Category Archives: Induced Pluripotent Stem Cells


Can organoids, derived from stem cells, be used in disease treatments? – The Hindu

The story so far: On Monday, October 21, at Neuroscience 2019, the Society for Neurosciences 49th annual meeting, held in Chicago, U.S., two neuroscientists warned the gathering that fellow scientists are perilously close to crossing the ethical red line of growing mini-brains or organoids in the laboratory that can perceive or feel things. In some cases, scientists have already transplanted such lab-grown brain organoid to adult animals. The transplanted organoid had integrated with the animal brain, grown new neuronal connections and responded to light. Similarly, lung organoid transplanted into mice was able to form branching airways and early alveolar structures. These are seen as a step towards potential humanisation of host animals.

Organoids are a group of cells grown in laboratories into three-dimensional, miniature structures that mimic the cell arrangement of a fully-grown organ. They are tiny (typically the size of a pea) organ-like structures that do not achieve all the functional maturity of human organs but often resemble the early stages of a developing tissue. Most organoids contain only a subset of all the cells seen in a real organ, but lack blood vessels to make them fully functional. In the case of brain organoids, scientists have been able to develop neurons and even make specific brain regions such as the cerebral cortex that closely resemble the human brain. The largest brain organoids that have been grown in the laboratory are about 4 mm in diameter.

Organoids are grown in the lab using stem cells that can become any of the specialised cells seen in the human body, or stem cells taken from the organ or adults cells that have been induced to behave like stem cells, scientifically called induced pluripotent stem cells (iPSC). Stem cells are provided with nutrients and other specific molecules to grow and become cells resembling a specific organ. The growing cells are capable of self-organising into cellular structures of a specific organ and can partly replicate complex functions of mature organs physiological processes to regeneration and being in a diseased state.

Organoids of the brain, small intestine, kidney, heart, stomach, eyes, liver, pancreas, prostate, salivary glands, and inner ear to name a few have already been developed in the laboratory.

Since the use of embryonic stem cells to grow organs of interest has been mired in controversy leading to a ban on such research, researchers have turned to generating organoids using stem cells. Researchers have been successful in generating organoids of increasing complexity and diversity. Since the organoids closely resemble mature tissues, it opens up new vistas. These include studying the complex arrangements of cells in three-dimension and their function in detail, and understanding how cells assemble into organs.

Organoids can be used to study the safety and efficacy of new drugs and also test the response of tissues to existing medicines. Organoids will bring precision medicine closer to reality by developing patient-specific treatment strategies by studying which drugs the patient is most sensitive to. Since the use of animals during drug development studies is becoming increasingly difficult, the focus has been on refining, reducing and replacing them. While scientists have been increasingly using human cell lines and other methods, such alternatives have some inherent limitations they cannot mimic the whole organ system. Organoids are a far superior alternative to cell lines.

Organoids offer new opportunities to studying proteins and genes that are critical for the development of an organ. This helps in knowing how a mutation in a specific gene causes a disease or disorder. In a study in Europe using intestinal organoids from six patients with an intestine disorder, it became possible to identify the mutation in a gene that prevented the formation of a healthy intestine. Researchers have used brain organoids to study how the Zika virus affects brain development in the embryo.

Scientists are already using stem cells taken from tumours to grow organoids that are poised to develop cancer. The ability to grow organoids using cancer stem cells allows researchers to study the genes, proteins and signalling pathways that cancer cells use to develop and grow. They are also using healthy organoids to identify and verify the gene mutations that cause cancer.

In an opinion piece in Nature, scientists argued that the largest brain that has been grown in the laboratory is only 4 mm in diameter and contains only 2-3 million cells. In comparison, an adult human brain measures 1,350 cubic centimetres, and has 86 billion neurons and another 86 billion non-neuronal cells and a similar number of non-neuronal cells. The authors argue that organoids do not have sensory inputs and sensory connections from the brain are limited. Isolated regions of the brain cannot communicate with other brain regions or generate motor signals. They wrote: Thus, the possibility of consciousness or other higher-order perceptive properties [such as the ability to feel distress] emerging seems extremely remote.

You have reached your limit for free articles this month.

Register to The Hindu for free and get unlimited access for 30 days.

Find mobile-friendly version of articles from the day's newspaper in one easy-to-read list.

Enjoy reading as many articles as you wish without any limitations.

A select list of articles that match your interests and tastes.

Move smoothly between articles as our pages load instantly.

A one-stop-shop for seeing the latest updates, and managing your preferences.

We brief you on the latest and most important developments, three times a day.

*Our Digital Subscription plans do not currently include the e-paper ,crossword, iPhone, iPad mobile applications and print. Our plans enhance your reading experience.

Here is the original post:
Can organoids, derived from stem cells, be used in disease treatments? - The Hindu

University team to seek approval for iPS-based heart treatment trial – The Japan Times

OSAKA A university research team will seek government approval by the end of October to carry out a clinical trial using iPS cells to treat a serious heart condition, Osaka University officials said Wednesday.

