Complete TOC and Figures & Graphs @ https://www.crediblemarkets.com/sample-request/stem-cell-characterization-kits-market-731449?utm_source=Komal&utm_medium=SatPR

Segment by Type

Embryonic Stem Cells

Mesenchymal Stem Cells

Induced Pluripotent Stem Cells

Segment by Application

Biopharmaceutical Companies

Contract Research Organizations

Academics and Research Institutes

Biotechnology Companies

By Region

North America

United States

Canada

Europe

Germany

France

U.K.

Italy

Russia

Asia-Pacific

China

Japan

South Korea

India

Australia

Taiwan

Indonesia

Thailand

Malaysia

Latin America

Mexico

Brazil

Argentina

Middle East & Africa

Turkey

Saudi Arabia

UAE

By Company

Merck KGaA

Celprogen

Creative Bioarray

Thermo Fisher Scientific

BD Biosciences

Research and Diagnostic Systems

System Biosciences

Cosmo Bio USA

BioCat GmbH

Sumitomo Dainippon Pharma

Regional Analysis of Global Stem Cell Characterization Kits Market

All the regional segmentation has been studied based on recent and future trends, and the market is forecasted throughout the prediction period. The countries covered in the regional analysis of the Stem Cell Characterization Kits market report are U.S., Canada, and Mexico in North America, Germany, France, U.K., Russia, Italy, Spain, Turkey, Netherlands, Switzerland, Belgium, and Rest of Europe in Europe, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, China, Japan, India, South Korea, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), and Argentina, Brazil, and Rest of South America as part of South America.

Direct Purchase this Market Research Report Now @ https://www.crediblemarkets.com/reports/purchase/stem-cell-characterization-kits-market-731449?license_type=single_user;utm_source=Komal&utm_medium=SatPR

What does the Report Include?

The market report includes a detailed assessment of various drivers and restraints, opportunities, and challenges that the market will face during the projected horizon. Additionally, the report provides comprehensive insights into the regional developments of the market, affecting its growth during the forecast period. It includes information sourced from the advice of expert professionals from the industry by our research analysts using several research methodologies. The competitive landscape offers further detailed insights into strategies such as product launches, partnership, merger and acquisition, and collaborations adopted by the companies to maintain market stronghold between 2021 and 2027.

The report can answer the following questions:

North America, Europe, Asia Pacific, Middle East & Africa, Latin America market size (sales, revenue and growth rate) of Stem Cell Characterization Kits industry.

Global major manufacturers operating situation (sales, revenue, growth rate and gross margin) of Stem Cell Characterization Kits industry.

Global major countries (United States, Canada, Germany, France, UK, Italy, Russia, Spain, China, Japan, Korea, India, Australia, New Zealand, Southeast Asia, Middle East, Africa, Mexico, Brazil, C. America, Chile, Peru, Colombia) market size (sales, revenue and growth rate) of Stem Cell Characterization Kits industry.

Different types and applications of Stem Cell Characterization Kits industry, market share of each type and application by revenue.

Global market size (sales, revenue) forecast by regions and countries from 2021 to 2027 of Stem Cell Characterization Kits industry.

Upstream raw materials and manufacturing equipment, industry chain analysis of Stem Cell Characterization Kits industry.

SWOT analysis of Stem Cell Characterization Kits industry.

New Project Investment Feasibility Analysis of Stem Cell Characterization Kits industry.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @ https://www.crediblemarkets.com/enquire-request/stem-cell-characterization-kits-market-731449?utm_source=Komal&utm_medium=SatPR

Contact Us

Credible Markets Analytics 99 Wall Street 2124 New York, NY 10005 Email:[emailprotected]Follow Us:LinkedIn|Twitter|Facebook

https://goodnewsgum.com/

Originally posted here:
Stem Cell Characterization Kits Market Report 2021 by Global Key Players, Types, Applications, Countries, Size, Forecast to 2027 Good News Gum - Good...

