Category Archives: Induced Pluripotent Stem Cells


Cold sore virus can spread to unborn babies harming their brains, docs warn – The Sun

THE cold sore virus can spread to unborn babies and harm their brains, experts have warned.

New research has found that the herpes simplex virus type (HSV-1) can be passed to a fetus during the mother's pregnancy.

1

It may contribute to various developmental disabilities and long-term neurological problems, according to scientists at Wuhan University, China.

HSV-1, commonly known as the cold sore virus, isn't harmful to adults but is already known to be fatal for babies with weaker immune systems.

It can spread quickly to babies' brains and cause multiple organ failure, and ultimately death.

The experts behind the study, published in the open-access journal PLOS Pathogens, wanted to understand more about how HSV-1 can affect unborn babies.

Researchers Pu Chen and Ying Wu said that so far, studies in this area have been hampered by restricted access to fetal human brain tissue.

To address this gap in knowledge, the researchers generated three different cell-based neurodevelopmental disorder models, including a 2D layer of cells and a 3D brain-like structure.

These models are based on human induced pluripotent stem cells (hiPSCs), which are generated by genetically reprogramming specialised adult cells.

Their modelling revealed that HSV-1 infection in these cells resulted in cell death as well as impaired production of new neurons.

It also mimicked the pathological features of neurodevelopmental disorders int he human fetal brain, including abnormalities in the brain structure.

Neonatal herpes is when a newborn or very young babyWhe is infected with the herpes virus.

It's caused by the same strain of herpes that triggers cold sores and genital ulcers in adults.

It can be extremely serious for a young baby, whose immune system won't have fully developed to fight off the virus.

While it's rare, it's important all parents are aware of the dangers.

Newborns can catch herpes in a number of ways.

It can be passed on during birth, if mum has genital herpes for the first time within six weeks of her pregnancy.

After birth, a baby can become infected if a person with a cold sore kisses them.

Or if mum breastfeeds with herpes sores on her breasts.

The warning signs to watch for in your baby are if they:

It's important to get your baby checked over if you suspect they've caught or been exposed to herpes.

It can develop quickly and spread to their brain or other parts of the body, proving fatal.

The 3D model also showed that HSV-1 infection promotes the abnormal spread of non-neuronal cells called microglia, along with by the activation of inflammatory molecules.

According to the authors, the findings open new therapeutic avenues for targeting viral reservoirs relevant to neurodevelopmental disorders.

They added: "This study provides novel evidence that HSV-1 infection impaired human brain development and contributed to the neurodevelopmental disorder pathogen hypothesis".

Studies on neonatal herpes - which is when a newborn baby has been infected with the virus - are more extensive.

It's understood that the younger the baby, the more vulnerable they are to the herpes virus.

While devastating, the condition is rare in the UK.

A baby is at greatest risk of catching the virus in the first four weeks of life, and it can be passed on in one of two main ways:

1. During pregnancy and labour

If mum has genital herpes for the first time in the last six weeks of pregnancy, her baby is at risk.

As a result, you should never kiss a baby if you have, or recently have had, a cold sore.

It's possible for a mum to pass the infection on during vaginal delivery.

2. After birth

The virus can be passed to a baby through a cold sore if someone affected kisses a baby.

It can also be passed via blisters on the breast of a mum, who has HSV-1, and is feeding.

Exclusive

Warning

Call your GP or health visitor straight away if your baby:

The early warning signs your baby is unwell - call 999 if your baby:

To find out more visit theNHS website.

See the rest here:
Cold sore virus can spread to unborn babies harming their brains, docs warn - The Sun

Microscopy Beyond the Resolution Limit – Lab Manager Magazine

Image of microtubules in a fixed cell sample. A 3 microns x 3 microns confocal scan of microtubules in a fixed 3T3 cell labeled with quantum dots analyzed in two ways. Upper left: image scanning microscopy (ISM), lower right: super-resolution optical fluctuation image scanning microscopy (SOFISM) after Fourier-reweighting.

UW Physics, A. Makowski

The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy. In the pages of the Optica journal, the team presented a new method of microscopy which, in theory, has no resolution limit. In practice, the team managed to demonstrate a fourfold improvement over the diffraction limit.