The treatment involves transplanting sheets of heart muscle cells, generated from induced pluripotent stem cells that can develop into any type of tissue, to individuals suffering from ischemic heart disease.

The disease is caused by the buildup of plaque in the coronary arteries, which partially or totally blocks blood flow to the heart.

The team, led by Yoshiki Sawa, a professor at Osaka Universitys Department of Cardiovascular Surgery, received approval for a clinical study from the Ministry of Health, Labor and Welfare in May 2018.

But the study was delayed after a powerful earthquake hit western Japan a month later, damaging a research facility where the necessary cells would have been cultivated.

View original post here:
University team to seek approval for iPS-based heart treatment trial - The Japan Times

Global Gemcitabine Hydrochloride Market: Segmented By Application And Geography Trends, Growth And Forecasts To 2024 – Health News Office

The Induced Pluripotent Stem Cells (IPSCS)market research report added by Report Ocean, is an in-depth analysis of the latest trends, market size, status, upcoming technologies, industry drivers, challenges, regulatory policies, with key company profiles and strategies of players. The research study provides market introduction, INDUCED PLURIPOTENT STEM CELLS (IPSCS) market definition, regional market scope, sales and revenue by region, manufacturing cost analysis, Industrial Chain, market effect factors analysis, INDUCED PLURIPOTENT STEM CELLS (IPSCS) market size forecast, 100+ market data, Tables, Pie Chart, Graphs and Figures, and many more for business intelligence.

UPTO 30% OFF ON SINGLE USER PDF: https://www.reportocean.com/industry-verticals/sample-request?report_id=Global-Induced-Pluripotent-Stem-Cells-(iPSCs)-Market-OWL24961

INDUCED PLURIPOTENT STEM CELLS (IPSCS) Market: Competitive Analysis by Key Players:

The Global INDUCED PLURIPOTENT STEM CELLS (IPSCS) Market also explains the competitive landscape among the major key players of the market, based on various parameters, such as:

INDUCED PLURIPOTENT STEM CELLS (IPSCS) Market Segments:

Market Segment by Manufacturers,> Fujifilm Holding Corporation (CDI)> ReproCELL> Astellas Pharma Inc> Ncardia> Cell Inspire Biotechnology> Sumitomo Dainippon Pharma> Pluricell Biotech> Fate Therapeutics, Inc

Market Segment by Type,> Human iPSCs> Mouse iPSCsMarket Segment by Applications,> Academic Research> Drug Development and Discovery> Toxicity Screening> Regenerative Medicine

Key Developments in the Induced Pluripotent Stem Cells (iPSCs) MarketTo describe Induced Pluripotent Stem Cells (iPSCs) Introduction, product type and application, market overview, market analysis by countries, market opportunities, market risk, market driving force;To analyze the manufacturers of Induced Pluripotent Stem Cells (iPSCs), with profile, main business, news, sales, price, revenue and market share in 2016 and 2018;To display the competitive situation among the top manufacturers in Global, with sales, revenue and market share in 2016 and 2018;To show the market by type and application, with sales, price, revenue, market share and growth rate by type and application, from 2013 to 2019;To analyze the key countries by manufacturers, Type and Application, covering North America, Europe, Asia Pacific, Middle-East and South America, with sales, revenue and market share by manufacturers, types and applications;Induced Pluripotent Stem Cells (iPSCs) market forecast, by countries, type and application, with sales, price, revenue and growth rate forecast, from 2019 to 2026;To analyze the manufacturing cost, key raw materials and manufacturing process etc.To analyze the industrial chain, sourcing strategy and downstream end users (buyers);To describe Induced Pluripotent Stem Cells (iPSCs) sales channel, distributors, traders, dealers etc.To describe Induced Pluripotent Stem Cells (iPSCs) Research Findings and Conclusion, Appendix, methodology and data source

Get a Sample Report for more Expert and Official insights: @ https://www.reportocean.com/industry-verticals/sample-request?report_id=Global-Induced-Pluripotent-Stem-Cells-(iPSCs)-Market-OWL24961

Regional Analysis:

The market research study offers in-depth regional analysis along with the current market scenarios. The major regions analyzed in the study are:

Key highlights and important features of the Report:

Overview and highlights of product and application segments of the global INDUCED PLURIPOTENT STEM CELLS (IPSCS) Market are provided. Highlights of the segmentation study include price, revenue, sales, sales growth rate, and market share by product.

Explore about Sales data of key players of the global INDUCED PLURIPOTENT STEM CELLS (IPSCS) Market as well as some useful information on their business. It talks about the gross margin, price, revenue, products, and their specifications, type, applications, competitors, manufacturing base, and the main business of key players operating in the INDUCED PLURIPOTENT STEM CELLS (IPSCS)Market.