Induced Pluripotent Stem Cells Market Growth Opportunities, Analysis and Forecasts Report 2020-2026 with key players position (Fujifilm Holding…

The Induced Pluripotent Stem Cells Market grew in 2019, as compared to 2018, according to our report, Induced Pluripotent Stem Cells Market is likely to have subdued growth in 2020 due to weak demand on account of reduced industry spending post Covid-19 outbreak. Further, Induced Pluripotent Stem Cells Market will begin picking up momentum gradually from 2021 onwards and grow at a healthy CAGR between 2021-2025.

Deep analysis about Induced Pluripotent Stem Cells Market status (2016-2019), competition pattern, advantages and disadvantages of products, industry development trends (2019-2025), regional industrial layout characteristics and macroeconomic policies, industrial policy has also been included. From raw materials to downstream buyers of this industry have been analysed scientifically. This report will help you to establish comprehensive overview of the Induced Pluripotent Stem Cells Market

Get a Sample Copy of the Report at: https://i2iresearch.com/download-sample/?id=8913

The Induced Pluripotent Stem Cells Market is analysed based on product types, major applications and key players

Key product type: Hepatocytes Fibroblasts Keratinocytes Amniotic Cells Others

Key applications: Academic Research Drug Development And Discovery Toxicity Screening Regenerative Medicine

Key players or companies covered are: Fujifilm Holding Corporation Astellas Pharma Fate Therapeutics Bristol-Myers Squibb Company ViaCyte Celgene Corporation Aastrom Biosciences Acelity Holdings StemCells Japan Tissue Engineering Organogenesis

The report provides analysis & data at a regional level (North America, Europe, Asia Pacific, Middle East & Africa , Rest of the world) & Country level (13 key countries The U.S, Canada, Germany, France, UK, Italy, China, Japan, India, Middle East, Africa, South America)

Inquire or share your questions, if any: https://i2iresearch.com/need-customization/?id=8913

Key questions answered in the report: 1. What is the current size of the Induced Pluripotent Stem Cells Market, at a global, regional & country level? 2. How is the market segmented, who are the key end user segments? 3. What are the key drivers, challenges & trends that is likely to impact businesses in the Induced Pluripotent Stem Cells Market? 4. What is the likely market forecast & how will be Induced Pluripotent Stem Cells Market impacted? 5. What is the competitive landscape, who are the key players? 6. What are some of the recent M&A, PE / VC deals that have happened in the Induced Pluripotent Stem Cells Market?

The report also analysis the impact of COVID 19 based on a scenario-based modelling. This provides a clear view of how has COVID impacted the growth cycle & when is the likely recovery of the industry is expected to pre-covid levels.

Contact us: i2iResearch info to intelligence Locational Office: *India, *United States, *Germany Email: [emailprotected] Toll-free: +1-800-419-8865 | Phone: +91 98801 53667Induced Pluripotent Stem Cells, Induced Pluripotent Stem Cells Market, Induced Pluripotent Stem Cells Market Size, Induced Pluripotent Stem Cells Market Growth, Induced Pluripotent Stem Cells Market forecast, Induced Pluripotent Stem Cells Industry, Induced Pluripotent Stem Cells Market Overview, Induced Pluripotent Stem Cells Market Share, Induced Pluripotent Stem Cells Trends, Induced Pluripotent Stem Cells Market Analysis, Induced Pluripotent Stem Cells Market Revenue, North America Induced Pluripotent Stem Cells Market, Europe Induced Pluripotent Stem Cells Market, Asia Pacific Induced Pluripotent Stem Cells Market, Middle East & Africa Induced Pluripotent Stem Cells Market

https://neighborwebsj.com/

Excerpt from:
Induced Pluripotent Stem Cells Market Growth Opportunities, Analysis and Forecasts Report 2020-2026 with key players position (Fujifilm Holding...