The continued development of biological sciences and medicine requires the ability to examine smaller and smaller objects. Scientists need to see into the structure of, and the mutual relationships between, for example, proteins in cells. At the same time, the samples being observed should not differ from the structures naturally occurring in biological organisms, which rules out the use of aggressive procedures and reagents. Although it revolutionized the natural sciences, the classical optical microscope is clearly insufficient today. Due to the wavelike nature of light, an optical microscope does not allow imaging structures smaller than about 250 nanometers. As a result, objects closer to each other than half the wavelength of light (which is about 250 nm for green light) cannot be discerned. This phenomenon, known as the diffraction limit, is one of the main obstacles in observing the tiniest biological structures that scientists have long attempted to overcome. Electron microscopes provide orders of magnitude better resolution but only allow the examination of inanimate objects, which must be placed in a vacuum and bombarded by an electron beam. For this reason, electron microscopy cannot be used for studying living organisms and the natural processes occurring in them. This is where fluorescence microscopy steps in, hence the rapid development of super-resolution fluorescence microscopy as a field of physical sciences and the two Nobel Prizes already awarded for related researchin 2008 and 2014.

Nowadays several techniques of fluorescence microscopy are available, and some of them have become widespread in biological imaging. Some methods, such as PALM, STORM, or STED microscopy, are characterized by an ultra-high resolution and allow discerning objects located just a dozen or so nanometers from each other. However, these techniques require long exposure times and a complex procedure of biological specimen preparation. Other techniques, such as SIM or ISM microscopy, are easy to use, but offer a very limited resolution improvement, allowing researchers to identify structures only half the size of the diffraction limit.

Aleksandra Sroda, Adrian Makowski, and Dr. Radek Lapkiewicz from the Quantum Optics Lab at the Faculty of Physics of the University of Warsaw, in cooperation with professor Dan Oron's team from the Weizmann Institute of Science in Israel, have introduced a new technique of super-resolution microscopy, called super-resolution optical fluctuation image scanning microscopy (SOFISM). In SOFISM, the naturally occurring fluctuations in emission intensity of fluorescent markers are used to further enhance the spatial resolution of an image scanning microscope (ISM). ISM, an emerging super-resolution method, has already been implemented in commercial products and proven valuable for the bioimaging community. This implementation is largely because ISM achieves a modest improvement in lateral resolution (x2), with very few changes to the optical setup and without the common handicap of long exposure times. Thus, it enables a natural extension of the capabilities of a standard confocal microscope. ISM uses a confocal microscope in which a single detector is replaced with a detector array. In SOFISM, correlations of intensities detected by multiple detectors are computed. In principle, the measurement of the nth order correlation can lead to a factor of 2n resolution improvement with respect to the diffraction limit. In practice, the resolution achievable for higher-order correlations is limited by the signal-to-noise ratio of the measurements.

"SOFISM is a compromise between ease of use and resolution. We believe that our method will fill the niche between the complex, difficult-to-use techniques, providing very high resolution and the easy-to-use lower-resolution methods. SOFISM does not have a theoretical resolution limit, and in our article, we demonstrate results which are four times better than the diffraction limit. We also show that the SOFISM method has a high potential in the imaging of three-dimensional biological structures," Lapkiewicz said.

Crucially, SOFISM is, in its technical aspects, highly accessible, as it only requires introducing a small modification to the widely-used confocal microscopereplacing its photomultiplier tube with a SPAD array detector. In addition, it is necessary to slightly increase the measurement time and change the data processing procedure. "Until recently, SPAD array detectors were expensive and their specifications were not sufficient for correlation-based microscopy. This situation has recently changed. The new SPAD detectors introduced last year removed both the technological and price-related barriers. This makes us think that fluorescence microscopy techniques such as SOFISM might, in a few years' time, become widely used in the field of microscopic examination," stressed Lapkiewicz.

- This press release was originally published on theUniversity of Warsaw's Faculty of Physics website

See more here:
Microscopy Beyond the Resolution Limit - Lab Manager Magazine

AMSBIO Launches New Human iPSC-Derived Cells and iPSC Differentiation Reagent Kits – Technology Networks

AMSBIO is launching a new range of human iPSC-derived cells and human iPSC differentiation reagent kits optimized for high-throughput experiments in areas including drug discovery and toxicity screening.

These new products are based upon a novel technology platform that relies on key transcription factor (TF) genes, a combination of which determines the identity of cells. These TFs are so powerful that they can rapidly and efficiently differentiate human iPS cells into specific cell types, such as neurons and skeletal muscle cells. These transcription factors are introduced into cells in a form that does not leave any footprint on the genome.

Human-induced pluripotent stem cells (iPSCs) are a powerful tool for studying neuronal activity in vitro. Human iPS cells overcome many of the limitations of other popular models, such as immortalized cell lines and primary mouse neurons, which can be plagued by reproducibility issues and lack of biological relevance. Although human iPS cells have many advantages over existing models, one drawback is that differentiation into the desired cell type is a time and labor-intensive process. To address this research bottleneck, AMSBIO is launching a variety of products and services to make research more efficient. This proprietary technology allows for rapid, reproducible differentiation of human iPSC-derived excitatory, GABAergic, dopaminergic and cholinergic neurons without sacrificing purity.