Explore about gross margin, sales, revenue, production, market share, CAGR, and market size by region.

Describe INDUCED PLURIPOTENT STEM CELLS (IPSCS) Market Findings and Conclusion, Appendix, methodology and data source;

Research Methodology:

The market research was done by adopting various tools under the category of primary and secondary research. For primary research, experts and major sources of information have been interviewed from suppliers side and industries, to obtain and verify the data related to the study of the Global INDUCED PLURIPOTENT STEM CELLS (IPSCS)Market. In secondary research methodology, various secondary sources were referred to collect and identify extensive piece of information, such as paid databases, directories and annual reports and databases for commercial study of the GlobalINDUCED PLURIPOTENT STEM CELLS (IPSCS) Market. Moreover, other secondary sources include studying technical papers, news releases, government websites, product literatures, white papers, and other literatures to research the market in detail.

Get in Touch with Us:

Name: David McKee

Email: [emailprotected]

Tel: +1 888 212 3539 (US TOLL FREE)

Website: https://www.reportocean.com/

Excerpt from:
Global Gemcitabine Hydrochloride Market: Segmented By Application And Geography Trends, Growth And Forecasts To 2024 - Health News Office

Global consortium formed to combat unproven cell banking services – Drug Target Review

The International Society for Cell and Gene Therapy has created a group to tackle the rising number of commercial cell bank services that are misleading patients.

The International Society for Cell and Gene Therapy (ISCT) has announced the formation of a global consortium to combat the growing number of unproven commercial cell banking services.

The group will be made up of leading professional and education societies, including, among others:

The partnership has been formed following the ISCTs publication of its patient advice and concern on unproven T cell preservation services. These facilities comprise the banking of T cells, dental cells and cells for the derivation of induced pluripotent stem cells for potential therapeutic uses.

these cell banking services can deceive patients using tokens of scientific legitimacy

A joint statement from the ISCT and the consortium partners commented on certain commercial cell banking services and their lack of support from current scientific evidence. Furthermore, the society says that these cell banking services are unable to declare that cells they preserve may ever be appropriate for clinical usage or for manufacturing purposes.

The ISCT emphasises that there is no clear pathway to legitimate clinical use. As such, any parties offering these services commercially to patients is premature, misleading and drives false hope.

Any patients using these services are therefore prevented from giving full and valid informed consent, according to the ISCT.

The society highlights that these cell banking services can deceive patients using tokens of scientific legitimacy that suggest a stronger scientific basis than currently exists. These include endorsements from individuals or scientific advisory boards that may not fully support the specific products, links to scientific articles and references to ongoing clinical trials.

ISCTs raison detre is to lead the industry in supporting scientifically validated cell and gene therapies. As a result, ISCT will continue to welcome all innovations, including cell banking approaches, that increase the number of patients who can benefit from these therapies, said Bruce Levine,President-Elect, ISCT.However, ISCT also leads industry action on unproven cell therapies and services in the cell and gene sector.

This is why ISCT has forged a consortium throughout the industry against the marketing of speculative cell banking services that do not have appropriate pre-clinical and clinical evidence and a plausible pathway to the clinical use of banked cells. We collectively believe these banks have the potential to be detrimental to the future development of cell and gene therapies.

See the article here:
Global consortium formed to combat unproven cell banking services - Drug Target Review

Bloomberg Philanthropies, Johns Hopkins University School of Medicine, and The New York Stem Cell Foundation Research Institute Announce an…

NEW YORK, Oct. 22, 2019 /PRNewswire/ -- Bloomberg Philanthropies, Johns Hopkins University School of Medicine (JHUSOM), and The New York Stem Cell Foundation (NYSCF) Research Institute today announced an initiative to fundamentally advance and expand the science of precision medicine, in which diagnostic disease markers are defined with pinpoint accuracy to help researchers understand disease pathways and customize therapeutic approaches. The collaboration will combine the renowned clinical and medical expertise of Johns Hopkins with the unique stem cell technologies and research capabilities of the NYSCF Research Institute to accelerate Hopkins' pioneering Precision Medicine Initiatives.

"Johns Hopkins is working intensively to realize the great promise of precision medicine for all those in our care, locally and globally," said Johns Hopkins President Ronald J. Daniels. "This significant new collaboration with Bloomberg Philanthropies and NYSCF moves us ever closer to that aim as we join together our far-reaching research capacities to advance knowledge and deliver better health outcomes for populations and people around the world."

This collaboration will also establish an unprecedented cache of human disease models available to researchers worldwide thus promoting the real world application of precision medicine and driving a new paradigm for understanding and improving the approach to human disease.

"Bloomberg Philanthropies' mission is to ensure better, longer lives for the greatest number of people," said Michael R. Bloomberg, founder of Bloomberg LP and Bloomberg Philanthropies. "For years, Johns Hopkins University and the New York Stem Cell Foundation have shared that mission and we're honored to deepen our partnerships with them as they explore new, innovative ways to save lives through the application of precision medicine."

