Category Archives: Induced Pluripotent Stem Cells


New Study Presents Cell-based Therapy for MN Diseases or Spinal Cord Disorders – Mirage News

The spinal cord is a bundle of nerves inside the spine that gives your body structure and support. Spinal cord injuries (SCIs) tend to be devastating and most are permanent. Recent research has shown that motor neuron obtained from skin cells could serve as potential treatments for spinal cord injuries, and thus has received considerable research attention. With this, a new door has been opened for treating not only spinal cord injuries, caused by workplace accidents and car crashes, but also Lou Gehrigs disease, known as amyotrophic lateral sclerosis or ALS.

A research team, led by Professor Jeong Beom Kim and his research team in the School of Life Sciences at UNIST has demonstrated that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing two transcription factors, POU5F1(OCT4) and LHX3. The research team further investigated the therapeutic effects of iMNs for treating traumatic spinal cord injury using rodent spinal cord injury model. Their findings indicate that the sequential induction of two transcription factors is essential for generating self-renewing iMNICs more efficiently. This method not only ensures large-scale production of pure iMNs, but also facilitates the feasibility of iMNs for SCI treatment.

The spinal cord is responsible for transmitting signals from the brain to the rest of the body, and vice versa. Along with motor and sensory deficits, damage to the spinal cord can cause long-term complications, including limited mobility. Although there are many treatment options available for people with SCI, most of them have adverse side effects that impact therapy. And this is why stem cell (SC) therapies to restore functions of damaged tissues are attracting attention, recently. Among those cells constituting the spinal cord, motor neurons that involved in the regulation of muscle function have emerged as a promising candidate for the stem cell-based therapy for SCIs. Despite these encouraging advances, ethical issue of embryonic stem cells (ESCs) and tumorigenic potential of induced pluripotent stem cells (iPSCs) have impeded their translations into clinical trials.

Figure 1. The experimental scheme for the generation of induced motor neurons (iMNs) from human fibroblasts via sequential transduction of two transcription factors.

To overcome these limitations, Professor Kim and his research team established an advanced direct conversion strategy to generate iMNs from human fibroblasts in large-scale with high purity, thereby providing a cell source for the treatment of SCI. These iMNs possessed spinal cord motor neuronal identity and exhibit hallmarks of spinal MNs, such as neuromuscular junction formation capacity and electrophysiological properties in vitro. Importantly, their findings also show that transplantation of iMNs improved locomotor function in rodent SCI model without tumor formation. According to the research team, This proof-of-concept study shows that our functional iMNs can be employed to cell-based therapy as an autologous cell source. Through this, they resolved the problem of immune rejection, and thus reduce the risk of cancer.

In the study, we succeeded in generating iMNs from human fibroblasts by overexpressing POU5F1(OCT4) and LHX3, says Hyunah Lee (Combined MS/Ph.D program of Life Sciences, UNIST), the first author of the study.

Figure 2. Therapeutic effects of iMNs in rat spinal cord injury model in vivo. (A) The position of hindlimbs in control rat and iMN-transplanted rat after 8 weeks of transplantation. (B) C staining analysis of spinal cords after 8 weeks of transplantation (I; Control, J; iMN-transplanted).

The developed motor nerve cell manufacturing method has the advantage of being capable of mass production. A sufficient amount of cells is required for patient clinical treatment, but the existing direct differentiation technique has limited the number of cells that can be obtained. On the other hand, the method developed by the research team is capable of mass production because it undergoes an intermediate cell stage capable of self-renewal. After injecting the produced cells into the spinal cord injury mice, it was confirmed that the lost motor function is restored and the nerves are regenerated in the damaged spinal cord tissue.

Although further investigation on mechanism responsible for cell fate conversion may be needed, our strategy is a safer and simpler methodology that may provide new insights to develop personalized stem cell therapy and drug screening for MN diseases or spinal cord disorders, says Professor Kim. If combined with SuPine Patch, an adhesive hydrogel patches with the purpose of regenerating the damaged spinal cords, its therapeutic effects will be maximized. He adds, As the incidence of spinal cord injury is high due to industrial accidents, synergistic effects with public hospitals specializing in industrial accidents scheduled to be built in Ulsan should be expected.

This study has been jointly carried out with Professor Kims startup company, SuPine Therapeutics Inc. with the support of the Ministry of SMEs and Startups (MSS). The findings of this research have been published in the 2020 June issue of the online edition of eLife, a renowned academic journal of the European Molecular Biology Organizationl (EMBO).

Journal Reference

Hyunah Lee, Hye Yeong Lee, Byeong Eun Lee, et al., Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model, eLife, (2020).

See the original post here:
New Study Presents Cell-based Therapy for MN Diseases or Spinal Cord Disorders - Mirage News

Induced Pluripotent Stem Cells: The Future of Tissue …

As viable human brain tissue is not available for use in studying disease development and creating therapies for neurological disorders like Huntingtons disease (HD), researchers desperately needed an alternative cell source for this purpose. Embryonic stem cells fit this role but have many disadvantages, especially for treatments, including immune rejection by the recipient. Some of these drawbacks have been overcome by a recent discovery that revolutionized the face of stem cell biology. In 2006, Shinya Yamanakas research group at Kyoto University made a groundbreaking announcement: they had discovered that adult cells could be genetically engineered to revert back to apluripotent, stem cell-like state. As iPSC (induced pluripotent stem cell) production rapidly improved, the cells were soon able to compete with traditional fetal, embryonic, and adult stem cells. The primary advantages of iPSCs compared to other stem cells are: a) iPSCs can be created from the tissue of the same patient that will receive the transplantation, thus avoiding immune rejection, and b) the lack of ethical implications because cells are harvested from a willing adult without harming them. These patient-specific cells can be used to study diseases in vitro, to test drugs on a human model without endangering anyone, and to hopefully act as tissue replacement for diseased and damaged cells.

Like other stem cells, iPSCs have the ability to proliferate indefinitely in vitro, creating a theoretically unlimited source of cells. Like embryonic stem cells, iPSCs can also differentiate into any cell of the body, regardless of the original tissue from which they are created. Scientists have found how to direct the differentiation of pluripotent stem cells into many types of target tissue, including neural tissue. iPSCs demonstrate that by the introduction of just four genes into somatic cells that normally cannot differentiate at all, cells can be created that can differentiate into every cell type in the body. The early results of iPSC differentiation studies look promising. For example, human fibroblasts have been successfully turned into iPSCs that then are differentiated into insulin-producing cells, a result that holds much potential for the treatment of diabetes. Mouse iPSCs have been differentiated into cardiovascular (heart muscle) cells, that actually show the contractile beating expected of heart tissue.

Although there are many problems that still must be addressed for iPS technology, such as the tendency for tumors to evolve after iPSC transplantation and the low efficiency of the technology, iPSCs could completely change how diseases are approached in biomedical research. For HD and other neurological disorders, iPSCs could create perfect models for the cells of the central nervous system that are harmed in the diseases.

Stem cell biology is a very hot topic in modern medicine, yet much is still unknown about the mechanisms underlying pluripotency and differentiation. In order for safe, controllable, and efficient cellular reprogramming to be achieved, there must be more knowledge on the regulation of stem cell states and transitions. iPSCs show that specialized cells and tissue can be transformed into other types of cells, proving cells are much more flexible than previously thought. As the study of HD will greatly benefit from this new, unlimited source of neural cells for research and cell therapy, iPSCs may be able to provide new and innovative treatments for HD.

The creation of pluripotent cells has been widely studied for decades. In 1976, the first method of fusion of an adult somatic cell with embryonic cells to create pluripotent stem cells was reported. However, fusion with embryonic cells created unstable cells that were rejected by immune systems after transplantation. If the genes that induced pluripotency could be isolated from their parent embryos and injected into somatic cells, these problems could be avoided.

Yamanakas research team studied twenty-four genes expressed by embryonic stem cells in an effort to track down these essential genes that induce pluripotency. To detect pluripotency, they looked for cells expressing genes that were traditionally expressed only in embryos. They discovered that the addition of four genes induced a cell into a pluripotent state capable of then becoming many different cell types.

Subsequent studies showed that other gene combinations were also successful in reengineering cells into iPSCs, but none were as efficient as the first four. Adding other genes that are expressed in early development was shown to increase reprogramming efficiency, and the specific genes needed varied depending on the cell type that was being forced back to its pluripotent state. As the four factors and their alternatives were largely discovered by trial and error, it is not known how the genes induce pluripotency. Discovering how genes work may point to ways of improving the efficiency of the process and assessing the quality of iPSCs.

The specific genes that induce iPSCs tell scientists a lot about the characteristics of the cells themselves. Pluripotent stem cells are very closely related to tumor cells. Both can survive and proliferate indefinitely, and a test of pluripotency is whether a cell can create a tumor. It is therefore no surprise that two tumor-related genes, c-Myc and Klf4, are needed to create iPSCs. Another requirement of pluripotent stem cells is open and active chromatin structures (for more information on chromosomes, click here and DNA transcription click here). The c-Myc gene codes for proteins that loosen the chromatic structure, stimulating differentiation. Klf4 impedes proliferation. c-Myc and Klf4 in this way regulate the balance between proliferation and differentiation. If only c-Myc and Klf4 are used in the engineering of iPSCs, tumor cells will ariseinstead of pluripotent stem cells. Oct3/4 and Sox2 are required to direct cell fate towards a more embryonic stem cells (ESC)-like phenotype. Oct3/4 directs specific differentiation, such as neural and cardiac differentiation, while Sox2 maintains pluripotency. Oct3/4 and Sox2 together ensure that iPSCs are indeed pluripotent stem cells and not tumor cells.

The programming of iPSCs depends both on the original cell type being transformed and the levels of each reprogramming factor that is expressed. Expressing Oct3/4 more than the other genes increases efficiency. Increasing the expression of any of the other three genes decreases the efficiency. There is clearly a correlation between gene expression ratio and reprogramming efficiency, but the optimal ratio is likely to vary depending on the cell type being reprogrammed. For instance, when neural progrenitor cells are reprogrammed, they do not require Sox2 as they express this gene sufficiently already. The level of expression of other important genes for maintaining pluripotency also can affect the reprogramming process and the quality of the resulting cells.

The effect gene expression ratio has on reprogramming may explain why efficiency is typically so low (less than 1% of cells are reprogrammed successfully). Reprogramming is a slow process, and so the timing of various events may also exert a great influence over thecells success. The minimum time for the full reprogramming of a mouse somatic cell into an iPSC is between eight and twelve days. The timing of the mechanism for cellular reprogramming may also be a reason for low efficiency, as the cells can only proceed if the right molecular events happen in the correct order.

In the first studies of iPSCs, the cells were shown to be similar to ESCs in morphology and proliferation. But the cells were not germline-competent, in other words they were unable to differentiate into cells that expressed genes of the parent cells, and so they could not give rise to adult chimeras when transplanted into blastocysts. As chimeras play key roles in biomedical research, scientists identified iPSCs through a stricter gene marker that only identified iPSCS that were germline competent. It was found that cells that expressed Nanog, a gene closely tied to pluripotency, were germline competent. These cells also were virtually indistinguishable from ESCs in gene expression, and were more stable. The transgenes were better silenced in the Nanog identified cells although 20% of the iPSCs still developed tumors due to the reactivation of c-Myc. Unfortunately this stricter criterion also decreased efficiency to only 0.001-0.03%. While subsequent studies improved this efficiency by varying methods, the fact remains that iPSCs are generated with incredibly low efficiency.

iPSCs exhibit many characteristics that are related to their pluripotency. They lose proteins that are common to somatic cells and gain proteins common to embryonic cells. They also lose the G1 checkpoint in their cell cycle control mechanism, which embryonic stem cells lack as well. During the reprogramming of somatic cells in the iPS mechanism, the cell cycle structure of stem cells must be reestablished. Another distinguishing characteristic of pluripotent stem cells is their open chromatin structure, as this is needed to maintain pluripotency and to access genes rapidly for differentiation. iPSCs have the open chromatin structure associated with ESCs and other pluripotent cells. Finally, female iPSCs show reactivation of the somatically silenced X chromosome. A very early step of stem cell differentiation is the inactivation of one of the two X chromosomes in female mammals, a random process. By the reactivation of this X chromosome, iPSCs show that they are truly pluripotent and identical to ESCs.