The new range also includes a kit to facilitate rapid and efficient differentiation of human iPS or ES cells into skeletal muscle cells in just 7 days. The kit uses a proprietary transcription factor-based stem cell differentiation method to produce a highly pure population of skeletal muscle cells without a genetic footprint. Differentiated cell cultures display typical skeletal muscle morphology and markers, such as myosin heavy chain.

To provide you with differentiated stem cells on fast turnaround - AMSBIO is also launching a Stem Cell Differentiation Service to supply highly pure populations without a genetic footprint. Services will begin with a free consultation with one of our experts so that we can tailor services to fit the needs of each project.

Link:
AMSBIO Launches New Human iPSC-Derived Cells and iPSC Differentiation Reagent Kits - Technology Networks

Induced Pluripotent Stem Cells Market To Grow At 7% YOY In Forecast Years 2026 – The Think Curiouser

Market Report Summary

For Full Information -> Click Here

Read Full Press Release Below

The healthcare industry has been focusing on excessive research and development in the last couple of decades to ensure that the need to address issues related to the availability of drugs and treatments for certain chronic diseases is effectively met. Healthcare researchers and scientists at the Li Ka Shing Faculty of Medicine of the Hong Kong University have successfully demonstrated the utilization of human induced pluripotent stem cells or hiPSCs from the skin cells of the patient for testing therapeutic drugs.

The success of this research suggests that scientists have crossed one more hurdle towards using stem cells in precision medicine for the treatment of patients suffering from sporadic hereditary diseases. iPSCs are the new generation approach towards the prevention and treatment of diseases that takes into account patients on an individual basis considering their genetic makeup, lifestyle, and environment. Along with the capacity to transform into different body cell types and same genetic composition of the donors, hiPSCs have surfaced as a promising cell source to screen and test drugs.

Get Sample Copy of Report @ https://www.persistencemarketresearch.com/samples/17968

Company Profile

Get To Know Methodology of Report @ https://www.persistencemarketresearch.com/methodology/17968

In the present research, hiPSC was synthesized from patients suffering from a rare form of hereditary cardiomyopathy owing to the mutations in Lamin A/C related cardiomyopathy in their distinct families. The affected individuals suffer from sudden death, stroke, and heart failure at a very young age. As on date, there is no exact treatment available for this condition.

This team in Hong Kong tested a drug named PTC124 to suppress specific genetic mutations in other genetic diseases into the iPSC transformed heart muscle cells. While this technology is being considered as a breakthrough in clinical stem cell research, the team at Hong Kong University is collaborating with drug companies regarding its clinical application.

The unique properties of iPS cells provides extensive potential to several biopharmaceutical applications. iPSCs are also used in toxicology testing, high throughput, disease modeling, and target identification. This type of stem cell has the potential to transform drug discovery by offering physiologically relevant cells for tool discovery, compound identification, and target validation.

A new report by Persistence Market Research (PMR) states that the globalinduced pluripotent stem or iPS cell marketis expected to witness a strong CAGR of 7.0% from 2018 to 2026. In 2017, the market was worth US$ 1,254.0 Mn and is expected to reach US$ 2,299.5 Mn by the end of the forecast period in 2026.

Access Full Report @ https://www.persistencemarketresearch.com/checkout/17968

Customization to be the Key Focus of Market Players

Due to the evolving needs of the research community, the demand for specialized cell lines have increased to a certain point where most vendors offering these products cannot depend solely on sales from catalog products. The quality of the products and lead time can determine the choices while requesting custom solutions at the same time. Companies usually focus on establishing a strong distribution network for enabling products to reach customers from the manufacturing units in a short time period.

Entry of Multiple Small Players to be Witnessed in the Coming Years

Several leading players have their presence in the global market; however, many specialized products and services are provided by small and regional vendors. By targeting their marketing strategies towards research institutes and small biotechnology companies, these new players have swiftly established their presence in the market.

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Ashish Kolte Persistence Market Research Address 305 Broadway, 7th FloorNew York City, NY 10007 United States U.S. Ph. +1-646-568-7751 USA-Canada Toll-free +1 800-961-0353 Sales[emailprotected] Website https://www.persistencemarketresearch.com

More:
Induced Pluripotent Stem Cells Market To Grow At 7% YOY In Forecast Years 2026 - The Think Curiouser

Groundbreaking eye surgery in Kobe offers hope to sight impaired : The Asahi Shimbun – Asahi Shimbun

KOBE--Surgeons at a hospital here performed a transplant that could transform the treatment of eye disorders.

Kobe City Eye Hospital announced on Oct. 16 the transplant operation involving photoreceptor cells derived from human induced pluripotent stem (iPS) cells.