Diseases manifest themselves differently in different patients. To understand the basis of these differences and to tailor treatments for specific patients, researchers need more accurate biological tools. Stem cell models provide a "biological avatar" of the patient from which they were created, allowing scientists and clinicians to better understand, define, and account for differences in individual patients and groups of patients.

The new initiative will use induced pluripotent stem cells to study disease characteristics in subgroups of patients, identifying markers that lead to varying disease manifestations. For example, by examining stem cells from seemingly similar patients with different forms of multiple sclerosis, we may be able to better understand the full range of disease mechanisms and pathways.

The Johns Hopkins Precision Medicine Initiative already includes 16 Precision Medicine Centers of Excellence (PMCOE), each focusing on a specific disease, and is now working to develop 50 Precision Medicine Centers in the next five years. Johns Hopkins believes that this advancement in the study and application of precision medicine has the potential to transform the diagnosis and management of many diseases.Often, what is now categorized as a single disease is actually made up ofmultiple diseases that display similar symptoms, but require quite different therapies. Using a wide range of data sources, precision medicine seeks to better elucidate these differences, so that doctors can treat patients with precisely targeted therapies. At Johns Hopkins, dozens of researchers are bringing this idea to reality across a spectrum of debilitating and life-altering diseases.

In this collaboration, the process will begin with the full consent of patients in JHUSOM PMCOEs who wish to participate. Biological samples from the JHUSOM PMCOEs will be collected by the NYSCF Research Institute where scientists will create stem cell models of disease using the NYSCF Global Stem Cell Array, the world's first end-to-end automated system for generating human stem cells in a parallel, highly controlled process.Integrating robotics and machine learning, NYSCF's technology reprograms skin or blood cells into stem cells, differentiates them into disease-relevant cell types, and performs genome editing to unravel the genetic basis of disease.

"The NYSCF Research Institute has invented and scaled the most advanced methods of human cell manipulation, which is critical for studying disease at the level of the individual patient," explained NYSCF CEO Susan L. Solomon. "By combining our capabilities with Johns Hopkins' extensive clinical data and expertise, we will be able to develop effective, personalized therapies for patients suffering from diseases with a high unmet need."

The stem cells generated by NYSCF will be used to research and drive effective therapeutic and diagnostic development in a wide range of diseases that include, but are not limited to, Multiple Sclerosis, Alzheimer's, chronic renal failure, and cancers of the lung, breast, prostate, pancreas, and bladder. These stem cell lines will reside in the NYSCF Repository and serve as an extraordinary resource in perpetuity for the disease research community. This vast collection will allow scientists unprecedented insights into the biochemical and genetic mechanisms underlying different diseases and subtypes thereof, thereby illuminating avenues for effective, tailored interventions.

"Stem cell science holds enormous potential for the treatment of a wide range of diseases," said Paul B. Rothman, dean of the School of Medicine and CEO of Johns Hopkins Medicine. "By combining this approach with Johns Hopkins' groundbreaking work on precision medicine, we are creating a scientific powerhouse that will help us advance medicine and science at an even faster pace. I am excited to see the discoveries and innovations that will be produced by this collaboration."

About Bloomberg PhilanthropiesBloomberg Philanthropies invests in 510 cities and 129 countries around the world to ensure better, longer lives for the greatest number of people. The organization focuses on five key areas for creating lasting change: Arts, Education, Environment, Government Innovation, and Public Health. Bloomberg Philanthropies encompasses all of Michael R. Bloomberg's giving, including his foundation and personal philanthropy as well as Bloomberg Associates, a pro bono consultancy that works in cities around the world. In 2018, Bloomberg Philanthropies distributed $767 million. For more information, please visitbloomberg.orgor follow us on Facebook, Instagram, YouTube, and Twitter.

About The New York Stem Cell Foundation Research Institute The New York Stem Cell Foundation (NYSCF) Research Institute is an independent non-profit organization accelerating cures and better treatments for patients through stem cell research. The NYSCF global community includes over 180 researchers at leading institutions worldwide, including the NYSCF Druckenmiller Fellows, the NYSCF Robertson Investigators, the NYSCF Robertson Stem Cell Prize Recipients, and NYSCF Research Institute scientists and engineers. The NYSCF Research Institute is an acknowledged world leader in stem cell research and in developing pioneering stem cell technologies, including the NYSCF Global Stem Cell Array and in manufacturing stem cells for scientists around the globe. NYSCF focuses on translational research in an accelerator model designed to overcome barriers that slow discovery and replace silos with collaboration. For more information, visit http://www.nyscf.org or follow us on Twitter, Facebook, and Instagram.