A huge barrier to the eventual use of iPSC-derived treatments is the use of retroviruses to force the expression of the four key genes, discussed above, and activating their transcription factors. Retroviruses can carry target DNA that is inserted into a host cells genome upon injection, making them ideal for incorporating the four genes into target cells. However, this DNA and the rest of the viruses genomes remain in the host genome, which can lead to transcription of unwanted genes and greatly increases the risk of tumors. The expression of the four transgenes must be silenced after reprogramming to avoid harmful gene expression. c-Myc, a tumor-promoting gene, especially must be silenced after cellular reprogramming or the risk of tumor development becomes too great for clinical use. These retroviral methods in which the transgenes are still present in the pluripotent cells pose a danger to safety, and also are less closely related to ESCs in gene expression than their non-retroviral alternatives. Methods of reprogramming iPSCs without transgene expression in the reprogrammed cell is therefore essential not only for potential therapies and clinical applications, but also for reliable and accurate invitro models of diseases. Yet, the low efficiency of alternatives remains a worry. Whether these methods will be viable for human clinical use remains to be seen.

The excision strategy (transient transfection) of iPSC generation allows the transgenes to briefly integrate into the genome but then removes them once reprogramming is achieved. An example of this site/enzyme combination is the loxP site and the Cre enzyme. In a study of Parkinsons disease (PD), specific iPSCs, this loxP/Cre combination was used to generate the iPSCs. Neural differentiation was then induced on the iPSCs to test whether they could differentiate into dopaminergic neurons, the cells harmed in PD. The differentiation was successful, indicating the transgenes had been excised. However, a loxP site remains in iPSC genome as does some residual viral DNA, so there is still a small potential for insertional mutagenesis. The piggyBac site/enzyme system on the other hand is capable of excising itself completely, not leaving any remnants of external DNA in the iPSC genome. The piggyBac system also was much more efficient than other non-retroviral methods, with comparable efficiency to retroviral methods, but with the added benefits of safety and ease of application.

Adenoviral methods do not pose the same threats as retroviral methods of generating iPSCs. Adenoviruses work like all viruses by hijacking their hosts cellular machinery to replicate their own genome and reproduce, but unlike retroviruses they do not incorporate their genome into the host DNA. Because the transgenes are never even incorporated into the hosts genome they do not have to be excised. Instead, the genes are expressed directly from the virus genome. iPSCs created by adenoviral methods demonstrated pluripotency, but have extremely low reprogramming efficiency. Viralgenomic material could not be detected in any of the iPSCs, and no tumor formation was reported. This suggests that the use of non-integrating adenoviral methods substantially lowers the threat of tumorgenesis. The successful creation of iPSCs from adenoviral methods proves definitively that safer, non-retroviral methods can also successfully reengineer cells.

Recent studies have implied that perhaps genetic material is not required for iPS cellular reprogramming. The substitution of transgenes with small molecules that promote iPSC generation would be a safe, clinically appropriate way of creating iPSCs, though it remains to be seen if small molecules will be able to completelyreplace genetic methods of iPSC generation or are just useful as supplementary aids to the process. Protein transduction is a different method shown to entirely replace gene delivery. In this method fusion proteins are created, which fuse each of the transgenes to a cell-penetrating peptide sequence that allows it to cross the cellular membrane. Reprogramming without DNA intermediates should eliminate the risk of tumorgenesis and distorted gene expression due to the reactivation of the transgenes.

With iPSC research being a hotspot for several years now, many of the problems the technology first faced have been studied and resolved. iPSCs are now germline competent, can be generated from many different types of human and animal somatic tissue, and can be generated in a variety of retrovirus-free methods. This lack of retroviruses ended worries about transgene reactivation and subsequent tumorgenesis. The nature of the transgenes in question made the risk of tumor development particularly prevalent, as two of the genes, c-Myc and Klf4, directly inducing tumorgenesis. Retroviral delivery posed a threat to safety in its increased risk of tumorgenesis and in its tendency to alter gene expression. When other methods were established that did not require retroviruses, these concerns were put to rest, yet these new methods efficiencies must be improved and some issues still remain concerning the safety of iPSCs and their abilities to act on par with any other pluripotent cell.

Even without the use of retrovirsues, tumorgenesis is still a large concern for iPSCs, especially if they are ever to be used as cell replacement therapies. Using retroviral methods, twenty percent of iPSCs developed tumors in one study, and though this number has significantly lowered, it must become negligible for iPSCs to be considered for clinical use. It is telling that the assay for pluripotency in stem cells is the ability to form teratomas, or tumors. This test of stemness illustrates the precariously close link between stem cells and tumor cells. There are several proposals on how to prevent this tumor formation. The idea to sort cells before transplantation and after differentiation, so that only well-differentiated neural progenitors will be transplanted, is one such proposal. Another proposal is to genetically modify iPSCs so that they will have a suicide gene to self-destruct when tumors are created. Finally, some antioxidants, such as Resveratrol, have been shown to have tumor-suppressing qualities, and could potentially aid in any treatment proposed to prevent tumors (for an article about the potential of Resveratrol for the treatment of HD, click here).

Directed differentiation has been a perennial problem in stem cell biology, and iPSCs bring their own unique characteristics to the dilemma. As with ESCs, iPSCs sometimes have the tendency to not fully differentiate. Also, as with all stem cell research with neurodegenerative diseases, a more efficient and comprehensive method to differentiate cells into neural progenitors and specific neuronal tissue must be discovered, as current methods are imperfect and slow.

In iPSC research there is a need to establish methods to evaluate the reprogramming process and the final quality of the cells. To create human iPSCs suitable for cell replacement therapies, there must be tests to ensure that all pluripotent cells have differentiated, and that the cells have not been genetically altered during reprogramming or during differentiation. With cells derived from diseased individuals for an autologous treatment, there is naturally the concern that the underlying genetic cause of the disease remains in the iPSCs and will manifest itself in the same way. Some studies have indicated that iPSC lines differ drastically, which makes the reproducibility of any particular phenotype difficult. Analyzing this variability may help discover which somatic tissue is best for generating iPSCs.

A problem that has not been significantly improved upon since the beginnings of iPSC research is the technologys low efficiency. Some hypothesize that the addition of other factors would greatly aid the reprogramming process, and that reprogramming success depends on specific amounts and ratios of the four factors, which are only achieved by chance in a small percentage of the cells. Modifying the culture conditions is another area of study for increasing efficiency and rate of iPSC production. For cellular transplantation therapies, other questions must also be considered, such as the optimal cell dose and source tissue, and the best way to deliver the cells. There are potential solutions to this problem, though. Induction efficiencies have been improved up to a hundred times initial values by use of different somatic starting cells and the aid of small molecules. Although there are barriers to iPSC production, research in this field is still in its infancy and has made impressive gains for the short time it has been going on. As more studies are conducted on iPSCs, these issues may be resolved and iPSCs may enter a state capable of clinical use.

Another potential way to improve iPSC generation efficiency is to establish the best somatic cells type to reprogram for the cleanest, easiest reprogramming. Many different tissue types have been reprogrammed, including fibroblasts, neural progenitor cell, and stomach epithelial (stomach lining) cells. Certain cell types are much more efficient and rapid than others. There is also the probability that subtly varying iPSCs are generated from different types of starting tissue, some of which may prove to be useful for research or replacement purposes.

An interesting type of somatic cell was used in studies of secondary iPSCs. iPSCS were initially generated and then implanted into blastocysts to create chimeric animals. Somatic cells from these chimeras were then removed and iPSCs were generated from these cells, creating secondary iPSCs. These secondary iPSCs were generated more efficiently. The differentiation status of thecells to be reprogrammed also affects efficiency, as adult progenitor cells are reprogrammed at three hundred times the efficiency of completely differentiated somatic cells.

An interesting possibility for the reprogramming methods of iPSCs is the potential for transdifferentiation. It may not always be necessary to reprogram cells all the way back to their most primitive pluripotent stem cell state, and instead reprogram one type of adult somatic tissue directly into a different type, bypassing the lengthy processes of complete reprogramming and subsequent differentiation. For example, in theory fibroblasts that can be easily and safely obtained from a patients skin could be converted into neurons or heart muscle cells without ever passing through a pluripotent stage. This would have advantages not only in the conservation of time and resources but also for safety, as transdifferentiation does not pose the risk of tumorgenesis as the cells never are pluripotent. Unfortunately, the technology for such processes is very difficult. To reprogram cells directly into a different cell type, the qualities and characteristics of the desired cell type must be comprehensively understood. For iPSCs the desired cell type was embryonic stem cells, which were very well researched and characterized, but for many types of cell of interest, including cells of the central nervous system, there are still many unanswered questions about the target cell population. Excitingly, the Wernig lab at Stanford has recently created induced neurons (iN) directly from mouse fibroblasts.

A potential use of iPSCs for cellular therapy that can be applied much more quickly than actual replacement of damaged tissue is the transplant of pluripotent cells as support cells rather than replacement neurons. These cells offer neuroprotection by preventing inflammation and producing neurotrophic factors (for the therapeutic use of neurotrophic factors in HD, click here). In various studies, the transplantation of iPSCs has significantly improved host neuronal survival and function. This bystander mechanism of therapy is of huge immediate potential in iPSCs, and Dr. Noltas lab recently submitted a request for a clinical study of the same mechanism using mesenchymal stem cells to the FDA. For a detailed study of the use of iPSCs for this purpose click here.

Stem cell biology has been an area of great interest and intense debate since its inception, and iPSC technology has furthered this research and created hope for potential therapeutic applications. While there are still many barriers to the clinical use of stem cells, iPSCs may help elucidate the nature of both pluripotent stem cells and of many disease pathologies to reach an eventual concrete connection between the two. With their potential for autologous cell replacement and disease modeling in vitro iPSCs are the future of stem cell research, and as such they are key players in the battle against HD.

Abeliovich, Asa and Claudia A. Doege. Reprogramming Therapeutics: iPS Cell Prospects for Neurodegenerative Disease. Neuron. 12 Feb, 2009, 61 (3): 337-39.

Short, approachable article reviewing two studies deriving iPSCs from patients with neurological disorders.

Cox, Jesse L. and Angie Rizzino. Induced pluripotent stem cells: what lies beyond the paradigm shift. Experimental Biology and Medicine. Feb 2010, 235 (2): 148-58.

Very detailed, mostly accessible review of the state of iPS research and the discoveries to date, as well as what iPS cells mean for stem cell biology and modern medical approaches. Perfect thorough introduction to iPS technology.

Crook, Jeremy Micah, and Nao Rei Kobayashi. Human stem cells for modeling neurological disorders: Accelerating the drug discovery pipeline. Journal of Cellular Biochemistry. 105 (6): 1361-66.

Accessible, interesting article that argues the greatest potential for iPSCs is to test potential drugs for neurological diseases in vitro and find problems early on in the drug development, saving time and resources.

Gunaseeli, I., et al. Induced Pluripotent Stem Cells as a Model for Accelerated Patient- and Disease-specific Drug Discovery. Current Medicinal Chemistry. 2010, 17: 759-766.

Readable review on the future of iPS cells, comparing them with other stem cells and elucidating their pontential drawbacks. Good summary of the landmark discoveries in iPS technology to date.

Haruhisa, Inoue. Neurodegenerative disease-specific induced pluripotent stem cell research. Experimental Cell Research. 2010.

General overview of use of iPS cells specific to neurological diseases for modeling diseases in vitro and eventually using as a cellular replacement therapy. Good, non-technical overview of the various potential pathways of iPS technology.

Hung, Chia-Wei, et al. Stem Cell-Based Neuroprotective and Neurorestorative Strategies. International Journal of Molecular Science. 2010, 11(5): 20392055.

Overview of various neurological diseases and the potential of stem cell therapeutics, either using adult neural stem cells or iPS stem cells. Experiment descriptions are fairly technical, but the reviews reflections and discussion are accessible and interesting.

Laowtammathron, Chuti, et al. Monkey hybrid stem cells develop cellular features of Huntingtons disease. BioMed Center Cell Biology. 2010, 11 (12).