The female patient in her 60s was diagnosed with pigmentary degeneration of the retina, which can lead to loss of vision.

The transplant was the third type involving the treatment of eye disorders through the use of iPS cells, but the first attempt to correct a problem in the part of the eye that is essential to sight.

About 40,000 individuals in Japan suffer from pigmentary degeneration of the retina, which leads to reduced vision in areas with little light or advanced tunnel vision. Until now, there has been no established treatment for the disorder.

The research team created undeveloped retina tissue aimed at eventually forming into photoreceptor cells by using iPS cells stored at Kyoto Universitys Center for iPS Cell Research and Application.

The tissue was formed into a sheet and transplanted into the womans eye. If everything goes according to plan, the cells should develop into photoreceptor cells.

If those cells then become attached to nerves reaching the brain, the woman will have better vision.

The primary purpose of the operation was to confirm the safety of the transplanted cells over a one-year period. Doctors will periodically check to see if the transplanted cells are rejected by the body or if tumors develop from those cells.

Other tests on the patients vision will also determine if the transplant works as a method to treat eye disorders.

The first instance in which iPS cells were used to treat eye disorders was in 2014 when a team at the Riken research institute transplanted pigment epithelial cells to a patient diagnosed with age-related macular degeneration.

In 2019, a team at Osaka University transplanted corneal epithelial cells to patients with corneal epithelial stem cell impoverishment syndrome.

(This article was written by Nami Sugiura and Kenji Tamura.)

Read more:
Groundbreaking eye surgery in Kobe offers hope to sight impaired : The Asahi Shimbun - Asahi Shimbun

Induced Pluripotent Stem Cells (iPSCs) Industry 2020 Includes The Major Application Segments And Size In The Global Market To 2026 – PRnews Leader

IndustryGrowthInsights offers a latest published report on Global Induced Pluripotent Stem Cells (iPSCs) Market industry analysis and forecast 20192025 delivering key insights and providing a competitive advantage to clients through a detailed report. This is a latest report, covering the current COVID-19 impact on the market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions. The rapidly changing market scenario and initial and future assessment of the impact is covered in the report. The report contains XX pages which highly exhibits on current market analysis scenario, upcoming as well as future opportunities, revenue growth, pricing and profitability.

Induced Pluripotent Stem Cells (iPSCs) Market research report delivers a close watch on leading competitors with strategic analysis, micro and macro market trend and scenarios, pricing analysis and a holistic overview of the market situations in the forecast period. It is a professional and a detailed report focusing on primary and secondary drivers, market share, leading segments and geographical analysis. Further, key players, major collaborations, merger & acquisitions along with trending innovation and business policies are reviewed in the report. The report contains basic, secondary and advanced information pertaining to the Induced Pluripotent Stem Cells (iPSCs) global status and trend, market size, share, growth, trends analysis, segment and forecasts from 20192025.

Get FREE Exclusive PDF Sample Copy Of This Report: https://industrygrowthinsights.com/request-sample/?reportId=171605

The scope of the report extends from market scenarios to comparative pricing between major players, cost and profit of the specified market regions. The numerical data is backed up by statistical tools such as SWOT analysis, BCG matrix, SCOT analysis, and PESTLE analysis. The statistics are represented in graphical format for a clear understanding on facts and figures.

Customize Report and Inquiry for The Induced Pluripotent Stem Cells (iPSCs) Market Report: https://industrygrowthinsights.com/enquiry-before-buying/?reportId=171605

The generated report is firmly based on primary research, interviews with top executives, news sources and information insiders. Secondary research techniques are implemented for better understanding and clarity for data analysis.

The Report Segments for Induced Pluripotent Stem Cells (iPSCs) Market Analysis & Forecast 20192025 are as: Global Induced Pluripotent Stem Cells (iPSCs) Market, by Products Human iPSCs Mouse iPSCs Human iPSCs had a market share of 89% in 2018, followed by Mouse iPSCs. Induced Pluripotent Stem Cells (iPSCs

Global Induced Pluripotent Stem Cells (iPSCs) Market, by Applications Academic Research Drug Development and Discovery Toxicity Screening Regenerative Medicine

The Major Players Reported in the Market Include: Fujifilm Holding Corporation (CDI) Ncardia Sumitomo Dainippon Pharma Astellas Pharma Inc Fate Therapeutics, Inc Pluricell Biotech Cell Inspire Biotechnology ReproCELL Induced Pluripotent Stem Cells (iPSCs

The Global Induced Pluripotent Stem Cells (iPSCs) Market industry Analysis and Forecast 20192025 helps the clients with customized and syndicated reports holding a key importance for professionals entailing data and market analytics. The report also calls for market driven results deriving feasibility studies for client needs. IndustryGrowthInsights ensures qualified and verifiable aspects of market data operating in the real time scenario. The analytical studies are conducted ensuring client needs with a thorough understanding of market capacities in the real time scenario.