Cytovia Therapeutics and Cellectis Partner to Develop TALEN Gene-Edited iPSC-Derived Natural Killer Cells – BioSpace

CAMBRIDGE, Mass. and NEW YORK, Feb. 16, 2021 (GLOBE NEWSWIRE) -- Cytovia Therapeutics, Inc., a biopharmaceutical company developing allogeneic off-the-shelf gene-edited Natural Killer (NK) and Chimeric Antigen Receptor (CAR)-NK cells derived from induced pluripotent stem cells (iPSCs), and Cellectis (Euronext Growth: ALCLS - Nasdaq: CLLS) a clinical-stage biopharmaceutical company focused on developing immunotherapies based on gene-edited allogeneic CAR T-cells (UCART), announced today that they have entered into a strategic research and development collaboration to develop TALEN gene-edited iPSC NK and CAR-NK cells.

The financial terms of the partnership include up to $760 million of development, regulatory, and sales milestones from Cytovia to Cellectis for the first 5 TALEN gene-edited iPSC-derived NK products (partnership products). Cellectis will also receive single-digit royalty payments on the net sales of all partnered products commercialized by Cytovia. Cellectis will receive an equity stake of $15 million in Cytovia stock or an upfront cash payment of $15 million if certain conditions are not met by December 31, 2021, as well as an option to invest in future financing rounds.

We are excited to collaborate with Cellectis, a gene-editing pioneer and leader in the development of gene-edited allogeneic cancer therapies, to further accelerate Cytovias NK cell programs, said Dr. Daniel Teper, Chairman & CEO of Cytovia Therapeutics. Cellectis has a deep understanding and proven expertise in gene-edited cell therapies, and their gene editing technology, TALEN, will yield NK and CAR-NK treatments with improved potency, persistence, and safety for a variety of cancers, including solid tumors. We look forward to leveraging Cellectis insights and experience to help move Cytovias CAR-NKs into clinical trials by 2022.

Cellectis will develop custom TALEN, which Cytovia will use to edit iPSCs. Cytovia will be responsible for the differentiation and expansion of the gene-edited iPSC master cell bank into NK cells and will conduct the pre-clinical evaluation, clinical development, and commercialization of the mutually-agreed-upon selected therapeutic candidates. Cellectis is granting Cytovia a worldwide license to its TALEN gene-editing technology, enabling Cytovia to modify NK cells addressing multiple gene targets for therapeutic use in several cancer indications.

We are thrilled to partner with Cytovia, a pioneer in the development of NK cells derived from iPSCs, said Dr. Andr Choulika, CEO of Cellectis. We are looking forward to this collaboration and the opportunity to further expand the potency of our proprietary TALEN gene-editing technology to iPSCs and CAR-NKs. Down the road, this collaboration should allow for NK cell therapies to be made available to cancer patients, which is very much in line with Cellectis mission to provide life-saving product candidates to address unmet patient needs in this field.

About Cellectis Cellectis is developing the first of its kind allogeneic approach for CAR-T immunotherapies in oncology, pioneering the concept of off-the-shelf and ready-to-use gene-edited CAR T-cells to treat cancer patients. As a clinical-stage biopharmaceutical company with over 20 years of expertise in gene editing, Cellectis is developing life-changing product candidates utilizing TALEN, its gene editing technology, and PulseAgile, its pioneering electroporation system to harness the power of the immune system in order to target and eradicate cancer cells.

As part of its commitment to a cure, Cellectis remains dedicated to its goal of providing lifesaving UCART product candidates to address unmet needs for multiple cancers including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia (B-ALL) and multiple myeloma (MM).

Cellectis headquarters are in Paris, France, with additional locations in New York, New York and Raleigh, North Carolina. Cellectis is listed on the Nasdaq Global Market (ticker: CLLS) and on Euronext Growth (ticker: ALCLS). For more information, visit http://www.cellectis.com.