Detailed article on the establishment of pluripotent HD monkey model cell line and its use in the study of Huntingtons.

Marchetto, Maria C.N., et al. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Human Molecular Genetics. 2010, 19 (1).

Fairly technical review describing the use of iPSCs for modeling neurological disorders.

Niclis, J.C., et al. Human embryonic stem cell models of Huntingtons Disease. Reproductive Biomedicine Online. July 2009, 19 (1): 106-13.

Detailed, technical article on the use of human embryonic stem cell lines for HD.

OMalley, James. New strategies to generate induced pluripotent stem cells. Current Opinions in Biotechnology. Oct. 2009: 20 (5): 516-21.

Longer technical article on the various strategies to generate iPS cells without using potentially dangerous viral vectors.

Okita, Keisuke, et al. Generation of germline-competent induced pluripotent stem cells. Nature. 19 Jul, 2007, 448(7151):313-17.

Fairly technical article about an early study in iPS research, where cells were selected for Nanog expression rather than the less pertinent gene Fbx15. This higher caliber of selected cells were germline-competent.

Okita, Keisuke, et al. Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science. 7 Nov, 2008, 322 (5903): 949-53.

Technical article about the advancements in finding non-viral, clinically applicable methods of creating iPS cells.

Orlacchio, A., et al. Stem Cells: An Overview of the Current Status of Therapies for Central and Peripheral Nervous System Diseases. Current Medicinal Chemistry. 2010, 17: 595-608.

Technical review on the various types of stem cells used in the studies of neurological diseases and the progress made to date with these cells.

Park, In-Hyun, et al. Disease-Specific Induced Pluripotent Stem Cells. Cell. 2008, 134 (5): 877-86.

Fairly accessible article on the creation of iPS cells with genetic defects, as tools for studying the symptoms and experimenting with treatments of various diseases.

Robbins, Reisha D., et al. Inducible pluripotent stem cells: not quite ready for prime time? Current Opinion in Organ Transplantation. 15 (1): 61-57.

Clear review of the barriers facing clinical use of iPSCs, accessible and realistic.

Soldner, Frank, et al. Parkinsons Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. Cell. 6 Mar, 2009, 136 (5): 964-77.

Technical article about first successful derivation of iPS cells from a patient with a neurodegenerative disease without using viral vectors. Relevant to HD research as a protocol that will likely be followed for subsequent creation of neurodegenerative iPSC lines for in vitro study.

Stradtfeld, Matthias, et al. Induced Pluripotent Stem Cells Generated Without Viral Integration. Science. 7 Nov, 2008, 322 (5903): 945-49.

Technical article outlining a method for creating iPS cells using excisable adenoviruses, rather. than retroviruses that have the potential to harm the cells.

Takahashi, Kazutoshi, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors Cell. 30 Nov, 2007, 131(5): 861-72.

Landmark article in the discovery of induced pluripotent stem cells and the factors that create them. Short, but fairly technical.

Yamanaka, Shinya. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Proliferation. Feb, 2008, 41 (Suppl. 1):51-6

Short review, less technical summary of first iPS discovery by Yamanaka. Perfect for quick overview of the basics of iPS cell generation.

Yamanaka, Shinya. Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells. Cell: Stem Cell. 7 June 2007, 1(1): 39-49.

Comprehensive review of various methods for creating pluripotent stem cells with a detailed introduction to iPSC methods. Fairly accessible, and very thorough.

A. Lanctot 2011

The rest is here:
Induced Pluripotent Stem Cells: The Future of Tissue ...

Induced Pluripotent Stem Cells (iPSCs) Market Application And Specification, Product Category, Downstream Buyers,Top Player with Forecast till 2026 -…

This Induced Pluripotent Stem Cells (iPSCs) Market report offers a detailed view of market opportunity by end user segments, product segments, sales channels, key countries, and import / export dynamics. It details market size & forecast, growth drivers, emerging trends, market opportunities, and investment risks in over various segments in Induced Pluripotent Stem Cells (iPSCs) industry. It provides a comprehensive understanding of Induced Pluripotent Stem Cells (iPSCs) market dynamics in both value and volume terms.

About Induced Pluripotent Stem Cells (iPSCs) Industry

The overviews, SWOT analysis and strategies of each vendor in the Induced Pluripotent Stem Cells (iPSCs) market provide understanding about the market forces and how those can be exploited to create future opportunities.

Important application areas of Induced Pluripotent Stem Cells (iPSCs) are also assessed on the basis of their performance. Market predictions along with the statistical nuances presented in the report render an insightful view of the Induced Pluripotent Stem Cells (iPSCs) market. The market study on Global Induced Pluripotent Stem Cells (iPSCs) Market 2018 report studies present as well as future aspects of the Induced Pluripotent Stem Cells (iPSCs) Market primarily based upon factors on which the companies participate in the market growth, key trends and segmentation analysis.

Get PDF Sample Copy of this Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2647159&source=atm

Regional and Country-level Analysis The report offers an exhaustive geographical analysis of the global Induced Pluripotent Stem Cells (iPSCs) market, covering important regions, viz, North America, Europe, China, Japan and Brazil. It also covers key countries (regions), viz, U.S., Canada, Germany, France, U.K., Italy, Russia, China, Japan, South Korea, India, Australia, Taiwan, Indonesia, Thailand, Malaysia, Philippines, Vietnam, Mexico, Brazil, Turkey, Saudi Arabia, UAE, etc. The report includes country-wise and region-wise market size for the period 2015-2026. It also includes market size and forecast by each application segment in terms of revenue for the period 2015-2026. Competition Analysis In the competitive analysis section of the report, leading as well as prominent players of the global Induced Pluripotent Stem Cells (iPSCs) market are broadly studied on the basis of key factors. The report offers comprehensive analysis and accurate statistics on revenue by the player for the period 2015-2020. It also offers detailed analysis supported by reliable statistics on price and revenue (global level) by player for the period 2015-2020. On the whole, the report proves to be an effective tool that players can use to gain a competitive edge over their competitors and ensure lasting success in the global Induced Pluripotent Stem Cells (iPSCs) market. All of the findings, data, and information provided in the report are validated and revalidated with the help of trustworthy sources. The analysts who have authored the report took a unique and industry-best research and analysis approach for an in-depth study of the global Induced Pluripotent Stem Cells (iPSCs) market. The following players are covered in this report: Fujifilm Holding Corporation (CDI) Ncardia Sumitomo Dainippon Pharma Astellas Pharma Inc Fate Therapeutics, Inc Pluricell Biotech Cell Inspire Biotechnology ReproCELL Induced Pluripotent Stem Cells (iPSCs) Breakdown Data by Type Human iPSCs Mouse iPSCs Human iPSCs had a market share of 89.65% in 2019, followed by Mouse iPSCs. Induced Pluripotent Stem Cells (iPSCs) Breakdown Data by Application Academic Research Drug Development and Discovery Toxicity Screening Regenerative Medicine Others Academic Research is the largest segment of Induced Pluripotent Stem Cells (iPSCs) application,with a share of 32% in 2019.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2647159&source=atm

The scope of Induced Pluripotent Stem Cells (iPSCs) Market report:

Global market size, supply, demand, consumption, price, import, export, macroeconomic analysis, type and application segment information by region, including:

Global (Asia-Pacific [China, Southeast Asia, India, Japan, Korea, Western Asia]

Europe [Germany, UK, France, Italy, Russia, Spain, Netherlands, Turkey, Switzerland]

North America [United States, Canada, Mexico]

Middle East & Africa [GCC, North Africa, South Africa],

South America [Brazil, Argentina, Columbia, Chile, Peru])

Industry chain analysis, raw material and end users information

Global key players information including SWOT analysis, companys financial figures, Laser Marking Machine figures of each company are covered.

Powerful market analysis tools used in the report include: Porters five forces analysis, PEST analysis, drivers and restraints, opportunities and threatens.

Based year in this report is 2019; the historical data is from 2014 to 2018 and forecast year is from 2020 to 2024.

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2647159&licType=S&source=atm

Manufacturing Analysis Induced Pluripotent Stem Cells (iPSCs) Market

Manufacturing process for the Induced Pluripotent Stem Cells (iPSCs) is studied in this section. It includes through analysis of Key Raw Materials, Key Suppliers of Raw Materials, Price Trend of Key Raw Materials, cost of Raw Materials & Labor Cost, Manufacturing Process Analysis of Induced Pluripotent Stem Cells (iPSCs) market

Marketing Strategy Analysis, Distributors/Traders Analysis of Induced Pluripotent Stem Cells (iPSCs) Market

Various marketing channels like direct and indirect marketing are portrayed in Induced Pluripotent Stem Cells (iPSCs) market report. Important marketing strategical data , Marketing Channel Development Trend, , Pricing Strategy, Market Positioning, Target Client Brand Strategy and Distributors/Traders List

More:
Induced Pluripotent Stem Cells (iPSCs) Market Application And Specification, Product Category, Downstream Buyers,Top Player with Forecast till 2026 -...

Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 2029 – Bulletin Line

Insights on the Global Stem Cell-Derived Cells Market

PMR is one of the leading market research companies in India. Our team of research analysts have a deep understanding and knowledge related to the latest market research techniques and use their analytical skills to curate insightful and high-quality market reports. The presented data is collected from credible primary sources including marketing heads, sales managers, product managers, industry experts, and more.

As per the report, the global Stem Cell-Derived Cells market reached a value of ~US$ XX in 2018 and is likely to surpass a market value of ~US$XX by the end of 2029. Further, the report reveals that the Stem Cell-Derived Cells market is set to grow at a CAGR of ~XX% during the forecast period (2019-2029)

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

Critical doubts related to the Stem Cell-Derived Cells market addressed in the report:

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

Segmentation of the Stem Cell-Derived Cells market

The report bifurcates the Stem Cell-Derived Cells market into different segments to provide a clear understanding of the various aspects of the market.

Regional Outlook

The regional outlook section of the report includes vital data such as the current trends, regulatory framework, The Stem Cell-Derived Cells market study offers critical data including, the sales volume, sales growth, and pricing analysis of the different products in the Stem Cell-Derived Cells market.

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Important insights present in the report:

Read the original here:
Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 2029 - Bulletin Line

COVID-19 Impact: Cell Transplant Market | Strategic Industry Evolutionary Analysis Focus on Leading Key Players and Revenue Growth Analysis by…

Cell Transplant Market Overview 2020 2025

This has brought along several changes in This report also covers the impact of COVID-19 on the global market.

The risingtechnology in Cell Transplant Marketis also depicted in thisresearchreport. Factors that are boosting the growth of the market, and giving a positive push to thrive in the global market is explained in detail.

Cell Transplant is a procedure in which cells, often stem cells or cells that can be induced to become pluripotent stem cells, are transferred to a site where the tissue is damaged or diseased. The transfer can occur within an individual (autologous transplantation), between individuals, or between species.

Get a Sample PDF copy of the report @ https://reportsinsights.com/sample/13951

Key Competitors of the Global Cell Transplant Market are: , Regen Biopharma, Global Cord Blood Corporation, CBR Systems, Escape Therapeutics, Cryo-Save, Lonza Group, Pluristem Therapeutics, Stemedica Cell Technology

Historical data available in the report elaborates on the development of the Cell Transplant on national, regional and international levels. Cell Transplant Market Research Report presents a detailed analysis based on the thorough research of the overall market, particularly on questions that border on the market size, growth scenario, potential opportunities, operation landscape, trend analysis, and competitive analysis.

Major Product Types covered are: Peripheral Blood Stem Cells Transplant (PBSCT) Bone Marrow Transplant (BMT)

Major Applications of Cell Transplant covered are: Hospitals Clinics Others

This study report on global Cell Transplant market throws light on the crucial trends and dynamics impacting the development of the market, including the restraints, drivers, and opportunities.

To get this report at a profitable rate.: https://reportsinsights.com/discount/13951

The fundamental purpose of Cell Transplant Market report is to provide a correct and strategic analysis of the Cell Transplant industry. The report scrutinizes each segment and sub-segments presents before you a 360-degree view of the said market.

Market Scenario:

The report further highlights the development trends in the global Cell Transplant market. Factors that are driving the market growth and fueling its segments are also analyzed in the report. The report also highlights on its applications, types, deployments, components, developments of this market.

