Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes – Nature.com
Nabel, E. G. & Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 366, 5463 (2012).
Article CAS PubMed Google Scholar
McDonagh, T. A. et al. Group ESCSD. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 35993726 (2021).
Article CAS PubMed Google Scholar
Goldenberg, B. Ueber Atrophie und Hypertrophie der Muskelfasern des Herzens. Arch. Pathol. Anat. Physiol. Klin. Med. 103, 88130 (1886).
Article Google Scholar
Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 5, 370382 (1960).
Article CAS PubMed Google Scholar
Linzbach, A. J. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv. Cardiol. 18, 114 (1976).
Article CAS PubMed Google Scholar
Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183H2189 (1996).
CAS PubMed Google Scholar
Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98102 (2009).
Article CAS PubMed PubMed Central Google Scholar
Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med. 336, 11311141 (1997).
Article CAS PubMed Google Scholar
Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 515 (2002).
Article PubMed Google Scholar
Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701705 (2001).
Article CAS PubMed Google Scholar
Jeyaraman, M. M. et al. Autologous bone marrow stem cell therapy in patients with st-elevation myocardial infarction: a systematic review and meta-analysis. Can. J. Cardiol. 33, 16111623 (2017).
Article PubMed Google Scholar
Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell 105, 829841 (2001).
Article CAS PubMed Google Scholar
Dimmeler, S., Zeiher, A. M. & Schneider, M. D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572583 (2005).
Article CAS PubMed PubMed Central Google Scholar
Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763776 (2003).
Article CAS PubMed Google Scholar
Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100, 1231312318 (2003).
Article CAS PubMed PubMed Central Google Scholar
Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 433, 647653 (2005).
Article CAS PubMed PubMed Central Google Scholar
Planat-Benard, V. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94, 223229 (2004).
Article CAS PubMed Google Scholar
Condorelli, G. et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proc. Natl Acad. Sci. USA 98, 1073310738 (2001).
Article CAS PubMed PubMed Central Google Scholar
Li, Y. et al. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138, 793805 (2018).
Article CAS PubMed Google Scholar
Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664668 (2004).
Article CAS PubMed Google Scholar
Nygren, J. M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494501 (2004).
Article CAS PubMed Google Scholar
Laflamme, M. A., Myerson, D., Saffitz, J. E. & Murry, C. E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634640 (2002).
Article CAS PubMed Google Scholar
Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J. 25, 749758 (2004).
Article PubMed Google Scholar
Partners HealthCare and Brigham and Womens Hospital agree to pay $10 million to resolve research fraud allegations. US Attorneys Office District of Massachusetts https://www.justice.gov/usao-ma/pr/partners-healthcare-and-brigham-and-women-s-hospital-agree-pay-10-million-resolve (2017).
Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680686 (2017).
Article PubMed PubMed Central Google Scholar
Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433436 (2013).
Article CAS PubMed Google Scholar
Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405409 (2020).
Article CAS PubMed Google Scholar
Sadek, H. & Olson, E. N. Toward the goal of human heart regeneration. Cell Stem Cell 26, 716 (2020).
Article CAS PubMed PubMed Central Google Scholar
Giacca, M. Fulfilling the promise of rna therapies for cardiac repair and regeneration. Stem Cells Transl. Med. 12, 527535 (2023).
Article PubMed PubMed Central Google Scholar
Yamada, Y., Sadahiro, T. & Ieda, M. Development of direct cardiac reprogramming for clinical applications. J. Mol. Cell Cardiol. 178, 18 (2023).
Article CAS PubMed Google Scholar
Soonpaa, M. H., Koh, G. Y., Klug, M. G. & Field, L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98101 (1994).
Article CAS PubMed Google Scholar
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147 (1998).
Article CAS PubMed Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861872 (2007).
Article CAS PubMed Google Scholar
Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407414 (2001).
Article CAS PubMed PubMed Central Google Scholar
Kattman, S. J. et al. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8, 228240 (2011).
Article CAS PubMed Google Scholar
Burridge, P. W. & Zambidis, E. T. Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol. Biol. 997, 149161 (2013).
Article CAS PubMed Google Scholar
Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protoc. 12, 11771197 (2017).
Article CAS PubMed Google Scholar
Halloin, C., Coffee, M., Manstein, F. & Zweigerdt, R. Production of cardiomyocytes from human pluripotent stem cells by bioreactor technologies. Methods Mol. Biol. 1994, 5570 (2019).
Article CAS PubMed Google Scholar
Buikema, J. W. et al. Wnt activation and reduced cellcell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 5063 (2020).
Article CAS PubMed PubMed Central Google Scholar
Eschenhagen, T., Ridders, K. & Weinberger, F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 163, 106117 (2022).
Article CAS PubMed Google Scholar
Weinberger, F. & Eschenhagen, T. Cardiac regeneration: new hope for an old dream. Annu. Rev. Physiol. 83, 5981 (2021).
Article CAS PubMed Google Scholar
Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388391 (2016).
Article CAS PubMed Google Scholar
Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273277 (2014).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y. W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597605 (2018).
Article CAS PubMed PubMed Central Google Scholar
Querdel, E. et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner. Circulation 143, 19912006 (2021).
Article CAS PubMed PubMed Central Google Scholar
Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720730 (2015).
Article CAS PubMed PubMed Central Google Scholar
Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 10151024 (2007).
Article CAS PubMed Google Scholar
Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).
Article PubMed Google Scholar
Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 15661575 (2015).
Article CAS PubMed Google Scholar
Lou, X. et al. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovasc. Res. 116, 671685 (2020).
Article CAS PubMed Google Scholar
Kobayashi, H. et al. Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: inefficient procedure for cardiac regeneration. J. Mol. Cell Cardiol. 174, 7787 (2023).
Here is the original post:
Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes - Nature.com