Category Archives: Induced Pluripotent Stem Cells


AgeX Therapeutics to Collaborate with University of California, Irvine on Neural Stem Cell Research Program for Huntingtons Disease and Other…

AgeX Therapeutics, Inc. ("AgeX"; NYSE American: AGE), a biotechnology company focused on developing therapeutics for human aging and regeneration, announced a research collaboration with the University of California, Irvine (UCI) using AgeXs PureStem technology to derive neural stem cells, with the goal of developing cellular therapies to treat neurological disorders and diseases for which there are no cures. The collaborations initial R&D work, expected to take approximately one year, will be conducted in the UCI laboratory of Leslie Thompson, PhD, Chancellors Professor of Psychiatry & Human Behavior and Neurobiology & Behavior, a leading researcher in the field of Huntingtons disease and other neurological disorders, under a Sponsored Research Agreement handled by the Industry Sponsored Research team at UCI Beall Applied Innovation. The initial focus will be on Huntingtons disease, while other potential targets may include Parkinsons, Alzheimers, and stroke.

The primary goal of the research will be to develop a robust method of deriving neural stem cells from pluripotent stem cells in sufficient quantity and with sufficient purity and identity for use in cell-based therapy. Professor Thompsons laboratory has already accumulated safety and efficacy animal data that may support an IND submission to the FDA as early as 2021 for the commencement of clinical trials to treat Huntingtons disease.

"We look forward to utilizing AgeXs cell derivation and manufacturing PureStem technology, with its many potential advantages, including industrial scalable manufacturing, lower cost of goods, and clonal cells with high purity and identity. Our goal is to have an improved neural stem cell production method ready within a year to move into clinical development," said Professor Thompson.

"We are absolutely delighted to start this exciting collaboration with Professor Thompson, who has worked tirelessly over her career to develop a neural stem cell product candidate for Huntingtons disease and who has already generated preclinical animal data that may support the initiation of clinical studies," said Dr. Nafees Malik, Chief Operating Officer of AgeX. "Moreover, we are very excited to be entering the field of neurology, which has huge clinical and commercial potential. Neural stem cells may be very useful in other neurological disorders that are common in aging demographics, such as Parkinsons, Alzheimers and stroke."

"This is an example of the kind of collaboration we will be seeking under our newly-unveiled collaboration and licensing strategy, which is to run parallel to our in-house product development," said Dr. Greg Bailey, Chair of AgeX. "We will be collaborating with a world leader in their field on a research project which is close to the clinic."

The collaboration includes an opportunity for AgeX to organize a company to be jointly owned with Professor Thompson and other researchers to pursue clinical development and commercialization of cell therapies derived using licensed inventions arising from the research program, as well as certain patent pending technology for neural stem cell derivation, and certain technical data, including animal data, to support IND submissions.

About AgeX Therapeutics

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly-defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeX is developing its core product pipeline for use in the clinic to extend human healthspan and is seeking opportunities to establish licensing and collaboration agreements around its broad IP estate and proprietary technology platforms.

Story continues

For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

Forward-Looking Statements

Certain statements contained in this release are "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates" should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its subsidiaries particularly those mentioned in the cautionary statements found in more detail in the "Risk Factors" section of AgeXs Annual Report on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Further, in the case of AgeXs new neural stem cell program there can be no assurance that: (i) any new cell derivation methods will be invented in the sponsored research program, (ii) any derivation methods that may be developed will be sufficient to derive neural stem cells in quantities and of purity suitable for clinical use and commercialization, (iii) that any new inventions or existing technology will be licensed on commercially favorable terms, (iv) that any neural stem cells derived for therapeutic use will be shown to be safe and effective in clinical trials, and (v) that any neural stem cells derived for therapeutic use will be successfully commercialized even if clinical trials are successful. Subsequent events and developments may cause these forward-looking statements to change. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200203005261/en/

Contacts

Media Contact for AgeX: Bill Douglass Gotham Communications, LLC bill@gothamcomm.com (646) 504-0890

View post:
AgeX Therapeutics to Collaborate with University of California, Irvine on Neural Stem Cell Research Program for Huntingtons Disease and Other...