Key Reasons to Purchase:

Ask for Discount on Induced Pluripotent Stem Cells (iPSCs) Market Report at: https://industrygrowthinsights.com/ask-for-discount/?reportId=171605

About IndustryGrowthInsights: INDUSTRYGROWTHINSIGHTS has set its benchmark in the market research industry by providing syndicated and customized research report to the clients. The database of the company is updated on a daily basis to prompt the clients with the latest trends and in-depth analysis of the industry. Our pool of database contains various industry verticals that include: IT & Telecom, Food Beverage, Automotive, Healthcare, Chemicals and Energy, Consumer foods, Food and beverages, and many more. Each and every report goes through the proper research methodology, validated from the professionals and analysts to ensure the eminent quality reports.

Contact Info: Name: Alex Mathews Address: 500 East E Street, Ontario, CA 91764, United States. Phone No: USA: +1 909 545 6473 | IND: +91-7000061386 Email: [emailprotected] Website: https://IndustryGrowthInsights.com

Read the rest here:
Induced Pluripotent Stem Cells (iPSCs) Industry 2020 Includes The Major Application Segments And Size In The Global Market To 2026 - PRnews Leader

Induced Pluripotent Stem Cells Market 2020 Is Slated to Grow Rapidly in the Forthcoming Years with Key Players Addgene, Axol Bioscience, Cell…

This analysis of the Global Induced Pluripotent Stem Cells Market aims to offer relevant and well-researched insights into the contemporary market scenario and the emergent growth dynamics. The report on Induced Pluripotent Stem Cells Market also gives the market players and fresh contenders a holistic view of the global market landscape.

This press release was orginally distributed by SBWire

New York, NY -- (SBWIRE) -- 10/13/2020 -- The latest report titled 'Global Induced Pluripotent Stem Cells Market (COVID-19 Impact Analysis)', published by Reports and Data, offers a bird's eye view of the global Induced Pluripotent Stem Cells market, covering the latest market trends, industry insights, and market share. The report provides an in-depth, strategic analysis of the Induced Pluripotent Stem Cells industry, with prime focus on each segment and sub-segment of the market. Market forecasts included in the report hold great significance as they provide deep insight into the various industry parameters by evaluating the global market growth and consumption rates, volatility in demand and product prices, and upcoming market trends.

The report scrutinizes several key aspects of the global market, including the latest innovations in the industry, technological advancements, rising trends, and opportunities for growth. The SWOT analysis, coupled with an overview of the competitive landscape, forms a vital component of the report.

Request a sample PDF copy of this report @ https://www.reportsanddata.com/toc-form/3551

The report offers full coverage of the current market scenario, which has been adversely impacted by the ongoing COVID-19 pandemic. The global health crisis has affected nearly every aspect of this industry domain. Hence, the latest study provides some important speculations of the future outcomes of the pandemic's impact on the global economy that could help businesses gear up and take precautionary measures.

Leading Companies in the Global Induced Pluripotent Stem Cells Market:

Thermo Fisher Scientific, Allele Biotechnology and Pharmaceuticals Inc., ABM (Applied Biological Materials Inc.), Addgene, Axol Bioscience, Cell Signaling Technology, Bluerock Therapeutics, Alstem LLC, Applied Stemcell Inc., ATCC, Creative Bioarray, Bristol-Myers Squibb, Bio-Techne, Reprocell Group Co., Primorigen Biosciences, ID Pharma Co. Ltd., Megakaryon Corp., FUJIFILM Cellular Dynamics, Inc., Waisman Biomanufacturing, Roslin Cell Sciences, Opsis Therapeutics, Corning Life Sciences, Fate Therapeutics, Genecopoeia, Gentarget Inc., Viacyte Inc., Ncardia, Invivogen, Lonza Group Ltd., Plasticell Ltd., Stemcell Technologies, Newcells Biotech, Orig3N Inc., Peprotech, Promega Corp., Promocell Gmbh, Qiagen N.V., System Biosciences Inc., Reprocell Inc., Sciencell Research Laboratories, MilliporeSigma, and Takara Bio Usa Inc.