Press Contacts:

The New York Stem Cell Foundation Research Institute David McKeon dmckeon@nyscf.org 212-365-7440

Johns Hopkins University School of Medicine Vanessa Wasta wasta@jhmi.edu

SOURCE The New York Stem Cell Foundation

Home

Read more:
Bloomberg Philanthropies, Johns Hopkins University School of Medicine, and The New York Stem Cell Foundation Research Institute Announce an...

ISCT forms cell and gene therapy sector-wide coalition to combat the rise of unproven commercial cell banking services – PharmiWeb.com

Vancouver, Canada, October 21, 2019 ISCT, the International Society for Cell and Gene Therapy, the global professional society of clinicians, researchers, regulatory specialists, technologists and industry partners in the cell and gene therapy sector, today announces it has formed a global consortium of a wide range of leading professional and education societies to combat the rise in the number of unproven commercial cell banking services. Full details of the statement can be foundhere.

The consortium partners include the International Society for Stem Cell Research (ISSCR), Society for Immunotherapy of Cancer (SITC), American Society for Transplantation and Cellular Therapy (ASTCT),American Society of Gene & Cell Therapy (ASGCT), European Society for Blood and Marrow Transplantation (EBMT), Foundation for the Accreditation of Cellular Therapy (FACT), Joint Accreditation Committee ISCT-EBMT (JACIE) and the Forum for Innovative Regenerative Medicine (FIRM).

The consortium has been formed following ISCT issuingpatient advice and concern on unproven T-cell preservation services on August 7, 2019. These services include the banking of T-cells, dental cells and cells for the derivation of induced pluripotent stem cells for potential therapeutic uses.

The joint statement from ISCT and the consortium partners includes an agreement on a number of key points. Commercial cell banking services are not supported by current scientific evidence, as opposed to the range of cell therapies such as CAR-T therapies, that follow established approval processes. Additionally, cell banking services cannot claim to know that the cells they preserve today could ever be appropriate for clinical use, could be used by manufacturers, or meet the requirements of many national and international regulatory agencies. As a result, there is no clear pathway to legitimate clinical use. All parties agree offering these services commercially to patients is thus premature, misleading, and drives false hope.

In addition, the ISCT joint statement makes clear that patients, being misled by these services, are thus prevented from giving a full and valid informed consent. Cell banking companies mislead patients in a number of ways, including using tokens of scientific legitimacy that suggest a stronger scientific basis than currently exists. These tokens include endorsements from individuals or scientific advisory boards that might not fully endorse the specific products, links to scientific articles, and references to ongoing clinical trials.

ISCTs raison detre is to lead the industry in supporting scientifically validated cell and gene therapies. As a result, ISCT will continue to welcome all innovations, including cell banking approaches, that increase the number of patients who can benefit from these therapies, said Bruce Levine,President-Elect, ISCT and one of the inventors of CAR-T therapies.However, ISCT also leads industry action on unproven cell therapies and services in the cell and gene sector. This is why ISCT has forged a consortium throughout the industry against the marketing of speculative cell banking services that do not have appropriate pre-clinical, and clinical evidence and a plausible pathway to the clinical use of banked cells. We collectively believe these banks have the potential to be detrimental to the future development of cell and gene therapies.

About ISCT

Established in 1992, ISCT, the International Society for Cell and Gene Therapy is a global society of clinicians, regulators, researchers, technologists and industry partners with a shared vision to translate cellular therapy into safe and effective therapies to improve patients lives worldwide.

ISCT is the global leader focused on pre-clinical and translational aspects of developing cell-based therapeutics, thereby advancing scientific research into innovative treatments for patients. ISCT offers a unique collaborative environment that addresses three key areas of translation: Academia, Regulatory and Commercialization. Through strong relationships with global regulatory agencies, academic institutions and industry partners, ISCT drives the advancement of research into standard of care.

Comprised of over 1,500 cell therapy experts across five geographic regions and representation from over 50 countries, ISCT members are part of a global community of peers, thought leaders and organizations invested in cell therapy translation. For more information about the society, key initiatives and upcoming meetings, please visit:

Read the rest here:
ISCT forms cell and gene therapy sector-wide coalition to combat the rise of unproven commercial cell banking services - PharmiWeb.com

Mutations Linked to Huntington’s Increase Cells’ Resistance to Manganese, Study Finds – Huntington’s Disease News

Mutations associated with Huntingtons disease increase nerve cells resistance to high levels of manganese, according to a recent study.

The results of the study, Huntingtons disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent, were published in NeuroToxicology.

Manganese (Mn) is a trace metal that plays a key role in many cellular processes. It is essential in the production of neurotransmitters chemical substances that allow communication between nerve cells and in the regulation of nerve cells metabolism. However, high levels of Mn in the body are associated with neurotoxicity.

Levels of Mn change substantially in different regions of the brain throughout its development. However, it is still unclear if these regional differences could be linked to the fact that certain types of nerve cells may be more sensitive to higher levels of Mn than others at specific time-points during brain development.