2020 Induced Pluripotent Stem Cells (iPSCs) Study: Global Markets, Technologies, Applications and Companies – Yahoo Finance

Dublin, Jan. 30, 2020 (GLOBE NEWSWIRE) -- The "Induced Pluripotent Stem Cells: Global Markets" report has been added to ResearchAndMarkets.com's offering.

This study is focused on the market side of iPSCs rather than its technical side.

It has been over 10 years since the discovery of induced pluripotent stem cell (iPSC) technology. The market has gradually become an important part of the life sciences industry during recent years. Particularly for the past five years, the global market for iPSCs has experienced rapid growth.

The report includes:

The report has identified several key drivers for the rapidly growing market:

Key Topics Covered

Chapter 1 Introduction

Chapter 2 Summary and Highlights

Chapter 3 Overview

Chapter 4 Induced Pluripotent Stem Cell Applications

Chapter 5 Induced Pluripotent Stem Cell Market Segmentation and Forecast

Chapter 6 Induced Pluripotent Stem Cell Research Application Market

Chapter 7 Drug Discovery and Development Market

Chapter 8 Induced Pluripotent Stem Cell Contract Service Market

Chapter 9 Induced Pluripotent Stem Cell Clinical Application Market

Chapter 10 Research Market Trend Analysis

Chapter 11 Clinical Application Market Trend Analysis

Chapter 12 Company Profiles

Chapter 13 Conclusions

For more information about this report visit https://www.researchandmarkets.com/r/tvap34

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

CONTACT: ResearchAndMarkets.comLaura Wood, Senior Press Managerpress@researchandmarkets.comFor E.S.T Office Hours Call 1-917-300-0470For U.S./CAN Toll Free Call 1-800-526-8630For GMT Office Hours Call +353-1-416-8900

Read more:
2020 Induced Pluripotent Stem Cells (iPSCs) Study: Global Markets, Technologies, Applications and Companies - Yahoo Finance

Can Parkinsons be prevented as it stealthily develops? – Big Think

Parkinson's disease comes with slowness, rigidity, tremors, and loss of balance due to an insufficiency of the dopamine that coordinates muscle movement. This disease, of which the rate of diagnosis is rising, occurs when the neurons responsible for producing dopamine malfunction or die. About 500,000 Americans are diagnosed with Parkinson's each year.

Most of the time, Parkinson's disease is a condition of the elderly, diagnosed in people 60 and older. However, about 10% of the time, it's detected in people between 21 and 50. "Young-onset Parkinson's is especially heartbreaking because it strikes people at the prime of life," says Michele Tagliati, an author of a new study from Cedars-Sinai.

The study of brain cells from Parkinson's younger victims has found that the misbehaving neurons are present long before diagnosis typically taking some 20 or 30 years to produce detectable symptoms and may even be present prior to birth. The revelation raises hope for combatting Parkinson's because there's already an approved drug that can mitigate the damage done by the troublemaking neurons before the disease ever appears.

The research is published in the journal Nature Medicine.

Image source: Kateryna Kon/Shutterstock

The authors' investigation began with an examination of neurons based on cells from young-onset Parkinson's (YOPD) patients who had no known mutations. From the cells, induced pluripotent stem cells (iPSCs) were generated and differentiated into dishes containing cultures of dopamine neurons. Senior study author Clive Svendsen says, "Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patient's life."

The scientists observed lysosomes within the YOPD neurons malfunctioning. Since lysosomes are counted on as "trash cans" for unnecessary or depleted proteins, the castoff chemicals began to pile up. In particular, substantial accumulations of soluble -synuclein, a protein implicated in different types of Parkinson's, were seen.