Request a discount on the report @ https://www.reportsanddata.com/discount-enquiry-form/3551

Global Induced Pluripotent Stem Cells Market Segmentation by Product Type:

Amniotic Cells

Fibroblasts

Keratinocytes

Hepatocytes

Others

Global Induced Pluripotent Stem Cells Market Segmentation by Application:

Drug Development

Toxicity Testing

Regenerative Medicine

Academic

Global Induced Pluripotent Stem Cells Market segmentation by Region/Country:

North America

Europe

Asia Pacific

Latin America

Middle East & Africa

Key Takeaways from the Global Induced Pluripotent Stem Cells Market Report:

Full coverage of the global Induced Pluripotent Stem Cells market analysis

Market Mechanism and Dynamics

Fluctuating market trends and market developments

Systematic market segmentation

Historical, current, and projected market size

Competitive outlook

Expansion strategies adopted by key players

Product offerings

Niche segments/regions exhibiting potential growth

To know more about the report, visit @ https://www.reportsanddata.com/report-detail/induced-pluripotent-stem-cells-market

Reasons for buying this report:

The report carries a neutral perspective towards the global market performance

The report analyzes the changing competitive scenario.

The analytical data and strategic planning methodologies are expected to aid businesses in decision-making

Proffers a seven-year assessment of the global market, elaborating on the key product segments

Market dynamics, such as drivers, opportunities, restraints, and threats, have been listed in the report

The report presents an exhaustive regional analysis of the global Induced Pluripotent Stem Cells market and lists the business profiles of various stakeholders.

It also provides significant data about the critical factors influencing market progress

Thank you for reading our report. For further details or to inquire about customization, please let us know, and we will offer you the report as per your needs.

Browse Similar Research Reports:

Antidiabetics Market Growth & Analysis, By Product type, By Industry Vertical and Forecast 2020-2027

Sodium Stibogluconate Market Size, Share & Demand, By Type, By Function, By Application and Forecast 2020-2027

Contact Us: John Watson Head of Business Development Reports And Data | Web: http://www.reportsanddata.com Direct Line: +1-212-710-1370 E-mail: sales@reportsanddata.com

For more information on this press release visit: http://www.sbwire.com/press-releases/induced-pluripotent-stem-cells-market-2020-is-slated-to-grow-rapidly-in-the-forthcoming-years-with-key-players-addgene-axol-bioscience-cell-signaling-technology-etc-1309333.htm

Read the original post:
Induced Pluripotent Stem Cells Market 2020 Is Slated to Grow Rapidly in the Forthcoming Years with Key Players Addgene, Axol Bioscience, Cell...

Novellus Therapeutics Exclusively Licenses Induced Mesenchymal Stem Cells (iMSCs) to NoveCite for COVID-19 Related Acute Respiratory Distress Syndrome…

Novellus Therapeutics Exclusively Licenses Induced Mesenchymal Stem Cells (iMSCs) to NoveCite

"Novellus's iMSCs have the potential to be a breakthrough in the field of cellular therapy for acute respiratory conditions because of their high potency as demonstrated in our pre-clinical studies, as well as our ability to cost-effectively provide high doses and repeat doses." said Myron Holubiak, CEO of Citius.

"We are excited to be developing iMSCs because of their promise to save lives and reduce long term sequelae in patients with devastating respiratory diseases such as ARDS caused by COVID-19," said Matt Angel, Chief Science Officer of Novellus. He continued, "Our iMSCs have multimodal immunomodulatory mechanisms of action that make them promising for treatment of acute respiratory diseases."

About Novellus Therapeutics LimitedNovellus is a pre-clinical stage biotechnology company developing engineered cellular medicines using its patented non-immunogenic mRNA, high-specificity gene editing, mutation-free & footprint-free cell reprogramming and serum-insensitive mRNA lipid delivery technologies. Novellus is privately held and is headquartered in Cambridge, MA. For more information, please visit http://www.novellustx.com.

About NoveCite, Inc.NoveCite, Inc. is a newly formed subsidiary of Citius Pharmaceuticals, a late-stage specialty pharmaceutical company dedicated to the development and commercialization of critical care products, with a focus on anti-infectives and cancer care. For more information, please visit http://www.citiuspharma.com.

Contact: [emailprotected]

SOURCE Novellus Therapeutics

Read the original post:
Novellus Therapeutics Exclusively Licenses Induced Mesenchymal Stem Cells (iMSCs) to NoveCite for COVID-19 Related Acute Respiratory Distress Syndrome...

Disruptive Technologies and Mature Regulatory Environment Vital for Cell Therapy Maturation – BioSpace

Immuno-oncology and CAR T cells energized the field of regenerative medicine, but for cell and gene to deliver on their promises, new, disruptive technologies and new modes of operation are needed. Specifically, that entails improving manufacturing to control variables and thus ensure product consistency, and maturing the regulatory environment to improve predictability.

Manufacturing cells is not like manufacturing small molecules, Brian Culley, CEO of Lineage Cell Therapeutics, told BioSpace. For cell therapy products to mature into real products that deliver on the promises of 10 years ago, they must be scalable which drives affordability and they must solve their purity issues.