Certain neurological disorders have been associated with alterations in brain Mn levels. It has been shown that human and mouse nerve cell precursors containing a genetic mutation associated with Huntingtons disease have limited access to Mn and are more resilient to its neurotoxic effects.

Investigators from Vanderbilt University and their collaborators now set out to explore the sensitivity of different types of neurons at different developmental stages, from patients with Huntingtons disease and healthy individuals (controls), to Mn neurotoxicity.

We hypothesized that there would be differences in Mn sensitivity between lineages and developmental stages, the researchers said.

The team used several lines of human-induced pluripotent stem cells (hiPSCs) fully matured cells that can be reprogrammed back to a stem cell state, where they are able to grow into almost any type of cell from patients and controls to generate neuroprogenitor cells (NPCs).

The NPCs then were cultured in a lab dish with different cocktails of growth factors to differentiate them into distinct types of neurons. Specifically, there were three different types: striatal neurons, which can be found in the striatum, a brain region involved in motor control; cortical neurons, which can be found in the cortex, or the outer layer of the brain; and midbrain dopaminergic neurons, which can be found in the substantia nigra, a brain region involved in the control of voluntary muscle movements.

The researchers then compared sensitivity to Mn neurotoxicity during each developmental time-point for each cell type between the two groups those with and without Huntingtons.

Their findings revealed that striatal and cortical NPCs derived from Huntingtons patients were more resistant to high levels of Mn compared with those that had been obtained from individuals who did not have the disease. These results were similar to those seen in other studies.

Moreover, the investigators found that patient-derived hiPSCs were themselves more resistant to Mn neurotoxicity than their counterparts.

However, at intermediate stages of development, midbrain neurons that had been derived from patients became more sensitive to the toxic effects of Mn.

The researchers said the sensitivity of midbrain NPCs and mature cortical neurons to Mn neurotoxicity was similar in both groups.

Altogether, these findings suggest that the harmful effects of Mn can be influenced by the presence of genetic mutations associated with Huntingtons disease. That, in turn, depends on the particular developmental stages and neuronal cell types.

In conclusion, our findings may provide insight into therapeutic strategies for diseases in which Mn has been shown to play a role such as HD [Huntingtons disease], especially through specific lineage-targeted interventions, the researchers said.

Joana is currently completing her PhD in Biomedicine and Clinical Research at Universidade de Lisboa. She also holds a BSc in Biology and an MSc in Evolutionary and Developmental Biology from Universidade de Lisboa. Her work has been focused on the impact of non-canonical Wnt signaling in the collective behavior of endothelial cells cells that make up the lining of blood vessels found in the umbilical cord of newborns.

Total Posts: 79

Ana holds a PhD in Immunology from the University of Lisbon and worked as a postdoctoral researcher at Instituto de Medicina Molecular (iMM) in Lisbon, Portugal. She graduated with a BSc in Genetics from the University of Newcastle and received a Masters in Biomolecular Archaeology from the University of Manchester, England. After leaving the lab to pursue a career in Science Communication, she served as the Director of Science Communication at iMM.

Read more from the original source:
Mutations Linked to Huntington's Increase Cells' Resistance to Manganese, Study Finds - Huntington's Disease News

Stem Cells Market : Insights Into the Competitive Scenario of the Market – Online News Guru

In theglobal stem cells marketa sizeable proportion of companies are trying to garner investments from organizations based overseas. This is one of the strategies leveraged by them to grow their market share. Further, they are also forging partnerships with pharmaceutical organizations to up revenues.

In addition, companies in the global stem cells market are pouring money into expansion through multidisciplinary and multi-sector collaboration for large scale production of high quality pluripotent and differentiated cells. The market, at present, is characterized by a diverse product portfolio, which is expected to up competition, and eventually growth in the market.

Some of the key players operating in the global stem cells market are STEMCELL Technologies Inc., Astellas Pharma Inc., Cellular Engineering Technologies Inc., BioTime Inc., Takara Bio Inc., U.S. Stem Cell, Inc., BrainStorm Cell Therapeutics Inc., Cytori Therapeutics, Inc., Osiris Therapeutics, Inc., and Caladrius Biosciences, Inc.

Get Sample with Latest Research @ https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=132

As per a report by Transparency Market Research, the global market for stem cells is expected to register a healthy CAGR of 13.8% during the period from 2017 to 2025 to become worth US$270.5 bn by 2025.

Depending upon the type of products, the global stem cell market can be divided into adult stem cells, human embryonic stem cells, induced pluripotent stem cells, etc. Of them, the segment of adult stem cells accounts for a leading share in the market. This is because of their ability to generate trillions of specialized cells which may lower the risks of rejection and repair tissue damage.