Says Svendsen, "What we are seeing using this new model are the very first signs of young-onset Parkinson's,"revealing that, "It appears that dopamine neurons in these individuals may continue to mishandle -synuclein over a period of 20 or 30 years, causing Parkinson's symptoms to emerge."

The researchers also saw unexpectedly high levels of the enzyme protein kinase C in its active form, though what that has to do with Parkinson's, if anything, is unknown.

Image source: sruilk/Shutterstock

The researchers tested a number of drugs on the cultures to see if any might address the observed accumulations of -synuclein. (They performed parallel tests of laboratory mice.) One drug, PEP005, which is already approved by the FDA for treating skin pre-cancers, did effectively reduce the -synuclein buildup, both in the iPSCs and the mice.

Since PEP005 is currently administered in gel form for treating skin, the researchers are now exploring how the drug might be modified so it can be delivered directly to the brain. The team also plans follow-on research to see if their findings apply equally to forms of Parkinson's beyond YOPD.

Related Articles Around the Web

Read more:
Can Parkinsons be prevented as it stealthily develops? - Big Think

Unpicking the proteome in single cells – Science Magazine

Recently, the throughput of single-cell RNA-sequencing (transcriptomics) and genomics technologies has increased more than a 1000-fold. This increase has powered new analyses: Whereas traditional analysis of bulk tissue averages all differences between the diverse cells comprising such samples, single-cell analysis characterizes each individual cell and thus has enabled the discovery and classification of previously unknown cell states. Yet, the nucleic-acidbased technologies are effectively blind to an important group of biological regulators: proteins. Fortunately, emerging mass-spectrometry (MS) technologies that identify and quantify proteins promise to deliver similar gains to single-cell protein analysis. These proteomic technologies will enable high-throughput investigation of key biological questions, such as signaling mechanisms based on protein binding, modifications, and degradation, that have long remained elusive.

The abundance and activity of many proteins are regulated by degradation and posttranslational modifications (PTMs) that cannot be inferred from genomic and transcriptomic measurements. Moreover, genomic and transcriptomic sequencing cannot report directly on protein-protein interactions and protein localization, which are critical for numerous signaling pathways (13). The extracellular matrix surrounding each cell is composed of proteins whose chemical and physical properties, such as stiffness, can also play vital roles in regulating cellular behavior, including proliferation, migration, metastasis, and aging (4). Yet, current single-cell sequencing tools provide little information about the protein composition and biological roles of the extracellular matrix (35). Thus, methodologies are needed that can directly analyze a broad repertoire of intracellular, membrane-bound, and extracellular proteins at the single-cell level.

Single-cell protein analysis has a long history, but the conventional technologies have relatively limited capabilities (6, 7). Most proteomics methods, such as mass cytometry, cellular indexing of transcriptomes and epitopes by sequencing, RNA expression and protein sequencing, and CO-Detection by indEXing, rely on antibodies to detect select protein epitopes and can analyze only a few dozen proteins per cell (6) (see the figure). However, many antibodies have low specificity for their targets, which results in nonspecific protein detection. Indeed, fewer than a third of more than a thousand antibodies tested in multiple laboratories bind specifically to their cognate targets (6). As a result, $800 million is wasted worldwide annually on purchasing nonspecific antibodies and even more on experiments following up flawed hypotheses based on these nonspecific antibodies (8). Although some highly specific and well-validated antibodies can be useful to analyze a few proteins across many cells, the low specificity and limited throughput of the current generation of single-cell protein analytical methods pose challenges for understanding the interactions and functions of proteins at single-cell resolution.