On the clinical side, cell and gene therapies must find places where small molecules, antibodies or other traditional approaches may not be the best option.

For example, The era of transplant medicine is unfolding before us, Culley said. Because of the transplant component, cell therapy may enable changes the body never could do alone.

Lineage is addressing dry AMD and spinal cord injuries with two of its therapeutics.

Our approach is fundamentally different from traditional approaches. We replace the entire cell rather than modulate a pathway. There is a rational hypothesis where cell therapy can win, but first we need to fix the operational hurdles, Culley said.

To address the manufacturing challenges, Culley said, We work only with allogeneic approaches. For us, not being patient-specific is a huge advantage.

Not long ago, the industry was focused on 3D manufacturing in bioreactors.

Were beyond that, Culley said. For our dry AMD product, we can manufacture 5 billion retinal cells in a three liter bioreactor. The advantage is that the cells exist in a very homogenous space and are 99% pure.

As a result, they are more affordable and can be harvested with little manipulation.

Manual manipulation affects gene expression, he pointed out, so minimizing that, as well as the vast quantities of plastics typically required, results in a more controlled process and a more consistent product.

Additionally, Lineage introduced a thaw and inject formulation, so the cell therapy can be thawed in a water bath, loaded into a chamber and injected, all within a few minutes. Traditional dose administration requires washing, plating and reconstituting the cells the before they are administered to a patient.

Getting rid of the prior day dose prep is one example of the maturation of the field, which we are deploying today to help usher in a new branch of medicine, Culley said.

At Lineage, were tackling problems that largely were intractable. For dry AMD, theres nothing approved by the FDA. No one know why the retinal cells die off, so we manufacture brand new retinal cells (OpRegen) and implant them, Culley said. Were seeing very encouraging clinical signs, including the first-ever case of retinal restoration.

Retinal cells compose a thin layer in the back of the eye, Culley explained.

They start to die off in one spot, and that area grows outward. When we inject our manufactured cells where the old ones died, weve seen the damaged area shrink and the architecture in previously damage areas completely restored, Culley said. Weve treated 20 patients for dry AMD in, ostensibly, safety trials, but you cant help but notice efficacy when a patient reads five more lines on an eye chart. Its hard to imagine our intervention wasnt responsible for that, especially when humans cant regenerate retinal tissue.

The spinal injury program (OPC1) may represent an even greater breakthrough. As with dry AMD, there is no FDA-approved therapy.

We manufacture oligodendrocytes and transport them into the spinal cord, to help produce the myelin coating for axons, he told BioSpace. Because of the oligodendrocytes, the axons grow, become myelinated, and begin to function. Small molecule and antibody therapies havent been able to do that.

So far, 25 people have been treated in a Phase I/II trial. Culley reported cases in which a quadriplegic man, after OPC1 therapy, is now typing 30 to 40 words per minute, and another who now can throw a baseball. Its not unusual for patients who initially were completely paralyzed to now schedule their treatments around college classes, Culley said.

Humans can have varying degrees of recovery from spinal cord injury, but these are higher than we would expect, Culley said.

Other cell and gene companies are advancing solutions, too.

Many companies with induced pluripotent stem cells (iPSCs) are trying to figure out how to get scalability, purity, and reproducibility to work for them. Its not a quick fix, he said.

One of the challenges is balancing the clinical and manufacturing aspects of development.

If you have a technology thats not yet commercially viable, but you have clinical evidence, its tempting to focus on the clinical side, Culley said.

Too many companies do that, and then find their candidate must be reworked for scale up. Therefore, consider scale up and manufacturing early.

Theres a need for balance at a more granular level, too. For example, he asked, How many release criteria do you need? Just because you know a cell expresses a certain surface marker, does that add to your process? Ive seen companies ruined by trying to be perfect, and others by rushing headlong, seeing evidence where evidence doesnt exist.

As Lineage matures its processes to support larger clinical trials, the greatest challenges have been time It takes 30 to 40 days to grow cells, Culley said and regulatory uncertainty. Often, there is no regulatory precedence so there are holes to be addressed. For example, cell and gene therapies sometimes have a delivery component such as a scaffold or delivery encapsulation technology that also must be considered. Real-time regulatory feedback isnt available, so you proceed, presuming that what youre doing will be acceptable to regulators.

The FDA recognizes that new, disruptive technologies and approaches are being used, and must be used, for cell and gene therapy to reach patients.

The FDA is responsive and is trying to push guidance out, Culley said, but it takes time.

Read more:
Disruptive Technologies and Mature Regulatory Environment Vital for Cell Therapy Maturation - BioSpace

Brain organoids reveal neuronal flaws in syndrome tied to autism – Spectrum

Electric organoid: Neurons derived from people with 22q11.2 syndrome are hyperexcitable and show calcium-signaling deficits.