Depending upon geography, the key segments of the global stem cells market are North America, Latin America, Europe, Asia Pacific, and the Middle East and Africa. At present, North America dominates the market because of the substantial investments in the field, impressive economic growth, rising instances of target chronic diseases, and technological progress. As per the TMR report, the market in North America will likely retain its dominant share in the near future to become worth US$167.33 bn by 2025.

Request Report Brochure @ https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=132

Investments in Research Drives Market

Constant thrust on research to broaden the utility scope of associated products is at the forefront of driving growth in the global stem cells market. Such research projects have generated various possibilities of different clinical applications of these cells, to usher in new treatments for diseases.Since cellular therapies are considered the next major step in transforming healthcare, companies are expanding their cellular therapy portfolio to include a range of ailments such as Parkinsons disease, type 1 diabetes, spinal cord injury, Alzheimers disease, etc.

The growing prevalence of chronic diseases and increasing investments of pharmaceutical and biopharmaceutical companies in stem cell research are the key driving factors for the stem cells therapeutics market. The growing number of stem cell donors, improved stem cell banking facilities, and increasing research and development are other crucial factors serving to propel the market, explains the lead analyst of the report.

Read this article:
Stem Cells Market : Insights Into the Competitive Scenario of the Market - Online News Guru

‘Rewind Therapeutics’ and Remyelination – SciTech Europa

At Rewind Therapeutics (a start-up company based in Leuven, Belgium), we focus on the development of treatments for neurological diseases. Myelin is the insulation that wraps around neurons, and in turn, helps neurons to work faster and more efficiently. It is also the target of autoimmune attacks in multiple sclerosis (MS), and any damage to myelin is the proximate cause of the symptoms of the disease.

Myelin is formed by glial cells in the brain called oligodendrocytes; oligodendrocytes and their precursors account for about 30% of all the cells in the brain. The brain has a significant capacity to repair myelin when it is damaged. Repair is accomplished by mobilising stem cells called oligodendrocyte precursor cells (OPCs), which can migrate to the location of the myelin damage and differentiate into oligodendrocytes.

Failure of repair is associated with disability in diseases such as MS. The progression of disability in MS (a separate process from the relapses and remission that are the hallmark of the early stages of the disease) is believed to be associated with the brains failure to repair myelin. Myelin repair is a tightly regulated process, with mechanisms that both promote and inhibit repair. By manipulating the inhibitory processes, we hope to remove the brakes so the repair process works more efficiently.

Historically, treatments for neurological diseases have focused on neurons. While neurons are undoubtedly important, they represent perhaps less than half the cells in the brain. What is emerging is the appreciation that cells in the brain other than neurons can be the target for drugs that treat brain disease.

These other cell types include oligodendrocytes (which is what we focus on), but also astrocytes and microglia. New companies are emerging that are focused on developing therapeutics that target these other cells. This includes companies that are developing small molecule therapeutics, a few companies that are making biologics (antibodies) as well as a couple of companies that are focused on cell-based therapies.

MS is the immediate focus of our therapeutic efforts. We know that the disease results from autoimmune attacks on myelin, and these periodic attacks cause the initial symptoms of the disease. Over time, MS is associated with a progressive disability, so that patients are ultimately confined to a wheelchair and have several other disabilities. It is believed that this progressive disability reflects the loss of myelin, and the loss of the normal capacity to repair myelin enhancing that capacity is our goal.

Oligodendrocyte development from OPCs has been studied for many years. We know a lot of the details in cellular and molecular terms, but there are still many unknowns. However, we do have the ability to study oligodendrocytes and their interactions with neurons in experimental models. Some of these models come from rodents, and it is also possible to make oligodendrocytes (and neurons) from human induced pluripotent stem cells (we use both). The use of these models has enabled the field to identify new drug targets, and to test new therapeutics.

The availability of these models enabled compound screening, and several studies published in the last three to four years reported successful repurposing screens where existing drugs were shown to promote remyelination both in vitro and in vivo. Based on these studies, at least one compound (clemastine) was taken into a clinical trial, and the trial demonstrated a successful proof of mechanism. This was the demonstration of a repair effect on the optic nerve, using visual evoked potentials, which suggests that the compound promoted remyelination. So far, no one had demonstrated an effect on a therapeutic endpoint using a remyelination approach.

Although a lot of preclinical work has suggested that manipulation of remyelination targets can improve myelination in animal models, we do not yet know how these effects will translate into clinical effects. We are still trying to learn how to translate observations in animal models into an impact on clinical disease.

The therapeutic goal in MS is to slow progression of the disability associated with the disease. Historically, it has been difficult to develop drugs that slow the progression of neurodegenerative diseases. Indeed, the success in doing this in the pharma industry is essentially zero. This is a challenging goal. However, promoting remyelination is a novel approach to treating neurodegeneration.