Highlights following key factors:

:-Business descriptionA detailed description of the companys operations and business divisions. :-Corporate strategyAnalysts summarization of the companys business strategy. :-SWOT AnalysisA detailed analysis of the companys strengths, weakness, opportunities and threats. :-Company historyProgression of key events associated with the company. :-Major products and servicesA list of major products, services and brands of the company. :-Key competitorsA list of key competitors to the company. :-Important locations and subsidiariesA list and contact details of key locations and subsidiaries of the company. :-Detailed financial ratios for the past five yearsThe latest financial ratios derived from the annual financial statements published by the company with 5 years history.

Our report offers:

Market share assessments for the regional and country level segments. Market share analysis of the top industry players. Strategic recommendations for the new entrants. Market forecasts for a minimum of 9 years of all the mentioned segments, sub segments and the regional markets. Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations). Strategic recommendations in key business segments based on the market estimations. Competitive landscaping mapping the key common trends. Company profiling with detailed strategies, financials, and recent developments. Supply chain trends mapping the latest technological advancements.

Access full Report Description, TOC, Table of Figure, Chart, etc. @ https://reportsinsights.com/industry-forecast/Cell-Transplant-Market-13951

About US:

Reports Insights is the leading research industry that offers contextual and data-centric research services to its customers across the globe. The firm assists its clients to strategize business policies and accomplish sustainable growth in their respective market domain. The industry provides consulting services, syndicated research reports, and customized research reports.

Contact US:

:(US) +1-214-272-0234

:(APAC) +91-7972263819

Email:[emailprotected]

Sales:[emailprotected]

More here:
COVID-19 Impact: Cell Transplant Market | Strategic Industry Evolutionary Analysis Focus on Leading Key Players and Revenue Growth Analysis by...

Induced Pluripotent Stem Cells Market | 2020 Global …

The MarketWatch News Department was not involved in the creation of this content.

Jul 29, 2020 (The Expresswire) -- Induced Pluripotent Stem Cells Market2020 Global Industry Trends, Size, Share Analysis Report. According to this report Global Induced Pluripotent Stem Cells Market will rise from Covid-19 crisis at moderate growth rate during 2020 to 2026. Induced Pluripotent Stem Cells Market includes comprehensive information derived from depth study on Induced Pluripotent Stem Cells Industry historical and forecast market data. Global Induced Pluripotent Stem Cells Market Size To Expand moderately as the new developments in Induced Pluripotent Stem Cells and Impact of COVID19 over the forecast period 2020 to 2026.

Induced Pluripotent Stem Cells Market report provides depth analysis of the market impact and new opportunities created by the COVID19/CORONA Virus pandemic. Report covers Induced Pluripotent Stem Cells Market report is helpful for strategists, marketers and senior management, And Key Players in Induced Pluripotent Stem Cells Industry.

Get Sample Report To Know How COVID-19 Impacting Induced Pluripotent Stem Cells Market

Global Induced Pluripotent Stem Cells Market Insights:

Report Analyzes Global Induced Pluripotent Stem Cells Market Growth Size, Share And Trends By Derived Cell Type (Amniotic cells, Fibroblasts, Keratinocytes, Hepatocytes, Others), By Application (Regenerative medicines, Drug development, Toxicity testing, Reprogramming technology, Academic research, Others), By End-user (Hospitals, Education and research institutes, Biotechnological companies) and Geography Forecast till 2026.

Key Players Analyzed In Report: Astellas Pharma, Ncardia, Applied StemCell, FUJIFILM Cellular Dynamics, Axol Bioscience, Bristol-Myers Squibb Company,RandD Systems, Fate Therapeutics, Evotec AG, ViaCyte Inc.

Active government support for RandD activities through research grants is driving the global induced pluripotent stem cells. Increasing private funding and rising shift towards regenerative medicines are predicted to favor induced pluripotent stem cells revenue. Further, induced pluripotent stem cells have created new avenues in clinical research, regenerative medicines, and disease modeling. This has also paved the way to numerous mergers and acquisitions and potential pipeline products and patents. In addition, the diversity of donor candidates is a factor predicted to aid induced pluripotent stem cells growth. Moreover, increasing accessibility towards the cell of origin is also expected to boost the global induced pluripotent stem cells market in the forthcoming year. However, ethical issues related to the donors and potential risk of tumors are factors predicted to hamper the growth of the global induced pluripotent stem cells.

STEMCELL Technologies Inc., a global biotechnology company launched mTeSR Plus, an enhanced version of mTeSR1, a widely published feeder-free human pluripotent stem cell (hPSC) maintenance medium. mTeSR Plus will be used to prevent onset acidosis. The launch of mTeSR Plus is likely to encourage global induced pluripotent stem cells growth owing to the design of the mTeSR Plus, which offers more consistent cell culture environment through sustained medium pH and stabilized components including FGF2. Furthermore, warning by FDA for marketing dangerous unapproved stem cells products is expected to alert pharmaceutical companies to market FDA approved products. This factor will, in turn, enable growth of the global induced pluripotent stem cells. For instance, the U.S Food and Drug Administration (FDA) sent a warning to Genetech, Inc. for marketing stem cell therapy without the U.S FDA approval and nonconformity of Good Manufacturing Practice (CGMP).

Regional Market Overview:

Regional analysis is another highly comprehensive part of the research and analysis study of the global market presented in the report. This section sheds light on the sales growth of different regional and country-level markets. For the historical and forecast period to 2024, it provides detailed and accurate country-wise volume analysis and region-wise market size analysis of the global market.

Geographically, the global induced pluripotent stem cells market is segmented into North America, Europe, Asia Pacific, Latin America, and Middle East and Africa. North America is expected to dominate the global induced pluripotent stem cells market during the forecast period due to the increasing RandD investment by key players for potential pipeline products. In Europe, the global induced pluripotent stem cells market is anticipated to grow significantly during the forecast period. The active government support and product launches are predicted to favor growth in the region. For instance, in 2018, Ncardia, a company working for drug discovery using stem cell, launched Xpress.4U LightPace Cor.4U, a kit for improving and simplifying the use of optical pacing of cardiomyocytes, a human induced pluripotent stem cell. The aforementioned factors together are enabling growth in Europe.

Intended Audience:

Competitive Analysis:

The Induced Pluripotent Stem Cells Market report examines competitive scenario by analyzing key players in the market. The company profiling of leading market players is included this report with Porter's five forces analysis and Value Chain analysis. Further, the strategies exercised by the companies for expansion of business through mergers, acquisitions, and other business development measures are discussed in the report. The financial parameters which are assessed include the sales, profits and the overall revenue generated by the key players of Market.

Report Highlights:

In-depth information about the latest Induced Pluripotent Stem Cells Industry trends, opportunities, and challenges.

Extensive analysis of the growth drivers And barriers.

Competitive landscape consisting of investments, agreements, contracts, novel product launches, strategic collaborations, and mergers and acquisitions.

List of the segments and the niche areas.

Comprehensive details about the strategies that are being adopted by key players.

Table of Content:

1.1. Research Scope

1.2. Market Segmentation

1.3. Research Methodology

1.4. Definitions and Assumptions

3.1. Market Drivers

3.2. Market Restraints

3.3. Market Opportunities

4.1. Prevalence of Key Indications, 2017 (Key Countries)

4.2. Economic (Key Countries)

4.3. Key Mergers and Acquisitions

4.4. Pricing Analysis, Key Players, 2017

4.5. Overview: New Developments in Induced Pluripotent Stem Cells

5.1. Key Findings / Summary

Continue...

Related News:

Atopic Dermatitis Treatment Market 2020

Adalimumab Biosimilar Market 2020

Capsule Endoscopy Market 2020

Diabetic Neuropathy Market 2020

Facial Injectables Market 2020

About Us:

Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.

Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.

At Fortune Business Insights, we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.

Contact Us:

Fortune Business Insights Pvt. Ltd.

308, Supreme Headquarters,

Survey No. 36, Baner,

Pune-Bangalore Highway,

Pune -411045, Maharashtra, India.

US: +1 424 253 0390

UK: +44 2071 939123

APAC: +91 744 740 1245

Email: sales@fortunebusinessinsights.com

Press Release Distributed by The Express Wire

To view the original version on The Express Wire visit Induced Pluripotent Stem Cells Market | 2020 Global Industry Analysis By Size, Growth Rate, Share, Trends, Key Players, COVID-19 Impact, Opportunity, and Regional Insights With Forecast To 2026

COMTEX_368578266/2598/2020-07-29T03:00:08

Is there a problem with this press release? Contact the source provider Comtex at editorial@comtex.com. You can also contact MarketWatch Customer Service via our Customer Center.

The MarketWatch News Department was not involved in the creation of this content.

Read this article:
Induced Pluripotent Stem Cells Market | 2020 Global ...

Fun facts about South Africa Here are 25 things you probably didnt know – The South African

We already love South Africa, but here are a few more reasons to be proud of the country. From medical breakthroughs and ecological wonders to industrial and cultural factoids, here are 25 things you may not have known about our beautiful corner of the globe.

South Africa is rich in remains and artefacts of early hominids. The Cradle of Humankind was declared as aWorld Heritage siteback in 1999. It currently occupies approximately 47 000 hectares of land.

In addition,UNESCO Fossil Hominids Siteslist five separate locations and traces archaeological evidence of human evolution back to least 2.5 million years ago. ,

Some countries have deserts or grasslands, other countries have wetlands or subtropical forests. But that is no match for the country we call home.

South Africa has a diverse range of biomes: from deserts, wetlands, grasslands and bush, to subtropical forests, mountains and escarpments. In addition, our climate is as varied as our biomes, ranging from desert to subtropical weather.

Our flora and fauna are also among the most biologically diverse in the world.

Dr Chris Barnard famouslyperformed the worlds first hearttransplant in 1967 on Louis Washkansky, who volunteered for the groundbreaking surgery.

The success of the first heart transplant turned Dr Barnard into somewhat of a celebrity on the international scene, and he performed ten more transplants throughout his career.

On 3 March 2019, Professor Mashudu Tshifularo became the first person to transplant 3D-printed bones for reconstructive middle ear implants, at the Steve Biko Academic Hospital.

Prof Tshifularo, who is the head of the Department of Ear, Nose, and Throat and Head and Neck Surgery at theOtorhinolaryngologyDepartment of theUniversity of Pretoria, developed the technology during his PhD studies.

The worlds firstdigital laserwasinvented by doctoral candidate, and CSIR researcher, Dr Sandile Nqcobo, and the former minister of Science and Technology cited it as a testimony to the calibre of scientists that South Africa has.

The laser is used in the health sector, and its numerous applications could also be used to improve the communication sector.

The scanner wascreated by Lodox Systems,a South African company that created the full-body scanner from technology that was initially designed for the security sector for the detection of stolen diamonds.

The use of the full-body scanner was written into the storyline of Greys Anatomy during the shows ninth season when the Grace Mercy West Hospital installed the scanner in their new ER department.

The CSIRs Gene Expression and Biophysics groupdesigned the first induced pluripotent stem cells in Africa, which opened the door for researchers to investigate various diseases and cures.

Stem cells could be used to restore sight or repair cells affected by heart disease, amongst other things. The possibilities are endless and are still being explored.

We sure do like our booze, that is no secret. One just has to look at the uproar generated by the recent alcohol bans in South Africa amid the COVID-19 pandemic and subsequent lockdowns.

But did you know that SAs brewery, SABMiller ranks, by volume, as the largest brewing company in the world? Approximately 50% of SABs production ships off to supply Chinas beer market.

Nearly three decades after the Cold War ended, there are still about 23 000 nuclear warheads in the world. South Africas nuclear weapons programme was established in 1967.

From the late sixties to the late eighties, South Africa researchedweapons of mass destruction, including nuclear, biological and chemical weapons. The nuclear weapons programme came to an end in 1989.

However, South Africa is the first and only country in the world to have built nuclear weapons and then voluntarily dismantle its entire nuclear weapons programme.

According to Statista, South Africa is the largest producer of platinum in the world by a significant margin, with a production of between 94 and 130 metric tons each year from 2010 to 2019.