These challenges are being addressed by emerging technologies for analyzing single cells by MS without the use of antibodies, such as Single Cell ProtEomics by MS (SCoPE-MS) and its second generation, SCoPE2. These methods allow the quantification of thousands of proteins across hundreds of single-cell samples (9, 10) (see the figure). A key driver of this progress was the development of multiplexed experimental designs in which proteins from single cells and from the total cell lysate of a small group of cells (called carrier proteins) are barcoded and then combined (9, 10). With this design, the carrier proteins reduce the loss of proteins from single cells adhering to equipment surfaces while simultaneously enhancing peptide identification.

Other key drivers of progress include methods for clean and automated sample preparation, for which there is preliminary evidence (11), as well as rigorous computational approaches that incorporate additional peptide features, such as retention time, to determine peptide sequences from limited sample quantities (12). Further technological developments can increase the accuracy of quantification and numbers of analyzed cells by 100- to 1000-fold while affording quantification of protein modifications at single-cell resolution (7). For example, the carrier protein approach (9) can be extended to quantify PTMs by using a carrier composed of peptides with PTMs while avoiding the need to enrich modified proteins from single cells and, thus, enrichment-associated protein losses.

Although current methods can quantify proteins present at 50,000 copies per cell (which is the median protein abundance in a typical human cell), increased efficiency of peptide delivery to MS analyzers, e.g., by increasing the time over which peptide ions (proteins are fragmented into peptides and ionized in MS analysis) are sampled (7, 13), will increase sensitivity to proteins present at only 1000 copies per cell. In general, the emerging technologies offer a trade-off between quantifying low-abundance proteins with increased accuracy or quantifying more proteins. This trade-off can be mitigated by simultaneously sampling multiple peptides (7). Over the next few years, improvements in sample preparation, peptide separation and ionization, and instrumentation are likely to afford quantification of more than 5000 proteins across thousands of single cells, while targeted approaches are poised to enable analysis of even low-abundance proteins of interest (7).

MS methods have the potential to measure not merely the abundance and PTMs of proteins in single cells, but also their complexes and subcellular localization. When proteins form a complex, polypeptide chains from different proteins can get close enough to be cross-linked by small molecules. Because only proteins in the complex are likely to be cross-linked, the abundance of such peptides can report directly on complex formation and composition. Some cross-linked peptide pairs are observed only with specific complex conformations, and thus these pairs can be useful in distinguishing active and inactive complexes. Furthermore, if a protein complex is close to organelles, targeted MS analysis of cross-linked peptides between the complex and organelle-specific proteins may report on the subcellular localization. Such analysis has not yet been applied to single-cell MS, but is likely to be feasible.

Realizing these exciting prospects requires concerted effort and community standards devoted to ensuring that hype does not overshadow scientific rigor. For example, systematic artifacts, such as contaminant proteins introduced to single-cell samples during their preparation or chromatographic separation, may result in reproducible measurements. Despite their reproducibility, such measurements do not reflect protein abundances in single cells. If reproducibility is misinterpreted as accuracy, the resulting errors may erode the credibility of this emerging field.

Single-cell proteomics will find many applications in biomedical research. Some applications, such as classifying cell states and cell types, overlap with those of single-cell RNA sequencing. Other applications can only be achieved by measuring proteins. For example, the development of cells for regenerative therapies through the rational engineering of directed differentiation may benefit from single-cell proteomics. Although there has been much progress in developing directed differentiation protocols for certain cell types, these efforts tend to rely on trial-and-error approaches (14). Many of the resulting protocols remain relatively inefficient: Only a fraction of the cells differentiate into the desired cell type, and such cells may not fully recapitulate the desired physiological phenotypes (14).

Traditional methods identify and quantify a limited number of proteins based on antibodies barcoded with DNA sequences, fluorophores, or transition metals. Emerging single-cell mass-spectrometry (MS) methods will allow high-throughput analysis of proteins and their posttranslational modifications, interactions, and degradation.