Courtesy of Pasca lab

Neurons derived from people with 22q11.2 deletion syndrome, a genetic condition linked to autism, show deficits in electrical activity and calcium signaling, according to a new study1. A single gene appears to be largely responsible for these defects, the study shows.

Up to 20 percent of people who lack part or all of the chromosomal region 22q11.2 have autism. Individuals with the deletion may also have schizophrenia, seizures, heart defects, immune dysfunction or learning problems.

The new findings uncover factors that may contribute to the development of psychiatric conditions associated with 22q11.2 deletion syndrome. They could also help researchers identify new therapeutic targets, says lead author Sergiu Pasca, associate professor of psychiatry and behavioral sciences at Stanford University in California.

The syndrome is relatively common, occurring in up to 1 in 4,000 newborns, Pasca says. But researchers do not fully understand how genes in the 22q11.2 region contribute to autism or other conditions, he adds.

To solve this molecular puzzle, Pasca and his team reprogrammed skin cells from 15 people with the deletion and 15 controls into induced pluripotent stem cells. Using a technique they developed in 2015, they coaxed these cells to turn into neurons, which self-organize in a dish into spherical clusters called organoids. The organoids show some key features of the developing cerebral cortex, a brain region implicated in autism.

The neurons derived from people with 22q11.2 syndrome spontaneously fire four times as frequently as neurons derived from controls, the researchers found. And the electrical activity of the 22q cells does not set off the usual spike in calcium levels, which is crucial for neurons to exchange messages.

In some other syndromes tied to schizophrenia and autism, calcium-channel genes are mutated. But the number of channels and the speed at which they work in 22q neurons is the same as in control neurons. Instead, the 22q cells show an unusually low voltage difference across the cell membrane when they arent firing, causing the signaling defects and hyperexcitability, the researchers found.

The researchers suspected that a gene called DGCR8 might be responsible for the neuronal deficits in the organoids because it lies within 22q11.2 and is linked to abnormal electrical activity in the neurons of mice2. DGCR8 is essential for the synthesis of short RNA fragments, called microRNAs, that regulate gene expression.

Lowering DGCR8s expression levels in control neurons reproduced the abnormalities seen in 22q neurons. In contrast, boosting the genes activity in 22q neurons or treating them with antipsychotic drugs prevented them from being overly excitable and reversed their calcium-signaling defects. The study was published 28 September in Nature Medicine.

Previous studies have analyzed lab-grown neurons derived from people with schizophrenia or autism-related disorders such as Rett and fragile X syndromes. But most used only a few human-derived cell lines, says Guo-li Ming, professor of neuroscience at the University of Pennsylvania in Philadelphia. The new study, Ming says, has a total of 30 human lines thats a huge effort.

By studying brain organoids derived from so many people, the researchers were able to identify the gene that might be involved in the psychiatric conditions associated with 22q11.2 syndrome, says Sally Temple, scientific director of the Neural Stem Cell Institute in Rensselaer, New York. Whenever we have a light shining ahead, saying, This is what you should really be looking at, it means that were making progress, she says.

The study participants with 22q11.2 syndrome vary in their psychiatric diagnoses, and yet all the brain organoids derived from their cells show the same neuronal abnormalities. Thats somewhat surprising, because we know there are a lot of differences in the genetic background of different people, Ming says.

The deletion might conspire with other factors to ultimately determine which psychiatric conditions a person has, Pasca says. It could be that the deletion causes cellular defects, and once there is a stressor such as social stress, disease develops. Its also unclear whether these cellular defects are related to the high prevalence of seizures in people with 22q11.2 syndrome, he says.

The hallmarks of most neuropsychiatric conditions can change over time, says Giuseppe Testa, director of the stem cell epigenetics unit at the European Institute of Oncology in Milan, Italy. Studies that look at a larger number of people with 22q11.2 deletion syndrome or other neurodevelopmental conditions could help to elucidate the relationship between the neuronal defects observed in the lab and the psychiatric manifestations of the conditions, Testa says. The new study, however, is a great resource for understanding how the 22q11.2 deletion contributes to schizophrenia and autism, he says.

Pascas team is trying to pinpoint molecules that could open new therapeutic avenues for 22q11.2 deletion syndrome. The antipsychotics they tested restore the unusual voltage differences in the 22q neurons, but they dont address the core mechanisms responsible for psychiatric conditions linked to the syndrome, Pasca says.

Whats more, antipsychotics have many side effects, and not all individuals respond to them, he says. We need better therapies we need to identify what the key molecular players are and target those.

See the rest here:
Brain organoids reveal neuronal flaws in syndrome tied to autism - Spectrum