In 2014 South Africa produced approximately 110 000kg, which is more than four times the amount of the worlds second-biggest producer, Russia. The latter produced between 23 metric tons and 22 metric tons each year between 2010 and 2018.

On 25 January 1905, the Cullinan diamond was found in the Premier Mine in Pretoria, South Africa. At 603 grams (or 1.33 pounds) it was the largest diamond in the world.

The 3 106-carat stone was later cut into nine large pieces and about 100 smaller ones. The largest of the nine, the Cullinan I or Great Star of Africa, was an impressive 530.2 carats. It is currently in the Queen of Englands Sceptre. And the rest?

Until 2019, South Africa was the only country in theworld to have hosted the Soccer, Cricket and Rugby World Cup. England joined us in the ranks last year, and is also the only country to have won all three World Cups.

Nowhere else in the world will you find that two Nobel Peace Prize laureates lived on the same street. Both Nelson Mandela and Archbishop Desmond Tutu lived onVilakazi Streetin the Orlando West township in Soweto.

Desmond Tutu was awarded the Nobel Peace Prize in 1984 for his nonviolent opposition to apartheid, followed by Nelson Mandelas shared Nobel Peace Prize in 1993 with F.W. de Klerk, for their role in the peaceful end of apartheid.

Table Mountain in Cape Town is one of the oldest mountains in the world, just over 260 million years to be exact. It also has more than 2 200 species of plants and approximately 900 different routes to climb or hike.

Lets put that in perspective: Table mountain alone has more plant species than the entire United Kingdom. In addition, the Cape Floral Region represents less than 0.5% of the area of Africa, but is home to 20% of the continents flora.

Each of the eight UNESCO World Heritage Sites in South Africa reflects an important aspect of its cultural and natural landscape. Thesitesinclude cultural treasures such as hominid fossils, the earliest indigenous kingdom of South Africa, the cave paintings of the San people.

In addition, it also includes the traditional use of the land by the Nama and the prison that housed political prisoners, including Nelson Mandela. Other sites protect the natural uniqueness of South Africa from the Cape Floral Region and the iSimangaliso Wetlands to the Vredefort Dome.

Speaking of UNESCO World Heritage sites, South Africa is home to the oldest meteor scar in the world the Vredefort Dome in Parys. A meteor the size of a mountain fell to Earth around 2 030 million years ago.

The 10km-wide meteor left a crater 300km across and is the oldest crater made by either a comet or meteorite. Its also reportedly the site of the largest energy release in history.

Despite a recent Australian discovery, we can still claim the largest visible crater in the world. In 2015, scientists found a bigger crater measuring 400km wide underground in the Australian outback.

South Africas Cape Winelands is the worlds longest wine route, with a meandering road spanning 850 kilometres. Route 62 runs between Cape Town, Constantia to Port Elizabeth, via Oudtshoorn and the Garden Route, passing by 200 cellars and kilometres of vines.

The hunter-gather Sans and pastoral Khoi become known as the KhoiSan and lived in what is present-day Western Cape around 300AD. Zulu and Xhosa tribes established large kingdoms in the region during the 15th century.

The South African fish migration is so huge it can be seen from space between May and July every year. Millions of small silver fish travel in vast shoals from the cold waters off South Africas Cape Point up to the coastlines of the northern Eastern Cape and southern KwaZulu-Natal.

This annual event is known as the Sardine Run. The shoals are so big 15km long, 3.5km wide and up to 40m deep they can be seen by satellite. In their wake come hundreds of birds, sharks, whales, dolphins, all eager to catch a bite.

The Karoo region in the Western Cape is home to some of the bestfossils of early dinosaurs. In fact, it is estimated that some 80% of the mammalian fossils found to date were found in the Karoo.

The University of South Africa (Unisa) which was founded in 1873 as the University of the Cape of Good Hope is the largest correspondence university in the world.

Unisa became the first public university in the world to teach exclusively by means of distance education in 1946. Today, the university has more than 400 000 students from 130 countries.

Adrenaline junkies will be eager to fling themselves off the worlds highest commercial bridge bungee in the world at Bloukrans Bridge in the Tsitsikamma region between the Eastern and Western Cape.

At a dizzying 216 metres high, the popular jump sees thrill-seekers plunge towards the Bloukrans River below before bouncing to a stop.

For centuries, the South African coastline has claimed the lives of thousands of sailors. Today, all shipwrecks are protected under South African law. A list of the shipwrecks along the coast can be viewed here.

In 2006, South Africa became the first African country and the fifth country in the world to recognise same-sex marriage. The prohibiting of discrimination based on sexual orientation is even written into their constitution.

Cape Town is also referred to as the Gay Capital of the World.

A segment of the infamous Berlin Wall, which was torn down in November 1989, was gifted to our late president Nelson Mandela following his visit to Berlin in 1996. Today, this piece of history sits atop the St Georges Mall outside Mandela Rhodes Place.

Not only is South Africa a prime film destination, but we also have the second oldest film industry in the world. The firstfilmstudio inSouth Africa, KillarneyFilmStudios, wasestablishedin 1915 in Johannesburg; Hollywood was founded in 1903.

Some of the most famous Hollywood movies shot in South Africa include Avengers: Age of Ultron, Mandela: Long Walk to Freedom, Safe House, District 9, Blood Diamond, Homeland, Outlander, Resident Evil: The Last Chapter, The Dark Tower, Black Sails, The Maze Runner: The Death Cure and Tomb Raider.

The AngloGold Ashantis Mponeng gold mine near Johannesburg is the deepest gold mine in the world. It takes more than an hour to travel from the surface right down to the bottom.

The temperature of the rock so deep down gets very hot and the air in the tunnels is cooled by pumping slurry ice into the depths.

South Africa has 12 official languages: English, Afrikaans, isiZulu, isiXhosa, Sesotho, Setswana, Sepedi, Xitsonga, siSwati, isiNdebele, Tshivenda, and Sign Language, whichwas officially recognised as a homelanguagein 2018.

As per the 2011 census, 22.7% of South Africans speak isiZulu as their native language, making it the most commonly spoken language. English is the most common language used in business.

The only other country with more languages than South Africa is India with 18 official languages. However, each language is recognised as the official language of a certain area, and not the country as a whole.

South Africa is the only country in the world with three capitals, and no, Pretoria is not the capital. Pretoria is the administrative capital while Cape Town is the legislative capital and Bloemfontein the judicial capital.

The only city specified in the Constitution of South Africa is Cape Town, the seat of Parliament. Most foreign embassies are in Pretoria, but many countries also have consulates in the other cities.

View post:
Fun facts about South Africa Here are 25 things you probably didnt know - The South African

New report offers analysis on the Induced Pluripotent Stem Cells Market – Jewish Life News

This Induced Pluripotent Stem Cells Market report offers a detailed view of market opportunity by end user segments, product segments, sales channels, key countries, and import / export dynamics. It details market size & forecast, growth drivers, emerging trends, market opportunities, and investment risks in over various segments in Induced Pluripotent Stem Cells industry. It provides a comprehensive understanding of Induced Pluripotent Stem Cells market dynamics in both value and volume terms.

About Induced Pluripotent Stem Cells Industry

The overviews, SWOT analysis and strategies of each vendor in the Induced Pluripotent Stem Cells market provide understanding about the market forces and how those can be exploited to create future opportunities.

Important application areas of Induced Pluripotent Stem Cells are also assessed on the basis of their performance. Market predictions along with the statistical nuances presented in the report render an insightful view of the Induced Pluripotent Stem Cells market. The market study on Global Induced Pluripotent Stem Cells Market 2018 report studies present as well as future aspects of the Induced Pluripotent Stem Cells Market primarily based upon factors on which the companies participate in the market growth, key trends and segmentation analysis.

Get PDF Sample Copy of this Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2635628&source=atm

The report firstly introduced the Induced Pluripotent Stem Cells basics: definitions, classifications, applications and market overview; product specifications; manufacturing processes; cost structures, raw materials and so on. Then it analyzed the worlds main region market conditions, including the product price, profit, capacity, production, supply, demand and market growth rate and forecast etc. In the end, the report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

The major players profiled in this report include: BlueRock Therapeutics Corning Life Sciences EMD Millipore Lonza Group Promega Thermo Fisher Scientific

The end users/applications and product categories analysis: On the basis of product, this report displays the sales volume, revenue (Million USD), product price, market share and growth rate of each type, primarily split into- General Type

On the basis on the end users/applications, this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate of Induced Pluripotent Stem Cells for each application, including- Medical

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2635628&source=atm

The scope of Induced Pluripotent Stem Cells Market report:

Global market size, supply, demand, consumption, price, import, export, macroeconomic analysis, type and application segment information by region, including:

Global (Asia-Pacific [China, Southeast Asia, India, Japan, Korea, Western Asia]

Europe [Germany, UK, France, Italy, Russia, Spain, Netherlands, Turkey, Switzerland]

North America [United States, Canada, Mexico]

Middle East & Africa [GCC, North Africa, South Africa],

South America [Brazil, Argentina, Columbia, Chile, Peru])

Industry chain analysis, raw material and end users information

Global key players information including SWOT analysis, companys financial figures, Laser Marking Machine figures of each company are covered.

Powerful market analysis tools used in the report include: Porters five forces analysis, PEST analysis, drivers and restraints, opportunities and threatens.

Based year in this report is 2019; the historical data is from 2014 to 2018 and forecast year is from 2020 to 2024.

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2635628&licType=S&source=atm

Manufacturing Analysis Induced Pluripotent Stem Cells Market

Manufacturing process for the Induced Pluripotent Stem Cells is studied in this section. It includes through analysis of Key Raw Materials, Key Suppliers of Raw Materials, Price Trend of Key Raw Materials, cost of Raw Materials & Labor Cost, Manufacturing Process Analysis of Induced Pluripotent Stem Cells market

Marketing Strategy Analysis, Distributors/Traders Analysis of Induced Pluripotent Stem Cells Market

Various marketing channels like direct and indirect marketing are portrayed in Induced Pluripotent Stem Cells market report. Important marketing strategical data , Marketing Channel Development Trend, , Pricing Strategy, Market Positioning, Target Client Brand Strategy and Distributors/Traders List

See the original post:
New report offers analysis on the Induced Pluripotent Stem Cells Market - Jewish Life News

Decoding the Relationship Between Ageing and ALS – Medscape

Abstract and Introduction Abstract

With an ageing population comes an inevitable increase in the prevalence of age-associated neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), a relentlessly progressive and universally fatal disease characterized by the degeneration of upper and lower motor neurons within the brain and spinal cord. Indeed, the physiological process of ageing causes a variety of molecular and cellular phenotypes. With dysfunction at the neuromuscular junction implicated as a key pathological mechanism in ALS, and each lower motor unit cell type vulnerable to its own set of age-related phenotypes, the effects of ageing might in fact prove a prerequisite to ALS, rendering the cells susceptible to disease-specific mechanisms. Moreover, we discuss evidence for overlap between age and ALS-associated hallmarks, potentially implicating cell type-specific ageing as a key contributor to this multifactorial and complex disease. With a dearth of disease-modifying therapy currently available for ALS patients and a substantial failure in bench to bedside translation of other potential therapies, the unification of research in ageing and ALS requires high fidelity models to better recapitulate age-related human disease and will ultimately yield more reliable candidate therapeutics for patients, with the aim of enhancing healthspan and life expectancy.

The human population is ageing, with an estimated 1.5 billion people expected to be 65+ years by 2050, triple the 2010 estimate (World Health Organisation, 2011). But alongside a lengthened life expectancy comes the drawback of age-related ill health that compromises quality of life. Ageing is a ubiquitous phenomenon, with multiple hypotheses attempting to explain why age-related changes occur on an organism, organ and cellular level (reviewed in Jin, 2010; Lopez-Otin et al., 2013) (Figure 1). Indeed, age is the most prevalent risk factor for neurodegenerative disease (reviewed in Khan et al., 2017). Within this group is amyotrophic lateral sclerosis (ALS), a relentlessly progressive and universally fatal disease underpinned by degeneration of motor neurons. With a prognosis of 25 years from onset to fatality and a myriad of complex debilitating symptoms (reviewed in Balendra and Patani, 2016), it is key to elucidate the true pathogenic mechanisms underlying ALS and use these insights to develop truly impactful disease-modifying therapies for patients, a feat yet to be achieved.