Follow Cellectis on social media: @cellectis, LinkedIn and YouTube.

TALEN is a registered trademark owned by Cellectis.

About Cytovia Therapeutics Cytovia Therapeutics Inc. is a biotechnology company that aims to accelerate patient access to transformational immunotherapies, addressing several of the most challenging unmet medical needs in cancer. Cytovia focuses on Natural Killer (NK) cell biology and is leveraging multiple advanced patented technologies, including an induced pluripotent stem cell (iPSC) platform for CAR (Chimeric Antigen Receptors) NK cell therapy, next-generation precision gene-editing to enhance targeting of NK cells, and NK engager multi-functional antibodies. Our initial product portfolio focuses on both hematological malignancies such as multiple myeloma and solid tumors including hepatocellular carcinoma and glioblastoma. The company is establishing R&D and GMP manufacturing operations in the greater Boston area and partners with the University of California San Francisco (UCSF), the New York Stem Cell Foundation (NYSCF), the Hebrew University of Jerusalem, INSERM, and CytoImmune Therapeutics. Learn more at http://www.cytoviatx.com and follow Cytovia Therapeutics on Social Media (Facebook, LinkedIn, Twitter, and Youtube).

About Gene-Edited, iPSC-derived NK Cells Chimeric Antigen Receptors (CAR) are fusion proteins that combine an extracellular antigen recognition domain with an intracellular co-stimulatory signaling domain. Natural Killer (NK) cells are modified genetically to allow insertion of a CAR. CAR-NK cell therapy has demonstrated initial clinical relevance without the limitations of CAR-T, such as Cytokine Release Syndrome, neurotoxicity or Graft vs Host Disease (GVHD). In addition, CAR-NKs are naturally allogeneic, available off-the-shelf and may be able to be administered on an outpatient basis. Recent innovative developments with the induced pluripotent stem cell (iPSC)-derived CAR-NKs, an innovative technology, allow large quantities of true off-the-shelf, homogeneous genetically modified CAR NK cells to be produced from a gene-edited iPSC master cell bank, and thus hold promise to expand access to cell therapy for many patients.

For further information, please contact:

Cellectis Media contacts: Margaret Gandolfo, Communications Manager, 646-628-0300, margaret.gandolfo@cellectis.com Conor McGoldrick, Zeno Group, Assistant Account Executive, 914-355-0927, Conor.Mcgoldrick@zenogroup.com

Cellectis IR contact: Simon Harnest, SVP, Corporate Strategy and Finance, 646-385-9008, simon.harnest@cellectis.com

Cytovia Investor Relations contact: Anna Baran-Djokovic VP of Investor Relations 646-355-1787 anna@cytoviatx.com

Cytovia Media contact: Chris Maggos LifeSci Advisors +41 79 367 6254 chris@lifesciadvisors.com

Disclaimer

This press release contains forward-looking statements within the meaning of applicable securities laws, including the Private Securities Litigation Reform Act of 1995. Forward-looking statements may be identified by words such as at this time, believe, expected, forward looking, promising and will, or the negative of these and similar expressions. These forward-looking statements, are based on our managements current expectations and assumptions and on information currently available to management. These forward-looking statements are made in light of information currently available to us and are subject to numerous risks and uncertainties, including with respect to the duration and severity of the COVID-19 pandemic and governmental and regulatory measures implemented in response to the evolving situation. Furthermore, many other important factors, including those described in our Annual Report on Form 20-F and the financial report (including the management report) for the year ended December 31, 2019 and subsequent filings Cellectis makes with the Securities Exchange Commission from time to time, as well as other known and unknown risks and uncertainties may adversely affect such forward-looking statements and cause our actual results, performance or achievements to be materially different from those expressed or implied by the forward-looking statements. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

PDF available at: http://ml.globenewswire.com/Resource/Download/c6bbee7d-f56e-400c-a6a4-28586a9e4851

Read more:
Cytovia Therapeutics and Cellectis Partner to Develop TALEN Gene-Edited iPSC-Derived Natural Killer Cells - BioSpace

Can we freeze them? Yes we can, says Nkarta – Vantage

Paul Hastings, chief executive of Nkarta, is not shy about his companys achievement. We have mastered cryopreservation, he tells Evaluate Vantage.