Next-generation single-cell proteomics analysis offers an alternative to this trial-and-error approach. If the signaling events (usually mediated by protein interactions and PTMs) that guide cell differentiation during normal development can be identified, it should be possible to recapitulate such signaling in induced pluripotent stem cells. This would require identifying the signaling processes that lead to the desired cell types and then simulating them by using agonists and/or antagonists. Whereas single-cell RNA sequencing can identify the cells of interest, the amounts of messenger RNA are poor surrogates for the signaling activities mediated by protein modifications, such as phosphorylation or protein cleavage (2, 15). Single-cell proteomics could provide a robust means to characterize such signaling dynamics.

Another potential application is the identification of the sets of molecular interactions leading from a genotype or a stimulus to a phenotype of interest. This goal presents a substantial challenge in part because interacting molecules within a pathway are rarely measured across a large range of phenotypic states to constrain cellular network models. This limitation is particularly evident for proteins and their PTMs (13). Yet, proteins are key regulators in cells; models that ignore them cannot capture molecular mechanisms involving protein interactions. For example, the absence of direct protein measurements compromises the ability to study signaling networks because most of the key regulatory variables are missing from the data. Currently, when proteins and their PTMs are measured in bulk tissues, they have been analyzed in a few tens to a few hundreds of samples (2, 3). Analyzing so few samples tends to require assumptions about the specific sets of interactions and functional dependencies that occur between interacting proteins and molecules. Such assumptions fundamentally underpin the inferred biological mechanisms and undermine their validity (3).

Next-generation single-cell protein analytical technologies will reduce these assumptions and thus increase the validity of inferred mechanisms. If proteins, RNAs, DNA, and metabolites are measured across tens of thousands of individual cells, it may be possible to identify direct molecular interactions without the need to make assumptions about basic aspects of the pathway. Next-generation single-cell analysis is poised to generate just this type of data, which should underpin systems-level understanding of intracellular and extracellular regulatory mechanisms.

Single-cell proteomics may also have clinical applications. Protein measurements from limited clinical samples are attractive because they afford direct measurements of deregulated signaling pathways that drive disease. Furthermore, measuring protein concentrations allows the development of assays to test therapies that induce protein degradation, which are among the most rapidly growing therapeutic modalities (15). Additionally, protein assays may be more robust than RNA-sequencing assays because protein concentrations are less noisy and proteins degrade more slowly than RNAs. Moreover, the cost of protein analysis will decrease proportionately with increased multiplexing (7, 11).

The latest generation of nucleic acidbased single-cell analytical methods has opened the door to describing the varied and complex constellation of cell states that exist within tissue. The next generation of proteomics-based methods will complement current methods while shifting the emphasis from description toward functional characterization of these cell states.

Acknowledgments: N.S. is an inventor on patent application 16/251,039. N.S. is supported by a New Innovator Award from the National Institute of General Medical Sciences (award no. DP2GM123497).

View post:
Unpicking the proteome in single cells - Science Magazine

Kyoto University team gets OK from ministry for plan to transplant iPS-derived cartilage into knee joints – The Japan Times

KYOTO An expert panel of the health ministry on Friday approved a clinical research program proposed by a Kyoto University team to transplant cartilage made from induced pluripotent stem (iPS) cells to damaged knee joints.

Professor Noriyuki Tsumaki and other members of the team are planning to create cartilage with a diameter of 2 to 3 millimeters using iPS cells stored at the universitys Center for iPS Cell Research and Application (CiRA).

The team aims to carry out the first transplant this year. After a clinical trial by Asahi Kasei Corp., which supports the project, it hopes to put the technology into practical use in 2029.

Four people between the ages of 20 and 70 will undergo transplant operations using iPS cell-derived cartilage for their damaged knee joints, with the area of damage ranging from 1 centimeter to 5 centimeters. The team does not plan to seek additional patients for the program.

The team will monitor the four patients for one year after the operations to keep an eye out for possible development of tumors. If the operations succeed, the transplanted material will fuse with existing cartilage.