Figure 1.

Human ageing theories and phenotypes. A number of theories aim to explain human ageing (reviewed in Jin, 2010), broadly categorized into the programmed theories of ageing, where normal ageing follows a set biological clock with time-dependent expression changes, and damage theories of ageing, where accumulation of damage over time ultimately leads to dysfunction (reviewed in Jin, 2010). Age-related abnormalities (described above) are apparent in several organs (reviewed in Khan et al., 2017); however, differential resistance/vulnerability to the effects of ageing in various organs has been noted (reviewed in Khan et al., 2017). The rate of ageing differs between individuals, with some people ageing better and some worse than expected in a phenomenon termed Delta ageing (Rhinn and Abeliovich, 2017). Indeed, variability of ageing rate might also occur on a cellular and organ level, somewhat providing evidence for the mechanism behind cell type and organ specific susceptibility to the effects of ageing, and in turn age-related disease, such as ALS. Templates used/adapted to create this figure are freely available from Servier Medical Art (https://smart.servier.com/).

Several studies have implicated the neuromuscular junction (NMJ), the site of union between motor neuron and muscle within the lower motor unit (Figure 2), in ALS pathogenesis. Indeed, the die-back hypothesis of ALS suggests that motor neuron terminals at the NMJ are the initial foci of pathogenesis with retrograde axonal degeneration ultimately reaching the motor neuron soma, leading to neuronal degeneration and subsequent symptoms (reviewed in Dadon-Nachum et al., 2011). Neuromuscular transmission defects and synaptic aberrance have been shown to precede motor neuron degeneration and motor symptoms in rodent (Rocha et al., 2013; Chand et al., 2018) and fruit fly (Shahidullah et al., 2013) models of ALS. Furthermore, restricting expression of ALS-associated human superoxide dismutase 1 (SOD1) to skeletal muscle, induced motor neuron degeneration and functional defects in transgenic mice overexpressing wild-type human SOD1 or its G93A and G37R mutant forms (Wong and Martin, 2010). This, alongside findings of altered regulation of skeletal muscle specific microRNAs in ALS (reviewed in Di Pietro et al., 2018), fortifies the role of skeletal muscle and the NMJ in ALS pathology, whilst supporting the die-back hypothesis.

Figure 2.

The lower motor unit. Individual components of the lower motor unit: lower motor neuron, skeletal muscle, astrocyte, myelinating Schwann cell, terminal Schwann cell. All constituents of the lower motor unit play key roles in motor function and voluntary movement, are affected by normal ageing and are implicated in ALS pathogenesis. The site of unification of motor neuron and muscle (the neuromuscular junction) has a vital role in ALS pathology and also undergoes age-associated alterations. Templates used/adapted to create this figure are freely available from Servier Medical Art (https://smart.servier.com/).

Here, we review how ageing of the cellular constituents of the lower motor unit relates to ALS. Specifically, we will discuss motor neurons, skeletal muscle, astrocytes and Schwann cells. By integrating insights from these individual components, we discuss the potential role of cell type specific ageing in ALS. Finally, we look at approaches to enhance ALS model fidelity and applicability to patients, as well as potential therapeutic implications of tackling age-associated aberrance, namely maximizing healthspan and lifespan in ALS.

The degeneration of brain and spinal cord motor neurons forms the major pathological substrate of ALS, leading to rapid functional decline and death in patients. As well as the clear contribution of non-neuronal cells to ALS, a number of cell intrinsic motor neuronal pathological hallmarks have been defined, including (but not restricted to) excitotoxicity, abnormal cytoskeleton and axonal transport and disrupted RNA metabolism (reviewed in Van Damme et al., 2017). Indeed, normal ageing bears a variety of structural and functional consequences for motor neurons, which may directly or indirectly contribute to motor neuron pathology in ALS.

Age-related changes in motor neuron number remains a controversial topic, with some studies suggesting motor neuron number and/or size to be stable with ageing in mice and rhesus monkeys (Maxwell et al., 2018), whilst other studies suggest progressive motor neuronal loss [in rat (Jacob, 1998) and human (Tomlinson and Irving, 1977) lumbosacral spinal cords]. Indeed, neither the aged rats nor patients from these studies experienced commensurate loss of physical activity/ability as a result of motor neuron attrition (Tomlinson and Irving, 1977; Jacob, 1998), suggesting a significant functional reserve in this system. Despite not causing outright functional decline, it remains possible however that a reduction in motor neurons with ageing leaves remaining aged motor neurons under elevated stress (Jacob, 1998), and thereby more vulnerable to age-related pathologies, such as ALS.

Voluntary movements depend on effective electrical communication between neurons, with imperative roles for both excitatory (glutamatergic and cholinergic) and inhibitory (GABAergic and glycinergic) synaptic inputs terminating on alpha motor neurons (Maxwell et al., 2018). Indeed, cholinergic synaptic inputs in the ventral horn and specifically those terminating on alpha motor neuron cell bodies were decreased in old rhesus monkeys, a finding mirrored in mice (Maxwell et al., 2018). Glutamatergic synaptic inputs directly terminating on alpha motor neurons in old monkeys and mice were also reduced (Maxwell et al., 2018). Hence, normal ageing is accompanied by loss of synaptic inputs to alpha motor neurons, a key age-related phenotype and indeed, a shared pathological hallmark with motor diseases including ALS [as shown in transactive response DNA binding protein 43kDa (TDP-43) and SOD1 mutant mice] (Vaughan et al., 2015).

Neurons are post-mitotic, meaning they have left the cell cycle and are no longer proliferating, thereby they cannot undergo classical cellular senescence. Emerging literature has however implicated an analogous process in neurons, mimicking some of the key age-related effects of senescence on other cell types. More specifically, human induced pluripotent stem cell (iPSC)-derived neurons from patients with Rett syndrome, characterized by loss-of-function mutations in MECP2, were shown to activate p53, a regulator of cellular senescence, subsequently inhibiting complex neuronal process formation (Ohashi et al., 2018). In addition, senescence-associated secretory phenotype (SASP) genes were also induced and -galactosidase activity increased in neurons lacking MECP2 (Ohashi et al., 2018), indicating that a 'senescence like' picture was present in neurons derived from these patients. It is possible that an analogous senescence process takes place in normal ageing neurons, thus leading to cellular stress, aberrant neuronal health and enhanced vulnerability to further pathological insult.

Lipofuscin aggregates, rich in lipids, metals and misfolded proteins, accumulate in neurons during normal ageing, as well as in other post-mitotic, non-proliferative cell types that lack the capacity to effectively dilute out the aggregates during proliferation (reviewed in Moreno-Garcia et al., 2018). Indeed, lysosomes and subsequently cell cytoplasm become overloaded with these aggregates, with associated oxidative stress, altered proteostasis, neuronal cytoskeletal and trafficking perturbations, and glial reactive transformation, potentially modifying risk of neurodegenerative disease (reviewed in Moreno-Garcia et al., 2018). Given that lipofuscin aggregate accumulation has been consistently noted in various aged animal (Maxwell et al., 2018) and indeed human motor neurons during normal ageing (Tomlinson and Irving, 1977; Rygiel et al., 2014), this phenomenon may thereby be relevant in ALS.

The dysfunction of motor neuron mitochondria with normal ageing (Rygiel et al., 2014) is intriguing, seeing that this mechanism has been noted as a key contributor to ALS pathology (reviewed in Van Damme et al., 2017). Lumbar spinal cord sections from 12 elderly patients revealed a subset of motor neurons with mitochondrial respiratory chain complex 1 deficiency, a phenotype not present in human foetal (911 weeks post-conception) spinal cords (Rygiel et al., 2014). Mitochondrial DNA copy number and cell body size were also reduced in complex 1 deficient motor neurons (Rygiel et al., 2014). With potential effects on neuronal function, viability and survival, it is possible that respiratory chain deficiency with normal ageing may instigate motor neuron dysfunction and degeneration (Rygiel et al., 2014) and this is consistent with such defects having an important role in age-related neurodegeneration and ALS, although this clearly requires further direct investigation to understand comprehensively.

Electrophysiological studies on aged wild-type mice showed alterations in motor neuron membrane and excitability properties (Moldovan et al., 2016). Indeed, ageing led to changes in voltage gated sodium channel expression, more specifically, ectopic expression of Nav1.8 on aged motor axons, affecting axonal membrane functionality (Moldovan et al., 2016). These electrophysiological alterations were attenuated with pharmacological blocking of Nav1.8, and in sensory neuron-specific Nav1.8 null mice (Moldovan et al., 2016). Altogether, although itself not neurotoxic, ectopic expression of Nav1.8 during ageing can leave motor neurons with higher energy requirements vulnerable to progression of neurodegeneration and neuronal pathology (Moldovan et al., 2016). Age-related membrane excitability alterations and changes potentially consistent with membrane depolarization were also noted in a non-invasive electrophysiological study of patient median motor axons (Bae et al., 2008). Age-associated electrical abnormalities may thereby leave aged motor neurons susceptible to further neuronal insult and neurodegenerative pathology.

A number of studies have identified key genes and pathways in normal motor neuron ageing, which can help better understand the potential intersect between ageing and disease. Indeed, transcriptomic analysis in Drosophila revealed matrix metalloproteinase 1 (dMMP1) to not only undergo an age-related increase in expression in motor neurons, but also cause motor functional defects that become more severe with further ageing when overexpressed in a subset of motor neurons (Azpurua et al., 2018). Impairment of presynaptic neurotransmitter release at the NMJ was the proposed mechanism (Azpurua et al., 2018). The upregulation of matrix metalloproteinases in ageing may be of special significance in age-related neurodegeneration and namely ALS, with TDP-43 overexpression in neurons accelerating the rate of dMMP1 accumulation (Azpurua et al., 2018) and suggesting a potential pathogenic mechanism linking ageing and ALS.

Mice with perturbed excision repair cross-complementation group 1 gene (Ercc1 / mice), deficient in a number of DNA repair system components including nucleotide excision repair and double strand break repair, gained an aberrant motor phenotype that progressively declined with ageing (de Waard et al., 2010). Alongside activation of CNS microglia and astrocytes, age-associated motor neurodegeneration and NMJ pathology, genotoxic stress, DNA damage and Golgi apparatus abnormalities were noted in Ercc1 / mice (de Waard et al., 2010). Hence, defective DNA repair mechanisms lead to motor neuron degeneration and functional decline in an age-dependent manner (de Waard et al., 2010). TDP-43 and fused in sarcoma (FUS) pathology did not develop in these motor neurons, suggesting DNA damage from ERCC1 deficiency is not sufficient to recapitulate ALS-related pathology (de Waard et al., 2010). Nonetheless, DNA damage accumulation with normal ageing can prove a vital risk factor contributing to neurodegenerative disease and ALS (de Waard et al., 2010).

Despite not causing motor functional decline, transgenic expression of mutant heat shock protein beta 1 (HSPB1), associated with motor neuropathies, showed age-dependent subclinical motor axonal pathology, characterized by electrophysiological changes and neuropathological hallmarks (Srivastava et al., 2012). Conditional knockout of dynactin P150Glued in murine neurons not only led to age-dependent motor functional decline but also caused preferential degeneration of spinal motor neurons in aged animals (Yu et al., 2018). Many deleterious phenotypes only present when the animals in these studies age, which raises the hypothesis that normal ageing might be a prerequisite for motor neuronal degeneration in ALS. It is possible that the ageing of motor neurons, in addition to causing direct cellular phenotypes, might render the system vulnerable to subsequent ALS disease-specific mechanisms, although further studies are required to definitively resolve this.

With evidence suggesting that normal ageing affects motor neuron number, structure and functional capacity, it is unsurprising that age-related effects may play a vital role in neurodegenerative diseases involving motor neurons, such as ALS. An integration of ageing and ALS research can allow for better mechanistic insight and therapeutic advancement, ultimately leading to patient benefit.