And with that the company might have solved the biggest problem to have held back development of NK cell therapeutics: normally the cells cannot be frozen without risking changing their phenotype. Nkarta also reckons to have cracked another problem, transducing NK cells with a retrovirus, and its optimism matches the market mood of resurgent enthusiasm for these therapies.

That enthusiasm for NK cells took off at last years Ash meeting, and Nkarta, along with Gamida Cell, Fate Therapeutics and Nantkwest, celebrated surging stock prices. Remarkably, Nkarta presented no clinical data at the conference, though it has since started trials of its first Car-NK therapy, NKX101, targeting NKG2D ligands.

What do we want?

One of the things we defined right up front was what we wanted from a product, Mr Hastings says. Until we got that we werent going to try and move these things into the clinic.

For Nkarta a product must be off the shelf and cryopreserved though just how this is achieved is a proprietary secret and it must come in a vial, not a bag, so it can be multiple-dosed easily. The aim is to ship Car-NK cells just like an antibody directly to a doctor.

Thus affordability, a thorny issue for cell therapies, is at the core of Nkartas thinking. Mr Hastings reckons cost of manufacturing can be limited to $2,000 per vial of a billion NK cells; and, as each dosing cycle comprises three lots of 100 million cells, each vial could give up to three cycles.

As for supply, Nkarta sources NK cells from healthy donors, in contrast to Fate, which uses induced pluripotent stem cells (iPSCs). Mr Hastings says each healthy donor can yield 500 doses, and manufacturing, including standard viral transduction, takes 14 days, with the inclusion of membrane-bound IL-15 improving persistence and reducing exhaustion, ensuring that cells are maximally potent when delivered.

TheiPSC approach is seen as more advanced, but iscomplex asdesired characteristics need to be engineered in. Mr Hastings says with donor-derived cells you start with a large number of cells, and theyre actually NK cells, though he does not rule out looking at iPSCs in future.

Were all placing bets, and this is our bet, adds James Trager, Nkartas chief scientific officer. And he denies that donor-derived cells lack flexibility, saying the donor pool is very diverse: There are a fair number of donors walking around who have NK cells with pretty exceptional properties.

For now, however, Nkarta is not looking at donors with NK cells expressing high-affinity CD16; Fate, for instance, engineers this into most of its projects to improve antibody-dependent killing.

Clinical data

Investors do not have long to wait for the first evidence of NKX101s clinical activity. Mr Hastings says Nkarta expects interim results from a handful of patients at a medical meeting not by press release towards the end of 2021.

And an IND filing for the groups second asset, a CD19-targeting Car-NK coded NKX019, is due in the current quarter. This gives Nkartas pipeline a mix of proven (CD19) and high-risk (NKG2D ligands) approaches, and final proof-of-concept data for both are due in the first half of 2023; current cash, meanwhile, takes Nkarta to the second half of that year.

On a design level both therapies differ from current Car-T approaches in using as the co-stimulatory domain not 4-1BB or CD28 but Ox40, which Mr Trager says gives NK cells the best serial killing activity.

Even though the CD19 space is extremely crowded, unlike many other cell therapy players Nkarta is not using a CD19 approach just to test its tech. We absolutely believe that a CD19 programme thats allogeneic, cryopreserved in a vial is going to be very competitive, stresses Mr Hastings.

And the groups next project will target solid tumours, but for now remains under wraps. The way well disclose targets is when we have a clinical candidate, says the chief exec.

See original here:
Can we freeze them? Yes we can, says Nkarta - Vantage