There are many patients experiencing inconvenience due to damaged cartilage, Tsumaki told a news conference at the Kyoto University Hospital on Friday. Well work hard so that we can offer therapy methods.

The team will also aim to apply the therapy to patients with osteoarthritis.

In 2014, Riken, a Japanese government-affiliated research institute, transplanted retina cells made from iPS cells as a treatment for an incurable eye disease, in the worlds first transplant of iPS-derived cells.

Later, similar transplant operations were conducted by Kyoto University for Parkinsons disease and by Osaka University for corneal disease.

See more here:
Kyoto University team gets OK from ministry for plan to transplant iPS-derived cartilage into knee joints - The Japan Times

The Kyoto University team’s plan to transplant iPS cartilage into knee joints is OK – gotech daily

KYOTO A panel of experts from the Ministry of Health approved a clinical research program proposed by a team from the University of Kyoto on Friday for the transplantation of cartilage from induced pluripotent stem cells [iPS] into damaged knee joints.

Professor Noriyuki Tsumaki and other members of the team are planning to produce 2 to 3 millimeter diameter cartilage using iPS cells, which will be stored at the Universitys Center for iPS Cell Research and Application [CiRA].

The team plans to perform the first transplant this year. According to a clinical study by Asahi Kasei Corp., which supports the project, the technology should be put into practice in 2029.

Four people between the ages of 20 and 70 are transplanted with iPS cell cartilage for their damaged knee joints, with the damage range between 1 cm and 5 cm. The team does not plan to seek additional patients for the program.

Immunosuppressors are not used in the transplant because cartilage usually does not show an immune response.

The team will monitor the four patients for possible tumor development for a year after the operation. If the operations are successful, the transplanted material melts into the existing cartilage.

There are many patients who experience discomfort from cartilage damage, said Tsumaki at a press conference at Kyoto University Hospital on Friday. We will work hard to offer therapy methods.

The team will also try to apply the therapy to patients with osteoarthritis.

In 2014, Riken, a research institute affiliated with the Japanese government, transplanted retina cells made from iPS cells to treat an incurable eye disease in the worlds first transplant of iPS-derived cells.

Similar transplants were later performed by Kyoto University for Parkinsons and Osaka University for corneal diseases.

View original post here:
The Kyoto University team's plan to transplant iPS cartilage into knee joints is OK - gotech daily

Get rid of the ache within the nerves discovered with the following pointers, learn – Sahiwal Tv

Many folks around the globe will be seen troubled by ache within the veins. And many occasions, even after an excessive amount of therapy, this ache just isnt relieved. But within the coming days you possibly can do away with neuralgia fully, that too with none unwanted effects. Researchers on the University of Sydney have used human stem cells for excessive ache aid in mice.

->Now, theyre shifting in direction of human trials.

Greg Nelly, senior researcher on the Charles Perkins Center, stated that at occasions, extreme strain on the nerves causes them to get broken. For instance, carpal tunnel syndrome is the median nerve within the arms ( median nerve ) Due to extreme strain. As you possibly can think about, nerve accidents can result in insufferable neuropathic ache. There can also be no efficient therapy to alleviate ache in most sufferers.

Therefore, Nelly and colleagues on the University of Sydney developed an efficient remedy. Researchers have been capable of create pain-relieving neurons utilizing human stem cells.

Nelly stated that this success implies that for some sufferers affected by nerve ache, we are able to carry out pain-relieving implants from our cells, which might cease the ache.

In the examine, researchers collected stem cells from grownup blood samples. Then, used human-induced pluripotent stem cells (iPSCs) from the bone marrow to create pain-relieving cells within the laboratory.

To check the efficacy of the therapy, the staff injected neurons that abolished spinal ache in mice affected by extreme neuropathic ache. It was revealed that this therapy supplied full aid from ache to the mice with none unwanted effects.

Co-senior creator Dr. Leslie Caron stated that which means that transplant remedy is more likely to be an efficient and long-lasting therapy for neuropathic ache.