The nervous system and skeletal muscle are intimately linked, with motor neuron-derived electrical stimulation ultimately allowing muscle contraction and, in turn, movement. As the postsynaptic constituent of the NMJ, muscle itself has been implicated as an early component in ALS pathogenesis, with muscle weakness an initial and debilitating clinical symptom (reviewed in Hobson and McDermott, 2016). Indeed, skeletal muscle-specific expression of mutant (G93A/G37R) and wild-type human SOD1 in transgenic mice disrupted NMJs and led to motor neuron degeneration and a corresponding functional phenotype (Wong and Martin, 2010). Mitochondrial dysfunction, namely alterations in morphology and distribution, and the induction of protein kinase C have been implicated as key mechanisms destabilizing NMJs in transgenic mice with muscle restricted SOD1G93A (Dobrowolny et al., 2018). As well as its implications in ALS, skeletal muscle undergoes a variety of structural and functional changes in normal ageing, which may also link to its roles in disease. Sarcopenia, the highly prevalent, age-associated decline in skeletal muscle mass, force and function, not only significantly impacts patient quality of life, but also bears key connotations for the healthcare system owing to its links with frailty (Clegg et al., 2013), falls, disability and mortality (reviewed in Marzetti et al., 2017). The clinical phenotype of sarcopenia is underpinned by the effects of ageing on skeletal muscle and its environment (reviewed in Marzetti et al., 2017), which we discuss below.

Skeletal muscle adult stem cells (satellite cells) reside between muscle fibre sarcolemma and basement membrane in a quiescent state, but, on injury, have the capacity to asymmetrically divide to both self-replicate and form progeny which ultimately differentiate to new muscle fibres (Morgan and Partridge, 2003). With ageing, satellite cells lose their capacity to regenerate damaged muscle (Sousa-Victor et al., 2014b), with cell intrinsic alterations implicated.

Indeed, induction of P16INK4a in geriatric mice, a regulator of cellular senescence, drove satellite cells to a pre-senescent phenotype, which was further advanced to irreversible full senescence when the cells were placed under proliferative pressure (Sousa-Victor et al., 2014b). Functionally, the cells showed defects in activation, ability to proliferate and capacity to self-renew, altogether preventing successful muscle fibre regeneration (Sousa-Victor et al., 2014b). Adult (56 months) and old (2024 months) murine satellite cells actively repress P16INK4a to maintain a state of reversible quiescence, which underpins their regenerative function. Geriatric (2832 months) animals had P16INK4a repression lifted, and underwent the abovementioned state change (reversible quiescence irreversible pre-senescence geroconversion to full senescence). Knocking out Bmi1, a component of the main repressor of the INK4a locus, induced a senescent-like phenotype in young satellite cells with resultant functional defects (Sousa-Victor et al., 2014a). Interestingly, from a therapeutic perspective, inhibition of P16INK4a in geriatric and progeric mouse models was sufficient to reverse the senescent phenotype and restore regeneration (Sousa-Victor et al., 2014a). Thereby, with aged satellite cells unable to facilitate skeletal muscle recovery following insult, it may be left more vulnerable to further disease-specific pathology in ALS.

Protein arginine methyltransferase 7 (PRMT7) knockout mice showed reduced skeletal muscle mass and increased fat at 8 months of age, with delayed differentiation and premature senescence as putative underlying mechanisms. Increased p21 (senescence marker) and reduced DNMT3b were noted, with restoration of the latter rescuing the senescent phenotype in vitro. Although regenerative capacity was similar between young wild-type and Prmt7 / mice 21 days following tibialis anterior cardiotoxin injury, the knockouts showed significant structural regenerative aberrance with age (8 months) when compared to Prmt7 / uninjured and wild-type injured/uninjured mice. Indeed, satellite cell number, self-renewal ability and regenerative function were defective (Blanc et al., 2016). Mice heterozygous for Ku80 (Xrcc5), a facilitator of genomic and telomere stability, showed a muscle phenotype resembling accelerated physiological ageing. Following recurrent injury, heterozygous mice (and Ku80 null mice) showed fewer self-renewing stem cells, with a corresponding increase in committed and expanding cells. Injuring the tibialis anterior muscle of adult Ku80 wild-type, heterozygous and null mice twice (15-day interval) resulted in decreased regeneration in the 18-month compared to the 2-month wild-type, as well as reduced capacity to regenerate in Ku80 heterozygous and null mice (as measured 7 days after second injury) (Didier et al., 2012). The heterozygous stem cells were also shown to have significantly shorter telomeres than wild-type mice as well as features of skeletal muscle premature ageing (Didier et al., 2012). Satellite cells also lose functional heterogeneity with age, whilst maintaining the clonal complexity of their youthful counterparts, as visualized using in vivo multicolour lineage tracing (Tierney et al., 2018). Aged satellite cells obtained via muscle biopsy of sedentary elderly patients showed deficits in antioxidant activity, cell membrane fluidity and intracellular basal calcium content compared to those from newborn or sedentary young patients (Fulle et al., 2005). Indeed, other intrinsic age-related satellite cell alterations might include DNA damage and mitochondrial abnormalities (reviewed in Brack and Munoz-Canoves, 2016), resembling molecular mechanisms in ALS (reviewed in Van Damme et al., 2017).

Altogether, satellite cells develop a number of cell intrinsic changes with ageing, ultimately leading to their dysfunction and a homeostatically aberrant skeletal muscle system that is vulnerable to disease-specific insult. Moreover, ALS satellite cells have been shown to lose their differentiation potential (and consequently their regenerative capacity) compared to controls (Scaramozza et al., 2014), indicating shared phenotypic features between aged and ALS satellite cells.

As well as the abovementioned intrinsic satellite cell alterations, the niche in which these cells reside also undergoes age-associated changes. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B), for example, is activated during ageing (Zhang et al., 2017). Specifically increasing NF-B signalling in satellite cells led to impaired repair following cryoinjury, a phenotype that was rescued by administration of an NF-B inhibitor (Oh et al., 2016). Isolation of satellite cells prior to injury indicated no intrinsic differences in proliferation or initiation of myogenesis. The presence of their differentiated muscle progeny with increased NF-B signalling seemed to negatively impact the stem cells and indeed blocking NF-B specifically in aged muscle fibres improved satellite cell function (Oh et al., 2016). Hence, age-associated non-cell autonomous impacts on satellite cells may also contribute to muscle aberrance in normal ageing and disease.

Muscle-specific inactivation of NF-B failed to ameliorate loss of muscle mass and neuromuscular function in aged muscle-specific inhibition of NF-B through expression of IB super repressor (MISR) mice (Zhang et al., 2017). Moreover, NF-B inhibition altered the expression of genes associated with muscle growth and NMJ function and caused accelerated early differentiation in vitro (Zhang et al., 2017). This highlights the key role of tightly regulating NF-B in order to prevent muscle aberrance with ageing. Indeed, NF-B alterations in various cell types are also implicated in the pathogenesis of ALS (Frakes et al., 2014).

A number of extrinsic signalling pathways (Wnt, TGF, Notch, FGF) have been noted to interact closely with ageing satellite cells, with key implications for the regenerative capacity of these cells (Chakkalakal and Brack, 2012). Indeed, Notch activity drops whereas TGF and pSmad3 increase in old muscle, inducing a loss of regenerative capacity (as confirmed by three different Smad3-targeted small hairpin RNAs restoring markers to youthful levels in satellite cells and enhancing myogenesis in old muscle) (Carlson et al., 2008). Evidence for the impact of the muscle niche also comes from studies of heterochronic parabiosis, which unite the circulatory systems of aged and young animals, with elderly tissues exposed to youth serum systemic factors. By separating young and aged contributions in vivo via GFP reporter labelling, notably, the native aged satellite cells were reactivated and enhanced myogenesis occurred post-injury (Conboy et al., 2005). Delta upregulation, indicative of Notch activity, was restored with exposure to young serum (Conboy et al., 2005). Growth differentiation factor 11 (GDF11) has been implicated as a key circulating rejuvenating factor, restoring structural and even functional deficits in aged mice (Sinha et al., 2014). Muscle transplantation between old and young rats revealed that old to young transplants had greater mass, maximum force and resembled young-young autografts histologically (Carlson and Faulkner, 1989), adding yet more support to the key role of the muscle niche in ageing. A less permissive and poorly sustainable aged muscle environment might prove vulnerable to disease-specific mechanisms, such as those in ALS.

Muscle mitochondrial function decreases with ageing, with wild-type mice showing decreased oxygen consumption rates and increased production of reactive oxygen species (ROS) as they age (Valentine et al., 2018). Autophagy, the lysosome-mediated process by which various cytosolic components are degraded, was diminished in muscle obtained from elderly sedentary patients, and muscle-specific knockout of autophagy-associated ATG7 in mice enhanced muscle atrophy, inflammation, abnormal structure and reduced life expectancy in this model (Carnio et al., 2014). Inhibition of autophagy also increased mitochondria frequency, size and structural aberrance, leading to oxidative stress and ROS, which in turn disturbs interaction between actin and myosin and force generation (Carnio et al., 2014). Old (29 months) male rats showed a maladaptive endoplasmic reticulum (ER) stress response on hindlimb reloading following 14 days of unloading (which had caused disuse-induced atrophy and deficits in force generation) (Baehr et al., 2016). Hence, ER and oxidative stress, mitochondrial dysfunction and autophagy also play key roles in muscle ageing, and indeed, all of these pathways are also implicated in ALS pathogenesis (reviewed in Loeffler et al., 2016; Van Damme et al., 2017).

With the abovementioned mechanisms of normal muscle ageing sharing associations with the pathophysiology of sarcopenia, it is important to consider the role of age-related skeletal muscle perturbations in other diseases such as ALS. With muscle intimately structurally and functionally linked with lower motor neurons, it is possible that defective aged skeletal muscle fails to fulfil its role in the complex relationship, thereby contributing to disease. Indeed, it is at the level of the NMJ where skeletal muscle ageing may play its largest role in ALS. Skeletal muscle expressed FGFBP1, found to be a key protective factor to preserve NMJ integrity, was reduced in both normal ageing and ALS (SOD1G93A mice) (Taetzsch et al., 2017), suggesting a common pathological mechanism between the two. Hence, neuromuscular structural and functional consequences result from the effects of ageing at the level of the skeletal muscle, with potential mechanistic overlaps with ALS.

With non-neuronal cells matching neuronal numbers in the human brain (Azevedo et al., 2009), astrocytes, the most abundant of the CNS glial cells, perform an array of functions fundamental in development and adulthood including synaptogenesis and synaptic elimination, neurotransmitter recycling, bloodbrain barrier maintenance and supporting neuronal survival (reviewed in Vasile et al., 2017). With a non-cell autonomous contribution to neurodegenerative disease pathogenesis now widely accepted over the traditional 'neuron centric' model, astrocytes have emerged as vital disease players in ALS, with both toxic gain-of-function (Nagai et al., 2007) and loss of neuronal support implicated (Das and Svendsen, 2015; Tyzack et al., 2017). Interestingly, there were a number of similarities between 150 day end-stage SOD1 overexpressing astrocytes and 300 day wild-type aged astrocytes with analysis of growth rates, molecular profiles, markers of senescence and motor neuron survival revealing parallels between ALS and aged wild-type samples (Das and Svendsen, 2015). This indicated that the SOD1 mutant ALS astrocytes were displaying the effects of normal ageing at an accelerated rate (Das and Svendsen, 2015). Indeed, astrocytes undergo significant age-associated alterations, which affect their ability to interact with surrounding cells and consequently their vital functions in the CNS. If astrocytes in ALS are a pathologically hastened form of their normally aged counterparts, a true understanding of astrocyte ageing will provide insight into not only the mechanisms behind age-related neurological decline, but also ALS. This is discussed below.

Astrocytes reacting to injury segregate into two groups dependent on mechanisms of injury, as revealed by transcriptomic analysis (Zamanian et al., 2012). Astrocytes subjected to inflammatory stimuli such as lipopolysaccharide (LPS) adopt an A1 phenotype, and those exposed to ischaemia develop an A2 phenotype, with the former upregulating genes involved in synaptic elimination (e.g. complement cascade), and the latter upregulating neurotrophic, reparative and survival promoting genes (e.g. thrombospondins) (reviewed in Liddelow and Barres, 2017).