Myelin damage is associated with several neurological disease other than MS. There are other autoimmune diseases, such as neuromyelitis optica spectrum disorder, that are conceptually similar to MS but which lack approved therapies. Multiple system atrophy is a progressive neurodegenerative disease where the pathology may originate from alpha synuclein deposits in oligodendrocytes (unlike Parkinsons disease, where the alpha synuclein deposits are in neurons).

In addition to this, there are several leukodystrophies that are characterised by myelin damage. In acute brain injuries (such as stroke and traumatic brain injury), there is clearly damage to myelin. In these other disease areas, it is not yet clear whether remyelination therapies will have a therapeutic effect, but there are many exciting therapeutic areas to explore.

Dr Ian J. Reynolds

CEO

Rewind Therapeutics

+32 (0) 470858910

ian.reynolds@rewindtherapeutics.com

Read more:
'Rewind Therapeutics' and Remyelination - SciTech Europa

Cell Expansion Market is expected to rise at a remarkable CAGR during the Forecast Period 2016 2024 – Space Market Research

Global Cell Expansion Market: Overview

This report on the global cell expansion market analyzes the current and future prospects of the market. The report comprises an elaborate executive summary, including a market snapshot that provides overall information of various segments and sub-segments.

The research is a combination of primary and secondary research. Primary research formed the bulk of our research efforts along with information collected from telephonic interviews and interactions via e-mails. Secondary research involved study of company websites, annual reports, press releases, stock analysis presentations, and various international and national databases.

The report provides market size in terms of US$ Mn for each segment for the period from 2014 to 2024, considering the macro and micro environmental factors. Growth rates for each segment within the global Cell Expansion market have been determined after a thorough analysis of past trends, demographics, future trends, technological developments, and regulatory requirements.

Get Sample Copy of This Report At: https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=9037&source=atm

A detailed qualitative analysis of factors responsible for driving and restraining market growth and future opportunities has been provided in the market overview section. This section of the report also includes market attractiveness analysis that provides a thorough analysis of the overall competitive scenario in the global cell expansion market.

Market revenue in terms of US$ Mn for the period between 2014 and 2024 along with the compound annual growth rate (CAGR %) from 2016 to 2024 are provided for all the segments, considering 2015 as the base year. Market size estimations involved in-depth study of services and product features of different types of services. Additionally, market related factors such as increase in prevalence of cancer and rare diseases, rise in demand for regenerative and cell-based therapies and historical year-on-year growth have been taken into consideration while estimating the market size.

Global Cell Expansion Market: Segmentation

The cell expansion market has segmented into four categories, namely by type of cells, by product, by end-user and by region.

Geographically, the global Cell Expansion market has been segmented into five regions: North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. In addition, the regions have been further segmented by major countries from each region. These include the U.S., Canada, the U.K., Germany, France, Italy, Spain, China, Japan, India, Saudi Arabia, UAE, Brazil, and Mexico.

Request for Ask An Analyst About This Report At: https://www.transparencymarketresearch.com/sample/sample.php?flag=ASK&rep_id=9037&source=atm

Global Cell Expansion Market: Competitive Landscape

The report also profiles major players in the cell expansion market based on various attributes such as company overview, financial overview, SWOT analysis, key business strategies, product portfolio, and recent developments. Key companies profiled in the report include GE Healthcare, Danaher Corporation (Pall Corporation), Terumo Corporation, Merck Millipore (Merck KGaA), Octane Biotech, Inc., Thermo Fisher Scientific, Inc., Lonza Group, STEMCELL Technologies, Inc., Becton, Dickinson and Company, Bio-Techne (R&D Systems), Takara Bio, Inc., Cell Signaling Technology, Inc., PeproTech, CellGenix GmbH, Corning Incorporated, Eppendorf AG, and HiMedia Laboratories.

The global cell expansion market is segmented as follows:

Global Cell Expansion Market Revenue, by Type of Cells Human Cells Stem Cells Adult Stem Cells Induced Pluripotent Stem Cells Embryonic Stem Cells Differentiated Cells Animal Cells

Global Cell Expansion Market Revenue, by Product Type Instruments Cell Expansion Supporting Equipment Bioreactors Automated Cell Expansion Consumables Reagents Media Sera Disposables Bioreactor Accessories Tissue Culture Flasks Others

Global Cell Expansion Market Revenue, by End User Hospitals CMO & CRO Biotechnology & Pharmaceutical Companies Academic & Research Institutes

Global Cell Expansion Market Revenue, by Geography North America US Canada Europe UK Germany France Italy Spain Russia Rest of Europe Asia Pacific China Japan Australia & New Zealand Rest of Asia Pacific Latin America Brazil Mexico Rest of Latin America Middle East and Africa South Africa GCC Countries Rest of Middle East & Africa

Request For Discount On This Report At https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=9037&source=atm

Read more here:
Cell Expansion Market is expected to rise at a remarkable CAGR during the Forecast Period 2016 2024 - Space Market Research