After shut therapy in mice, the University of Sydney staff is shifting ahead for extra in depth research in pigs. Within the subsequent 5 years, theyll check people that suffer from power ache.

Researchers stated {that a} move check in people can be an enormous success. This might point out the event of latest non-opioid, non-addictive ache administration methods for sufferers.

Read the original:
Get rid of the ache within the nerves discovered with the following pointers, learn - Sahiwal Tv

Astellas and Adaptimmune team up in CAR-T development – European Biotechnology

Adaptimmune Therapeutics plc and Japanese Astellas Pharma, Inc. have signed a discovery partnership to develop off-the-shelf allogeneic T cell-based cancer therapies from stem cells.

At J.P. Morgan conference, the British company announced that Astellas has agreed to co-develop and co-commercialize stem-cell derived allogeneic CAR-T and TCR T-cell therapies against up to three targets. In contrast to current autologous T cell therapies, allogenic T cell therapies might be manufactured in a central facility reducing production cost significantly compared to autologous cell production and logistics.

Under the agreement, Adaptimmune will identify and validate new targets for generating target-specific T-cell receptors (TCRs), chimeric antigen receptors (CARs), and HLA-independent TCRs that recognize surface epitopes independently from the HLA profile of the tumour cell. Astellas subsidiary Universal Cells, Inc will provide its Universal Donor Cell and Gene Editing Platform, which makes use of a stem cell-tropic rAAV vector for engineering humanpluripotent stem cells to contain deletions, insertions, or point mutations at any genomic position.

Adaptimmune has been collaborating with Universal Cells since 2015 on development of gene-edited induced pluripotent stem cell (iPSC) lines that generate proprietary T-cell products without the use of feeder layers.

Under the agreement, Astellas will fund research up until completion of a Phase I trial for each candidate with US$7.5m per year. Subsequently, Astellas and Adaptimmune may opt for co-development and co-commercialization of the candidate, or independent development through a milestone and royalty bearing licence. Under the agreement, Astellas will also have the right to select two targets and develop allogeneic cell therapy candidates on its own.

In case of Astellas would develop the candidates on its own, Adaptimmune may receive up to$897.5m in payments. If Adaptimmune would do so, Astellas may receive up to US$552.5m. If the companies opt for co-commercialisation any T-cell therapy, costs and profits will be shared equally.

See more here:
Astellas and Adaptimmune team up in CAR-T development - European Biotechnology

Stem Cell Therapy Market Rising Demand for Digitization in Organizations and Growth till 2027 – Galus Australis

The report provides in-depth analysis on the topic and discuss drivers, restraints and opportunities available in the market. The service is designed to help our clients in their decision support system. The analysis also cover the complete spectrum of the research topic to help our clients meeting their business objective.

Stem cell therapy is a technique which uses stem cells for the treatment of various disorders. Stem cell therapy is capable of curing broad spectrum of disorders ranging from simple to life threatening. These stem cells are obtained from different sources, such as, adipose tissue, bone marrow, embryonic stem cell and cord blood among others. Stem cell therapy is enables to treat more than 70 disorders, including degenerative as well as neuromuscular disorders. The ability of a stem cell to renew itself helps in replacing the damaged areas in the human body.

Download a Sample Report Explore further @https://www.theinsightpartners.com/sample/TIPHE100000991

Increase in the number of stem cell banking facilities and rising awareness on the benefits of stem cell for curing various disorders are expected to drive the market during the forecast period. Rise in number of regulations to promote stem cell therapy and increase in number of funds for research in developing countries are expected to offer growth opportunities to the market during the coming years.

Top Dominating Key Players:

1. MEDIPOST2. PHARMICELL Co., Ltd3. Holostem Terapie Avanzate S.r.l.4. Mesoblast Ltd5. U.S. Stem Cell, Inc.6. BIOTIME, INC.7. Lonza8. Caladrius9. Takeda Pharmaceutical Company Limited10. KOLON TISSUEGENE INC.