Astrocytes in ALS and a number of other neurodegenerative diseases possess an A1 reactive phenotype (Clarke et al., 2018). Aged (2 years) mouse astrocytes from an array of brain regions upregulated more A1 reactive genes (including the complement factor C3) than A2 reactive genes, indicating that normal ageing is associated with the more deleterious A1 astrocytic phenotype (Clarke et al., 2018). Indeed, promotion of complement regulated synaptic elimination by normally aged A1 astrocytes may make the brain more vulnerable to neurodegenerative diseases (Clarke et al., 2018).

Alterations in astrocytes with age render them more susceptible to insult. Pure oxidative stress via hydrogen peroxide exposure and mixed stressors (including oxidative stress) in glucose with or without oxygen deprivation affected primary mouse astrocytes matured in vitro more than their young counterparts, indicating disruption in the balance between synthesis and scavenging of reactive oxygen species in older astrocytes (Papadopoulos et al., 1998). Indeed, three key antioxidant species, namely glutathione, catalase and SOD were maintained or even elevated in older astroglia, suggesting alternative mechanisms behind the greater injury in these cells (Papadopoulos et al., 1998). Iron, which catalyses free radical synthesis, was increased in aged astrocytes (Papadopoulos et al., 1998). The enhanced vulnerability of aged astrocytes to oxidative stress may play a key role in disease, with oxidative stress playing an important role in ALS pathogenesis (reviewed in Barber and Shaw, 2010).

In turn, primary astrocyte cultures subjected to oxidative stress (hydrogen peroxide) develop a senescent phenotype, also achieved by other stressors (proteasome inhibition via lactacystin-2 and extensive cellular replication) (Bitto et al., 2010). Stressed cells acquired characteristic morphological features of senescence, cell cycle arrest and expressed senescence-associated markers including -galactosidase, p16, p21 and p53 (Bitto et al., 2010). Replicative senescence was also seen, with associated reductions in telomere length and G1 cell cycle arrest (Bitto et al., 2010). Given the abovementioned susceptibility of astrocytes to oxidative and other stress (Papadopoulos et al., 1998; Bitto et al., 2010) in normal ageing, the development of their senescent phenotype may carry a range of functional defects which ultimately lead to their failure to support themselves and neurons in ageing and disease. Transcriptomic analysis of multiple regions within aged murine brains and subsequent pathway analysis revealed that cholesterol synthesis was downregulated in aged astrocytes (Boisvert et al., 2018). With cholesterol a key constituent of presynaptic vesicle synthesis, neuronal synaptic function could become perturbed as a result of astrocytic ageing (Boisvert et al., 2018). Genes from immune pathways including antigen presentation and the complement cascade, were upregulated, indicating a propensity towards cellular stress and synaptic elimination in aged astrocytes (Boisvert et al., 2018). Transcriptomic analysis also uncovered stark regional heterogeneity in astrocyte expression profiles both within the murine cortex (Boisvert et al., 2018) and between different human post-mortem brain regions (Soreq et al., 2017). In human brains, the most pronounced age-related shifts in astrocyte region-specific genes were identified in the hippocampus and substantia nigra, major sites of pathology in the two most common age-associated neurodegenerative diseases (Alzheimer's disease and Parkinson's disease, respectively) (Soreq et al., 2017). The ageing of astrocytes rather than neurons, which show significantly fewer region-specific gene expression changes with age, may therefore underpin regional vulnerability and sites of pathological involvement in neurodegenerative diseases (Soreq et al., 2017). This finding potentially bears significance for ALS, where there is regional and subtype specific vulnerability (reviewed in Nijssen et al., 2017).

Astrocytes possess the key quality of forming intimate interactions with other glial cells in brain physiology. Their interaction with microglia, the immune cells of the CNS, affects microglial branching and distribution (Lana et al., 2019). In ageing, this direct interaction is impaired, with microglial morphology, distribution and ability to efficiently phagocytose disrupted (Lana et al., 2019). The latter could lead to accumulation of toxic proinflammatory cell debris in the CNS (Lana et al., 2019). Key astrocytic interactions with cells in their local environment thereby become perturbed upon ageing, leading to disruption of other cell types in their vicinity via non-cell autonomous mechanisms.

With their sheer number and multiple functional roles, it is unsurprising that astrocytes are heavily relied upon by the human nervous system. Their disruption with normal ageing can therefore have vital knock-on effects on other surrounding cells, such as neurons and microglia, overall leading to a CNS more vulnerable to age-related pathology and neurodegenerative disease.

Schwann cells adopt various phenotypes dependent on extrinsic cues. Originating from neural crest, immature Schwann cells can either differentiate into non-myelinating or myelinating Schwann cells, the latter via a promyelin Schwann cell intermediate (reviewed in Jessen et al., 2015; Santosa et al., 2018). Indeed, at the NMJ, the peri-synaptic or terminal Schwann cell (TSC) falls within the non-myelinating category and has been implicated in neuromuscular diseases including ALS (reviewed in Santosa et al., 2018). TSCs have been shown to undergo morphological changes in ALS patients, including developing vast cytoplasmic processes (Bruneteau et al., 2015). Moreover, TSCs, which normally juxtapose the NMJ (Figure 2), are sometimes found to invade the NMJ itself, occupying the space between the presynaptic motor axon terminal and the postsynaptic membrane (termed the synaptic cleft), in turn reducing the surface area for neuromuscular transmission (Bruneteau et al., 2015). Morphological alterations have also been reported in a SOD1G93A mutant model of ALS, with these changes preceding motor terminal degeneration and denervation (Carrasco et al., 2016b). More specifically, it was found that TSCs were lost from NMJs with pre-terminal Schwann cell processes taking their place (Carrasco et al., 2016b). Additionally, an absence of immunostaining for P75 (post-denervation marker) and S100 (a Schwann cell marker) following experimental denervation suggests that both TSCs and pre-terminal Schwann cells are lost in SOD1G93A mutant mice, hence unable to facilitate reinnervation following denervation (such as in ALS) (Carrasco et al., 2016a). Given the vital role of TSCs in maintaining NMJ health and function, and their significance in disease, understanding the impact of ageing on this cell type is essential to truly appreciating their role in ALS pathogenesis. We discuss ageing phenotypes in Schwann cells before subsequently focusing on TSCs.

Neurons of the peripheral nervous system have a remarkable capacity to regenerate, especially when compared to their central counterparts. Integral to this process are Schwann cells, which whether myelinating or non-myelinating, adopt a repair phenotype post nerve injury, regulated by the transcription factor c-Jun (reviewed in Jessen et al., 2015). Regeneration tracks laid by these cells form scaffolds that facilitate axonal reinnervation of their intended targets (reviewed in Jessen et al., 2015). Ageing in Schwann cells is associated with a decline in regenerative capacity (Painter et al., 2014). Indeed, when compared to young mice at 2 months of age, elderly 24-month-old mice had delayed initiation and slower sensory and motor functional recovery, with 12-month-old mice possessing an intermediate capacity (Painter et al., 2014). Furthermore, aged animals receiving young nerve grafts equalled young functional recovery and young animals receiving aged nerve grafts developed a delay in functional restoration (Painter et al., 2014). Genetic analysis revealed that aged animals had downregulated repair function genes, with age-associated decline in growth factor and mitosis genes, and had failed to suppress a myelinating phenotype after injury when compared to their young counterparts (Painter et al., 2014). In aged animals 1 day post nerve injury, c-Jun, the abovementioned regulator of the Schwann cell repair phenotype, only managed one-fifth of the levels achieved in young animals, in line with aged Schwann cell aberrance in dedifferentiation and subsequent failure in functional regeneration (Painter et al., 2014). With ageing impairing Schwann cell facilitated regeneration, neurons may fail to combat damage experienced in both normal ageing and ALS, leading to an enhanced deleterious phenotype.

Dedifferentiated Schwann cells play a role in luring macrophages to the site of axonal damage after injury (Painter et al., 2014). This function too was disrupted in aged animals, with a delay in macrophage recruitment (Painter et al., 2014). Age-related immune dysfunction was also implicated when grafting sections of rat sciatic nerves from 2- to 18-month-old (young-aged) rats and vice versa (aged-young) with young-young and aged-aged graft controls. Both Schwann cells and macrophages play key roles in debris clearance via phagocytosis after injury (Scheib and Hoke, 2016). Indeed, there was more debris in aged-aged controls compared to young-young grafted animals, with young-aged and aged-young grafts displaying intermediate levels. Hence, as cells involved in debris clearance (Schwann cells and immune macrophages) age, their phagocytotic capacity diminishes, a finding replicated in vitro for both cell types (Scheib and Hoke, 2016).

It has been long noted that Schwann cell ultrastructural abnormalities accompany ageing in rat peripheral nerves (Thomas et al., 1980). Schwann cells in aged rats developed a phenotype with extended attenuated processes projecting from adaxonal Schwann cell into the axon, in turn compartmentalizing the axon length into small sections, appearing 'honeycombed' (Thomas et al., 1980). Intracytoplasmic inclusions were also noted (Thomas et al., 1980). The presence of disproportionately thin myelin sheaths around some axons also indicated remyelination to be present (Thomas et al., 1980). A reduced myelin diameter was also noted in aged C57BL/6 mice, alongside alterations to essential myelin-related proteins including increased carbonylation and reduced protein expression of PMP22 in sciatic nerves (Hamilton et al., 2016). We speculate that structurally aberrant aged Schwann cells may not be able to function optimally and support neurons, which then may potentially allow disease mechanisms, such as those in ALS, to thrive in an already vulnerable environment.

TSCs in aged wild-type mice showed numerical decline, with a progressively lower proportion of NMJs possessing TSCs between 14 and 33 months of age (100% NMJs had TSCs at 9 months of age) (Snyder-Warwick et al., 2018). This loss was accompanied by structural changes in the remaining TSCs, which displayed thinner processes and irregular TSC bodies with heterogeneous S100 staining (Snyder-Warwick et al., 2018). Brain-specific overexpression of SIRT1, implicated in mammalian ageing, enhanced the number of TSC processes and bodies compared to age-matched controls, with a higher proportion of NMJs possessing TSCs in, altogether, a more youthful phenotype (Snyder-Warwick et al., 2018). Additionally, the knockdown of SIRT1 specific to the dorsomedial hypothalamus led to excessively large TSC bodies that frequently resided outside the NMJ, as well as fewer TSCs per NMJ (Snyder-Warwick et al., 2018). Although aberrance was not identical in knockdown and aged wild-type animals, both showed increased frequency of TSC abnormalities, with the knockdown potentially a 'more aged' phenotype (Snyder-Warwick et al., 2018). Their imperative roles in sustaining optimal NMJ function implicate TSCs as being a highly relevant cellular candidate linking ageing and ALS.

Read more here:
Decoding the Relationship Between Ageing and ALS - Medscape

Stem Cell-Derived Cells Market To Witness A Considerable CAGR Growth Through The Forecast Period 2019 2029 – 3rd Watch News

New Study on the Global Stem Cell-Derived Cells Market by PMR

PMR recently published a market study that sheds light on the growth prospects of the global Stem Cell-Derived Cells market during the forecast period (20XX-20XX). In addition, a methodical and systematic approach adopted by the analysts while curating the market study ensures that the presented study adds value to the business of our customers. The report provides a thorough evaluation of the latest trends, market drivers, opportunities, and challenges within the global Stem Cell-Derived Cells market.

As per the report, the global Stem Cell-Derived Cells market is expected to grow at a CAGR of ~XX% during the stipulated timeframe owing to a range of factors including, favorable government policies, and growing awareness related to the Stem Cell-Derived Cells , surge in research and development and more.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

Resourceful insights enclosed in the report:

Competitive Outlook

The competitive outlook section provides valuable information related to the different companies operating in the current Stem Cell-Derived Cells market landscape. The market share, product portfolio, pricing strategy, sales and distribution channels of each company is discussed in the report.

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

Regional Assessment

The presented market study touches upon the market scenario in different regions and provides a deep understanding of the influence of micro and macro-economic factors on the prospects of the market in each region.

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

The market report addresses the following queries related to the Stem Cell-Derived Cells market:

Read more:
Stem Cell-Derived Cells Market To Witness A Considerable CAGR Growth Through The Forecast Period 2019 2029 - 3rd Watch News