The stem cell therapy market is segmented based on type as, adult stem cell, embryonic stem cell induced pluripotent stem cell and others. The adult stem cells segment is further segmented as hematopoietic, umbilical cord, neuronal and mesenchymal stem cells. Based on treatment, the market is categorized as allogeneic and autologous. The market is categorized by application as, muscoskeletal, dermatology, cardiology, drug discovery & development and others.

The report provides a detailed overview of the industry including both qualitative and quantitative information. It provides overview and forecast of the global stem cell therapy market based on various segments. It also provides market size and forecast estimates from year 2017 to 2027 with respect to five major regions, namely; North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America. The stem cell therapy market by each region is later sub-segmented by respective countries and segments. The report covers analysis and forecast of 18 countries globally along with current trend and opportunities prevailing in the region.

The report analyzes factors affecting stem cell therapy market from both demand and supply side and further evaluates market dynamics effecting the market during the forecast period i.e., drivers, restraints, opportunities and future trend. The report also provides exhaustive PEST analysis for all five regions namely; North America, Europe, APAC, MEA and South & Central America after evaluating political, economic, social and technological factors effecting the stem cell therapy market in these regions.

Request for Buy Report @https://www.theinsightpartners.com/buy/TIPHE100000991

Reasons to Buy the Report:

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:

The Insight partners,

Phone: +1-646-491-9876Email:sales@theinsightpartners.com

Visit link:
Stem Cell Therapy Market Rising Demand for Digitization in Organizations and Growth till 2027 - Galus Australis

Allele and Astellas Enter into an Expanded License for the Development of iPSC Lines – Yahoo Finance

Allele Biotechnology and Pharmaceuticals, Inc. (President and CEO: Jiwu Wang, Ph.D., "Allele"), a San Diego-based private company, and Astellas Pharma Inc. (TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas"), through its Massachusetts-based subsidiary Astellas Institute for Regenerative Medicine (AIRM), entered into a licensing agreement to expand Astellas access to Alleles induced pluripotent stem cell (iPSC) technologies for various cell therapy programs.

Astellas, one of the largest pharmaceutical companies in Japan and already a leader in the development of cell-based therapeutics, has further dedicated to development of the field through its commitment to state-of-the-art iPS cell generation, modification, and manufacturing. iPSC lines can differentiate into all somatic tissue types, enabling a wide variety of therapeutic applications. The field of iPSC-derived cells has seen dramatic growth in clinical trials recently--the majority of the ~12 clinical trials around the world were initiated within the last 18 months and many more are upcoming.

Allele has been developing its core strength in reprogramming somatic cells into iPSCs with granted patents and the first commercial cGMP system it developed over the past 10 years. Allele also engages in more than a dozen different human tissue derivation activities through its own R&D efforts for internal programs and partnerships. To realize the unparalleled potential of iPSC, Alleles researchers and cGMP team are committed to setting up and validating cell assays for product quality control, genome analysis pipelines, closed-system automation for reprogramming, and machine learning in iPSC-related fields.

Under the terms of the new license agreement, Astellas will pay Allele upfront and milestones, product-based royalties, and potentially manufacture fees.

About AlleleAllele Biotechnology and Pharmaceuticals was founded in 1999. In 2015, the company completed an 18,000 square foot state-of-the-art facility in San Diego for the production of GMP-grade human iPSC lines. The facility also supports the production of tissue-specific cells differentiated from these iPSCs, including pancreatic beta cells, neural progenitor cells, and cardiomyocytes.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200113005668/en/

Contacts

Allele Biotechnology and Pharmaceuticals, Inc.Daniel Catrondcatron@allelebiotech.com +1 858-587-6645

View post:
Allele and Astellas Enter into an Expanded License for the Development of iPSC Lines - Yahoo Finance